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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

A mini—thesis submitted for transfer from MPhil to PhD

by Long Tran—Thanh

We are entering a new age in the evolution of computer systems, in which pervasive
computing technologies seamlessly interact with human users. These technologies serve
people in their everyday lives at home and work by functioning invisibly in the back-
ground, creating a smart environment around them. For example, this could be an
intelligent building or a smart traffic control system. Now, since such smart environ-
ments need information about their surroundings to function effectively, they rely first
and foremost on sensory data from the real world. More accurately, this data is typically
provided by wireless sensor networks, which are networks of small, autonomous sensor

devices.

The advantages of wireless sensor networks, such as flexibility, low cost and ease of
deployment, have ensured they have gained significant attention from both researchers
and manufacturers. However, due to the limited resource constraints of such sensors
(e.g. hardware limitations, low computational capacity, or limited energy budget), there
are still a number of significant and specific research challenges to be addressed in this

domain.

To overcome these challenges, we believe an efficient solution for long—term information
collection in wireless sensor network should be able to fulfill the following requirements:
(i) adaptivity to environmental changes; (ii) robustness and flexibility; (iii) computa-
tional feasibility; and (iv) limited use of communication. In more detail, wireless sensor
networks are typically deployed in dynamic environments, we must take environmental
changes into account, and thus, it must be able to adapt to those changes. Furthermore,
since future changes of the environment are typically unknown a priori, we cannot ac-
curately predict these changes. Thus, in order to efficiently adapt to the environment,
a good solution must be on—line, so that it can quickly react to environmental changes.
Besides, we must be aware of topological and physical changes (e.g. node or communica-
tion failures) as well. Finally, due to the limited resources of the sensors, communication

and computational cost should not be significant, compared to the size of the network.

Previous work of information collection in wireless sensor networks has typically focused

on optimising data sampling, routing, information valuation and energy management
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in order to achieve efficient information collection. However, it usually fail to provide
all of the aforementioned requirements. Specifically, existing solutions are typically not
designed for long—term operation, since they cannot adapt to environmental changes.
That is, they do not have the ability of modifying their behaviour so that they could
efficiently adapt to the new characteristics of the environment. Other algorithms follow
the concept of centralised control mechanism (i.e. a central unit is responsible for all
the calculations and decision making). These solutions, however, are not robust and

flexible, since the central unit may represent a computational bottleneck.

Against this background, this transfer report focuses on the challenge of developing
decentralised adaptive on—line algorithms for efficient long—term information collection
in the wireless sensor network domain. In particular, we focus on developing energy
management and information—centric data routing policies that adapt their behaviour
according to the energy that is harvested, in order to achieve efficient performance. In
so doing, we introduce two new energy management techniques, based on multi—armed
bandit learning, that allow each sensor to adaptively allocate its energy budget across
the tasks of data sampling, receiving and transmitting. These approaches are devised
in order to deal with the following different situations: (i) when the sensors can harvest
energy from the environment; and (ii) when energy harvesting from the environment is
not possible. By using this approaches, each sensor can learn the optimal energy budget
settings that gives it efficient information collection in the long run. In addition, we

propose a novel decentralised algorithm for information—centric routing.

In more detail, we first tackle the energy management problem with energy—harvesting
sensors from the multi-armed bandit perspective. That is, we reduce the energy manage-
ment problem to a non—stochastic multi—-armed bandit model. Then through extensive
simulations, we demonstrate that the performance of this approach outperforms other
state—of-the—art non—learning algorithms. For the case of energy management with non—
harvesting sensors, we show that existing multi-armed bandit models are not suitable
for modelling this problem. Given this, we introduce a new bandit model, the budgeted
multi-armed bandit with pulling cost, in order to efficiently tackle the energy man-
agement problem. Following this, we propose an efirst approach for this new bandit
problem, in which the first e portion of the total budget is allocated to exploration (i.e.
learning which actions are the most efficient). Finally, for the routing, we introduce
an information—centric routing problem, the maximal information throughput routing
problem. Existing routing algorithms, however, are not suitable to solve this problem.
Thus, we devise a simple, but proveably optimal decentralised algorithm, that maximises

the information throughput in the network.
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Chapter 1

Introduction

Due to their flexibility, low cost and ease of deployment, networks of wireless sensors are
being widely used in a wide variety of applications ranging from environmental, habitat
and traffic monitoring, to object tracking and military field observations [Chong and
Kumar, 2003; Merrett, 2008; Rogers et al., 2009; Romer and Mattern, 2004]. Specifi-
cally, in this context, a wireless sensor network (WSN) is viewed as a network of small,
densely deployed, spatially decentralised autonomous sensor devices (referred to here-
after as “nodes”) communicating through a wireless communication network, whose
task is monitoring physical or environmental conditions (including, but not limited to,
the following: temperature, sound, vibration, pressure, seismic, infrared, magnetic and
motion information) [Baldus et al., 2004; Juang et al., 2002; Simon et al., 2004].

In WSNs, each wireless sensor node is typically equipped with a sensing module for
sensing data from the surrounding environment, a radio transceiver module for wireless
communication, a small microcontroller as the processing unit, an external memory
for data storage and a limited energy source (usually a battery). The size of a single
sensor node can vary from the size of a shoe box to the size of a coin (see Figure 1.1).
Furthermore, their cost is similarly variable, ranging from hundreds of pounds to a few
pence, constrained by parameters such as size, energy, memory, computational speed and

communication bandwidth required of individual nodes [Romer and Mattern, 2004].

These networks are typically deployed for collecting information from a heterogeneous
(i.e. the environmental characteristics may vary over space) and dynamically changing
(i.e. the characteristics may vary over time) environment, and are typically required to
operate over an extended period of time (covering months or even years). The collected
information is typically forwarded to a base station (BS) (also referred to as a sink or
gateway), using single-hop (i.e. sensors directly send data to the BS) or multi-hop (i.e.
data is forwarded towards the BS via relay nodes) routing paths. In most cases, the

BS is a specialised node that has significantly more power than the ordinary ones and,
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FIGURE 1.1: Wireless sensor nodes.

depending on the WSN application, there can be more than one of them in the WSN
(see Figure 1.2). Information that arrives at the BS is then processed or transmitted
outside the sensor network to end-users for further analysis, fulfilling the goals of the
WSN deployment. Given this, in this report, we focus in particular on the challenges
associated with efficient long-term information collection in WSNs. That is, we aim
to mazimise the total information value collected and delivered to the BS in a given

extended time interval of operation, or over the entire lifetime of the network.

Now, to efficiently control the information collection in the network, a protocol is needed
to dictate the actions of the sensor nodes [Kho, 2009]. Such protocols fall into two broad
categories: namely centralised and decentralised. In the former, a single controller re-
ceives information from all the nodes, and then determines the actions of each node indi-
cating how they should sample, receive, forward, and route data. Within this approach,
however, the central controller is required to perform a large number of computations in
order to find each node’s optimal actions. Thus, it could represent a significant compu-
tational bottleneck, especially in the case of large network size. Furthermore, since the

controller needs to collect all the information from the nodes, there typically is a delay

!Taken from link http://www.npl.co.uk/server.php?show=ConWebDoc.289;
*Taken from link http://amp.osu.edu/news/article.cfm?ID=4576;
3Taken from link http://www.intelligent-systems.info/biofeedback/biofeedback.htm;
4Taken from link http://amp.osu.edu/news/article.cfm?ID=4576.
All links are checked on 14,/04,/2010.
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FIGURE 1.2: Typical wireless sensor network.

in time before it can start determining the nodes’ actions. Given this, the centralised
approach cannot respond well to the environmental changes, and thus, it suffers from a
lack of ability to efficiently adapt to those changes. In contrast, in decentralised control
regimes such a central controller does not exist. Instead, the nodes are autonomous
and each decides its individual actions based on its own local state and observations,
and those of its neighbouring nodes. Thus, such aforementioned disadvantages disap-
pear within the decentralised control regime [Boukerche, 2008; Wagner and Wattenhofer,

2007]. Therefore, in this report, we focus on decentralised control mechanism for WSNss.

The decentralised approach, however, has several additional challenges. Specifically, to
achieve system-wide goals, the nodes must typically coordinate their actions with their
neighbours (e.g. to forward data or to track objects). In addition, since the nodes typi-
cally operate in a dynamically changing environment, they must be able to autonomously
adapt their behaviour to environmental changes, in order to achieve long-term global
goals (e.g. maximal data collection or optimal coverage). Such issues naturally lend

themselves to a multi-agent system (MAS) perspective [Lesser et al., 2003; Rogers et al.,
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2009], in which each sensor is represented by an agent, which autonomously and coop-

eratively acts, in order to achieve system-wide objectives [Jennings, 2001].

However, the exact mapping between a WSN and a MAS is often non—trivial. In par-
ticular, MAS do not typically address physical resource constraints such as the compu-
tational, communication and energy limits of the agents (i.e. nodes); whereas WSNs
are heavily resource constrained (i.e. low energy capacity, size and computational con-
straints) [Akyildiz et al., 2002; Rogers et al., 2009]. Thus, there are a number of signifi-
cant and specific research challenges to be addressed. These include, but are not limited
to, the following: hardware challenges (e.g. cost and size of sensor nodes), time synchro-
nisation, lossy wireless communication, node failures, energy efficiency, and information

processing [Chong and Kumar, 2003; Stankovic, 2004].

To overcome these shortcomings, researchers have proposed a number of solutions from

different perpectives, in order to achieve efficient information collection in WSNs.

From the perspective of sampling, adaptive data sampling policies have been advocated
as the way to achieve accurate estimates of the environmental conditions, while minimis-
ing redundant sampling of the environment [Jain and Chang, 2004; Kho et al., 2009a;
Padhy et al., 2006; Willett et al., 2004]. In particular, adaptive sampling policies often
include sets of rules that control a node’s sampling rate (i.e. how often a node is required
to collect data by sampling during a particular time interval) and sampling scheduling
(i.e. when a node is required to sample). The advantage of adaptive sampling is that it
can efficiently deal with the environmental changes by adaptively changing the sampling
rate, and thus, is capable of achieving good performance in the long—term. Given this,

we aim to use an efficient adaptive method for data sampling in this report.

Within the routing context, researchers have developed information-centric routing pro-
tocols for forwarding data. These routing techniques are usually aimed at maintaining a
high throughput (i.e. rate of successful message delivery) of information towards the BS
during the operation of the network. In particular, a data forwarding policy determines
actions that an agent can use to forward data towards the BS, namely (i) transmitting
(i.e. which data packets the agent should choose to transmit, and to which node), and
(ii) receiwving (i.e. how many packets an agent is required to receive from the other
agents during a transmission period) tasks. Here, data packets can be considered as
units of data with the same size. In addition, since it is generally accepted that the
energy consumption of the communication module is the most significant drain on the
sensor node’s energy resources, communicating trivial or redundant data across a net-
work constitutes a waste of resources [Anastasi et al., 2004; Mathur et al., 2006]. Thus,
to achieve a better performance in data collection, it is necessary to consider the useful-
ness of data to the end-user by defining different levels of importance of information (i.e.

information value), as opposed to treating all data as having homogeneous usefulness
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[Deb et al., 2003; Merrett, 2008]. In so doing, information content valuation techniques
are typically used to calculate the importance of data [Frieden, 2004; Kho, 2009; Krause
et al., 2006]. In particular, an information value metric, such as Fisher information or
mutual information is used to determine the level of importance of information. Given
this, information-centric routing methods give more support to the delivery of important
data (i.e. data with higher information value), and are only concerned with the less im-
portant data (i.e. data with lower information value) when resources allow. Therefore,
they can maximise the total information value delivered to the BS. Thus, in this report,

we also pursue an information-centric approach for routing.

From the perspective of energy management, such solutions are commonly said to be
energy-aware [Chandrakasan et al., 2002; Raghunathan et al., 2002; Stankovic, 2004].
That is, it is necessary to efficiently manage the energy consumption of the agents.
Otherwise, rapid battery depletion may lead to insufficient data collection from the net-
work. In particular, a WSN with a longer lifetime typically increases the amount of
information collected by the network. Recently, however, a number of research works
have proposed energy harvesting sensors, which have the capability of scavenging ambi-
ent energy from their surrounding environment, using solar, vibration, temperature, and
radioactive sources [Beeby et al., 2006; Merrett, 2008; Roundy et al., 2004; Torah et al.,
2008; Zhang et al., 2004]. Within such applications, sensor agents typically seek to com-
ply with the concept of energy—neutrality, in which the energy consumption of a node
should be equal to the harvested energy [Kansal and Srivastava, 2003; Kho et al., 2009a;
Vigorito et al., 2007]. The advantage of such approaches is that agents can indefinitely
extend their life span, which is especially important when information collection has to
operate over a prolonged period of time. Since the focus of this report is on the efficiency
of long—term performance, we use sensors with rechargeable batteries. Furthermore, in

our work, these sensor agents follow the concept of energy—neutrality.

In addition, since WSNs have to operate over an extended period of time, within dynamic
environments, it is necessary for the agents to adapt to environmental changes, in order
to achieve efficient long-term information collection [Predd et al., 2006]. That is, by
adaptively changing their focus on each action type (i.e. tasks), the agents can decide
whether to put more effort on sampling (e.g. when significant events are occurring in the
monitored area), receiving important data from the others (e.g. when they have collected
high value information that has to be delivered to the BS), or transmitting data (e.g.
when the delivery of data cannot be delayed too long). However, in order to determine
the optimal action type (exploitation), the agent first has to learn the performance of
other action types as well (exploration). That is, the agent has to efficiently deal with
the trade—off between exploration and exploitation. Furthermore, the agent must learn
on-line, since the environment is typically unknown a priori for the network. In the

literature, efficient and robust approaches have been designed to efficiently deal with
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these challenges, such as multi—armed bandit learning [Robbins, 1952], or reinforcement
learning [Sutton and Barto, 1998]. In the former type of learning, each agent chooses
from its action set at each round, and based on this choice, it gets a reward. The goal of
the agent is simply to maximise its total reward over a given time period. The latter type
of learning can be regarded as the more generic form of the former, since the agent can
also modify the environment’s state, by taking its actions (for more details see sections
2.2 and 2.3). By using these approaches, agents should be able to adapt to environmental
changes, in order to perform efficient long-term information collection. Given this, in
order to efficiently handle the environmental dynamism, we pursue a learning approach

for energy management.

To date, however, none of the previous work brings all these diverse aspects of the
problem together into an integrated framework that is necessary to make progress in
this area (see chapter 2 for more details). Thus, this work seeks to start addressing this
gap. Specifically, in section 1.1, we describe the research requirements that information
collection mechanisms should satisfy, in order to achieve efficient long-term performance.
Following that, we introduce the contributions of this report in section 1.2. Finally,

section 1.3 outlines the overall structure of the remainder of this report.

1.1 Research Requirements

The aim of the work in this report is to design efficient mechanisms to maximise long-
term information collection in WSNs. Such mechanisms, however, have to deal with a
number of issues, such as a constantly changing environment and significant resource
constraints. Given this, we can define the following broad requirements that information

collection mechanisms for WSNs should satisfy:

1. Adaptivity: Since the nodes are typically deployed in dynamic environments,
efficient performance cannot be sustained without the ability to learn and to adapt
to environmental changes. That is, the nodes should be able to learn efficient
policies on—line, based on their own experiences. Moreover, they have to achieve

an efficient trade-off between exploration and exploitation.

2. Robustness and flexibility: Due to the long operating time of the network, node
failures and lossy communication links are likely to occur. Even in these cases,
the network operation should not collapse, but degrades gracefully. Therefore, the
nodes should be able to handle these situations, by ensuring that the operation of

the remaining nodes is not affected.
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3. Computational feasibility: Due to the hardware constraints (e.g. limited com-
putational capacity or memory size), information collection approaches with sig-
nificant computational cost are not affordable here. Consequently, it is necessary
to develop efficient algorithms that consume small amounts of computational re-

sources.

4. Limited use of communication: Since communication is typically the most ex-
pensive task in WSNs, a good information collection approach should avoid having
significant communication cost (i.e. the energy amount allocated to sending con-
trol messages), in order to achieve efficient performance in information collection.
In particular, by reducing the amount of energy for communication, the sensors
can allocate more energy to forwarding real data, and thus, it can increase the

amount of collected information.

A good information collection approach for WSNs will comply with all four of these re-
quirements. Therefore, the design of such approaches should satisfy all of these require-
ments. In this report we show that the approach of using multi-armed bandit learning
based energy management and maximal information throughput routing satisfy these
concerns. In so doing, we compare the performance of our approach with that of other
techniques from the broader literature on reinforcement learning and information—centric

routing. The specific contributions of this report are now discussed in more detail.

1.2 Research Contributions

The main focus of this report is designing information collection approaches for WSNs,
that provide efficient performance in a prolonged period of time, satisfying the research
requirements of: (i) adaptivity; (ii) robustness and flexibility; (iii) computational feasi-

bility; and (iv) limited use of communication.

Specifically, the information collection problem that we address consists of a set of sensor
agents with rechargeable batteries, collecting information from a dynamic environment
over an extended period of time, without the aid of a centralised controller. The collected
information is then delivered to the BS, using information-centric routing techniques
and energy—neutral energy management. Here, we focus on energy management and
information-centric routing, while we assume that efficient sampling and information
content valuation can be achieved by using existing techniques. Thus, to simplify the
complexity of the original problem, we separately develop energy management and rout-
ing policies. However, as we will show, efficient data collection can be still achieved by

combining such policies together.
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In particular, for the energy management problem (i.e. how to adaptively allocate en-
ergy budgets to each of the sensory tasks), we pursue a simple reinforcement learning
approach, namely multi-armed bandit (MAB) learning [Robbins, 1952]. That is, each
agent’s energy budget allocation problem is represented as a MAB problem. There exist
other, more sophisticated, learning methods, such as multi-state Markov decision pro-
cesses (MDPs) [Sutton and Barto, 1998|, partially observable MDPs (POMDPs) [Cas-
sandra, 1998, or decentralised POMDPs (DecPOMDPs) [Seuken and Zilberstein, 2008],
which can also be used here. However, as we will see later, the MAB approach produces
remarkably good results in information collection. Given this, based on MAB learning,
we devise two energy management algorithms, each of them dealing with a different type
of energy budget limitation. In particular, from the aspect of energy recharging, the fol-
lowing situations may occur: (i) the agent’s energy harvesting performance is stable
(e.g. agent with solar battery is deployed outdoors, where the solar panel is not blocked
from the sun light); and (ii) it may happen that the agent loses its ability to recharge
its battery (e.g. the solar battery unit is malfunctioning, which may occur during a
long period of operation), and thus, the agent’s battery will not be recharged at all. In
particular, in the first case, the energy budget of the agent is recharged each round, and
thus, it can comply the concept of energy neutrality. On the other hand, in the second
case, the agent’s overall energy budget (i.e. the total energy budget for the whole op-
eration time) is limited, and thus, energy management has to be energy-aware. For the
first case, existing MAB models can be used to tackle the energy management problem
(for more details, see chapters 5). However, the second case cannot be approached by
those existing MAB models. Given this, we propose a new MAB model: the budgeted
multi-armed bandit with pulling cost. By using this model, the case of limited overall

budget can also be dealt with efficiently (for more details, see chapters 6).

