Code-rate-optimized differentially modulated near-capacity cooperation
Code-rate-optimized differentially modulated near-capacity cooperation
It is widely recognized that half-duplex-relay-aided differential decode-and-forward (DDF) cooperative transmission schemes are capable of achieving a cooperative diversity gain, while circumventing the potentially excessive-complexity and yet inaccurate channel estimation, especially in mobile environments. However, when a cooperative wireless communication system is designed to approach the maximum achievable spectral efficiency by taking the cooperation-induced multiplexing loss into account, it is not obvious whether or not the relay-aided system becomes superior to its direct-transmission based counterpart, especially, when advanced channel coding techniques are employed. Furthermore, the optimization of the transmit-interval durations required by the source and relay is an open issue, which has not been well understood in the context of half-duplex relaying schemes. Hence, we first find the optimum transmission duration, which is proportional to the adaptive channel-code rate of the source and relay in the context of Code-Rate-Optimized (CRO) TDMA-based DDF-aided half-duplex systems for the sake of maximizing the achievable network throughput. Then, we investigate the benefits of introducing cooperative mechanisms into wireless networks, which may be approached in the context of the proposed CRO cooperative system both from a pure capacity perspective and from the practical perspective of approaching the Discrete-input Continuous-output Memoryless Channel (DCMC) capacity with the aid of the proposed Irregular Distributed Differential (IrDD) coding aided scheme. In order to achieve a near-capacity performance at a low-complexity, an adaptive-window-duration based Multiple-Symbol Differential Sphere Detection (MSDSD) scheme is employed in the iterative detection aided receiver. Specifically, upon using the proposed near-capacity system design, the IrDD coding scheme devised becomes capable of performing within about 1.8 dB from the corresponding single-relay-aided DDF cooperative system’s DCMC capacity.
2185-2195
Wang, Li
48544830-2bcb-4cfa-a33e-343ebfbe4aac
Kong, Lingkun
7d1a9e19-a1cc-4066-8d98-e9e29c2a0177
Ng, Soon
e19a63b0-0f12-4591-ab5f-554820d5f78c
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
August 2011
Wang, Li
48544830-2bcb-4cfa-a33e-343ebfbe4aac
Kong, Lingkun
7d1a9e19-a1cc-4066-8d98-e9e29c2a0177
Ng, Soon
e19a63b0-0f12-4591-ab5f-554820d5f78c
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Wang, Li, Kong, Lingkun, Ng, Soon and Hanzo, Lajos
(2011)
Code-rate-optimized differentially modulated near-capacity cooperation.
IEEE Transactions on Communications, 59 (8), .
Abstract
It is widely recognized that half-duplex-relay-aided differential decode-and-forward (DDF) cooperative transmission schemes are capable of achieving a cooperative diversity gain, while circumventing the potentially excessive-complexity and yet inaccurate channel estimation, especially in mobile environments. However, when a cooperative wireless communication system is designed to approach the maximum achievable spectral efficiency by taking the cooperation-induced multiplexing loss into account, it is not obvious whether or not the relay-aided system becomes superior to its direct-transmission based counterpart, especially, when advanced channel coding techniques are employed. Furthermore, the optimization of the transmit-interval durations required by the source and relay is an open issue, which has not been well understood in the context of half-duplex relaying schemes. Hence, we first find the optimum transmission duration, which is proportional to the adaptive channel-code rate of the source and relay in the context of Code-Rate-Optimized (CRO) TDMA-based DDF-aided half-duplex systems for the sake of maximizing the achievable network throughput. Then, we investigate the benefits of introducing cooperative mechanisms into wireless networks, which may be approached in the context of the proposed CRO cooperative system both from a pure capacity perspective and from the practical perspective of approaching the Discrete-input Continuous-output Memoryless Channel (DCMC) capacity with the aid of the proposed Irregular Distributed Differential (IrDD) coding aided scheme. In order to achieve a near-capacity performance at a low-complexity, an adaptive-window-duration based Multiple-Symbol Differential Sphere Detection (MSDSD) scheme is employed in the iterative detection aided receiver. Specifically, upon using the proposed near-capacity system design, the IrDD coding scheme devised becomes capable of performing within about 1.8 dB from the corresponding single-relay-aided DDF cooperative system’s DCMC capacity.
Text
0Code-Rate-Optimized_.pdf
- Other
More information
Published date: August 2011
Organisations:
Southampton Wireless Group
Identifiers
Local EPrints ID: 272580
URI: http://eprints.soton.ac.uk/id/eprint/272580
PURE UUID: 12ced5a9-a1c5-4381-97e7-fde6957ac926
Catalogue record
Date deposited: 19 Jul 2011 19:13
Last modified: 18 Mar 2024 02:48
Export record
Contributors
Author:
Li Wang
Author:
Lingkun Kong
Author:
Soon Ng
Author:
Lajos Hanzo
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics