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SUMMARY

Previous work has shown that the structure of repetitive control (RC) and that of iterative learning control
(ILC) differ only in the location of an internal model of the disturbance. In this paper, it is shown how
this common setting permits derivation of controllers in one domain based on an existing controller in the
other. This is illustrated using the following case studies: 1) an RC scheme using a state feedback structure
is derived based on an existing ILC scheme, which also uses state feedback (the underlying structure is
first extended to comprise both current-error feedback and previous-error feedforward implementations);
and 2) an ILC scheme using an output injection structure is developed based on an existing RC scheme,
which uses state feedback, but differs from 1) by containing only a single internal model representation.
All controllers are shown to have similar equivalent representations, with parameters derived by using
linear quadratic regulator analysis. This correspondence enables comparison of the effect of the structure
(ILC or RC, state feedback or output injection), number of internal models, and use of error (feedback or
feedforward) on subsequent performance. This is undertaken using experimental results obtained using a
gantry robot. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Iterative learning control (ILC) is applicable to systems operating in a repetitive, or trial-to-trial
mode with the requirement that a reference trajectory defined over a finite duration is followed to
a high precision. A generic example is a pick and place operation where a physical device, such
as a robot, is required to undertake the following operations in synchronization with a conveyor
system: (i) collect an object from a fixed location; (ii) transfer it over a finite duration; (iii) place it
on the moving conveyor; (iv) return to the original location for the next object; and then (v) repeat
the previous four steps for as many objects as required. Each execution is known as a trial and the
characteristic feature of ILC is that information from the previous trial, or a finite number of them,
is used to update the control input to be used on the next trial where, for example, the new con-
trol signal is computed in the stoppage time between the completion of a trial and the start of the
next one. The aim is to improve performance from trial-to-trial, commonly in the form of the error
between a specified reference signal and the output on each trial. One starting point for the literature
are the survey papers [1, 2].

Repetitive Control (RC) is concerned with improving the performance of trajectory tracking and
set-point control problems in the case where the reference trajectory is repeated ad infinitum or the
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disturbances are repeated and occur in a regularly timed manner, for example, [3]. In this frame-
work, there is no resetting between trials, each following immediately on from the last. This form
of control utilizes the error data from previous executions of the task, to modify the input profile,
which is supplied to the plant during the next trial, in a way which seeks to reduce the tracking
error. Tracking systems in many applications, such as rotating machinery, have to operate in an
environment containing such periodic reference and/or disturbance signals.

It is well-known that any periodic signal can be generated by an autonomous system consisting
of a positive feedback loop with a time-delay element in the forward path. Furthermore, the internal
model principle [4] establishes that such signals can be accommodated by duplicating this model
inside a feedback loop. Previous work [5, 6] has shown that both RC and ILC contain an internal
model of the reference, but differ in where it is located within the feedback path: in RC, the internal
model is located at the system output, and in ILC, it is located at the system input. In [6], this struc-
ture was used to derive ILC and RC schemes, which explicitly incorporated current-error feedback,
and the use of a single internal model. The placement of the internal model was shown to restrict
RC to assuming a state-feedback structure, and ILC to assuming an output injection structure.

The ability to treat RC and ILC in the same framework is appealing as controllers found to oper-
ate well in one area can be synthesized for application to the other. However, no experimental
comparison has been undertaken to establish the feasibility of this common framework in practice,
or the effect of the underlying structural choices on subsequent performance. This paper shows how
existing approaches can be used to develop alternative structure RC or ILC schemes in a common
setting and considers the effects of the number of internal models on the structure and resulting
performance. Hence, the results are of relevance to both domains.

The next section gives the necessary background with particular emphasis on the placement of
the internal model in RC and ILC. Section 3 then expands an existing ILC structure and uses the
common framework to develop a new RC scheme. Both schemes adopt state feedback to solve the
stabilization and hence tracking problem. In Section 4, the case of a single internal model is then
considered; first, an existing RC scheme from [6] is taken, and a novel ILC scheme is derived in
a common setting. The stipulation of a single internal model is more restrictive, and forces an out-
put injection structure. Compared with the ILC scheme outlined in [6], this has a more general yet
simpler overall structure, and leads to a derivation which addresses parameter selection using the
same form of cost function as the RC case. All four control schemes have similar equivalent struc-
tures and are stabilized using the same form of a linear quadratic regulator (LQR) cost function.
Hence, for the first time. this permits transparent comparisons to be performed in terms of ILC/RC
state feedback/output injection structure, number of internal models, and presence of error feed-
back/feedforward control loops. This is conducted in the penultimate section using experimental
results with a multi-axis gantry robot, with conclusions given in Section 6.