Now, suppose that all the agents have already set their energy budget value for sampling,
receiving, and transmitting tasks. In this case, to maximise the value of the total
collected information, it is obvious that we need to maximise the total information value
of data sampled or relayed by agents that are one hop from the BS. The latter, however,
is equal to data that is sampled or relayed by agents that are two hops from the BS,
and so on. That is, beside focusing on efficient energy management, it is also important
to maximise the information throughput (i.e. the total transmitted information value)
between neighbouring layers of agents (i.e. group of agents with the same distance from
the B.S) by using efficient routing techniques. Hereafter, for our convenience, we refer to
this routing problem as the mazximal information throughput routing problem. In order
to solve this problem, we propose a simple, but proveably optimal, decentralised routing
method, the maximal information throughput routing algorithm, for information—centric

routing.
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Thus, given this context, the work in this report advances the-state-of-the-art in the

following specific ways:

Maximal Information Throughput Routing (chapter 4) — We develop a compu-
tationally simple decentralised information—centric routing algorithm, called MI-
TRA (for maximal information throughput routing algorithm), for forwarding data
packets towards the BSS (contribution 1). This is the first algorithm that proveably
achieves optimal solution for the maximal information throughput routing prob-
lem. We also demonstrate that MITRA has low communication cost compared to

the size of the network, by running extensive simulations.

Energy Management With Energy Harvesting Sensors (chapter 5) — We pro-
pose a novel, multi-armed bandit based, energy management algorithm for the
case of agents with energy harvesting ability (contribution 2). This learning-based
energy management policy operates on each agent, managing the agent’s energy
budget adaptively to achieve efficient long-term information collection. This al-
gorithm is responsible for allocating energy budgets to the agent’s tasks such as
sampling, transmitting and receiving. Here, we use an existing MAB model, the
non-stochastic MAB, which has been shown to be efficient in dynamic environ-
ments. Since the energy management task should be adaptive to the dynamics of
the system, by using a learning approach, each agent is able to react to changes
in the network and environment, learning to behave efficiently in different circum-
stances. To date, none of the state-of-the-art studies has used a learning-approach
for long—term information collection. Thus, this algorithm is the first attempt
to exploit the advantages of learning theory for efficient information collection
in WSNs. In addition, we show that this algorithm has low computational and

communication cost compared to the size of the network.

Energy Management With Non-Harvesting Sensors (chapter 6) — Since energy
management in the case of non—harvesting sensors uses a concept that is different
from energy-neutrality (which is used in the case of energy-harvesting sensors),
existing MAB models do not suit this problem. Given this, we introduce a new
MAB problem, the budgeted multi-armed bandit with pulling cost (contribution
3). In this model, the agent chooses a costly action, and the total budget for
choosing actions (i.e. pulling arms) is limited. To tackle this problem, we pro-
pose budgeted e-first action choosing policies, for the case of static environments.
Then we devise the first, theoretically proven upper bound for the loss of a bud-
geted efirst algorithm that uses any generic exploration method for this problem
(contribution 4). Following this, we improve this upper bound for the case of
budgeted efirst approach with uniform pull exploration, in which all of the arms

are uniformly pulled in the exploration phase. Then we compare the efficiency of
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budgeted efirst policies to other existing reinforcement learning techniques. With
this comparison, we show that, within the same settings (i.e. pulling arms is costly,
and the overall budget is limited), the proposed MAB model is more efficient in
learning than other existing models. Following this, we propose a MAB approach
for energy management with non—harvesting sensors. This approach is based on
the proposed MAB model.

As can be seen, both the proposed MAB learning energy management methods and MI-
TRA have low computational and communication cost, and thus, they satisfy require-
ments 3 and 4. Furthermore, by using the MAB learning approach, energy management
can be adaptive to the environmental changes, and thus, it satisfy the adaptivity require-
ment. Besides, as later we will show, MITRA is capable of fulfilling the robustness and
flexibility requirement. Given this, the combined use of the proposed methods satisfies
the research requirements. In addition, through extensive simulations, we show that
performance of long—term information collection can be significantly improved by using
the proposed MAB learning energy management with the MITRA together, compared

to that of other non—learning approaches.

The work up till now has led to the publication of two papers, which form the basis of

chapters 4, 5, and 6, respectively:

e L. Tran—Thanh, A. Rogers, and N. R. Jennings. Adaptive Efficient Long-Term
Information Collection with Energy Harvesting Wireless Sensors. Submitted to:
The 19th European Conference on Artificial Intelligence (ECAI), Lisbon, Portugal,
2010.

e L. Tran-Thanh, A. Chapman, E. Munoz de Cote, A. Rogers, and N. R. Jennings.
e-First Policies for Budget Limited Multi-Armed Bandits. In Proceedings of the
24th AAAT Conference on Artificial Intelligence (AAAT), Atlanta, USA, 2010.

1.3 Report Outline

The remainder of this report is structured as follows:

e Chapter 2 analyses the state-of-the-art in WSNs with respect to long—term infor-
mation collection. Furthermore, we review the reinforcement learning and multi-

armed bandit literature, respectively.

e Chapter 3 introduces our formal model of a WSN system. Following this, we

formulate our research objectives, with respect to the research requirements of this
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report. Then we describe the formalised definitions of the energy management and

the maximal information throughput routing problems.

e Chapter 4 gives a decentralised algorithm for the maximal information throughput
routing problem. First we give a formal problem description. Following that, we
introduce our decentralised algorithm (MITRA). It is followed by the proof of
its optimal performance in maximising the total information value of transmitted
packets between neighbouring layers. Finally, we show simulation results that

demonstrate the low communication cost of MITRA.

e Chapter 5 first introduces the problem of energy management with energy harvest-
ing sensors. Then we describe the theoretical background of the non—stochastic
multi-armed bandit problems. Next we discuss the standard Exp3 algorithm in
more detail. Following that we formulate the energy management problem as a
non-stochastic MAB problem, by defining the transition and reward functions,
and we propose a MAB based energy management algorithm. We also analyse the

performance of the proposed algorithm.

e Chapter 6 first describes the problem of energy management with non-harvesting
sensor agents. Following that we introduce the model of budgeted multi-armed
bandits with pulling cost, which is the basis of our energy management approach.
Next we propose efirst policies for the static MAB model. Then we formulate the
MAB based energy management problem, using the budgeted MAB with pulling

cost model. Finally, we analyse the performance of our approach in detail.

e Chapter 7 presents our conclusions and outline the problems we would like to deal

with as future work.






Chapter 2

Literature Review

In this chapter, we provide an overview of existing research studies against which our
work is positioned. In order to do this, in the first part of the chapter (section 2.1) we
discuss previous work on data collection of WSNs from different aspects, namely: adap-
tive sampling, information content valuation, information—centric routing, and energy
management. Within these areas, we highlight the limitations of each of the proposed
methods, motivating the goals of research in this report. Furthermore, as mentioned
in chapter 1, WSNs must also be capable of learning optimal behaviours in unknown
domains and capable of adapting to environmental changes in order to achieve efficient
long-term performance in information collection. Thus, in the second part of the chap-
ter (sections 2.2 — 2.4), we focus on the introduction of learning and long-term planning
policies in WSNs. In addition, we look at related work in the WSN domain that also

takes learning ability into account.

In more details, in section 2.1.1, we first detail some of the most commonly used adap-
tive sampling methods that have been developed for WSNs. In section 2.1.2; we provide
a background review on information content valuation techniques. Following this, we
discuss existing adaptive routing algorithms in section 2.1.3. Then, we focus on effi-
cient energy management schemes for WSNs in section 2.1.4. We continue the literature
review by introducing the basics of reinforcement learning (RL) theory in section 2.2.
Following this, in section 2.3, we discuss the multi-armed bandit (MAB) problem, which
can be regarded as a simplified RL. Then we describe a variety of multi-armed bandit
models, namely: (i) non-stochastic MAB (section 2.3.1); and (ii) MAB with cost con-
straints (section 2.3.2). Then, the applications of RL techniques in the WSN domain are
discussed in section 2.4. Finally, in section 2.5, we conclude this chapter by summarising
our findings and relating them back to our original research requirements (as detailed

in section 1.1).

13
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2.1 Long—Term Information Collection in Wireless Sensor

Networks

Here, we focus on describing existing approaches for information collection in WSNs.
In particular, in the following sub-sections, we provide an overview of adaptive data
sampling, information content valuation, information—centric routing, and energy man-

agement techniques, respectively.

2.1.1 Adaptive Data Sampling

In this section, we focus on adaptive sampling algorithms within the WSN domain.
In dynamic environments, it is not sufficient to have sensors deployed with a fixed
sampling rate, since such sensors may not be able to capture the rapid changes of
their surroundings, and thus, their performance in information collection may not be
efficient. Therefore, it is necessary to use some form of adaptive sampling approach on
each sensor in the network. Generally speaking, adaptive sampling can be described as
an “intelligent sampling”, which is adaptive to the (dynamic) environmental changes
in space and time. In particular, an adaptive sampling algorithm is here defined as a
protocol (i.e. a set of policies) that is responsible for adaptively setting the sampling
rate (i.e. how often a node is required to sample during a particular time interval) and
schedule (i.e. when a node is required to sample) of each of the individual nodes in a

network.

Existing algorithms can be classified as to whether they use temporal or spatial corre-
lations (or both) in order to make effective sampling decisions. With respect to spatial
correlations between sensors, the challenge of calculating informative locations has been
thoroughly studied by Guestrin et al. [2005]. In this approach, the spatial correlations
within the monitored environment are assumed to be known. That is, these correla-
tions are modelled by using a Gaussian process and can be learnt during the initial
deployment of the network. Based on this information, an informative subset of the
sensors is selected to provide the information to a BS, while the rest of the nodes are
removed in order to reduce cost. In addition, Krause et al. [2006] extend this work
by taking communication cost into account, making an explicit trade-off between the
energy consumption of sampling and the communicating of each sensor. Finally, Willett
et al. [2004] have studied the backcasting adaptive sampling method in which multiple
nodes that are spatially correlated form small subsets of nodes that then communicate
their information to a local data aggregation coordinator. Based upon this information,
the coordinator then selectively activates additional nodes (by instructing them to take

samples) in order to achieve a target level of uncertainty. The first two techniques,
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however, fail to give proper attention to the temporal dynamics of the monitored envi-
ronment, and thus, they are essentially static (or single shot) approaches that do not
explicitly consider long-term data collection. On the other hand, the third method uses
a centralised coordination mechanism, that contains all the drawbacks of the centralised

regime.

To handle temporal correlations, the wtility based sensing and communication (USAC)
algorithm was proposed by Padhy et al. [2006]. This is a decentralised control proto-
col for adaptive sampling, designed for an environmental WSN measuring subglacial
movement (Glacsweb [Martinez et al., 2004]). In this approach, temporal variations in
the environmental parameter being sensed are modelled as a piece—wise linear function,
and then the algorithm uses a pre-specified confidence interval parameter in order to
make real-time decisions regarding the sampling rate of the sensor nodes. Moreover,
linear regression is used to predict the value of future measurements, and if the actual
sensor reading exceeds the confidence interval parameter, the sensor starts sampling at
an increased rate. However, since the algorithm does not explicitly perform any forward
planning, the sensor can rapidly deplete its battery if the increased sampling rate is

constantly re-triggered by data that is far from linear.

Furthermore, in tide prediction, Kho et al. [2009a] proposed a decentralised algorithm
using an information metric that represents the temporal variation in the environmental
parameter being sensed. This algorithm, in contrast to USAC, takes energy harvesting
into account, and thus, makes the sensors capable of making long-term planning. In
particular, this algorithm aims to maximise the information that a sensor collects over a
particular time interval subject to energy constraints, and this involves planning exactly
when, within the specified time interval, to take a constrained number of samples. The
algorithm takes the information provided by the information metric into account when
creating a sampling schedule at the beginning of each day. This algorithm also considers
the amount of residual energy left in the sensor’s battery, and the amount of information

that can be collected at different times of the day, based on past experience.

In addition, Jain and Chang [2004] used a similar prediction technique to set the sam-
pling rate adaptively. Their approach employs a Kalman—filter (KF) based estimation
technique wherein the sensor can use the KF estimation error to adaptively adjust its
sampling rate within a given range, autonomously. When the desired sampling rate
violates the range, a new sampling rate is requested from a control server. The server
allocates new sampling rates under the constraint of available resources such that the
KF estimation error over all the active streaming sensors is minimised. However, the
main drawback of this technique is that it is centralised, and thus, it is not feasible to

operate it in a decentralised setting (see the requirements of our research in section 1.1).
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Finally, the algorithm proposed by Osborne et al. [2008] uses a multi-output Gaussian
process (GP) to explicitly model both temporal and spatial correlations between a small
number of sensors. The GP is used for adaptive sampling whereby it can determine
both the time, and the sensor from which the next sample should be taken, to ensure
that the uncertainty regarding the environmental parameter being measured at each
sensor location stays below a pre-specified threshold. Thus, here the algorithm only
decides when and where the next sampling should be taken. However, the algorithm is
centralised, since it requires information from all of the sensors in order to model the

spatial correlations between them, and it is relatively computationally expensive.

In this report, we assume that our sampling protocol is a generic adaptive sampling
protocol, which can be any of the existing temporal adaptive sampling methods discussed
above. We have only one restriction; that is, the algorithm should be decentralised; that
is, each agent should be able to autonomously and independently set its sampling rate
(for more details see chapter 3). Given this, decentralised techniques, such the sampling
protocol of USAC, or the algorithm proposed by Kho et al. [2009a], can be used here.
On the other hand, due to their centralised manner, the algorithms proposed by Jain
and Chang [2004] and by Osborne et al. [2008] are not suitable for our model.

2.1.2 Information Content Valuation

In order to distinguish important and unimportant data from each other, and thus, to
achieve a more efficient information collection in terms of maximising the total infor-
mation delilvered to the BS, an efficient information metric is required to determine
the information content of the collected or transmitted data. In our case, this metric is

provided by an information content valuation function.

Within the tracking literature, where spatially correlated sensor readings typically rep-
resent the estimated position of a target, there are a number of standard techniques for
defining this function. Most of the works use Fisher information, whereby the estimated
position of the target is represented as a multidimensional probability distribution, and
Fisher information is used to quantify the uncertainty represented by this distribution
[Bar-Shalom et al., 2001; Chu et al., 2002; Frieden, 2004; Zhao and Guibasn, 2004]. For
example, Chu et al. [2002] used acoustic sensors to localise a target. To quantify the in-
formation gain of the measured data provided by each sensor, they advocated using the
Fisher information matrix as follows. Let x = {x1,X2,...} denote the set of unknown
parameters of the target, and z = {z1,29,...,2n} denote the set of sensor measure-
ments, where N is the number of the sensors. Thus, the ij" component of the Fisher

information matrix is:

0 0
Fij(x) = /p(z\x) D lnp(z]x)—ax‘ Inp(z|x) dz
i j
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Other approaches were developed by using the Gaussian process. The methods they
use generally exploit the fact that the covariance can be analytically evaluated. In more
detail, for example, Krause et al. [2006] used GPs to model the spatial correlations of
locations, in order to determine efficient sensor placements, whereby a maximal informa-
tion value can be collected by data sampling. In their model, V' denotes the set of possible
locations, A denotes the set of observable locations and s is an unobservable location.
Let X 4 denote the set of observable random variables associated with the locations A,
and X be the random variable associated with location s. In order to make predictions
at a location S (i.e. to calculate conditional distributions p (X5 = xs|X4 = x4)), they

used the following conditional entropy:

H(X5|X4) = —/ p(zs,x4)logp (rs|x4) drs dxs
Ts, XA

Intuitively, this quantity expresses how “peaked” the conditional distribution of X given

X 4 is around the most likely value, averaging over all possible observations X 4 = x4 the

sensors can make. To quantify how informative the set of data collected from locations

A is, they used the criterion of mutual information (MI):
F(A)=1(Xa,Xy/a)=H (Xy/4) —H (Xv/aXa)

This criterion expresses the expected reduction of entropy of all locations V//A where sen-
sors were not placed, after taking into account the measurements of sensors at locations
in set A.

Similarly, Osborne et al. [2008] also used GP to model the spacial and temporal correla-
tions and delays between nodes, using Bayesian Monte Carlo techniques to marginalise
these hyper-parameters that describe the correlations and delays. They then use the
variance of the GPs predictions in order to perform active data selection, which is a
decision problem concerning which observations should be taken, deciding when and
where to take samples to maintain this variance below a prescribed target level. Their
algorithm is computationally efficient as they are learned from the data in an online

fashion, and thus, it is capable of performing real-time information processing.

Several other techniques for valuing information include Shannon entropy, which is
mainly used in signal compression (or coding), target tracking, and information fu-
sion techniques in WSNs [Cover and Thomas, 2006; Hwang et al., 2004]. For instance,
Hwang et al. [2004] used a belief vector to probabilistically represent the identity of a
target. In their work, they considered the problem of combining two belief vectors of
the same target from two different sensors (i.e. data fusion). Here, information fusion
can be formulated as an optimisation problem such that the fused information is the
one that minimises a cost function which represents a performance criterion. This cost

function is modelled by the Shannon entropy. More precisely, let b1 and bs denote the
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belief vectors before data fusion, and b denote the information value of the fused packet.
Furthermore, let
b = why + (1 —w) by

be the fusion strategy. The goal is to determine w such that it minimises the Shannon

entropy defined as:
( ) Z b (i) logh (

where b’ (i) denote the probability that the target is in belief state i. Informally, Shannon
entropy characterises the average amount of information which is gained from a certain
set of events. The entropy is maximal when all the events’ outcomes are equally likely
and, therefore, we are uncertain which event is going to happen. When one of the
events has a much higher chance to happen than the others, then the uncertainty (or
entropy) decreases. Information value can thus be quantified as the difference between

the probabilities of the random event.

In addition, Padhy et al. [2006] use the Kullback-Leibler (KL) divergence to model
the information value of collected data in USAC. Here, KL divergence is a measure of
the information gain between a prior and a posterior probability distribution (i.e. the
distribution over possible measurements before and after a new item of data has been
received). The larger this measure, the less the previous model was capable of explaining

the value of the new data, and thus, the more it has to be updated.

More recently, Kho et al. [2009a] use the mean Fisher information over a period as
a measure that is proportional to the value of information. As a result, when the
environment changes at a higher rate, the linear model will start to deviate from the
true dynamics of that environment. The value of information will therefore be greater

in dynamic situations than in those that are better characterised as static.

In this report, we assume that our model is capable of using any of these techniques,
and thus, we do not specify any restrictions on the information valuation technique in

use (for more details see chapter 3).