2. BACKGROUND

The processes considered in this work have m outputs, p inputs, n states and are described by the
discrete linear time-invariant state-space model with realization fA,B ,C ,Dg, with transfer-function
matrix description y.´/D P.´/u.´/ where

P.´/D C.´In �A/
�1B CD. (1)

in which In is the n � n identity matrix. In ILC, the dynamics are considered over the finite trial
duration consisting of N samples, with a constant initial state vector. The system performs a trial,
resets to the initial state, and then performs the next. Hence the dynamics on the kth trial can be
described by

xk.i C 1/D Axk.i/CBuk.i/, i D 0, 1, � � �N � 1, xk.0/D x0

yk.i/D Cxk.i/CDuk.i/ (2)
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where no loss of generality arises from setting x0 D 0. By introducing the vectors

yk D
�
yk.0/

T yk.1/
T � � � yk.N � 1/

T
�T

uk D
�
uk.0/

T uk.1/
T � � � uk.N � 1/

T
�T

(3)

the dynamics can also be expressed in equivalent ‘lifted’ form

yk DGuk , k D 0, 1, � � � (4)

where the Nm�Np lower triangular Toeplitz matrix

G D

2
666664

D 0 0 � � � 0

CB D 0 � � � 0

CAB CB D � � � 0
...

...
...

. . .
...

CAN�2B CAN�3B CAN�4B � � � D

3
777775 . (5)

The objective in ILC is to force the output to converge to the reference vector

r D
�
r.0/T r.1/T � � � r.N � 1/T

�T
. (6)

This problem formulation has been used to develop many ILC algorithms such as those of the
‘lifted’ form, for example, [7, 8],

ukC1 D uk CQek (7)

where ek D r � yk is the error vector on trial k and Q is an Np �Nm matrix. Using (4), the error
evolves as

ekC1 D .INm �GQ/ek (8)

and hence, a necessary and sufficient criterion for convergence to the reference as k!1 is

�.INm �GQ/ < 1 (9)

where �.�/ denotes the spectral radius of its matrix argument. Note that this imposes the constraint
p >m. Many methods are available in the literature to design Q, of which those termed ‘past-error
feedforward’, form a large subset [1, 2, 9], and yield the upper triangular Toeplitz structure

QD

2
66664

Q1 Q2 Q3 � � � QN

0 Q1 Q2 � � � QN�1

0 0 Q1 � � � QN�2

...
...

...
. . .

...
0 0 0 � � � Q1

3
77775 (10)

where each block element is an p �m matrix. The p rows of (7) corresponding to the input vector
at sample i of trial kC 1 can be equivalently written in ´-transform form as

ukC1.i/D ´
�NukC1.i/C´

�N
�
Q1C ´Q2C � � � C ´

N�1QN

�
ekC1.i/, i D 0, 1, � � �N�1 (11)

where the ´-transform of the sequences ekC1 and ukC1 is not explicitly stated. Here, the previous
trial signals are treated as a set of initial conditions, which are imposed on the shift operator,
such that

´�jukC1.i/D uk.N C i � j /, i D 0, 1, � � �N � 1, i < j 6N (12)

´�j ekC1.i/D ek.N C i � j /, i D 0, 1, � � �N � 1, i < j 6N (13)
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With the upper triangular structure of (10), the finite trial length also imposes the additional
condition

´�j ekC1.i/D 0, 06 j 6 i (14)

arising from the fact that an ILC algorithm of the form (7) employs no current trial information in
the formation of ukC1. However, the typical structure ofQ, as produced by the contraction mapping
approaches of [10–13] for example, means that there exists a positive integer s such that Qi � 0

for s < i 6 N , with s � N . Hence, the resetting action of (14) affects only the last s � 1 samples
of each trial. Moreover, it can entirely be removed through application of a current-error feedback
term, as described later in this section.

Using the initial conditions imposed on the memory variable (13), the ´-transform representation
of (11) can be rewritten as

ukC1.i/D
�
Ip � ´

�N Ip
��1

´�N
�
Q1C ´Q2C � � � C ´

N�1QN

�
ekC1.i/, (15)

D
�
´N Ip � Ip

��1 �
Q1C ´Q2C � � � C ´

N�1QN

�
ekC1.i/. (16)

If the effect of resetting the plant state at the beginning of each trial is temporarily ignored, the ILC
system on the kth trial can be represented by the block diagram representation of Figure 1 in which
ˆ.´/ WD .´N Ip�Ip/

�1 andL.´/DQ1C´Q2C� � �C´
N�1QN . Suitable selection of the reference

ensures that the effect of plant resetting is small and tends to zero as the number of trials increases,
as discussed later in this section.

The systemˆ.´/ is a p�p transfer-function matrix, andL.´/ is a p�m transfer-function matrix,
and hence, their positions in the feedback system cannot be reversed if p ¤ m. It is possible to
re-derive a ´-transform form of the ILC update (7) with the order of blocksˆ.´/ and L.´/ reversed,
withˆ.´/ now assuming the formˆ.´/ WD .´N Im�Im/

�1. However, the initial conditions relating
to the shift operator can no longer directly embed the previous input uk , but instead embed the
previous error, ek . Hence, if m < p it is not possible to stipulate the system input, and therefore,
the ILC system (7) cannot be expressed using the ´-transform variable. This conclusion holds for
all choices of ILC algorithm, and means that ˆ.´/ always operates in the input space of the plant
P.´/. This conclusion is also supported by results in [5, 6].

In the case of RC, neither the issue of resetting the plant dynamics nor explicitly stipulating the
new control input exists. The reference signal r.i/ is periodic with periodN , that is, r.iCN/D r.i/,
and the generally assumed structure is shown in Figure 2. Here, the block ˆ.´/ implements the
recursive relationship

v.i CN/D v.i/C e.i/ (17)

and R.´/ denotes an p�m discrete-time transfer-function matrix which acts upon the m� 1 vector
v.i/ to produce the plant input u.i/. Clearly in this case ˆ.´/ operates in the output space, and has
the structure ˆ.´/ WD .´N Im � Im/�1. Further details relating the structure of ILC and RC to the
forms shown in Figure 1 and Figure 2 respectively are given in [5, 6].

Figure 1. Iterative learning control as a feedback system.

Figure 2. Repetitive control as a feedback system.
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Although ILC assumes a fixed initial condition at the start of each new trial, RC has no such
resetting and merely assumes that the initial condition at the start of each new period is the final
condition at the end of the previous period. In particular, ILC is employed in applications performing
pick and place operations whereas RC is applicable to a continuously rotating equipment with a
constant periodic task.

The block ˆ.´/ in both Figures 1 and 2 is a diagonal transfer-function matrix with each diagonal
element having the internal representation shown in Figure 3(a). If ˆ.´/ is regarded as a causal
dynamic system, it will have N state variables in each channel, and in the RC case, there are m
channels as ˆ.´/ operates in the output space and for ILC there are p channels as ˆ.´/ operates
in the input space. The poles of ˆ.´/ are given by ´N D 1, that is, evenly distributed on the unit
circle in the complex plane, and for stability in either case, these poles must be moved inside the
unit circle by the action of the feedback loop acting around ˆ.´/.

Since ILC and RC have a similar structure, they can be analyzed using the same framework.
Stability analysis for both cases can be performed following the method proposed in [3] by first
isolating the delay chain, ´�N I , within the internal model, and then forming the transfer-function,
H.´/, linking the output of the delay chain to its input. The system formed by the feedback
connection of the delay chain and H.´/ is termed the ‘equivalent system’ [3], which is acted upon
by the disturbance in order to accomplish the tracking task. Because the delay chain has magnitude
equal to one, then by the small gain theorem, a sufficient condition for stability is that

kH.´/k< 1 (18)

where k � k denotes the norm induced by the norm imposed on the vector space, although (18) is
often not met in practice. Applying this method in the RC case produces the condition

kIm �P.´/R.´/k< 1 (19)

which depends only on R.´/ and P.´/ and is independent of N .
The same stability criterion applied to the ILC system (11) yields the sufficient condition

for stability

kIp �L.´/P.´/k< 1

The internal representation of ˆ.´/ shown in Figure 3(a) used in both the mentioned ILC and
RC approaches is termed the ‘past-error feedforward’ structure because the current error enters a
delay chain before being used to create the control input. An alternative to this form is that shown
in Figure 3(b) where the delay chain is applied only to the control input. This is termed the ‘current-
error feedback’ structure, with the corresponding transfer-function ˆ.´/ D .I � ´�N I /�1. Hence,
in the ILC case, (16) becomes

ukC1.i/D
�
Ip � ´

�N Ip
��1

L.´/ekC1.i/ (20)

which replaces the form of ILC structure previously considered (7) and can be used to implement
updates of the ‘lifted’ form involving the current error ekC1

ukC1 D uk CMek CNekC1 (21)

Figure 3. Representations of ˆ.´/ for (a) past-error feedforward, and (b) current-error feedback.
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whereM and N are upper and lower triangular Toeplitz matrices, respectively. Initial conditions on
the delay operators are again used to embed previous trial information. For all implementations of
ILC as a transfer-function system, the following comments are relevant:

� The structure of ˆ.´/ means that the initial conditions imposed on the memory elements on
trial k C 1 are simply the values of these elements at the end of trial k. Hence, no resetting or
reinitialization is generally necessary—the recursive memory system is simply ‘paused’ during
the plant resetting.
� Resetting the plant to initial states may cause learning transients during initial trials that are

not present in the RC case, but are well-known within the ILC community [14]. However,
these can be removed by ensuring that the reference starts and finishes at the same location,
and that there is a sufficiently long period at the end of the trial when the reference is fixed

(this can be achieved by appending to Reference (6) the vector
�
r.N � 1/T � � � r.N � 1/T

�T
).

In particular, if the plant is controllable and is reset at the beginning of each trial to state
x.0/ D 0, as is commonly the case in practice, then there exists a trial length N and positive
integer d such that the choice

r.0/D 0, and r.N � 1� i/D 0, i D 0, : : : d (22)

guarantees that x.N � 1/ converges to x.0/ through the action of ILC.

Isolating the delay chain in the new ˆ.´/ structure of Figure 3(b) and forming the transfer-function
H.´/ produces the sufficient condition

k.Ip �L.´/P.´//
�1k< 1

for stability of the current-error feedback system. Similarly, if the current-error feedback structure
is applied in RC, then the sufficient condition for stability is

k.Im �P.´/R.´//
�1k< 1.

The internal model principle can be formulated in a structure where the disturbance model is
realized in each channel of either the output or input spaces. The first case implements RC and the
second ILC, in either current-error feedback or previous-error feedforward terms, and this property
is termed duality in [6].

Both RC and ILC aim to improve system performance by updating the input recursively through
identifying the most useful feedforward input signal that suppresses periodic disturbances. As in [6],
the recursion of the repetitive or iterative learning part is represented as feedback. Moreover, con-
vergence of this recursion translates into overall system stability. Hence, the feedback system can
be interpreted as the design of a controller for disturbance suppression and an additional learning
or repetitive component to suppress periodic disturbances where, in general, the learning or repeti-
tive component will influence the sensitivity function of the complete loop and thereby modify the
disturbance suppressing properties of the feedback controller.