2.1.3 Information—Centric Routing

Routing is the process of delivering a message from a source node to a BS inside the
same network. A routing algorithm determines actions that a node can use to forward
data towards the BS, namely (i) transmitting (i.e. which data packets the node should
choose to transmit, and to which node), and (ii) receiving (i.e. how many packets a
node is required to receive from the other nodes during a transmission period). Since
routing is responsible for transporting the data collected by the network to the BS, the

efficiency of the routing algorithm significantly affects the overall performance of the
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network. In fact, routing is one of the most studied areas within the WSN domain, and
thus, a large number of algorithms has been proposed for adaptive and efficient data
routing in WSNs from different perspectives. These include, but are not limited to, the
following: energy efficiency, delay sensitiveness, security, and reliability [Ahdi et al., 2007;
Akkaya and Younis, 2005; Al-Karaki and Kamal, 2004; Singh et al., 1998]. However,
these algorithms typically do not distinguish important packets from unimportant ones.
Thus, this may lead to inefficient performance of information collection, since it may
occur that less important data is delivered to the B.S, while the more important packets
are not forwarded at all. Given this, in this section, we focus on routing approaches
that are information—centric. In particular, these approaches aim to maximise the total
information value delivered to the BS. In so doing, they typically use information

content valuation techniques in order to determine more important data packets.

One of these algorithms, directed diffusion (DD), has been developed by Intanagonwiwat
et al. [2003]. In DD, the BS sends out a data collection query description by flooding the
query to the entire network. That is, data collection happens only when the B.S needs
a certain type of data. However, since data collection applications (e.g environmental
monitoring or area surveillance) typically require continuous data delivery to the BS, a
significant number of queries will be sent to the network. In this case, the communication
cost of DD caused by query floodings is high, meaning DD is not suitable for long—term
information collection. To avoid flooding, the rumor routing (RR) protocol routes the
queries to the nodes that have observed a particular event to retrieve information about
the occurrence of the event, and thus, it reduces the total communication cost [Braginsky
and Estri, 2002]. However, rumor routing performs well only when the number of events
is small. For a large number of events, the algorithm becomes infeasible due to the
increase in the cost of maintaining node-event tables in each node. Moreover, all such
information—centric protocols do not take into account the network’s dynamism (i.e. the

changes of network topology) in forwarding data packets.

Apart from the aforementioned approaches, in which information is collected by sending
explicit queries from the B.S, other methods focus on continuous information collection.
That is, they provide information collection, without the need of sending any queries,
during the whole operation of the network. For instance, USAC (see section 2.1.1),
considers the remaining battery power of the communicating nodes and the importance
of the data being transmitted, in order to determine the appropriate routing path for
the packet. In the similar vein, the adaptive routing algorithm (ARA), that has been
developed by Zhou and de Roure [2007], beside the battery level and the importance of
data, also takes the link cost (assumed to be proportional to the distance) between the
nodes into account. However, these protocols are not designed for solving the maximal
information throughput routing problem, since their main goal is not to maximise the

information throughput between the neighbouring layers of sensor agents, but rather to
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identify optimal paths between each node and the BS, that can be used for forwarding
data.

Finally, an interesting last class of information—centric routing protocols are those that
use a market-based control (MBC) paradigm. The use of MBC in WSN allows the use
of tools from general equilibrium theory to analyse the behaviour and correctness of a
decentralised system. The main market-based protocol includes self organised routing
(SOR), proposed by Rogers et al. [2005], and self organising resource allocation (SORA),
proposed by Mainland et al. [2005]. In more detail, SOR is a mechanism—design based
distributed protocol that aims to maximise the network’s lifetime. Each node is de-
signed to follow locally selfish strategies which, in turn, result in the self organisation
of a routing network with desirable global properties. The protocol consists of a com-
munication protocol, equipping nodes with the ability to find and select a node that is
willing to act as a mediator for data relaying, and a payment scheme, whereby a node
is rewarded for forwarding messages to the destination. Specifically, the communication
scheme identifies potential mediators, the payment scheme allows the sensors to make
local selfish decisions which result in good system—wide performance. In contrast, SORA
defines a virtual market in which nodes sell goods (e.g. data sampling, data relaying,
data listening, or data aggregation) in response to global price information that is estab-
lished by the end-user. However, this approach again involves an external coordinator to
determine the price and it is not clear how this price determination should actually be
done in practice. In sum, although these algorithms are based on the multi—agent sys-
tems approach, which is clearly related to our model, we do not follow their perspective.
In contrast, within this report, we concentrate on networks where sensors maximally
cooperate with each other. However, we may take this approach into account in future

work.

2.1.4 Energy Management

An energy management policy is responsible for allocating energy budgets to sensory
tasks, such as sampling and routing data. Most of these policies, however, are typ-
ically integrated into the routing part, ignoring the task of sampling. In particular,
these methods assume that the data are already sampled, and thus, they focus only
in delivering data towards the B.S. Furthermore, they typically follow the concept of
energy—awareness; that is, they aim to minimise the energy consumption of each node,

while data forwarding is still to be done.

Given this, a number of energy—aware algorithms use clustering techniques to minimise
energy consumption in sensor networks through the rotation of cluster-heads such that
the high energy consumption in communicating with the B.S is spread across all nodes.

These algorithms include low energy adaptive clustering hierarchy (LEACH), proposed
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by Heinzelman et al. [2000], and power efficient gathering in sensor information systems
(PEGASIS), proposed by Lindsey and Raghavendra [2002]. In general, these methods
make good attempts to try to balance the energy consumption by electing cluster—heads,
each of which is responsible for relaying the data from a subset of nodes back to the
BS in an intelligent way. However, these cluster—heads all need to be placed inside the
BS’s radio range as they communicate with it directly. Thus, this assumption limits
the size of the monitoring environment, since the wireless radio range of the BS is
limited. Moreover, these single cluster—heads can become a communication bottleneck
of the network, since in each round the cluster—heads need to communicate with a large
number of nodes within their cluster. Hence, this aspect contains some of the drawbacks

of the centralised control regime.

The life span of the network can also be lengthened by reducing the total energy con-
sumption needed to deliver the packets to the B.S. From this perspective, Dekorsy et al.
[2007] proposed an approach that jointly controls the routing and energy management,
in order to achieve efficient data forwarding. In particular, the approach aims to min-
imise the total energy consumption of each node, while the collected data has to be
delivered to the BS using multipath routing (i.e. there can be multiple routing paths
between a node and the BS). In so doing, the approach considers each node’s resid-
ual energy level, the transmission power level, and maximal communication bandwidth.
This approach, however, assumes that the data is already sampled, and that future data
is not taken into consideration when optimal routing paths are calculated. Given this,
whenever the environment changes, it has to recalculate the optimal paths, and thus, it

requires significant computational resources.

In addition, another way to to lengthen the life span of the network is to perform energy
balancing [Dinga et al., 2004]. That is, to maximise the residual energy level of the
bottleneck node (i.e. the node with the least energy level) in the network during the
routing. In this vein, Ok et al. [2009] used a metric to take the energy cost of transmis-
sion, as well as the sensors’ remaining energies into account. This metric gives rise to
the design of the distributed energy balanced routing (DEBR) algorithm, to balance the
data traffic of sensor networks in a decentralised manner. Furthermore, Li et al. [2007]
proposed a global-energy balancing routing scheme (GEBR) for real-time traffic. Now,
while both of these algorithms perform well in prolonging the lifetime of the WSN;, they
are not designed for adapting to environmental changes, since they do not take these

changes into account.

More recently, Merrett [2008] developed the information managed energy aware algo-
rithm for sensor networks (IDEALS) protocol, which is aimed for extending the network
lifetime of WSNs. IDEALS is an application specific heuristic protocol as it requires that
every sensor node decides its individual network involvement based on its own energy

state and the importance of information contained in each message. Similarly, USAC
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uses an opportunity cost of the energy used by each sensor to balance the energy con-
sumption of the tasks of sampling and forwarding. That is, by evaluating its own oppor-
tunity cost, each sensor can decide whether it spends energy on sampling or forwarding,
depending on which is the more preferable opportunity for the sensor. Moreover, USAC
also considers the total energy consumption required to transmit a packet along a par-
ticular path as well. These methods, since they can vary the energy budgets allocated to
the sensory tasks, are suitable for adapting to environmental changes. However, they do
not take energy neutrality into account. Given this, an increasing percentage of sensor
batteries will deplete as time goes by, and thus, the global performance of the network

will be decreased in the long term.

To date, very few studies have focused particularly on energy management in networks
of energy harvesting nodes. A notable exception, however, is the work of Kansal and
Srivastava [2003]. In their work, the authors used spectral estimation functions and
prediction filters to estimate the expected amount of harvested energy of each sensor in
a given future time interval. Based on these estimations, the sensors are able to schedule
their tasks, in order to achieve long-term goals. However, their approach does not focus
on information-centric routing, and thus, will not perform well in information collection.
More recently, Kho et al. [2009b] proposed an energy neutral information-centric data
collection algorithm, that combines sampling and routing policies, in order to maximise
the collected information in one time slot. That method, however, does not plan for
long-term operation, since it is optimised for one-slot time intervals. Furthermore, it

does not consider dynamic changes of the environment.

2.2 Reinforcement Learning

In this report, we aim to use a learning theory approach to achieve long-term perfor-
mance in information collection of WSNs. In this context, agents will be able to learn
efficient policies and optimal behaviours in an unknown domain, without any (or with
minimal) prior knowledge of that domain. Now, since agents are required to operate
in an unsupervised manner, we focus on the approach of reinforcement learning, which
is an efficient and robust approach designed to tackle such learning problems. Given
this, in this section, we briefly review the standard reinforcement learning framework
of discrete time, called the finite Markov decision process (MDP), which underlies our

work.

In the MDP framework, a learning agent interacts with an environment at some discrete
time scale, t = 0,1,2,.... On each time step t, the agent perceives the state of the
environment s; € S, where S is the set of possible states of the environment. On that

basis, the agent chooses a primitive action a; € Ag,. In response to each action a;, the
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environment produces one step later a numerical reward 7(;41), and a next state s 1).

For the sake of simplicity, we let A = UgcgAs denote the union of the action sets.

At each time step, the agent implements a mapping from states to probabilities of
selecting each possible action. This mapping is called the agent’s policy and is denoted
with 7 , where 7 (s,a) is the probability that a; = a if s; = s. Reinforcement learning
methods specify how the agent changes its policy as a result of its experience. The
agent’s goal, roughly speaking, is to maximise the total amount of reward it receives
over the long run. More precisely, let T" denote the operation time of the agent, and ¢

the current time, respectively. Thus, the goal is to maximise the following:

T
Ry = Z’Ykrt+k+1 (2.1)
k=0

where v is the discount coefficient. The discount coefficient determines the present value
of future rewards; a reward received k time steps in the future is worth only 4*~! times
what it would be worth if it were received immediately. If v = 0, the agent is myopic
in being concerned only with maximising immediate rewards; its objective in this case
is to learn how to choose a; so as to maximise only r,41. If each of the agent’s actions
happened to influence only the immediate reward, not future rewards as well, then a
myopic agent could maximise equation 2.1 by separately maximising each immediate
reward. But, in general, acting to maximize immediate reward can reduce access to
future rewards so that the return may actually be reduced. Thus, as v approaches 1,
the objective takes future rewards into account more strongly: the agent becomes more
farsighted.

Given this, now we focus on the process of maximising equation 2.1 in more detail.
Assuming that S and A are finite, the environments transition dynamics given state s

and action a can be modeled by one-step state-transition probabilities as follows.

a _ _ _ _
Psgr = PT{3t+1 = 3’3t = 5,0t = A, S¢—1,0t—-1,5t-2,At—-2, - - - }

= Pr{sit1 =s|st =s,a, = a} (2.2)

for all s,s" € S and a € A;. That is, p?,, which denotes the probability that from
state s, with action a, the agent will perceive state s’, depends only on the current state
and the current action, and does not depend from the past states and actions (Markov

property). Thus, the one-step expected rewards is:
re = E{ri1lst = s,ar = a} (2.3)

for all s € S and a € A;. The two sets of quantities defined in equations 2.2 and 2.3

together constitute the one-step model of the environment.
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To achieve the long-run objective given in equation 2.1, the agent has to choose the
policy that maximises the expected discounted future reward from the current state s.
Let V7 (s) denote the expected discounted future reward of policy 7 from state s. That

is,

VT(s) = E{ri1 -+ +’YQ7“t+3 +...|sg =s,7}
= E{rg1 +7V7" (s¢41) [t = 5,7}

= Y w(s,a) |[ri 4+ Y _plVT () (2.4)

a€As s

The quantity V7™ (s) is called the value of state s under policy 7, and V™ is called the
state-value function for m. The optimal state-value function gives the value of each state

under an optimal policy is:

Vils) = maxV7(s) = max E{rip1 + V7 (s141) [se = 5,7}
= max |1 +7 Z PV () (2.5)

s

Any policy that achieves the maximum in equation 2.5 is by definition an optimal policy.
Thus, given V*, an optimal policy is easily formed by choosing in each state s any action
that achieves the maximum in equation 2.5. Planning in reinforcement learning refers to
the use of models of the environment to compute value functions and thereby to optimise

or improve policies.

Another way to approach the maximal value of equation 2.1 is to determine the action-
value function for policy w. That is, the value of taking action a in state s under policy
7, denoted Q7 (s, a), is the expected discounted future reward starting in s, taking a,

and henceforth following 7. This value can be evaluated as follows.

Q" (s,a) = E{ru+yre+7rgs+ .. [se =s,ae = a,7}
= r 7 VT (sir)
= ri47 Zp?sl Z m(s,d) Q" (¢, d) (2.6)
s’ a’
Thus, the optimal action-value function can be evaluated as follows.

Q* (s,a) = max Q" (s,a) =15+ Zp‘;s/ max Q" (s (2.7)

Sl

There are a number of efficient technique to calculate the optimal action-value function
Q" (s,a), or the optimal state-value function V*(s), such as temporal-difference, Q-

learning or dynamic programming methods. The description of these algorithms can be
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found in any survey work of the area, such as in Sutton and Barto [1998] or in Kaelbling
et al. [1996].

To date, reinforcement learning has been widely used in a number of areas, mostly re-
lated to the domain of artificial intelligence. For example, reinforcement learning has
been used in autonomous helicopter flight control [Abbeel et al., 2006], robot football
coordination [Duan et al., 2007], robotic-arm control [Schaal and Atkeson, 1994], and
computer games as well [Littman, 1994]. To fit the problems in these domains, beside the
standard MDP, that is previously described, researchers has studied a number of other
related MDP models. These include, but are not limited to, the following: partially ob-
servable MDPs (POMDPs), decentralised POMDPs (DecPOMDPs), and multi-armed
bandits (MAB). In particular, POMDPs deal with the case when the state of the en-
vironment is not always fully observable (e.g. the robot cannot see all the changes
in its environment). Thus, in this case, the standard MDP model is extended with
the set of observable events [Cassandra, 1998]. In addition, DecPOMDP is an exten-
sion of POMDP, which deals with multi-agent learning, in which the agents together
have to determine the optimal joint action set (i.e. the set of each agent’s action).
In DecPOMDPs, the decisions are made in a decentralised way; that is, each agent
autonomously decides its action, cooperating with the others [Seuken and Zilberstein,
2008]. In contrast, MAB is a simplified version of the MDP model. In the MAB model,
the state of the environment is ignored. Thus, MAB can be regarded as an one-state
MDP model, which makes it the simplest RL approach [Gittins, 1989; Lai and Robbins,
1985; Robbins, 1952]. As mentioned in section 1.2, in this report, we focus on the use
of MAB models, due to its simplicity compared to other RL models. This decision is
reasonable, since one of our research objectives is to provide information collection ap-
proaches with low computational cost. Given this, we describe the MAB model in more

details in the following section.

2.3 Multi—-Armed Bandit Problems

In this section, we first describe the standard MAB model in detail. Then we discuss
the application of MAB in different research domains, demonstrating the usefulness of
MAB. Following that, we focus on the introduction of other related MAB models, that

contain several modifications, compared to the standard MAB.

In more detail, the standard multi—-armed bandit (MAB) model can be described as
follows. It was originally proposed in Robbins [1952]. In the MAB problem, there is
a machine with K arms, each of which delivers rewards, that are independently drawn
from an unknown distribution, when the machine’s arm is pulled. Given this, a gambler

must choose which of these machines to play. At each time step, he pulls the arm of one
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of the machines and receives a reward or payoff. The gambler’s purpose is to maximise
his return, that is, the sum of the rewards he receives over a sequence of pulls. As the
reward distributions differ from arm to arm, the goal is to find the arm with the highest

expected payoff as early as possible, and then to keep gambling using that best arm.

Using the terminology of multi—agent systems hereafter, we refer to the gambler as an
agent, and refer to each arm pulling action of the gambler as an action of that particular
agent. Thus, we can formulate the MAB problem as follows. Let K denote the number
of the actions that the agent can make. At each time step t, the agent makes action ay,
which delivers the reward r,, (t). Finally, let 7' > 0 denote the time horizon in which

the agent operates. Thus, we have the following optimisation problem:

T
max Z Ta, (1) (2.8)
t=1

Thus, the agent has to choose a policy, that is, a sequence of actions, that may deliver
the maximal reward at each time step ¢ in order to achieve the maximum of equation
2.8. According to this, the MAB problem can be regarded as a special instance of a
reinforcement learning (RL) problem which is a single state Markov decision process
(MDP) (for more details see section 2.2).

A fundamental dilemma in the MAB problem is the trade-off between exploration and
exploitation. On the one hand, if the agent exclusively chooses the action that he thinks
is the best (i.e. exploitation), he may fail to discover that one of the other actions
actually has a higher expected payoff. On the other hand, if he spends too much time
trying out all the actions and gathering statistics (i.e. exploration), he may fail to choose

the best action often enough to get a high return.

Against this background, researchers have proposed many approaches that tackle this
exploration-exploitation conflict from different aspects. In these works, the agent’s per-
formance is typically measured in terms of regret, which is defined as the difference
between the expected return of the optimal strategy (consistently performing the cur-
rent best action) and the agent’s expected return. Given this, by using statistical as-
sumptions, Lai and Robbins [1985] proved that the agent’s regret over 7' rounds can
be asymptotically as small as O (InT"). That is, for T — oo, the regret converges to
O (InT). Furthermore, they proved that this bound is optimal in the following sense:
there does not exist a policy for the agent with a better asymptotic performance. More
recently, Agrawal [1995] introduced a family of policies which are much easier to com-
pute, compared to those proposed by Lai and Robbins [1985]. In addition, policies that
achieve logarithmic regrets uniformly over time are proposed in Auer et al. [2002]. Such
policies, for example, are e,—greedy, and upper confidence bound (UCB) algorithms. In

the former algorithm, at each step n, the arm with the best current estimate (i.e. the
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experimental average reward value) is pulled with probability (1 —€,), while a differ-
ent arm is randomly pulled with probability ¢,. That is, the algorithm exploits with
probability (1 — €,), and explores with probability €, at each step n. Here, the value €,
decreases as n grows; that is, as time goes by, the algorithm focus more on exploitation,
while it decreases the probability of exploration [Auer et al., 2002; Sutton and Barto,
1998]. On the other hand, the latter algorithm maintains an upper confidence bound
estimate for each arm’s real mean reward value. At each time step, the algorithm then
chooses the arm with the highest upper confidence bound to pull, and updates the new
value of the bound [Auer et al., 2002].

MAB models, due to its efficiency in handling the trade—off between exploration and
exploitation, have been used in a variety of areas. Such areas include clinical trials
where different treatments need to be experimented with, while patient loss should
also be minimised as well [Hardwick and Stout, 1991]. MAB models are also used to
solve financial and investment problems as well. For example, optimal, but a priori
unknown investment options can be learned by using MAB exploration, while income
maximisation is provided by MAB exploitation [Lai and Lim, 2005; Wang and Wang,
2009]. In addition, MAB can also be adopted to the area of e-commerce, as an efficient
way to identify the ranking of web documents [Radlinski et al., 2008], or as a learning

technique for optimising online advertisement [Chakrabarti et al., 2008].

Although the standard MAB model allows an elegant treatment of the exploration-
exploitation trade-off in the aforementioned domains, it gives an incomplete description
of the sequential decision making problem facing an agent in many other real world sce-
narios. Specifically, in the standard MAB, one of the fundamental assumptions is that
the reward value of each action can be denoted with a stationarily distributed random
variable. However, the stationarity of the distributions is not always the right assump-
tion in a number of cases. For example, in the case of an agent within a dynamically
changing environment, the expected value of the rewards are time dependent, that is,
non—stationary. Thus, the aforementioned approaches may not perform efficiently in
such cases, since there is no fixed expected value for the reward of each action. In addi-
tion, making an action (i.e. pulling an arm) does not cost a thing in the standard MAB.
However, in many applications, making an action typically consumes a certain amount

of limited resources as well, and thus, arm pulls are costly.

In the WSN domain, since the environment is typically dynamic, standard MAB models
are not suitable for modelling the energy management problem (see chapter 5 for more
detail). Furthermore, in the case of energy management with non-harvesting sensors,
each arm pull is costly as well (see chapter 6 for more detail). Against this background,
in the following sections, we provide an overview of MABs with non—stationary envi-
ronments and costly arms, which are related to MAB models we use in this report for

dealing with the energy management problem. Specifically, section 2.3.1 introduces the
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non-stationary varieties of MAB. In addition, it describes an efficient MAB model, the
non—stochastic MAB in more details. Following this, section 2.3.2 discusses MAB models

that consider pulling cost constraints.

2.3.1 Non—Stochastic Multi—Armed Bandits

In order to deal with non—stationary MAB, researchers have proposed a number of
approaches. For example, Koulouriotis and Xanthopoulos [2008] used several RL tech-
niques and evolutionary algorithms to handle the non—stationarity in the MAB model.
In addition, for piecewise-stationary (i.e. the environment is regarded as stationary in
periods of time) MAB, Yu and Mannor [2009] developed an efficient method and pro-
vided tight performance bounds for the method. However, these approaches assume that
certain statistical knowledge about the environment is provided a priori. In particular,
the work of Yu and Mannor assumes that the environment is stationary in subsequent
intervals of time, and thus, within an interval, it is regarded as stationary. On the other
hand, the algorithms proposed by Koulouriotis and Xanthopoulos are only proposed for
a certain class of statistical distributions (e.g. Gaussian). These assumptions, however,
are not suitable for many MAB environments, and thus, the aforementioned approaches

will not perform well in such situations.

Against this background, to address this shortcoming, a non—stochastic multi—-armed
bandit problem has been introduced, in which no statistical assumptions are made about
the generation of rewards of each action [Auer et al., 2003; Gittins, 1989; Ishikida and
Varaiya, 1994]. In this case, each action is initially assigned an arbitrary and unknown
sequence of rewards, one for each time step, chosen from a bounded real interval. At
each time step, the agent performs an action and receives the corresponding reward from
the sequence assigned to that chosen action. The rest of the sequence, however, remains
unrevealed for the agent. This aspect makes the model of reward values more generic
and thus, easier to handle. To solve the non—stochastic MAB problem, Auer et al
[2003] have proposed an algorithm, named Exp3, which achieves efficient performance

in dynamic environments (see section 5.1.1 for more details).

The aforementioned relaxation on the statistics of the rewards, however, significantly
reduces the accuracy of the algorithms proposed for the MAB problem [Auer et al.,
2003]. That is, they produce worse bounds for the regret, compared to the theoretical
optimum of O (InT") that can be achieved by statistical model based algorithms. In
particular, Auer et al. [2003] have proved that the regret in the non-stochastic MAB
problem has a lower bound of O (\/T ) Despite this drawback, the Exp3 algorithm is
still useful in a number of cases, since it can provide acceptably small bounds of the
regret, for any of the time horizon T (see section 5.1.2 for more details). This property

is more desirable when the operation time of the agents are small, or when good, but
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not necessarily optimal performance is required from the beginning (compared to the
property of asymptotic convergence that statistical model based algorithms could provide
[Kleinberg, 2006]).

Apart from the Exp3 algorithm for the non—stochastic MAB model, another commonly
used approach for non-stationary MAB problems is the e-greedy policy [Sutton and
Barto, 1998|. This policy is the simple version of the e,—greedy. Here, the value of € is
fixed over time, and thus, the probability of exploration is not decreased as time goes by.
Due to this reason, the algorithm is always able to re—explore, and thus, it can learn the
changes of the environment. This algorithm, however, does not have theoretical bounds

for its performance, such as in the case of the Exp3 algorithm.

2.3.2 Multi—-Armed Bandits with Cost Constraints

Another way to extend the standard MAB is to take costly arms into account. To date, a
number of researchers have focused on MABs with a limited exploration budget. Specif-
ically, they consider cases where pulling an arm incurs a pulling cost, whose currency
is not commensurable with that of their rewards. The agent’s exploration budget then
limits the number of times it can sample the arms, thus defining an initial exploration
phase, during which the agent’s sole goal is to determine the optimal arm to pull during
the subsequent cost free exploitation phase. This extension is motivated by the fact that
in many applications (e.g data mining or clinical trials) searching for the best option
(exploration) is typically costly (e.g. it requires a lot of time, or money) [Madani et al.,
2004]. In such cases, the exploration phase in the MAB model is limited. Another moti-
vation is from the problem of maximising some function f, observed with noise, whereby
evaluating f at a point is costly (e.g., in terms of numerical or financial costs). The issue
is to choose as adequately as possible where to query the value of this function in order

to have a good approximation to the maximum [Bubeck et al., 2009b; Kleinberg, 2005].

Given this, several exploration policies have been developed that maximise the long—
run expected reward of an agent faced with this type of limit on exploration, namely:
(i) MAB with pure exploration [Bubeck et al., 2009a]; (ii) budgeted MAB [Guha and
Munagala, 2007]; and (iii) MAB with max-loss value-estimation [Antos et al., 2008].
In particular, Bubeck et al. proposed efficient anytime methods for pure exploration in
limited, but unknown time interval. More precisely, in this work, the authors analysed
uniform (i.e. the arms are subsequently and uniformly pulled) and UCB-based (i.e. the
next arm to pull is determined by the UCB) exploration policies. These methods are
anytime, since the more time they have to run, the better the result they can provide.
In the contrast, Guha and Munagala devised approximation algorithms for this MAB
with limited exploration problem (which they denote as budgeted MAB). Finally, Antos

et al. studied an interesting problem, in which the goal minimise the uncertainty of value
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estimates of each arm (i.e. the difference between the arm’s real reward value mean and

its estimate).

2.4 Learning in Wireless Sensor Networks

To date, very few approaches have attempted to use reinforcement learning in the WSN
domain. Notable exceptions, however, typically focus on adaptive routing. In this re-
search area, a number of researchers proposed learning-based techniques to maintain a
routing tree that efficiently handles the node failures, creating an efficient connectivity
between the nodes to the BS in any circumstances [Zhang and Huang, 2006]. In ad-
dition, Aghaeil et al. [2007] developed swarm intelligence-based algorithms which use
reinforcement learning for data packet routing in WSNs. Furthermore, Gelenbe and
Lent [2004] proposed a concept called a Cognitive Packet Network (CPN) for intelligent
packet forwarding in wireless ad hoc networks. In particular, CPN is an autonomous
adaptive quality of service (QoS) driven network, which adaptively selects paths so as
to offer best effort QoS to the end users based on user defined QoS. CPN uses neural
network based reinforcement learning to make routing decisions separately at each node.
These approaches, however, do not focus on maximising the collected information in a

long-term operation time, and thus, may not perform well in long run.

Apart from routing, a few works have studied areas such as sensor localisation (i.e.
sensor placement in the monitored environment), efficient medium access control (MAC)
protocol design or adaptive resource/task management of WSNs. In more detail, Seah
et al. [2007] focused on the efficient spatial coverage of the monitored area, using learning
techniques. Meanwhile, Liu and Elhanany [2006] proposed a reinforcement learning
based MAC protocol for WSNs. In their protocol, nodes actively infer the state of
other nodes, using a reinforcement learning based control mechanism, thereby achieving
high throughput and low power consumption for a wide range of traffic conditions.
Finally, and mostly related to this work, Shah and Kumar [2007] advocated the use of
the reinforcement learning approach to achieve efficient task management in WSNs. In
their work, at each time step, each agent can independently perform one of the following
tasks: transmit, receive, sample, alarm, and aggregate (i.e. merge packets with similar
content to each other, compressing their total size). Thus, the goal is to allocate the
tasks to the agent efficiently so that a global objective is achieved. The former two topics
are outside the scope of our interest, since we do not either focus on localisation or MAC
protocol design. The last work, in fact, shows similarities to our work. However, since
it uses a complex RL model, its computational cost is significant. Furthermore, that
approach is not designed for information—centric routing, and thus, it will not perform

well in long—term information collection.
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2.5 Summary

In this chapter, we have reviewed the literature related to information collection in the
WSN domain. We divided the state-of-the-art approaches into four groups, based on the
perspective from which they approached the data collection problem. These perspectives
are the following: adaptive sampling, information content valuation, information—centric
routing, and energy management. Given this, we first discussed the most common
adaptive sampling algorithms, some of which were centralised, while the others followed
the decentralised paradigm. We pointed out that in our model, any of decentralised
algorithms can be used. Following this, we reviewed a number of information content
valuation methods, which play an important role in our model, as they can distinguish
important from unimportant data. Then we compared and contrasted a number of
state-of-the-art information—centric routing algorithms. We have shown that they all

suffer from at least one of the following limitations:

e They are not adaptive to the environmental changes; that is, they do not satisfy

one of our research requirements.

e They are not designed for solving the maximal information throughput routing

problem.

e The nodes do not cooperate with each other in order to maximise the amount of

collected information.

Furthermore, we have discussed energy management techniques, including energy con-
sumption minimisation, energy balancing, and energy harvesting. The former two ap-
proaches follow the concept of energy—awareness, and thus, will not perform well in the
long—term. Meanwhile, the latter is a key feature of our model that allows long—term

information collection for our agents.

In the second part of this chapter, we have described the MDP model, which is a stan-
dard reinforcement learning framework of discrete time. Then we focused on a simplified
version of the RL, namely the MAB problem domain. In particular, we discussed the
non-stochastic MAB problems, that can handle non—stationary environments. Further-
more, we also discussed MAB models with cost constraints. Following this, we reviewed
the existing RL applications in the WSN domain, showing that only very few works have

attempted to use this approach in the domain.

In sum, we have shown that a number of studies have been undertaken in order to achieve
efficient information collection in the WSN domain. Specifically, we have demonstrated
that, to date, none of the state-of-the-art studies has designed such a mechanism for long—

term information collection, which satisfied all of our research requirements, namely: (i)
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adaptivity; (ii) scalability; (iii) efficient computational complexity; and (iv) low commu-

nication cost.

Against this background, one of the main drives of our research work is to fill this
gap, by designing adaptive behaviour for each of the agents in the network, in order to
achieve efficient information collection in the long run. Furthermore, we aim to meet
the research requirements. In so doing, we focus on developing energy management
and information—centric routing techniques, while we use state-of-the—art sampling and

information content valuation techniques in our model.

To this end, in chapter 3, we introduce a generic model for WSNs that includes all of
the aforementioned features such as sampling, routing, energy management and learning.
Following that, in chapter 4, we propose an information—centric routing algorithm, that
provides an optimal result for the maximal information throughput routing problem.
Then we introduce a multi—armed bandit based algorithm that is responsible for efficient
energy management for energy—harvesting sensors in chapter 5. Finally, we propose a
MAB learning based method for energy management with non—harvesting sensors, which

is based on a new, budget limited, MAB model (see chapter 6 for more details).



Chapter 3

Formal Models and Problem

Definitions

In this chapter we present a formalisation of the long—term information collection prob-
lem for WSNs. To this end, we first provide a formal description of the WSN system
in section 3.1. In particular, we describe the models of adaptive sampling, information
content valuation, data routing, and energy management policies that play fundamental
roles in efficient information collection of WSNs. Here, we also discuss the assumptions,
on which the model formalisation is based. Following this, in section 3.2, we formulate
the main objective of our research: that is, to achieve efficient long-term information
collection in WSNs. Finally, we introduce two problems we aim to solve to achieve this
goal, namely (i) the energy management problem; and (ii) the maximal information

throughput routing problem, in sections 3.3, and 3.4, respectively.

3.1 Wireless Sensor Network Model

In this section, we introduce our WSN model, covering the energy management, sam-
pling, information content valuation, and routing parts, respectively. In so doing, we
first simplify the complexity of the real world WSN model, by making the following

assumptions about the physical world of the network:

e We make no assumptions regarding the underlying radio propagation model of the
WSN. We also assume that the communication between the nodes is perfect (i.e.

no data loss occurs).

e In our model, time synchronisation is perfect. In real world WSN applications, in

order to decrease the energy consumption of each node, the communication module

33
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of the node is turned on and off periodically, thus, forming active and sleep modes,
respectively. In a decentralised manner, however, it may happen that the sending
node is already active, but the receiving node is still in sleep mode, and thus, data
loss may occur in this situation. To minimise the number of such situations, time
synchronisation policies are used in WSNs [Elson and Estrin, 2001; Sundararaman
et al., 2005]. These policies synchronise the internal clocks of the nodes to each
other so that they can schedule their mode changes synchronously. Here, we
assume that such aforementioned situations cannot happen during the operation
of the WSN.

e We also assume that interference does not occur. Interference occurs when multiple
nodes try to use the same communication channel at the same time, causing data
collision, such that none of the communication data can be detected at the receiving
side. Such collisions are typically avoided through the use of a medium access
control (MAC) protocol that controls the data transmission of each node [Demirkol
et al., 2006; Wu and Biswas, 2007]. Thus, we assume that the MAC protocol we

are using here can avoid data collision during transmission.

e The WSN that we are studying is not a mobile network (i.e. the sensors cannot
change their location), however, link failures, node failures and node additions are
taken into account. That is, the network can be topologically dynamic, but not

mobile.

e In our model, the sensors have no memory limitations. That is, the collected
and received data can be stored in each sensor without deletion. Moreover, in
our model, the energy consumption of memory management (i.e. reading from
memory and writing to memory) is negligible compared to the energy consumption
of data sampling and forwarding. This assumption is reasonable according to the
experimental studies reported in Mathur et al. [2006] and Anastasi et al. [2004].

e Finally, each node can recharge its battery periodically, making it independent of

human intervention.

Based on these assumptions, we can formulate the WSN model as follows. Let I =
1,2,..., N be the set of agents in the network, which contains one base station, denoted
BS!'. We assume that each agent knows its distance in hops from the BS. This can
be achieved by using any of the standard shortest path algorithms (e.g. distributed
breadth-first search or distributed Bellman—Ford). Furthermore, each agent can only
communicate with those who are inside its communication range. Different agents may

have different sizes of range.

LOur model can easily be extended to cover systems with multiple base stations.
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Here, for the sake of simplicity, we split the time line into slots. That is, hereafter we
assume that time is discrete, and can be denoted with the sequence of t = 0,1,2,....

We consider three specific kinds of energy consumption for each agent in the network,
S.

namely: the energy required to (i) acquire (i.e. sample), eP; (ii) transmit, e/*; and

(iii) receive, e?x, a single data packet (we assume that each packet has the same size
in bytes). Besides, let B; (t) denote the amount of energy budget agent i can use each
slot t. For energy—harvesting sensor agents, B; (t) is equal to the amount of harvested
energy at slot ¢, since the agents comply the concept of energy—neutrality. On the other
hand, when energy—harvesting is not possible, then B; (t) is equal to the total residual
energy level of the agent. In addition, we disregard the energy required for other types

of processing since it is negligible in comparison [Mathur et al., 2006; Merrett, 2008].

For data sampling, we do not place particular restrictions on the techniques used here,
any existing adaptive technique can be employed. Examples of such techniques can be

found in section 2.1.1.

To calculate the importance of sampled data, we use information content valuation
methods. Similar to the sampling case, any existing technique from the literature can
be used for this (see 2.1.2 for more details). Furthermore, we also assume that the
information value of the collected data is discounted over time by a factor A € (0,1] (i.e.
loses its value as time passes by), if it is not delivered to the BS yet. This assumption is
justified by the fact that in many applications, new information is more preferable older

information.

In existing routing protocols, agents typically forward data to other agents, which are
closer to the BS, either in terms of physical distance or number of hops. Thus, following
this concept, we assume that in our model, agents can send data to those which are closer
to BS in terms of number of hops. Finally, we assume that data sampled or received
at each agent i at slot ¢ can only be forwarded from slot (¢ + 1). This assumption is
also reasonable, since without it, newly sampled data could be delivered to the BS

instantaneously.

3.2 The Long—Term Information Collection Problem

In the previous section, we have introduced the model that considers adaptive sampling,
routing, information valuation and energy management of WSNs. Given this, we now
aim to give a formal description of the research objective, that is, to maximise the total

collected information in WSNs, in a given finite time interval.

In more detail, let S; (t), Rx; (t) and Tx; (t) denote the set of sampled, received and

transmitted data packets of agent 7 at round . Let p denote a single data packet, whose
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information value at round ¢ is v (p,t). Furthermore, we assume that the WSN operates

in the finite time interval [0, 7). Given this, our objective is formulated as follows:

T
max { Z v (p, t)} (3.1)

t=0 \ pcRxps(t)

That is, we aim to maximise the total information value delivered to the BS over the

time interval [0, 7], with respect to the following constraints:
Tx; (1) C Qs (1 (3.2)

for each agent ¢ and round ¢, where Q; (¢) is the set of total transmittable data packets
in the memory. That is, the transmitted data is the subset of the total transmittable
data (packets that were sampled or arrived until the previous round) of each agent i.