This last fact means that fast convergence of the recursion may not be the best solution. A detailed
discussion of this point is contained in [6], and it is argued that speed of convergence should be part
of the overall feedback control design where the single objective is disturbance suppression. This, in
turn, advocates use of the internal model principle to undertake joint design of a feedback controller
and the repetitive or learning controller. It is also possible to extend this setting to the often encoun-
tered case when a control law has already been applied. As in [6], the remainder of this paper uses
the internal model based setting that allows the joint design of a feedback controller and an RC or
ILC law with desired properties relative to a single performance measure.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2012)
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3. CONTROLLER DESIGN USING DUAL INTERNAL MODEL STRUCTURES

Any periodic signal can be generated by a system with no inputs formed by a time-delay in a
positive feedback loop. In particular, a discrete-time periodic signal of length N can be generated
by the state-space model

xw.i C 1/D Awxw.i/, i D 0, 1, � � �N � 1, xw.0/D xw0

w.i/D Cwxw.i/
(23)

with suitable initial state xw0. Here, the N �N matrix Aw is given by

Aw D

2
6664
0 1 � � � 0
...

...
. . .

...
0 0 � � � 1

1 0 � � � 0

3
7775

and the 1�N row vector Cw as

Cw D
�
1 0 0 � � � 0

�
.

The poles of Aw are equally spaced on the unit circle in the complex plane. Now, consider the feed-
back system shown in Figure 4 where d is a periodic input disturbance and r is a periodic reference,
each of the form (23). The robust RC problem is to construct a feedback controller C.´/ to ensure
that the controlled system is exponentially stable and that the tracking error tends to zero asymptot-
ically for all periodic disturbances. The solution is provided by the internal model principle [4], that
is, the controller C.´/ solves the RC problem provided each of its channels contains a realization
of the disturbance generating system, driven by the error e. Furthermore, C.´/ is designed such that
the feedback connection of plant and controller is internally stable and the previous two properties
are robust in the sense that they also hold in the case when the plant dynamics are perturbed. Both
RC and ILC solve the periodic control problem and hence the internal model principle provides a
solution for both.

For a single channel, ˆ.´/ can be represented by the state-space model

xw.i C 1/D Awxw.i/CBwv.i/, i D 0, 1, � � �N � 1, xw.0/D xw0

w.i/D Cwxw.i/CDwv.i/ (24)

where Aw is given by (3), the N � 1 column vector

Bw D
�
0 � � � 0 0 1

�T
,

Cw by (3) and

Dw D

�
1 current-error feedback
0 previous-error feedforward

giving the two forms shown in Figure 3(a) and (b). For the multiple-input, multiple-output
case introduce

Ar D diagfAw ,Aw : : : ,Awg, Br D diagfBw ,Bw , : : : ,Bwg,
Cr D diagfCw ,Cw , : : : ,Cwg, Dr D diagfDw ,Dw , : : : ,Dwg

Figure 4. Periodic control problem in which r and d are periodic signals of the form (23).
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where each diagonal block matrix is repeated m times. In a similar way, define fAl ,Bl ,Cl ,Dlg
where each diagonal block matrix is repeated p times and the internal models ˆ.´/ are

Cr.´INm �Ar/
�1Br CDr D

�
.´N Im � Im/

�1 if Dw D 0

.Im � ´
�N Im/

�1 if Dw D 1

and

Cl.´INp �Al/
�1Bl CDl D

�
.´N Ip � Ip/

�1 if Dw D 0

.Ip � ´
�N Ip/

�1 if Dw D 1

for RC and ILC, respectively, where in the latter, the initial conditions are realized simply by setting
the initial states xw0 as the final value, xw.N � 1/, on the previous trial. The design of a controller
for each case can now begin.

3.1. Iterative learning control design via state feedback

The position of the internal model for ILC is shown in Figure 1, and many designs for L.´/ have
been proposed to solve the stabilization problem [1, 2]. To illustrate the common design setting for
RC and ILC considered in this paper, the design approach of [15–17] is now examined. A critical
step in deriving the results that follow is the extension of the internal model structures in [6] as
summarized in the previous section, to permit them to simultaneously address both current-error
feedback and previous-error feedforward implementations.

First, write the series connection betweenˆ.´/ andP.´/ in Figure 1 using the internal model (23)
in the state-space form�

xl ,k.i C 1/
xk.i C 1/

�
D

�
Al 0

BCl A

� �
xl ,k.i/

xk.i/

�
C

�
Bl
BDl

�
Quk.i/, i D 0, 1, � � �N � 1

ek.i/D r.i/� ŒDCl C �

�
xl ,k.i/

xk.i/

�
�DDl Quk.i/

(25)

where on the kth trial, xl ,k is the state of the internal model system realizing ˆ.´/, and Quk is its
input. The internal model principle guarantees that regulating this system solves the tracking prob-
lem, and this is also clear since the input to (25) is the trial-to-trial control difference and its output
is the error. To implement the control block L.´/, a state feedback scheme will be used, leading to
the control input