Furthermore,

Qi (t+1)=(Q;(t)/Tx; () US; (t) URx;(t) (3.3)

for each agent i. That is, the set of transmittable data of agent ¢ at round (¢ + 1) is
the union of the sets of residual data (i.e. (Q; (t)/Tx;(t))), the received data and the

sampled data at round t.

For the concept of energy-neutrality, we have the following constraints:

e [Si ()] + e [Rx; (1)] + ] | Tx; (1)| < B; (¢) (3.4)
for each agent i, where [{.}| denotes the size of set {.}. This constraint demonstrates
that the energy consumption of each action made by agent i cannot exceed the energy

budget given in round t.

Furthermore, for each p € S; (k) URX; (t) (i.e. received data or sampled data of agent 7
at round t), that is not delivered to the BS before time slot t:

v(p,t+1) = Av(p,t) (3.5)

where A € (0, 1] is the discount coefficient. That is, the information value of packet p is

decayed with the discount factor A, as time goes by.

As mentioned in section 1.2, to efficiently solve the problem formulated in equation
3.1, we separately study the energy management and routing of the WSN, while we

assume that efficient sampling and information content valuation can be achieved by

In the case of infinite time interval, since the energy harvesting is periodical, it may occur that the
agents are able to operate within that infinite time. Thus, the amount of information value collected at
the base stations can be infinite as well. In this case, a different objective should be introduced, instead
of maximising the amount of collected information value. This, however, remains as future work.
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using existing techniques. Given this, section 3.3 discusses the energy management

problem in more detail, while section 3.4 focuses on the routing problem.

3.3 The Energy Management Problem

The definition of the energy management problem is based on the observation that since
each agent can sample, receive or transmit data, it is necessary for the agents to vary
the energy budget they associate with each of these action types, so that their overall
performance can effectively adapt to environmental changes. That is, by adaptively
setting the value of the energy budgets, the agents can decide whether to put more
effort on sampling (e.g. when significant events are occurring in the monitored area),
receiving important data from the others (e.g. when they have collected high value
information that has to be delivered to the BS), or transmitting data (e.g. when the
delivery of data cannot be delayed too long). With such capabilities, our hypothesis
is that the agents should achieve better performance than systems without the ability
to adapt in this fashion. However, in order to determine the optimal budget settings
(exploitation), the agent first has to learn the performance of other setting combinations
as well (exploration). Furthermore, due to the environmental changes, the agent has to
repeatedly re-learn the current optimal settings, since it may also vary as well. Given

this, we can define the energy management problem as follows:

Definition 3.1. The energy management problem is a sequential decision making prob-
lem where each agent i has to choose appropriate values for its energy budgets at the
beginning of each time slot (t), so that the amount of sampled, received, and the trans-
mitted information in that round leads the overall system to efficient performance in

long-term information collection in dynamic environments.

Our goal is to efficiently tackle the energy management problem, taking the research
requirements into account. Furthermore, the proposed approach should efficiently handle
both the trade—off between exploration and exploitation, and the environmental changes
as well. In so doing, we distinguish two situations, namely: (i) when energy—harvesting
is possible and stable (i.e. the amount of harvested energy does not vary a lot); and
(ii) when energy—harvesting is difficult or not possible. In the former case, since energy
is repeatedly recharged, the overall energy budget of each agent is not limited. Thus,
the agents can comply with the concept of energy—meutrality, in order to indefinitely
extend their life span. In contrast, in the latter case, energy—neutrality is not a solution
to follow, since the ovelrall energy budget is limited. Instead, the agents have to be
energy—aware. Thus, in these situtations, energy management policies must behave
differently. Given this, section 3.3.1 discusses the formulated model for the former case,

while 3.3.2 formulates the latter case.
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3.3.1 Energy Management with Energy Harvesting Sensors

In this case, since energy harvesting is possible and stable, we follow the concept of
energy—neutrality, in order to guarantee the long—term operation of the network (see
chapter 1 for more details). Consequently, the total amount of energy that agent i can
use at each slot is equal to the total harvested energy in that slot. Furthermore, since
the energy harvesting is stable, we assume that the amount of harvested energy per slot

is constant, and we denote it with B; 2. Given this, for each time slot ¢ and agent i:
B; (t) = B; (3.6)

That is, the amount of energy available for agent ¢ in slot ¢ is B;.

Now, let B (), BR*(t), and BI* () denote the energy budgets that agent i allocates to
sampling, receiving and transmitting at time slot ¢, respectively. Given this, for energy

consumption of each task, we have the following constraints:

IN

e; IS: (1)
¢ [Rx; ()] < B
e *|Txi ()] < B™(t)

B} (t)

AN
oy
o
%
=

(3.7)

for each agent i. These constraints demonstrate that the energy consumption of each
action made by agent i cannot exceed the energy budget of each task given in round t.

Furthermore, we have:
B} (t) + Bi™ (t) + B (t) < B; (3.8)

In our model, we assume that if a budget allocated to a task is not fully used in slot ¢,

then the residual energy is not reusable for the next time slot. That is, for example, if
e [Rx; (1)| < Bi™ (1)

then the residual energy (i.e. BR*(t) — el |Rx; (t)|) cannot be added to the total
energy budget B; (t+ 1) of the next slot. This assumption is reasonable, due to the
fact that in real world WSNs, the agent allocates energy budget to a task by setting its
power consumption level and the time interval in which the task should be performed.
That is, the task’s energy consumption is rather continuous during that time interval.
Given this, even if the energy consumption of of packets successfully sampled, received
or transmitted is less than the energy budget, the total allocated budget is used in that

time slot.

2If the amount of harvested energy varies, then we can take the average, and denote it with B;.
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Given all this, our goal is to find a good solution for the energy management problem
defined in definition 3.1, by using this model for the case of energy—harvesting sen-
sors. Therefore, in chapter 5, we propose a MAB learning based approach, in order to

efficiently tackle this problem (see chapter 5 for more details).

3.3.2 Energy Management with Non—Harvesting Sensors

In this case, we assume that the agents cannot harvest energy from the environment.
Thus, each agent has to rely on its battery level in the whole operation time. Let B;I (t)

denote the total residual energy level of the battery of agent ¢ at time slot ¢, we have:
B} (t) + Bi™ (t) + B (t) < B (t) (3.9)

That is, the energy budgets allocated to sampling, receiving, and transmitting at slot
t together cannot exceed the total residual energy level. Here, similarly to the case of
energy—harvesting sensors, we also assume that the residual energy of each allocated
budget is not reusable for the next time slot. Given this, we can update the value of

residual energy level of agent i’s battery as follows:

BY (t+1) =B (t) — (BY (t) + B (t) + Bf* () (3.10)

Based on this formulation, we also propose a MAB learning based approach in chapter

6, in order to efficiently solve this problem (see chapter 6 for more details).

3.4 The Maximal Information Throughput Routing Prob-

lem

In this section, we focus on information—centric routing. To this end, we introduce a new
routing problem, namely the maximal information throughput routing problem, which
is already described in section 1.2. However, for the reader’s convenience, we repeat the

description of the problem below, in more detail.

Suppose that all the agents have already set their energy budget value for sampling,
receiving, and transmitting tasks. In this case, to maximise the value of the total
collected information, it is obvious that we need to maximise the total information value
of data sampled or relayed by agents that are one hop from the BS. The latter, however,
is equal to data that is sampled or relayed by agents that are two hops from the B.S,
and so on. That is, beside focusing on efficient energy management, it is also important

to maximise the information throughput (i.e. the total transmitted information value)
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layer L

Fi1GURE 3.1: Network topology in wireless sensor networks.

between neighbouring layers of agents (i.e. group of agents with the same distance from

the BS) by using efficient routing techniques.

Given this, in our model, we group the nodes into layers such that layer [ contains nodes
that are [ hops from the BS. Let £; denote the layer [ and L denote the number of
layers in the network (see Figure 3.1). Note that the BS itself is layer 0. Now, we can

define the routing problem as follows:

Definition 3.2. The maximal information throughput problem s the optimisation prob-
lem where agents in layer £; together have to perform the maximal total information
throughput to layer £,_1 in round k, with respect to the energy budgets on each of the

agents.

In order to solve this problem, we propose an optimal algorithm in chapter 4. More-
over, we will show that the proposed algorithm is efficient in both computational and

communication costs.

3.5 Summary

In this chapter, we have introduced a generic model for WSN systems. Within this
model, we have made several simplifying assumptions related to the radio link models,

mobility, data storage and battery recharging. Following this, we have formulated the
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adaptive sampling, information content valuation, routing, and energy management poli-
cies. For adaptive sampling, and information valuation, we use existing techniques in our
model. For routing, we have introduced receiving and transmitting actions with which
an agent can achieve high information throughput. For energy management policies, we
have defined energy budgets for sampling, receiving and transmitting data. With these

budgets, an agent can control its actions adaptively.

In the second part of the chapter, we have formulated the main research objective of our
work; that is, to achieve efficient long-term information collection in WSNs. Following
this, we have defined two problems, namely the energy management and the maximal
information throughput routing problems, that can be separately solved. However, by
combining the solutions, we can still achieve efficient long—term information collection.
In particular, we have distinguished two cases for the energy management problem,
namely: (i) energy management with energy-harvesting sensors; and (ii) energy man-
agement with non—harvesting sensors. Then we have described the maximal information

throughput routing problem in detail.

Since in both cases of the energy management problem, the underlying routing problem
is common, for our convenience, we first study the maximal information throughput
routing problem in chapter 4. While the solutions for the cases of energy management

problems will be given in chapters 5, and 6, respectively.






Chapter 4

Maximal Information

Throughput Routing

To achieve efficient long-term information collection in WSNs, we have defined two
problems which we aim to solve: namely the (i) energy management problem; and
(ii) the maximal information throughput routing problem. Thus, this chapter outlines
the work undertaken towards addressing the latter. Specifically, here we describe a
decentralised algorithm that allows agents to achieve maximal information throughput
between neighbouring layers, with respect to their energy constraints (contribution 1).
The algorithm, denoted with MITRA (for maximal information throughput routing
algorithm), performs efficient data routing in terms of communication and computational

costs.

To this end, in section 4.1, we first formalise the problem. Following this, we describe
MITRA in section 4.2 in detail. Then we analyse the performance of MITRA in section
4.3. In particular, we prove that the algorithm optimal in terms of maximising the total
information throughput between layers of nodes (see section 4.3.1 for more details).
Then we discuss the main advantages and a number of major drawbacks of MITRA (see
section 4.3.2). Finally, to demonstrate the algorithm’s efficiency in both communication

and computational aspects, we analyse simulation results in detail in section 4.4.

4.1 Problem Description

Let us use the notations introduced in chapter 3. Recall definition 3.2 in section 3.4; that
is, the maximal information throughput routing problem is an optimisation problem in
which maximal information throughput at each round has to be achieved between neigh-

bouring layers given constrained sampling, receiving and transmitting capacities of the

43



44 Chapter 4 Maximal Information Throughput Routing

agents. Let us note that, according to the model described in chapter 3, these capacities
are set by the algorithm that solves the energy management problem (see sections 3.2
and 3.3 for more details). Given this, let £; and £(_;) denote two neighbouring layers,
where 1 <[ < L. For the sake of convenience, hereafter we refer to £; as the sender
layer, and to £;_1) as the receiver layer. Similarly, agents in the sender layer will be
referred We assume that the current round number is ¢. Thus, we have the following

formulation of the maximal information throughput routing problem:

max{z > v(p,t)} (4.1)

€L peTa;(k)

That is, we aim to maximise the total information value of transmitted data from layer

[ to layer (I — 1) at round ¢, with respect to the following constraints:
E|Tx; (1) < B™ (1) (4.2)

for each ¢ € £;. That is, each sender agent cannot exceed its transmitting energy budget

during data transmission. Furthermore,
Ej*Rx; (1) < B (1) (4.3)

for each j € £;_1), and thus, each receiver agent cannot exceed its receiving budget
during data receiving. Finally, constraints described in equations 3.2, 3.3, and 3.5, that
express the conservation of information within our setting, have to be taken into account

as well.

To find the solution of equation 4.1, we propose a decentralised algorithm, MITRA,

described in the following section.

4.2 Maximal Information Throughput Routing Algorithm

To find the solution of equation 4.1, we first transform the maximal information through-
put routing problem into a graph theory problem, to which we give a centralised optimal
solution in section 4.2.1. The reason to first solve the problem in a centralised way is, to
understand the mechanism of the algorithm, which which act as the cornerstones for our
decentralised algorithm. Following this, based on this solution, we devise a decentralised

approach for the problem in section 4.2.2.
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4.2.1 A Centralised Approach

In order to understand the decentralised algorithm, a graph theory based solution is de-
scribed in this section. This solution is the cornerstone upon which our decentralised al-
gorithm is based. Note that the centralised version of the maximal information through-
put routing problem can also be reduced into a multiple knapsack problem with assign-
ment restrictions [Dawande et al., 2000]. However, for the sake of simplicity, here we

focus on the graph theory approach.

Given this, let us redefine the routing problem from a graph theory approach as follows.
Consider the layers [ and (I — 1) together as a bipartite directed graph G. Each node
within these layers is represented by a vertex of G. If i € £ and j € £(_y) are
neighbours, then we connect vertex ¢ with vertex j in G with a directed arc from i to

j. Each vertex i in the sender layer of G (i.e. the representation of layer £;) has a

Tx

vertex capacity of ¢; = BieT,((k) and each vertex j in the receiver layer of G (i.e. the
' BRx(k

representation of layer £;_y)) is labeled with the capacity c¢; = JGT((). Furthermore,

each vertex ¢ in the sender layer contains the set of transmittable data Q; (k). Finally,
each data packet p on the sender layer is labeled with a non-negative value v (p,t) (i.e.
its information value). The task here is to assign these packets to the arcs with respect

to the following constraints:

e Each packet p € Q; (t) can be allocated to at most one of the arcs and this arc

must be an outgoing arc from vertex 1.

e Let w; ; denote the number of packets (i.e. the weight) allocated to arc (i, j). For
each vertex 7 in the sender layer, > ey Wi < ¢;, where £_;) denotes the set
of vertices of the receiver layer. That is, the total weight of the outgoing arcs from
1 cannot exceed the capacity of vertex ¢. Similarly, for each vertex j in the receiver
layer, >, g Wij < ¢j, where £ denotes the set of vertices of the sender layer.
That is, the total weight of the incoming arcs to j cannot exceed the capacity of

vertex j.

Here, our goal is to maximise the total value of the packets allocated to the arcs. In
this report, we use a greedy algorithm to achieve the optimal solution for the maximal
information throughput routing problem. The reason of choosing such a greedy approach
is that greedy algorithms are simple in terms of computational cost, since they only
consider the best current option, while they do not look ahead (which step typically
increases both memory and computational complexity). To this end, we introduce the

following definitions:

Definition 4.1. An allocation of packet p is feasible, if there is a valid allocation of p to

one of the arcs, with respect to the constraints of G mentioned above. For the sake of
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simplicity, we refer to this packet as a feasible packet. Thus, the mazimal value feasible
packet is a feasible packet with the highest value. Finally, let & denote the current state
of G, that is, & is the set of current parameter values (i.e. the set of already allocated

packets, currently unallocated packets and the current weights of the arcs in G).

Theorem 4.2. A greedy method, whereby, for any current state & of G, if there exists
at least one feasible packet, then we allocate one of the maximal value feasible packets (it
may be the case that more than one packet has the same value), leads us to the optimal

solution of the mazximal information throughput routing problem.

{<23>,<20>, | {<17>,<11>} 1 {<23>}
<17>,<11>} o= c=3 6
=2
{<32>,<19>, 2 {<19>,<12>} 2
<127} c=5
- 7
c=1
(<15>,<5>} 3 (<>} 3
c=2 c=2 8
c=06
{<14><8>, 4 {<14><8>, 4
<7><1>} c=7 <7>,<1>} c=7 9
c=4
<11>} 5 <11>} 5
c=3 c=3

A) B)

FIGURE 4.1: A) The initial state of G. B) The current state of G after the allocation
of packets < 32 >, < 23 >,< 20 > and < 15 >.

Before we prove theorem 4.2, let us take a look at figure 4.1, that demonstrates the
greedy algorithm. In more detail, part A of the figure depicts the initial state of graph
G. On the sender side, there are 5 vertices, denoted with 1,2, 3,4 and 5. Their capacities
are 3,5,2,7 and 3, respectively. The packets they have are listed in the braces next to
the vertices. For instance, vertex 1 contains the list {< 23 >, <20 >, < 17 >, < 11 >}.
On the receiver side, there are 4 vertices, denoted with 6,7,8 and 9, with capacities
2,1,6 and 4, respectively. Considering the greedy algorithm, in the first step we allocate
packet < 32 > of vertex 2, since it is the maximal value feasible packet in the initial
state. Here, we allocate it to arc (2,6). Following that, the next maximal feasible packet
is < 23 > of vertex 1 is allocated to arc (1,6). Then we allocate packet < 20 > of vertex
1 to arc (1,7). Note that although < 17 > is the next highest value packet, it is not
feasible. Thus, in the next step, < 15 > from vertex 3 is allocated to arc (3,8), and so

on. The algorithm stops when no feasible packet is available.



Chapter 4 Maximal Information Throughput Routing 47

Now, let us turn back to the proof of theorem 4.2. To prove it, here we rely on the

following auxiliary lemma:

Lemma 4.3. Given the state &y of graph G, the optimal solution O (G,Sy) of G that
can be achieved from state &y (i.e. the mazimal result that we can achieve by starting
from state &) contains the allocation of one of the maximal value feasible packets of G
at state Sy.

Proof of lemma 4.3: We prove this lemma by using the indirect proof technique.
Suppose that there exists such a & that from this state, O (G, &) does not contain
any of the current maximal value feasible packets. Without loss of generality, we can
assume that a maximal value feasible packet belongs to vertex 1, namely ppax. If in
O (G, 6y) vertex 1 also sends at least one more packet to its neighbours. Then by
replacing that one with py.y, the total value of allocated packets is increased, which is
impossible, since O (G, &) is the optimal solution, thus it should have the highest total
value. Therefore, vertex 1 cannot send any packets to its neighbours from state G in
the optimal solution. However, due to the fact that py.x is feasible at state &, there
exists such a vertex j that pmax can be allocated to arc (1, 7). If in the optimal solution,
7 accepts data from any of the other senders, then by replacing that packet with pyax,
the result will also be increased, which is impossible as well, due to the optimality of
O (G, 6y). Thus, there is only one case left, that is, vertex j cannot receive any data
in the optimal solution. This implies that the arc (4, j) is still feasible (i.e. packets can
be allocated to that arc). Therefore, by allocating ppmax to this arc, the optimal value
will be increased, which is also a contradiction. Thus, the original assumption, that the
optimal solution does not contain any of the maximal value feasible packets at state G,

is not true.

Thus, now we can prove theorem 4.2 as follows.

Proof of theorem 4.2: We start with the initial &y state of G, where none of the
packets is allocated yet. By using lemma 4.3, the best step we can make here is to choose
a maximal value feasible packet and allocate it to an arc. Let &; denote the resulting
state. Here, we also have to choose a current maximal value feasible packet greedily, and
so on. At each &y, according to lemma 4.3, the greedy step always yields the optimal

result. We stop when there is no feasible packet available.

Given this, lemmas 4.2 and 4.3 yield the following corollaries:
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Corollary 4.4. In the optimal solution, if vertex i has m allocated packets, then these
packets must be those with the m highest values in Q;, which is the set of all packets at

vertex ¢.

Corollary 4.5. In the optimal solution, if node i has m packets allocated to n arcs, then

the allocation of these packets can be in any arbirtrary order to those arcs.

Let a feasible bundle denote a bundle of feasible packets from a common vertex, that
can be allocated to the same arc at the same time. Due to corollaries 4.4 and 4.5,
instead of allocating a single packet at one step as described in the greedy algorithm,
we can allocate the bundle of packets that has the highest value among feasible bundles.
Moreover, as described in corollary 4.4, this bundle contains the packets with highest
values of £; at vertex i. Thus, we can modify the greedy algorithm above so that at

each step, the maximal total value feasible bundle is chosen to be allocated.

4.2.2 The Decentralised Algorithm

The greedy algorithm described in section 4.2.1 is centralised, since to select the maximal
value feasible packet or bundle, the algorithm needs global knowledge in order to choose
the best feasible bundle. Thus, we cannot use this algorithm in the WSN, due to the
need for the decentralised control regime. However, based on the greedy algorithm and
corollaries 4.4 and 4.5, we can design a decentralised algorithm that is suitable for our
decentralised WSN model. The sketch of this decentralised algorithm looks as follows.

1. Each sender s; sends the list of its maximal value feasible bundles to its receivers.

2. When receiver r; has received all the information regarding the possible bundles
from its senders, it chooses the best ¢ (r;) packets among the possible incoming

bundles, where ¢ (r;) is the receiving capacity of r;.
3. Each receiver r; then sends back the value of the chosen packets to all of its senders.

4. When sender s; receives all the information regarding the chosen packets of its
receivers, it chooses the best feasible bundle that it can send to each of these

receivers.

5. Repeat the previous 4 steps until there is no more feasible packet left.

Let us hereafter refer to this algorithm as the maximal information throughput algorithm
(MITRA). The pseudo codes for both sender and receiver side of MITRA can be found
in algorithms 4.1 and 4.2, respectively. In algorithm 4.1, the pseudo code of the sender
side is depicted. Within this algorithm, each sender s; first checks whether there are
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Algorithm 4.1 MITRA - sender side
1: for all s; do

2 if 3 feasible packet then

3 IsFeasible (s;) « TRUE;
4:  else

5: IsFeasible (s;) < FALSE;
6: end if
7

8

9

R; « list of receivers in communication range of s;;
B; — getMaxValueBundle(C (s;)); { *get C (s;) highest value packets*}
: {notify the receivers}
10:  broadcastMessage(B;) { *broadcast the value of B; to all receivers™}
11:  while IsFeasible (s;) == TRUE do

12: C' (s;) < current transmission capacity;

13: broadcastSENDMessage(); { *broadcast SEND message to all receivers *}

14: {*listening to meta data messages from receivers, stop listening when all are
collected or timeout is reached™}

15: repeat

16: listenToNotifications();

17: until all receiver notifications arrive or until timeout;

18: Bihae < best feasible bundle;

19: sendBundle(B,,4z);

20: Update(C (s;)); { *update transmission capacity of s; *}

21: if C'(s;) <0 then

292: {*if no more capacity to send then node is not feasible*}

23: IsFeasible (s;) «— FALSE;

24: end if

25: if Ar; € R; such that IsFeasible (rj) == TRUE then

26: {*if no more capacity on receiver side then node is not feasible*}

27: IsFeasible (s;) « FALSE;

28: end if

29:  end while

30: end for

any feasible packets in its memory (lines 2 — 6). First, it broadcasts its highest value
feasible bundle to all of the receivers(lines 8 — 10). Then, until s; becomes infeasible (i.e.

it cannot send any packets), it execute the lines 11 — 29, and does the following:

1. It notifies its receivers about its highest value feasible bundle by broadcasting a

SEND message to all of the receivers(line 13).

2. Then it waits until all the information from its receivers is collected or until a
predefined timeout (lines 16 — 18). This information states which bundles can be

sent to each receiver.

3. Among the possible bundles, it chooses the most valuable one, and sends it to the
destination of the bundle (lines 19 — 20).
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Algorithm 4.2 MITRA - receiver side

1: for all r; do

2: O (rj) « current receiving capacity;

3. if C'(rj) > 0 then

4: IsFeasible (r;) < TRUE;

5:

6: IsFeasible (r;) < FALSE;

7: G, « list of senders in communication range of r;;

8: while IsFeasible (rj) == TRUE do

9: {*listening to meta data messages from senders, stop listening when all are
collected or until timeout *}

10: repeat

11: listenToNotifications();

12: until all sender notifications arrive or until timeout;

13: L(C(rj)) « getMaxValuePackets(C' (r;)); {*collect the highest values from
senders*}

14: {notify the senders}

15: for all sender s; € &; do

16: sendInformationRequestMessage(L (C' (r})) , s;); { *send REQUEST messages

to the senders™*}

17: end for

18: repeat

19: receiveData(); { *receive data from senders that may arrive this round*}

20: until all sender data arrive or until timeout;

21: Update(C (r})); { *update receiving capacity of r; *}

22: if C (r;) <0 then

23: {*if no more capacity to receive then node is not feasible*}

24: IsFeasible (r;) < FALSE;

25: end if

26: if Ar; € 6; such that IsFeasible (s;) == TRUE then

27: {*if no more capacity on sender side then node is not feasible™}

28: IsFeasible (rj) « FALSE;

29: end if

30: end while

31:  end if

32: end for

4. Finally, it updates two internal states: namely i) its residual transmitting capacity
(line 21), and ii) its feasibility (lines 22 — 27). The sender is infeasible when its
capacity is 0 or when all of its receivers are infeasible (i.e. the receivers cannot

receive any data).

We present the pseudo code of the receivers in algorithm 4.2. Similarly to the sender

side, here the receivers first check whether they are feasible (i.e. they can accept more

packets) or not (lines 2 — 6). Then, until they become infeasible, each receiver r; does

the following:
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1. It waits until all of its senders send information about their highest value feasible

bundles, or until a predefined timeout (lines 10 — 12).

2. Then it determines the highest value packets it would accept from its senders (line
13).

3. Following this, it notifies the senders about it decision by broadcasting the list of
selected packets’ values by sending a REQUEST message to each sender from which

it wants to receive data packets (lines 15 — 17).

4. Then it waits until all the required data has arrived or until a timeout (lines
18 — 20).

5. Finally, it updates two internal states: namely (i) its residual receiving capacity
(line 21), and (ii) its feasibility (lines 22 — 29). The receiver is infeasible when its
capacity is 0 or when all of its senders are infeasible (i.e. they cannot send any
data).

4.3 Performance Analysis

In this section, we focus on the performance analysis of MITRA. Specifically, we prove
that the algorithm is optimal, and that its computational and communication costs
are not significant. In so doing, we provide a proof of MITRA’s optimal behaviour in
section 4.3.1. Then we discuss about its major advantages and drawbacks in more detail

in section 4.3.2.

4.3.1 Optimality of the Algorithm

Apart from its decentralised behaviour, the MITRA algorithm differs from the cen-
tralised greedy algorithm described in section 4.2.2 in another important point. That is,
in the centralised greedy algorithm, only the maximal value feasible bundle is allocated
in each step, while in MITRA, each sender allocates the highest value feasible bundle
among its accepted bundles (i.e. bundles which are accepted by at least one of the re-
ceivers) concurrently. Thus, it is not obvious that the MITRA is optimal. However, we

state the following:

Theorem 4.6. Assuming that the communication between senders and receivers is per-
fect, that is, none of the messages arrive after the timeout, the MITRA algorithm results
in an optimal solution for the mazximal information throughput routing problem (i.e. the
solution that gives the mazximal throughput of information value between the sender and

receiver layers).
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Proof of theorem 4.6: To prove this theorem, again, we use the indirection technique.
Let us assume that the MITRA algorithm given in the previous section is not optimal.
That is, the output solution does not maximise the total transmitted information value
between the 2 layers. Let O denote the output solution of the MITRA algorithm and
Dopr be one of the optimal solutions. Since we assume that O is not optimal, there
should be p; and py packets such that in 9 only one of them is allocated in O and the
other one is allocated in Oopp. Without loss of generality, we can assume that p;p is
allocated in O and ps is allocated in Oppr. We can also assume that both p; and po
are sent to the same receiver r;. It is easy to prove that if O # Oopr then there exist

2 packets such that these assumptions hold.

In particular, there are two cases to investigate. In the first, both p; and po are from the
same sender. Due to the fact that the MITRA algorithm is based on the corollary 4.4,
it is easy to show that v (p1,k) > v (p2, k). That is, p; has a higher information value
than ps, since the corollary states that those data which are sent from the sender must

be the packets with the highest values in the set of packets of that sender.

In the second case, p; and ps are from different senders. Since in MITRA, the receiver
uses the greedy approach to allocate possible arriving packets, when p; is accepted and

p2 is not at 77, the only explanation is that v (p1,k) > v (p2, k).

One can see that in both cases p; has a higher (or at least the same) value as py. Thus,
if we replace po in Oppr with p1, we would have a better solution or one that is also
optimal. In the first case, we have a contradiction, since Oppr is optimal. In the latter
case, by replacing all the possible p;-s that are in O but not in Dpppr, we would have
that O is also an optimal solution, which is also a contradiction. Therefore one can see

that the original assumption, that is, O is not optimal, is not true.

4.3.2 Advantages and Shortcomings

In this section, we highlight on some of the advantages, and drawbacks of MITRA,
respectively. In particular, we study MITRA against the research requirements given in
section 1.1. Since we deal with adaptivity by using learning based techniques in energy
management, here we only focus on the other requirements, namely: (i) robustness; (ii)
computational feasibility; and (iii) limited use of communication. Here, we show that
MITRA fulfills the first two requirements. On the other hand, since there is no explicit
limit for the number of communication messages MITRA uses during its operation, it
may occur that the communication cost is significant. However, by using numerical
results of extensive simulations in section 4.4, we will demonstrate that MITRA has low

communication cost as well (see section 4.4 for more details).
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Given this, we first investigate the robustness and flexibility of MITRA. In MITRA,
each single agent can independently learn the topological changes in its surroundings.
Specifically, by sending broadcast messages that contains the agent’s maximal feasible
bundles at each time slot, each agent can detect its active neighbours (by observing
who answers to that message), and thus, information regarding topological changes (e.g.
link failure or deployment of new agents), can be repeatedly updated. Furthermore,
since this broadcast message is sent at every time slot, MITRA always uses the current
topology, and does not rely on any previous information from the past. This makes
MITRA robust and flexible against topological changes such as link failure, or changes

in number of active agents (e.g. node failure or new agents join the network)

In addition, since MITRA uses a simple decentralised policy, its computational cost is
not significant. In more detail, in terms of computational complexity, the critical points
of MITRA are at line 13 in algorithm 4.2, and at lines 8 and 18 in algorithm 4.1. At the
first critical point (i.e. line 13 in algorithm 4.2), each receiver chooses the best packets
that it can accept from its senders. This action consists of sorting a simple array and
selecting the best ¢ (7;) values (i.e. k-best value selection from an array). Furthermore,
at the second critical point (i.e. line 8 in algorithm 4.1), each sender selects its best
packets which is also a k-best value selection from a simple array. Finally, at the third
critical point (i.e. line 18 in algorithm 4.1), to choose the best feasible bundle, each
sender has to perform a single best value selection from an array. Assuming that each
agent manages its list of packets well (i.e. by sorting these lists frequently), these actions

are simple and fast.

On the other hand, in order to achieve maximal throughput of information between layers
of agents, the agents have to send a number of coordination messages (the total number
of SEND and REQUEST messages) to each other in MITRA. In particular, each sender
repeatedly sends broadcast messages until packet transmission becomes infeasible (i.e.
the sender exceeds its transmission capacity limit, or its receivers all become infeasible).
Meanwhile, each receiver responses to the aforementioned broadcast messages unless
it also becomes infeasible (i.e. the receiver exceeds its receiving capacity limit, or its
senders all become infeasible). Furthermore, since the system operates over a finite time
interval, each agent can generate a finite number of packets at each time slot. Thus, the
total number of packets that can be sent on the sender layer is finite. Given this, it is
obvious that MITRA will stop in finite time (i.e. it cannot run without stopping). This
indicates that the total number of communication messages is finite as well. However, we
cannot guarantee that this number is small; that is, the agent might need a significant
amount of coordination messages. Nevertheless, as we will show in section 4.4, the
communication cost of MITRA is not significant, compared to the number of agents in

the network and to the total size of data to forward.
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4.4 Empirical Evaluation

In this section, we investigate the communication cost of MITRA, demonstrating that
MITRA has a low communication cost. In so doing, we run extensive simulations, using
a variety of parameter settings, in order to measure the communication cost of MI-
TRA in different settings. Furthermore, we also compare the performance of MITRA in
terms of maximising information throughput, to that of a simple decentralised routing
algorithm, in which each agent only uses a single SEND and REQUEST message for coor-
dination (i.e. this algorithm typically has a lower communication cost than MITRA).
Within this comparison, we demonstrate that MITRA significantly outperforms the sim-
ple algorithm. Thus, rather using the simple algorithm, it is worthwhile to use MITRA

for routing.

To this end, we first set the simulation parameters in section 4.4.1. Following this, we
introduce a simple decentralised algorithm, the Naive Greedy method, as the benchmark
algorithm in section 4.4.2, whose performance is then compared to that of MITRA.

Finally, the numerical results of these simulations are analysed in section 4.4.3.

4.4.1 Parameter Settings

In real world applications, a sensor’s typical transmission, receiving and sampling power
is 27 mW, 20 mW, and 15 mW, respectively. The solar energy harvesting power is
1800 mW, the maximal data rate is 20 kbps, and the packet size is 10 bytes [Kansal
and Srivastava, 2003]. Given this, in our simulations, we use these values to set the

parameters of the agents.

Now recall that each receiver, before sending REQUEST messages, it chooses the best
feasible packets that it can receive from its senders (see line 13 of algorithm 4.2). Thus,
in terms of one single round, this can be regarded as a competition in which each sender
is competing against the other senders in order to have more of its packets accepted
by the receiver in that round. Let us note, however, that there is no real competition
between the senders when multiple rounds are considered, since packets that are not
accepted in the current round can still be accepted in the next rounds. This implies
that the number of communication rounds needed to achieve the maximal result in
MITRA is proportional to the average number of accepted packets in each round (i.e. the
higher this value is, the fewer rounds are required to be involved). This value, however,
depends on the following parameters: (i) the average number of senders per receiver
(i.e. the number of competitors); (ii) the receiving capacities on the receiver side; and
(iii) the transmitting capacities on the sender side. The first parameter determines the
rate of competitiveness, while the latter two determine the total number of acceptable

packets, and thus, the average number of packets accepted per round. Therefore, in
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order to analyse the performance of MITRA extensively, we vary these parameters in

our simulations. Thus, we organise our test cases as follows.

Considering the ratio between the average number of senders and receivers, we have 3
cases, namely: i) the ratio is approximately 1; ii) the ratio is less than 1; and iii) the

ratio is greater than 1. Thus, we can divide the test cases into the following groups:
1. Group 1: the number of senders ~ the number of receivers (i.e. the ratio is
approximately 1).

2. Group 2: the number of senders < the number of receivers (i.e. the ratio is less
than 1).

3. Group 3: the number of senders > the number of receivers (i.e. the ratio is greater

than 1).
Test Cases || Group 1: Group 2: Group 3:
Ny ~ N, Ny < N, Ng > N,
Cose 1 N,= 10 N.=5 N.= 10
N,= 10 N,= 10 N,=5
Case 2 Ny= 20 Ny= 10 Ny= 20
N,= 20 N,= 20 N,= 10
Case 3 Ny= 30 Ny=15 Ny= 30
N,= 30 N,= 30 N,= 15
Ny= 40 Ny= 20 Ny= 40
Case 4 Ny= 40 Ny= 40 Ny= 20
Case 5 Ny= 50 Ny= 25 Ny= 50
N,= 50 N,= 50 N,= 25
Case 6 Ny= 60 Ny= 30 Ng= 60
N,= 60 N,= 60 Ny= 30
Case 7 Ny= 170 Ny= 35 Ng= 35
N,= 170 N,= 170 Ny=T70
Case 8 Ny= 80 Ny= 40 Ny= 80
N;= 80 N,= 80 Ny= 40
Case 9 Ny= 90 Ny= 45 Ng= 90
N;= 90 N;= 90 N,= 45
Ng= 100 Ny= 50 Ng= 100
Case 10 N.= 100 N.— 100 N— 50

TABLE 4.1: Test cases for performance analysis of MITRA.

In similar vein, in terms of the energy budgets of each agents (which determine the
transmitting and receiving capacities of the agents), we can also separate the test cases

to the following scenarios: 1) the average energy budget on the sender side is higher than
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that of on the receiver side; ii) the average energy budget on the sender side is less than
that of on the receiver side; and iii) the average energy budget on the sender side is
approximately the same as that of on the receiver side. Thus, each test group contains

3 scenarios as follows.

1. Scenario 1: The energy budget of the senders is greater than the energy budget
of the receivers. That is, BSTi > BTTj. In the simulations, sender energy budgets
are random numbers with uniform distribution between 1000 and 1800. Mean-
while, the receiver energy budgets are also set randomly with uniform distribution
between 100 and 900.

2. Scenario 2: The energy budget of the senders is less than the energy budget of
the receivers. That is, BSTi < B;Fj. We set the sender energy budgets randomly
between 100 and 900 and receiver energy budgets between 1000 and 1800.

3. Scenario 3: The energy budget of the senders is similar to the energy budget of
the receivers. That is, B;g ~ B;fj . In this scenario, both sender and receiver energy

budgets are random numbers between 1000 and 1800.

In fact, choosing different numerical values for the range of the energy budgets does not
affect much on the communication and computational costs. In particular, changing
the value of this range only modifies the size of feasible bundles, but not the number
of communication rounds of the MITRA. Given this, we run 10 test cases in each test
group, using all of the scenarios. Let Ny and N, denote the number of senders and

receivers, respectively. Table 4.1 shows the test cases that we use for each group.