Quk.i/D�Kl

�
Oxl ,k.i/
Oxk.i/

�
(26)

To produce the state estimates Oxl ,k and Oxk , an observer with state-space vector Ll is required and is
given by �

Oxl ,k.i C 1/
Oxk.i C 1/

�
D

�
Al 0

BCl A

� �
Oxl ,k.i/
Oxk.i/

�
�

�
Bl
BDl

�
Kl

�
Oxl ,k.i/
Oxk.i/

�

CLl .ŒDCl C ��DDlKl /

	�
Oxl ,k.i/
Oxk.i/

�
�

�
xl ,k.i/

xk.i/

�


The overall scheme is shown in Figure 5, and it remains to select the parameter Kl .
Stability analysis can be performed as in [3] by isolating the block ´�N Ip within the internal

model, and expressing the relationship between its output and input in terms of the transfer-function
H.´/. A sufficient condition for stability is then given by (18) although this is often overly con-
servative. Figure 6 shows the system represented in transfer-function form for both previous-error
feedforward, and current-error feedback cases, where

L.´/D�Kl

	
´INpCn �

�
Al 0

BCl A

�
C

�
Bl
BDl

�
Kl �Ll .ŒDCl C ��DDlKl/


�1
Ll . (27)
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Figure 5. Iterative learning control scheme.

Figure 6. Internal model-based iterative learning control scheme for (a) previous-error feedforward, and (b)
current-error feedback.

The transfer-function H.´/ connects the signals in and out in Figure 6 and for the case of
previous-error feedforward is given by

H.´/D
out

in
.´/D .Ip �L.´/P.´//D .G.´/CP.´//G.´/

�1 (28)

where

G.´/D ŒDCl C �

	
´INpCn �

�
Al 0

BCl A

�
C

�
Bl
BDl

�
Kl


�1 �
Bl
BDl

�
CDDl (29)

and for current-error feedback

H.´/D
out

in
.´/D .Ip CL.´/P.´//

�1 DG.´/.G.´/�P.´//�1. (30)

Design of Kl is achieved by consideration of the equivalent system representation, which
is the feedback connection of H.´/ and the ´�N Ip block within the internal model [3]. It is
straightforward to show that in both cases, the resulting feedback path dynamics are governed by
the system

�
Qxl ,k.i C 1/
Qxk.i C 1/

�
D

�
Al 0

BCl A

�
„ ƒ‚ …

system matrix

�
Qxl ,k.i/
Qxk.i/

�
�

�
Bl
BDl

�
„ ƒ‚ …
input matrix

state feedback‚…„ƒ
Kl

�
Qxl ,k.i/
Qxk.i/

�
(31)
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which operates in the presence of the periodic disturbance to achieve the tracking task. The LQR
approach is selected to calculate a suitable Kl gain to regulate the states and thereby drive the error
to zero, with cost function

J D

1X
iD0

�
�.i/T

�
Q1 0

0 Q2

�
�.i/C�.i/TR�.i/

�
(32)

where Q1 and Q2 are symmetric positive definite weighting matrices on the states and R is a
symmetric positive definite weighting matrix on the control effort, and the system (31) has been
rewritten in the form

�.i C 1/D

�
Al 0

BCl A

�
�.i/�

�
Bl
BDl

�
�.i/ (33)

�.i/DKl�.i/.

Solving (32) yields a solution for Kl via the corresponding Ricatti equation. Note that this is solved
once before the experimental tests begin, and the separation principle permits independent design
of Kl and Ll to result in a stable system. As stated in Section 2, in the ILC framework, the system
shown in Figure 5 is run forN samples starting with the plant reset to its initial states, and the initial
states of the internal model equal to their final values in the previous trial.

The use of state feedback to provide stabilization differs from the output injection structure pre-
viously associated with ILC in the duality framework [6]. This difference is due to the presence of
an additional internal model within the state estimator system (27).

3.2. Repetitive control design via state feedback

Using the common framework described in Section 2, an RC counterpart to the previous ILC design
is now derived. The implementation of an internal model within the feedback loop enables exactly
the same state feedback structure to be assumed, hence simplifying controller development.

Define the series connection of P.´/ and ˆ.´/ shown in Figure 2 using the internal model (23)
with state xr to obtain�

xr.i C 1/
x.i C 1/

�
D

�
Ar �BrC
0 A

� �
xr.i/

x.i/

�
C

�
�BrD
B

�
u.i/C

�
Br
0

�
r.i/ (34)

The internal model principle again guarantees that regulation of the system achieves the tracking
task, and hence the same approach as in Section 3.1 will be applied. Accordingly, the controller
R.´/ is implemented using state feedback, leading to the control input

u.i/D�Kr

�
Oxr.i/
Ox.i/

�
(35)

For this structure, an observer with state-space vector Ll produces the estimated states�
Oxr.i C 1/
Ox.i C 1/

�
D

�
Ar �BrC
0 A

� �
Oxr.i/
Ox.i/

�
�

�
�BrD
B

�
Kr

�
Oxr.i/
Ox.i/

�

CLr

	
v.i/�

��
Cr �DrC

�
CDrDKr

� � Oxr.i/
Ox.i/

�


and the overall scheme is shown in Figure 7.
Figure 8 shows the system represented in transfer-function form for both previous-error feedfor-

ward, and current-error feedback cases. As in the ILC case, analysis focuses on the feedback path
about ´�N Im, which is defined by the transfer-function, H.´/, linking the signals in and out
appearing in Figure 8. where

R.´/D�Kr

	
´INmCn �

�
Ar �BrC
0 A

�
C

�
BrD

�B

�
Kr

CLr

	�
Cr �DrC

�
CDrDKr



�1
Lr (36)
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Figure 7. Synthesized repetitive control scheme.