4.4.2 The Benchmark Algorithm

To achieve the optimal result, MITRA needs to use a number of communication mes-
sages, which makes MITRA more complex compared to algorithms which use only one
pair of SEND-REQUEST messages, whose performance, however, may not be optimal.
Thus, apart from demonstrating that MITRA has low communication cost, it is impor-
tant to show that: (i) MITRA is not complex compared to simple algorithms with a
single communication round; and (ii) the total information throughput delivered from
the sender layer to the receiver layer by using MITRA instead of simple algorithms makes
MITRA worthwhile. To this end, we choose a benchmark algorithm that is simple (e.g.
uses only one pair of SEND-REQUEST messages), whose performance can be compared to
that of MITRA during the simulations. In this report, a simple decentralised algorithm
that needs only one communication message on both sender and receiver sides is used as
the benchmark method. We refer to it as the Naive Greedy algorithm. This algorithm is

naive since it stops after sending one communication message, and it is greedy because
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Algorithm 4.3 Naive Greedy Algorithm - sender side
1: for all s; do
if 3 feasible packet then
R; <« list of receivers in communication range of s;;

2
3
4: C' (s;) < current transmission capacity;

5: B; «— getMaxValueBundle(C (s;)); { *get C (s;) highest value packets*}
6.

7

{notify the receivers}
broadcastSendMessage(B;) { *broadcast the value of B; to all receivers using
SEND message ™}

8: {*listening to meta data messages from receivers, stop listening when all are
collected or timeout is reached™}

9: repeat

10: listenToNotifications();

11: until all receiver notifications arrive or timeout;

12: Bihae < best feasible bundle;

13: sendBundle(B,,4z);

14: Update(C (s;)); { *update transmission capacity of s; *}

15:  end if

16: end for

in this algorithm each sender chooses the feasible bundle with highest value. In fact,
Naive Greedy is MITRA limited to one communication message. The pseudo codes
of this algorithm for sender and receiver sides can be found in algorithms 4.3 and 4.4,

respectively.

In this algorithm, each sender first checks whether it contains a feasible packet (line 2
in algorithm 4.3). If it does, then it does exactly the same as the sender in the MITRA

(see algorithm 4.1), but it stop after sending the first communication message.

Similarly, each receiver r; first checks its receiving capacity (line 3 in algorithm 4.4).
If the capacity is higher than 0, then it does exactly the same as the receiver in the

MITRA (see algorithm 4.2), but it stop after sending the first communication message.

4.4.3 Numerical Results

Using the parameter settings given in section 4.4.1, and the benchmark algorithm de-
scribed in section 4.4.2, we have the following numerical results: i) results for test group
1 (i.e. when Ng ~ N;) are depicted in figure 4.2; ii) results for test group 2 (i.e. when
Ns < N,) are depicted in figure 4.3; and iii) results for test group 3 (i.e. when Ny > V)
are depicted in figure 4.4.

Part A of each figure depicts the total communication rounds required by MITRA in
the 3 scenarios of each test groups. Furthermore, parts B and C of each figure show the

average communication cost (i.e. average number of rounds) of each sender and each
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Algorithm 4.4 Naive Greedy Algorithm - receiver side
1: for all r; do
2: O (rj) « current receiving capacity;
3. if C'(rj) > 0 then
4: G, « list of senders in communication range of r;;
5 {*listening to meta data messages from senders, stop listening when all are
collected or timeout is reached™}

6: repeat

7: listenToNotifications();

8: until all sender notifications arrive or timeout;

9: L(C(rj)) < getMaxValuePackets(C (r;)); { *collect the highest values from
senders™}

10: {notify the senders}

11: for all sender s; € &; do

12: sendInformationRequestMessage(L (C (r})) , s;); { *send REQUEST messages to

the senders™}

13: end for

14: repeat

15: receiveData(); {receive data from senders that may arrive this round}

16: until all sender data arrive or timeout;

17: Update(C (r})); { *update receiving capacity of r;*}

18:  end if

19: end for

receiver, respectively. Finally, in part D of the figures, we compare the performance of

MITRA in terms of information collection with that of Naive Greedy.

In the first two groups (i.e. when Ny ~ N, and Ny < N;), the numerical results
of the simulations are similar. That is, when the average transmitting capacity on
the sender side is higher than the average receiving capacity on the receiver side (i.e.
B > B, MITRA produces the worst performance both in terms of the total
number of communcation rounds and the average round number of sender and receiver
agents (see parts A, B and C of figures 4.2 and 4.3). On the other hand, in the case of
Ny > N; (ie. test group 3), scenario 3 (i.e. Bio%l ~ Bﬁ?tal) is the worst case scenario
in terms of average round number of senders and receivers (see parts B and C of figure
4.4). Meanwhile, MITRA produces the same performance in terms of total number of
rounds in this scenario as well as in scenario 2 (i.e. Bi%! > Bﬁ;’tal), as depicted in part
A of figure 4.4. As we can see in these figures, even though the number of participating
agents reaches the number of 100, the total number of rounds that MITRA needs is
still below 15. Furthermore, the average round number that a sender needs is less than
3, and the average number that a receiver needs is less than 8. Thus, we can state
that the communication cost of MITRA is less than O (IV), where N is the number of
participating agents in MITRA.

To better understand how good these results are, let us assume that our WSN has 400
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FIGURE 4.2: Numerical results for the case of test group 1 (N5 ~ N;). (A) The average

number of total communication messages per each agent. (B) The average number of

REQUEST messages per agent. (C) The average number of SEND messages per agent.
(D) Total information throughput between the layers.

nodes, and the number of layers is 10 (i.e. each node is at most 10 hops far from the B.S).
This implies that on average, each layer contains approximately 40 nodes. Thus, each
agent needs at most 10 messages in MITRA to achieve the maximal result. In particular,
on average, each agent has to send 3 SEND and 7 REQUEST messages. Now, suppose that
each agent has 10 packets on average to send. Thus, the size of the information value list
(see line 8 in algorithm 4.1) to broadcast is 40 bytes (we assume that the information
value is stored as a 4-byte real number). In addition, suppose that the size of SEND
and REQUEST messages is 4 bytes each. Then the size of communication messages each
agent has to send at each time slot in MITRA is 80 bytes on average. This is small,
compared to the total size of real data that the agents typically have to forward in many
applications (e.g. in wireless visual sensor networks, the average size of a single data
packet is likely to be 10 — 100 kBytes Kho et al. [2009b]).

Let us note that in real world applications, the size of the WSN is typically less than
400 [Cerpa et al., 2001; Mainwaring et al., 2002], thus, MITRA will produce even less

communication cost in most applications.
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FIGURE 4.3: Numerical results for the case Ny < N;. (A) The average number of

total communication messages per each agent. (B) The average number of REQUEST

messages per agent. (C) The average number of SEND messages per agent. (D) Total
information throughput between the layers.

Finally, to demonstrate that MITRA is worth using instead of simpler algorithms, such
as Naive Greedy, let us consider part D of each figure above. We can see that in each
test group, MITRA outperforms Naive Greedy everywhere. Thus, using the previous
example of a WSN with 400 nodes and 10 layers, MITRA in average outperforms Naive
Greedy by 250%.

To conclude the performance analysis of MITRA, we can state that this algorithm
incurs a very low communication and computational cost as the number of participating
agents increases. Moreover, the average communication cost of each participating agent
is not much higher than that of an agent using simple algorithms such as the Naive
Greedy. Finally, the use of MITRA is worthwhile in terms of maximising the information
throughput, since it outperforms Naive Greedy everywhere, typically by a few hundred

percent.
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FIGURE 4.4: Numerical results for the case of test group 2 (Ng > N;). (A) The average

number of total communication messages per each agent. (B) The average number of

REQUEST messages per agent. (C) The average number of SEND messages per agent.
(D) Total information throughput between the layers.

4.5 Summary

In this chapter, we have described the formalisation of the maximal information through-
put routing problem. Following that, we have transformed the maximal information
throughput routing problem into a graph theory assignment problem, to which we have
given an optimal solution by using lemmas 4.2 and 4.3. We have also constructed a
greedy algorithm in order to achieve the optimal result. Then, we introduced two corol-
laries which act as the cornerstones for our decentralised algorithm. Based on these
corollaries, we have constructed MITRA: a decentralised algorithm which optimally
solves the maximal information throughput routing problem. This algorithm is the sec-
ond contribution of this work (see section 1.2 for more details). We have proved the
optimality of MITRA, using lemma 4.6, and in order to measure the computational
and communication costs of MITRA, we have defined the communication round of each
agent participating MITRA. Using this communication round as a metric, we analysed
the costs of MITRA via extensive simulations. The numerical results of these simula-

tions demonstrated that MITRA has a low cost both in terms of communication and
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computation. Finally, to demonstrate that it is worth using MITRA instead of a simple
algorithm that may produce sub-optimal results, we have introduced the Naive Greedy
algorithm as a benchmark approach (existing routing protocols are not suitable for solv-
ing the maximal information throughput routing problem). This algorithm, however, has
a minimal communication cost, since it only uses one pair of SEND-REQUEST messages.
Thus, we have compared the performance of MITRA in terms of the total information
collected compared to that of the Naive Greedy algorithm. With this comparison, we

have shown that MITRA outperforms Naive Greedy in every testcases.



Chapter 5

Energy Management with Energy

Harvesting Sensors

In chapter 4, we have introduced an optimal distributed algorithm, called MITRA,
which solves the maximal information throughput routing problem, and has low cost
both in terms of communication and computation. This algorithm maximises the total
information throughput between neighbouring layers given the sampling, receiving and
transmitting capacities of each participating agent. However, to maintain the long-
term efficiency of MITRA, there is a need to set these capacities adaptively, in order to
efficiently handle unpredicted changes of the environment. To this end, in section 3.3, we
have defined the energy management problem that covers the aforementioned challenges.
In particular, we distinguished two cases for the energy management problem, namely:
(i) when the agents can harvest energy from the environment; and (ii) when energy—
harvesting is not possible. Given this, this chapter focuses on the energy management
problem for the former case. That is, here, the agents can harvest energy from the
environment, and thus, they can comply the concept of energy—neutrality, in order to
infinitely lengthen their life span. In order to tackle the energy management problem,
we propose a novel, MAB based, energy management approach (contribution 2). By
using this approach, it is possible to handle the aforementioned challenges efficiently, in

order to achieve good long-term performance in information collection of the WSN.

The remainder of this chapter is organised as follows. We first introduce the foundation
of the method used for energy management, namely the non—stochastic MAB problem,
in section5.1. Specifically, we first describe the model, then we describe a standard
state—of—the—art learning algorithm, Exp3, for solving the non—stochastic MAB problem
(section 5.1.1). Following this, we discuss the efficiency of Exp3 in section 5.1.2.

In the second part of the chapter, we reduce the energy management problem faced by

an agent to a non—stochastic MAB problem, and show that an analogue of the Exp3
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algorithm can be used to efficiently solve it (section 5.2). Then we highlight on some of
the advantages, and drawbacks of this method in section 5.3, respectively. Finally, in
section 5.4, we compare the performances of the proposed MAB learning based approach
with state—of-the—art information collection algorithms. Moreover, we also compare the
performance of our approach with a centralised optimal non-adaptive algorithm (i.e. its
energy budget allocation policy does not change over time), whereby perfect knowledge

of the future is assumed to be known.

5.1 Non—Stochastic Multi—-Armed Bandits

Recall that the non—stochastic MAB model was developed by Auer et al. to efficiently
handle the situations when the environment is dynamic (see section 2.3.1 for more de-
tails). Given this, based on the work of Auer et al., the formulation of this MAB model

can be described as follows.

Consider a single agent that operates over a time horizon T > 0. Suppose that the agent
can perform K different actions, denoted with 1,2,..., K. Let A denote the policy of
that single agent, which contains a sequence of actions aj,as,..., where a; denotes
the action that the agent performs at time step t. This policy produces a sequence of
rewards rq, (1),74, (2),..., where 74, (t) is the reward provided by action a; at time
step t. Without loss of generality, we can assume that r,, (t) € (0, 1] for any ¢ time step

and a; action. For any reward assignment and for any 7" > 0, let

Ga(T) =) rq, (t) (5.1)
=1
be the return at time horizon T of policy A choosing actions ay,as,...,ap. Our goal is

to find such policy A that maximises equation 5.1, that is,
Amax = arg max Ga(T) (5.2)

for given time horizon T > 0.

As mentioned in section 2.3.1, the reason that we focus on the deterministic MAB is
twofold: (i) the non—stationarity of the rewards; and (ii) we aim to have agent policies
that can provide acceptable, but not necessarily optimal results at the beginning of
operation. Thus, we need algorithms that are non-stochastic and can provide uniform
bounds for any time horizon 7" > 0. To this end, we describe the Exp3 algorithm, which
can provide the aforementioned properties. The Exp3 (which stands for “Exponential-
weight algorithm for Exploration and Exploitation) was originally proposed in Auer et al.

[2003]. This algorithm is based on the Hedge algorithm presented in Freund and Schapire



Chapter 5 Energy Management with Energy Harvesting Sensors 65

[1997], which in turn is a modification of the weighted majority algorithm published by
Littlestone and Warmuth [1994]. In this section, we investigate a standard version of

this algorithm. To this end, let us introduce the following definitions:

Definition 5.1. Let the best single action denote the action that provides the highest

return at time horizon 7', that is,

T
Gmax (T) = max > ra, (1) (5.3)

t=1

where j is a single action. Given this, the (weak) regret of algorithm A is the difference

between the performance of A and that of this best single action, defined by

Guax (T) — G4 (T). (5.4)

In the Exp3 algorithm, actions are randomly chosen using a probability distribution over
the set of actions. Thus, to measure the performance of algorithms, in terms of (weak)
regret, we aim to determine a policy A that provides a small bound for the following
equation:

Gruax (T) ~ E[Ga (T)]. (5.5)

Furthermore, this bound have to hold uniformly over the time horizon T' (i.e., it holds
for all T" without requiring 7' as input parameter). Given this, the Exp3 algorithm is

described in more details in sections 5.1.1.

5.1.1 The Exp3 Algorithm

Before describing the Exp3 algorithm, let us introduce the basic algorithm FExp3.Sub
that is used as a subroutine in Exp3. This subroutine is shown in algorithm 5.1. At
each time slot ¢, Exp3.Sub randomly chooses an action ¢ (i < K) with probability p; (¢).
Then, for all the actions (including the chosen one), it updates the probability p; (¢) for
the next slot, proportionally to the current estimate of the expected reward value of
the action (i.e. the higher the current estimate is, it chooses that action with a higher
probability). In particular, Exp3.Sub maintains a weight value w; (t) for each action i.
The update of these weights is shown in lines 6 — 13 in algorithm 5.1. Using the new
value of the weights, Exp3.Sub adaptively updates each probability p; () as shown in
line 3 in algorithm 5.1. This indicates that the higher the current estimate becomes,
Exp3.Sub will increase the value of p; (t), and thus, will choose action i with higher
probability, and vice versa. Consequently, the algorithm always focuses on the actions
with highest current estimates; that is, on those actions which are more likely to be the
current best choice. In effect, this update policy guarantees that the agent can efficiently

adapt to environmental changes.
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Algorithm 5.1 Algorithm Exp3.Sub
1: Initialisation: Let A € (0,1], and wy (1) =1 for k= 1,2,..., K;
2: for all t=1,2,... do

3: Setpk(t):(l—)\)%—i—%fork:1,2,...,K;
4:  Draw a; randomly accjordingly to the probabilities py (t),p2 (t),...,px (t);
5. Receive reward rq, (t) € [0,1];

6: for all i=1,2,.... K do

7: if (i == a;) then

s ) =5

9: else

10: 7i (t) = 0;

11: end if A

12: w; (t+ 1) = w; (t) exp ()‘r;((t)>;

13:  end for

14: end for

Algorithm 5.2 Algorithm Exp3
1. Initialisation: Let t = 1, and G (1) =0 for k = 1,2, ..., K;

2: for all »=0,1,2,... do
_ (KInK)4"™,
3 g =g

4:  Restart Exp3.Sub choosing A, = min {17 /(f;hll)l; }

5. while max; Gy, (t) < g, — & do

6: Let a¢ be the random action chosen by Exp3.Sub and 7, () the corresponding
reward;

7 Gat (t + 1) - Gat (t) + Ta, (t);

8: t:=t+1;

9: end while

10: end for

The efficiency of Exp3.Sub, however, depends on the value of parameter A, since it uses
this parameter to calculate the probabilities (see line 3 in algorithm 5.1). Since this A
has to be given a priori (line 1 in algorithm 5.1), it may happen that the chosen value is
not efficient for the current MAB model. However, we can overcome this shortcoming
by adaptively modifying the value of \. This modification leads to the Exp3 algorithm,
described in algorithm 5.2. In particular, Exp3 divides the time line into rounds. At
each round 7, a new A, is chosen (see line 4 in algorithm 5.2). At each time step t,
Exp3 calls subroutine Exp3.Sub (line 6 in algorithm 5.2). Exp3 changes round when the
maximal cumulative reward of an arm (i.e. the total amount of rewards Exp3 achieves
when that arm is pulled) exceeds a given threshold (line 5 in algorithm 5.2). In this

case, it restarts the subroutine Exp3.Sub as well.
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5.1.2 Regret Bound on the Performance of the Exp3 Algorithm

As mentioned in section 2.3.1, due to the fact that Exp3 has to deal with the dynamic
environment, the performance of the algorithm is not as efficient as that of the algorithms
proposed for the stochastic case (when the environment is static). That is, they produce
worse bounds for the regret, compared to the theoretical optimum of O (InT') that can
be achieved by statistical model based algorithms. This regret bound is given by the

following theorem:

Theorem 5.2. For any K > 0,

Gumax (T) — E [Gryps] < 10.51/Grax (T) KIn K + 13.8K + 2K In K

holds for any assignment of rewards and for any T > 0.

Thus, the expected regret of Exp3 is O (\/K Grax In K ) uniformly over 1. The proof of
theorem 5.2 can be found in Auer et al. [2003].

This regret bound is typically large, since Gax (T') is usually a large number, especially
when T is high. However, as we will demonstrate, Exp3 performs well as an energy

management algorithm of WSNs in long—term information collection.

5.2 Non—Stochastic Multi-Armed Bandits for Energy Man-

agement

In this section, we tackle the energy management problem described in section 3.3 by
using MAB learning approach. In particular, we focus on the case when agents can
harvest energy from the environment (see section 3.3.1 for more details). That is, we
use the formal model introduced in section 3.3.1. Recall that within this model, each
agent 7 has an energy budget B; for each time slot ¢, which is constant over time.
Furthermore, agent i has to allocate budgets B (t), BR*(¢), and B’ (¢) to sampling,
receiving and transmitting, respectively. The energy budget allocation, however, has to
fulfill equation 3.8.

Given this, we can formulate the energy management problem of a single agent as a
non-stochastic MAB as follows. We first define the action set of each agent. Then we
determine the reward function of each action. The latter is the mechanism that assigns

reward values to the action of the agent at each time slot.