Figure 8. Internal model-based repetitive control scheme for (a) previous-error feedforward and (b)
current-error feedback.

For the previous-error feedforward and current-error feedback cases, the relationships in (28) and
(30), respectively, are again obtained, where

G.´/D
�
Cr �DrC

� 	
´I �

�
Ar �BrC
0 A

�
C

�
BrD

�B

�
Kr


�1 �
�BrD
B

�
�DrD

These provide sufficient conditions for stability when combined with (28). The equivalent system
representation is again used to design a suitable Kr , and encompasses the feedback connection of
H.´/ and the ´�N Im block within the internal model [3]. The equivalent system has the feedback
path dynamics given by

�
Qxr.i C 1/
Qx.i C 1/

�
D

�
Ar �BrC
0 A

�
„ ƒ‚ …

system matrix

�
Qxr.i/
Qx.i/

�
�

�
�BrD
B

�
„ ƒ‚ …

input matrix

state feedback‚…„ƒ
Kr

�
Qxr.i/
Qx.i/

�
(37)

To design the state feedback matrix Kr , the LQR approach is applied to (37) and this leads to
minimization of (32) with

�.i C 1/D

�
Ar �BrC
0 A

�
�.i/�

�
�BrD
B

�
�.i/ (38)

�.i/DKr�.i/

Hence, an RC scheme has been designed using the same LQR cost function and state feedback
structure as in the ILC case.
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4. CONTROLLER DESIGN USING SINGLE INTERNAL MODEL STRUCTURES

Having illustrated the utility of the common framework underlying ILC and RC for controller
design, another case study is now examined. This is motivated by the observation that the controllers
in Section 3 contained two internal models: one comprising ˆ.´/ and one within the estimator and
hence embedded within R.´/ or L.´/. This duplication allowed a simplification in overall control
structure, but may lead to large control inputs because of the necessity that both internal models be
simultaneously stabilized. The development of schemes based on a single internal model is there-
fore undertaken in this section, and enables experimental comparison of structures to be carried out
in Section 5.

4.1. Repetitive control design via state feedback

Results in [5, 6] consider the case in which a single internal model appears in the control scheme,
and it is shown that this restricts the structure associated with each case: RC must use state feed-
back, and ILC must employ output injection. In this section, the starting point is the RC scheme
given in [6], and from this, an ILC scheme based on the common framework is developed, which
includes the option of current-error feedback or previous-error feedforward. Note that the RC
scheme of [6] is more restrictive and includes an explicit current-error feedback path that cannot
be broken.

Modifying the RC scheme of Figure 2 to include an explicit current-error feedback path produces
the system shown in Figure 9. In [6], the current-error feedback was realized through feedback of the
plant states. Furthermore, the term Cr in the internal model representation was used to implement
the filter R.´/. The resulting control input is given by

u.i/DKrxr.i/CK Ox.i/ (39)

with state observer

Ox.i C 1/D A Ox.i/CBu.i/CLr.e.i/CC Ox.i/CDu.i// (40)

where Lr is the state observer matrix and Kr and K are the state feedback matrices for the internal
model and the plant, respectively. The overall structure is shown in Figure 10.

Figure 9. Repetitive controller with existing feedback controller C.´/.

Figure 10. Repetitive controller with current-error feedback.
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This corresponds to that of Figure 9, with R.´/ D Kr.´INm � Ar/
�1Br.Im � ´

�N Im/.Ip C
K.´In � NA/

�1.B CLrD//, C.´/D K.´In � NA/�1Lr where NAD ACBK CLr.C CDK/. The
feedback connection of H.´/ and ´�N Im is shown in [6] to have the equivalent realization

�
xr.i C 1/
Qx.i C 1/

�
D

�
Ar �BrC
0 A

�
„ ƒ‚ …

system matrix

�
xr.i/

Qx.i/

�
C

�
�BrD
B

�
„ ƒ‚ …

input matrix

state feedback‚ …„ ƒ�
Kr K

� � xr.i/
Qx.i/

�
(41)

As with the ILC system of Section 3, state feedback is used to provide stabilization, and hence solve
the tracking problem. Accordingly ŒKr K� is determined by minimizing (32) with

�.i C 1/D

�
Ar �BrC
0 A

�
�.i/C

�
�BrD
B

�
�.i/

�.i/D
�
Kr K

�
�.i/.

The above equivalent system and LQR structure is identical to those derived in Section 3.2, reveal-
ing the same underlying dynamics [3]. However the asymptotic tracking performance is determined
by how the periodic disturbance interacts with this system, which differs for the structures that
have been considered because the disturbance enters at different points. Hence, the role of multiple
internal models on the subsequent performance can be transparently examined in Section 5 through
stipulation of the same symmetric positive definite weighting matrices Q1, Q2 and R in (32).

4.2. Iterative learning control design via output injection

A disturbance observer structure will now be developed for the ILC case in order to compare the two
implementations (state feedback versus output injection). This differs from the ILC implementation
considered in [6] because no explicit current-error feedback is included, the more general option
of either current-error feedback or previous-error feedforward instead incorporated into the internal
model. Moreover, the resulting structure is considerably simpler, and analysis is conducted to place
the solution of the problem within the same LQR framework as previously considered. The two
implementations of ILC, however, do have the same equivalent structure.

To develop an ILC scheme with a single internal model, the starting point is again the series con-
nection of plant and internal model given by (34). Because it is known that a disturbance observer
structure is necessary for stabilization [5], an estimator is designed for an additive periodic distur-
bance assumed to exist at the plant input, and the estimator disturbance signal is then applied at
the same point in order to cancel it. This differs from the observer implementations of Section 3,
which estimated the system states. As the disturbance is removed from the system, the additive input
reduces to zero, and the plant output converges to the demanded trajectory. This results in the output
injection structure shown in Figure 11. The system is given by�

xl ,k.i C 1/
xk.i C 1/

�
D

�
Al 0

BCl A

� �
xl ,k.i/

xk.i/

�
C

�
Ll
BDl

�
Quk.i/ (42)

Figure 11. Synthesized iterative learning control scheme.
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with the observer

Oxk.i C 1/D A Oxk.i/CBDl Quk.i/�L
0
l.ek.i/CC Oxk.i// (43)

which produces an output C Oxk.i/ that is used as a correction term for the internal model. This
system is shown in Figure 12 in transfer-function form for both previous-error feedforward and
current-error feedback cases.

Stability analysis again considers the feedback path about ´�N Ip , which is the transfer-function
matrix,H.´/, linking signals in and out in Figure 12, which shows both internal model structures.
Here

L.´/D C
�
´In �A�BDlC CL

0
lC
��1

.BDl �L
0
l/C Im (44)

and L0.´/ is such that

Cl.´INp �Al/
�1Bl CDl D .Ip � ´

�N Ip/
�1L0.´/

yielding

L0.´/D ClBl´
�1CClAlBl´

�2C � � � CClA
�N�1
l Bl´

�N . (45)

For the case of previous-error feedforward

H.´/D
out

in
.´/DG.´/.G.´/�L0.´//�1 (46)

where

G.´/D� ŒDCl C �

	
´INpCn �

�
Al 0

BCl A

�
C

�
Ll
L0
l

�
ŒDCl C �


�1
ŒCl 0�

T CDl (47)

and for current-error feedback

H.´/D
out

in
.´/D .G.´/� Im/.G.´/� Im �L

0.´//�1 (48)

A sufficient condition for stability is provided in each case by (18), and the feedback connection of
H.´/ and ´�N Im can be shown to have equivalent realization

�
Qxl ,k.i C 1/
Qxk.i C 1/

�
D

�
Al 0

BCl A

�
„ ƒ‚ …

system matrix

�
Qxl ,k.i/
Qxk.i/

�
�

�
Ll
L0
l

�
„ ƒ‚ …

observer gain

output matrix‚ …„ ƒ
ŒDCl C �

�
Qxl ,k.i/
Qxk.i/

�
(49)

Figure 12. Internal model-based iterative learning control scheme for (a) previous-error feedforward and (b)
current-error feedback.
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where Qxl D xl is the internal model state, and Qx D x � Ox is the difference between plant state and
disturbance state, which then feeds into the internal model. The system (49) confirms the output
injection structure reported in [5, 6] when only a single internal model is used. This structure is the
dual of (31), which used state feedback. A solution to the design of the observer gain is found by
considering the dual of a general state-space model, as discussed in, for example, [18].

Consider first

x.i C 1/D Ax.i/CBu.i/

y.i/D Cx.i/CDu.i/
(50)

and take the dual to produce

x�.i C 1/D AT x�.i/CC T u.i/

y.i/D BT x�.i/CDT u.i/
(51)

Now, apply exponentially stabilizing state feedback of the form u D Fx�, thereby giving rise to
the system

x�.i C 1/D
�
AT CC TF

�
x�.i/ (52)

and taking the dual of this last system gives

x.i C 1/D
�
AT CC TF

�T
x.i/D

�
ACF TC

�
x.i/D Ax.i/CF TCx.i/ (53)

whose stabilization is also guaranteed as the system is exponentially stable if and only if its dual
is stable [18]. Therefore, design of state feedback for the system (51) provides the output feedback
vector for the system (53). Accordingly, comparing (53) with (49), the system (51) is

�
x�
l ,k.i C 1/

x�
k
.i C 1/

�
D

�
Al 0

BCl A

�T �
x�
l ,k.i/

x�
k
.i/

�
C ŒDCl C �

T uk.i/

D

�
AT
l

C T
l
BT

0 AT

� �
x�
l ,k.i/

x�
k
.i/

�
C

�
C T
l
DT

C T

� �
LTl L

0T
l

� �
x�
l ,k.i/

x�
k
.i/

�

LQR theory will again be applied to calculate
�
LT
l
L0T
l

�
in order to regulate this system, which

requires
�
LT
l
L0T
l

�
such that (32) is minimized, with

�.i C 1/D

�
AT
l

C T
l
BT

0 AT

�
�.i/C

�
C T
l
DT

C T

�
�.i/

�.i/D

�
LTl L

0T
l

�
�.i/.

(54)

This controller completes the set of RC and ILC schemes incorporating one and two internal mod-
els respectively, and in common with those in Section 3, can be configured to use either current-error
feedback or previous-error feedforward to achieve the tracking task. Sections 3 and 4 have each illus-
trated how the common underlying structure of Section 2 provides a straightforward route for novel
controller derivation. All four control schemes use the same LQR cost function (32), and hence
enable transparent comparison of performance to be undertaken experimentally in the next section.

5. EXPERIMENTAL RESULTS USING GANTRY ROBOT

The developed RC and ILC approaches have been experimentally tested using a three-axis gantry
robot test facility shown in Figure 13 (see [19] for full details of design and operation). The com-
bined displacement reference trajectories for each axis produce a ‘pick and place’ action, designed
to collect payloads and place them on a moving conveyor. The overall movement is shown in
Figure 14. The time taken for each cycle is fixed at 2 s, and a sample frequency of 100 Hz is used,
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Figure 13. Gantry robot test facility.
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Figure 14. Three-dimensional representation of reference trajectories.

giving N D 200. Owing to their similarity, results for a single axis alone are given. The associated
discrete-time transfer-function model is

P.´/D
0.00029625.´2 � 0.1162´C 0.1911/.´2 � 0.9333´C 0.9225/.´2C 0.0619´C 0.8731/

.´� 1/.´2C 0.1141´C 0.2479/.´2 � 1.247´C 0.7866/.´2 � 0.2767´C 0.8075/

For each of the controllers derived in this paper, 200 trials of the tracking task have been per-
formed, where in the RC case, these are looped with no resetting between trials, and in the ILC case
resetting of the plant occurs between trials. Figures 15 and 16, respectively, show the mean square
error (MSE) results for the ILC scheme developed in Section 3.1 in both current-error feedback
and previous-error feedforward implementations. A variety of weighting in the cost function (32)
with (33) have been used to find a compromise between convergence and stability. The error MSE
is reduced by several orders of magnitude, resulting in extremely accurate tracking. Figures 17 and
18 show MSE results for the RC scheme developed in Section 3.2 in both current-error feedback
and previous-error feedforward implementations. A range of weighting parameters for the cost (32)
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Figure 15. Mean square error plot for current-error feedback iterative learning control scheme (two internal
models).
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Figure 16. Mean square error plot for previous-error feedforward iterative learning control scheme (2
internal models).
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Figure 17. Mean square error plot for current-error feedback repetitive control scheme (two internal
models).
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Figure 18. Mean square error plot for previous-error feedforward repetitive control scheme (two internal
models).
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with (38) have been used. Similar error levels have been obtained for each case, although there is
evidence of increased error fluctuation for the current-error feedback implementation, and slightly
slower convergence. RC does not quite deliver as high tracking accuracy as ILC because of the lack
of resetting.

Figure 19 shows results from the single internal model scheme of Section 4.1, which has an
explicit error feedback loop. Figures 20 and 21, respectively, show MSE results for the ILC output
injection scheme developed in Section 4.2, which also has a single internal model. There is evidence
that the previous-error feedforward structure provides faster convergence at the expense of increased
transients compared with the current-error feedback structure. From the cost functions used in
the controller derivation for all schemes, it is clear that the use of two internal models requires
significantly greater weighting values, which shows that more emphasis is required on the tracking
objective as opposed to reducing the input amplitude. Hence, more control effort is needed to
stabilize two internal models rather than a single internal model.
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Figure 19. Mean square error plot for explicit current-error feedback repetitive control scheme (one internal
model).
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Figure 20. Mean square error plot for current-error feedback iterative learning control scheme (one internal
model).
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Figure 21. Mean square error plot for previous-error feedforward iterative learning control scheme (one
internal model).
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The results show the general trends: (i) ILC attains lower error because of the resetting action
between trials; (ii) current-error feedforward leads to slightly reduced error transients at the expense
of convergence speed; (iii) two internal models lead to slightly reduced error; and (iv) two inter-
nal models lead to increased control effort. All controllers provide highly accurate tracking of the
reference trajectories.

6. CONCLUSIONS

The common framework connecting RC and ILC has been shown to allow derivation of controllers
in one setting on the basis of an existing control structure in the other. This provides significant
utility because schemes that work well in one domain may be used to derive similar controllers in
the other. This paper addresses the lack of performance comparison in the literature to investigate
the feasibility of such an approach, or the effect of structural considerations such as the number of
internal models, form of stabilization, or error feedback/feedforward implementation.

This paper firstly illustrated the power of the common framework for synthesis of controllers
between domains, introducing two case studies: first, an RC scheme incorporating two internal
models on the basis of an existing RC scheme, and second, an ILC scheme incorporating a single
internal model on the basis of an existing RC scheme. An industrially relevant robotic test facility
was used to provide quantitative comparison of all the key design issues, as well as verification of
the high levels of performance possible. Hence, the exploitation of a common framework for con-
troller development has been confirmed and investigated, yielding results and conclusions that are
relevant to both domains.
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