Now, let us consider a decision that agent ¢ can make at round t. Since the decision
making task for an agent i consists of setting the values of the sampling, receiving and

transmitting budgets of that agent at round ¢, we have the following definition:
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S Rx Tx
Definition 5.3. Let nf (t) = B;S(t), nix(t) = B;R}Et), and nl* (t) = B;T}Et) denote the

2

sampling, receiving and transmi‘gting capacities (i.e. the maximal number of packets
that the agent can sample, receive, or transmit) of agent i at round ¢, respectively. At
each action, agent i chooses a combination of the values of those capacities, with respect
to the constraint 3.8. Thus, the 3-tuple a; (t) = (n$ (t),nf*(t),nI*(t)) denotes an

action of agent ¢ at round t.

Since the energy consumption limit is fixed for each round ¢, by considering equation
3.8, we can see that the number of options for a; (¢) (i.e. the number of combinations of
the capacities) is constant over time as well. Due to the fixed set of actions over time,
each agent i’s behaviour can be regarded as a MAB model. To this end, we need to
define the action set. Since the action of agent ¢ is already given in definition 5.3, the
set of actions can be easily determined:

A = { (1) = (nf (1), n (8) ;T (1)) } (5.6)

where
g (t) €f +n> (8) ™ + 0> (1) ef* < B; (5.7)

That is, 2; is the set of 3-tuple of capacities where the total energy consumption does

not exceed the energy limit given at each round k.

Now, recall that S; (t), Rx; (t) and Tx; (¢) are the set of sampled, received and transmit-
ted data packets of agent ¢ at round ¢. Furthermore, Q; (¢) is the set of total transmit-
table data packets in the memory (see section 3.2 for more details). Let Re; () denote
the set of residual packets from slot (¢ — 1) (i.e. that are not transmitted until slot %)
on agent 7. That is,

Re; (1) = Qi (t) /Tx; (¢) (5.8)

For the reward function, consider the following equation:

Ri(t)_Adil{ Yoot —(1=A) Y v(p,t)} (5.9)

pESi(t) pERe; (t)

where d; is the distance of agent i from the BS (in hops), and A is the information
discount coefficient. This reward function is evaluated after each action (i.e. energy
allocation to sampling, receiving, and transmitting tasks) is chosen. The choice of the
sampling capacity determines the information content values agent ¢ can sample at slot
t, while the choice of receiving and transmitting capacities reflect the total information

value of the residual packets. Given this, we state the following:

Theorem 5.4. Using the reward function defined in equation 5.9, the total reward value
that the agents in the WSN achieve together over the interval [0,T] is equal to the total

information content value delivered to the BS over that time interval.
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That is, by maximising each agent’s total reward over interval [0, 7], we can achieve the

maximal information collected and delivered to the BS.
Now, we prove Theorem 5.4 as follows.

Proof of theorem 5.4: For the sake of simplicity, let £; denote the set of agents that
are j hops from the BS. That is,

di = j,Vie g (5.10)

Now, consider equation 3.1 in section 3.2. Let us note that since no data can be sampled
and forwarded, or received and forwarded at the same round (see section 3.1), no data
packets are transmitted or received at round 0 in the whole WSN. Thus, using the
notation of chapter 3, the main objective can be rewritten as follows.

T
max { Z v(p,t)} (5.11)

t=1 \ peRaps(t)

Let us consider a particular member of equation 5.11, which is ZpERst(l) v (p,1). This
equation determines the total information value that arrives to the BS at round 1.
According to our assumptions in section 3.1, no data loss occurs during any transmission.
Thus, the amount of received information at the BS is equal to the total amount of
information that is transmitted from agents that are 1-hop from the BS at round 1.

That is,

Y. v = > Y v (5.12)

pERzps(1) JEL1 peTx;(1)

Note that the set of transmitted data of £1 at round 1 is equal to the set of sampled data
at round 0, excluding the set of residual data at round 1 (since there is no received data
and the residual set is still empty at round 0). Since newly sampled data does not suffer
from information value discounting, the right side of equation 5.12 can be rewritten as
the following:

Yoo vl = Y > vm0)-> > vl (5.13)

JEL1 peTx,; (1) i€L1 peS;(0) i€L1 pERe; (1)

Now, let us consider the second member of equation 5.11, which is ZpeRst(Z) v (p,2).
Similarly, this can be rewritten as follows.

Y. w2 = Y Y w2 (5.14)

pERzps(2) JEL1 peTx,;(2)

However, this is equal to the union of the set of received data, the set of sampled data,
and the set of residual data at round 1, excluding the set of residual data of layer 1 at
round 2. Furthermore, any of these sets may not be empty. The packets in the sets of
received and residual data suffer from value discounting, thus, equation 5.14 is equal to
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the following:

2. v = D )

pERxps(2) JjEL1 peTZ;(2)
= 2 2 v > v
i€L1 peS;(1) i€L1 peRe; (1)
A D v =D > w (5.15)
i€L1 pERx; (1) i€L1 pERe;(2)

where A is the discount coefficient of the network. Now let us consider 3 ;ca >° ¢ gy 1y 0 (P5 1)-
Similar to equation 5.12; this can be written as:

/\Z Z v(p,1) = /\Z Z v(p, 1) (5.16)

i€L1 pERx; (1) i€Lo peTx;(1)

Using equations 5.15 and 5.16, and replacing £; with £9 in equation 5.13, we obtain the
following;:

2. vy = 3 )

pERzps(2) i€L1 peS;(1)
-2 2 Y >
i€L1 pERe; (2) i€L1 pERe; (1)
A D w0 =AY D wp ) (5.17)
1€Lo peS,z(O) 1€Lo peReq‘,(l)
In general, if we take the t*® member of equation 5.11, then it can be decomposed as

follows. If ¢ < L, where L is the number of the layers in the network, then:

> vpt) = ZAJ TN vpt—i) -

pERxps(t) i€L; peS;(t—7)

- Z/\J Y Y vpt—j+D+

1€L 11 pERe; (t—j+1)

+ ZAJ’Z > vpt—j) (5.18)

j=1  i€L; pERe;(t—j)

Let us note that here Zze): 2 peRe:(0)
that the amount of mformatlon that arrives to the BS at round k£ can be decomposed

v (p,0) = 0 for any layer j. That is, we can say

into the sum of data on layer 1 at round (£ — 1), on layer 2 at round (¢ — 2), and so on.
If t > L, however, the equation for this case is slightly different, since the decomposition
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stops at the last layer of agents. Thus, we have:

> vk = Z/\] TN vpt—g) -

peRrps (k) "Lt peSi(t—d)
_ ZAM Z Z v(p,t—j+1)+
j=1 1€L,4+1 pERe; (t—j+1)

L
+ Y NY N wpt—)) (5.19)

j=1  i€L; peRe;(t—j)

Given this, combining equations 5.18 and 5.19, and taking each ¢ into account, we can
reformulate our main objective to the following:

XT:{ > )v(p,t)} =

t=1 pERzgs(t

T min (t,L)
s 12{ S vnt- =08 T wlien} 6
t=1 j=1 ieg; \pesS;(t—j) pERe; (k—j)

Consider the core part of equation 5.20 in the braces. Now, using the definition of the
reward function in equation 5.9 to replace that part, and recall that the distance of agent

i is defined in equation 5.10, we can reformulate 5.20 as follows:

min (T,L) T—j

max > Y Y Ri(t) (5.21)

Jj=1 t=01ieg;

That is, the original objective can be decomposed to the sum of reward functions of

agents on each layer j, from round 0 to round T — j.

Now, using the aforementioned reward function and the action set, the agent’s energy
management problem can be reduced to a MAB problem. That is, by choosing an
action a; (t) = (nf (t),nf*(t),nf*(t)) at round ¢, agent i sets its capacities. Based
on these capacities, this agent receives its reward as described by the reward function.
Although the effect of the action on the immediate reward is not explicitly involved in
the definition of the reward function given in equation 5.9, the reward value depends
on the chosen action, since the current capacities of agent ¢ determine the maximal
number of received, transmitted and sampled data of the agent. On the other hand, the
reward can be regarded as a random value, since it also depends nondeterministically
on the capacities of other neighbouring agents. This is due to the nature of the MITRA
algorithm which we use to determine the exact transmitting and receiving data of each
agent i at round k (see chapter 4 for more details). Thus, there does not exist an explicit

deterministic function that can determine the number of transmitted and received data
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packets of each agent, by using the value of current capacities only. Furthermore, since
the environment of the WSN is dynamic, the expected information values may change

over time, and thus, the reward function has varying expected value as well.

Given this, we can adapt the non-stochastic MAB model to each agent i, to address
to the energy management problem. That is, we can use the Exp3 algorithm here to
determine the best energy allocation to the tasks of the agent. However, we have to
guarantee that the reward values are bounded; that is, they can be normalised (i.e. the
normalised value is between 0 and 1), which is the key requirements of Exp3. In so

doing, we state the following:
Lemma 5.5. Suppose that the information value of each packet is bounded. Thus, the

reward function R; (t) is also bounded with upper and lower bounds.

Proof of lemma 5.5: Let V' denote an upper bound on the information values of data
packets. That is, for each packet p and round ¢,

v(p,t) <V

Furthermore, consider the capacities of each agent ¢. Due to the energy budget con-
straints, these capacities are also bounded. That is,

BL
S
n; (t) < é
BL
ni () < 5 (5.22)
3
BL
w0 < =

€;

Finally, let us note that 0 < A < 1. Now, we first show that the reward function has an
upper bound. Since at each round, the number of sampled packets cannot exceed the
sampling capacity, we have
Ri(t)=N"1 1—A < Vn? <VB@'L 2
(=N Y v -(1-0 Y eV = (523)

pESi(t) pERei(t)

Thus, the reward function has an upper bound. Similarly, we show that it has a lower
bound as well. Consider that the number of receiving data packets per round cannot
also exceed the receiving capacity, and the amount of transmitted data in a round is at
least 0. Given this, at each round, the number of residual packets (i.e. packets which
still stay in the memory of the agent) is increasing with at most (nf’ (t) +ni* (1)) at
time slot ¢. Thus, the total information value of the residual packets at slot ¢ is bounded

as follows.

)3 U(Pat)SV{Z(H?G)M?"G))}th{f—§+fgi}

pERe;(t) j=0
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Thus, the reward function has the following lower bound:

_ BL  BL
Ri()=XN"" 30 wpt)—(1=X) Y vlpt) > -VT{+ 0}

pESi(t) pERe;(t)

where T is the time horizon of the network.

Given this, by normalising the reward values, we get the requirement for Exp3; that
is, the reward values are within the range [0, 1]. Let us hereafter refer to this model as
the multi-armed bandit based energy management (MAB/EM) model, and with a slight
abuse of notation, we refer to the proposed approach (i.e. using Exp3 for allocating
energy budgets) as MAB/EM as well.

5.3 Performance Analysis

In this section, we focus on the performance analysis of MAB/EM. Specifically, we
analyse the regret bound of MAB/EM in the network level (i.e. taking all the agents
into account). Furthermore, we highlight the major advantages and disadvantages of
MAB/EM. Given this, section 5.3.1 discusses the regret bound of the network’s perfor-
mance. In addition, section 5.3.2 studies the advantages and disadvantages of MAB/EM

against the research requirements given in section 1.1.

5.3.1 Regret Bounds on the Performance

Recall that the bound of the (weak) regret of Exp3 is O (v K Gmax In K ) uniformly over
T, where K is the number of actions a single agent can perform, and Gp,ax is the total
reward that the agent can get by choosing the best single action policy (see section 5.1.2
for more details). Thus, each agent i produces this regret compared to the case when
it permanently chooses the best possible action. Thus, in the multi-agent environment,
the total regret of the system is O (N K*G¥

max

In K *) uniformly over 7', which is the
difference between the case when all the agents run Exp3 and the case when each agent
permanently chooses its best action. Here, N is the number of agents in the network,
K* is an upper bound of the number of actions at each agent ¢ (different agents may

have different numbers of actions), and G},

r ax 1s the universal upper bound of the best

action’s performance of each agent, over the operation time of the network.

This regret bound, similarly to the case of Exp3’s regret bound, is typically significant,

compared to the maximal information value the WSN can collect in its operation time.
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However, as we will show in section 5.4, by using Exp3 for allocating energy budgets, the

agents achieve an efficient performance in long—term information collection in WSNs.

5.3.2 Advantages and Shortcomings

From the aspect of computational complexity, MAB/EM is efficient; that is, it has low
computational complexity. due to the simplicity of Exp3’s update policy.

In addition, by using MAB/EM, the agents do not have to communicate to each other,
in order to efficiently coordinate their actions in energy management. In particular, the
agents can cooperate with each other by only observing the reward values. For example,
if an agent i prefers to receive less data from its neighbours, or send less data (e.g.
due to its low energy budget B;, or its current focus on sampling), then it reduces its
receiving/transmitting capacity. That is, agent ¢ reduces its information throughput (i.e.
the amount of information it forwards towards the BS). This action will be observed by
the others, when they recognise that sending more data to i produces low reward value
in MAB/EM, and thus, they will reduce their data transmission capacity. Similarly,
if agent 7 increases its information throughput, the others will modify their actions to

adapt to it as well.

However, this type of cooperation leads to the following potential issue. In particular, by
only observing the reward values, the agents may adapt slowly to the changes, since they
may have to take an action several times, in order to ascertain that the expected reward
value of that action has changed. In such cases, the learning process is slow, and may
not determine the optimal behaviour. Given this, our hypothesis is that our approach
performs well in less or moderately dynamic environments, when there is enough time
to detect the changes that are happening. On the other hand, it may work inefficiently
in highly dynamic circumstances, where the changes are transient. In fact, this issue is
not only MAB-specific, but it exists for all other learning approaches, since it is hard
to detect transient changes. Against this background, in section 5.4, we demonstrate
that our hypothesis is correct. Furthermore, our approach still achieves more efficient
performance in highly dynamic environments, compared to state-of-the-art non-learning

methods.

5.4 Empirical Evaluation

Within this section, we study the performance of the MAB/EM approach through ex-
tensive simulations. Our main goal is to demonstrate the efficiency of the learning-based
approach in long-term information collection in the WSN domain. Therefore, we com-

pare the performance of our approach to a state-of-the-art non-learning method, USAC,
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in order to ascertain whether our approach is more efficient. We show that MAB/EM

significantly outperforms USAC on average by around 80%.

In addition, we also make a comparison between the performance of MAB/EM with the
best fixed policy algorithm, which provides the highest performance among all of the
possible fixed policies over a finite horizon. This algorithm, however, is not a feasible
solution for our setting, since it is centralised, and it needs complete information knowl-
edge in order to compute the best fixed policy. Moreover, the best fixed policy depends
on the value of the finite time horizon, that is, different time horizons may have different
best fixed policies. In fact, this best fixed policy algorithm gives a good upper bound
for the amount of information collected over a given time horizon. That is, with this
comparison, we can measure the (weak) regret of MAB/EM (see section 5.3.1 for more
details). We also demonstrate that the performance of MAB/EM is not much worse
than that of this best fixed policy algorithm (the difference is around 10%).

To this end, we first set the simulation parameters in section 5.4.1. Following this,
we describe the benchmark algorithms in section 5.4.2. Finally, to demonstrate the
efficiency of MAB/EM (combined with MITRA), we analyse simulation results in detail

in section 5.4.3.

5.4.1 Parameter Settings

To compare the performance of the algorithms, we measure the overall amount of in-
formation collected by each algorithm over time. To this end, we run each algorithm
on several networks with different topologies and environmental characteristics (e.g. the
occurrence frequency of the events, or the expected value of information of each event).
Then, we take the average of the specific results of the networks. In order to do this, we
have to create a number of networks that may differ from each other in both topology
and environmental characteristics. Given this, in this section, we describe the parameter

settings in order to create these networks and their environments.

In our simulations, the network contains 100 agents, with randomly generated topology.

The agents’ parameters, such as eZ-S, eZ-TX, e?x, and B;, are initially set with similar values
to the settings described in section 4.4.1. Furthermore, we set the information discount

coefficient A = 0.9 1.

In order to capture the dynamic nature of WSN environments, we set up our simula-
tion environment as follows. We first set three test environments, namely: (i) static
(i.e. the environmental characteristics do not change); (ii) moderately dynamic (i.e.

the environmental characteristics slowly change); and (iii) extremely dynamic (i.e. the

"We also have varied these parameters in other experiments, and we see the same broad patterns.
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environmental characteristics rapidly change). For each test case, we divide the simu-
lation time period into intervals called epochs (which are obviously not known to the
agents). In each epoch, the environment has different characteristics, which affect the
information value of the collected data. Here, we assume that within each epoch, the
information value is randomly generated from a normal distribution, but with different
mean and variance. For example, in one epoch, agent i can collect data with information
value generated from the distribution N (5,3) (i.e. normal distribution with mean 5 and
variance 3). While in the next epoch, the distribution may change to N (45,10). Given

this, we define 5 type of environment characteristics as follows.

1. In this environment, packets are sampled with the information value in the range
of 0 and 10, with distribution A (5, 3).

2. Here, packets are sampled with the information value in the range of 10 and 20,
with distribution A (15, 3).

3. The information value of each packet is in the range of 20 and 40, with distribution

N (30,6).

4. The information value of each packet is in the range of 30 and 60, with distribution

N (45,10).

5. The information value of each packet is in the range of 60 and 100, with distribution

N (80, 10).

In our model, the length of each epoch is 200 time slots for the moderately dynamic
case, and 50 for the highly dynamic case. While in the static case, there is only one
epoch (i.e. there is no change). When the environment changes its epoch, it randomly
chooses one of the aforementioned characteristics types, with the probabilities of 0.5,
0.25, 0.1, 0.1 and 0.05, respectively.

5.4.2 Benchmark Algorithms

In this section, we introduce two benchmark algorithms, namely (i) the USAC algorithm;
and (ii) a centralised optimal best fixed policy algorithm. In particular, we describe these
algorithms in more detail. Furthermore, we also discuss the reason why we choose these
algorithms for benchmarking. In so doing, we first start with USAC, which is followed
by the description of the best fixed policy algorithm.

In order to demonstrate the efficiency of our proposed approach compared to that of
the state—of-the—art, we need to choose a benchmark algorithm that has to fulfill the

following requirements:
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Algorithm 5.3 Best Fixed Policy Algorithm
1: T «+ finite time horizon;
2: for all t=0,1,...7T do
run algorithm Simulation with time interval [0, ¢];
4 O « output of Simulation;
5. for all agent ¢ in the network do
6: best decision of agent ¢ over time t: m; < O;;
7
8

@

end for
. end for

Algorithm 5.4 Simulation Algorithm for Best Fixed Policy Algorithm
1: Input: time interval [0, ¢];
2: Output: best decisions array O;
3: for all agent ¢ in the network do
4:  for all m; possible decisions of agent i do

5 foralltlzo,l,...tdo

6: Sample data using the sampling capacity set by decision m;;
7 Run both sender and receiver sides of MITRA;

8 end for

9: end for

10: end for

11: Vinax < the highest amount of overall information value collected until round t;
12: for all agent ¢ in the network do

13:  O; «— m; of agent ¢ with which Vi, can be achieved;

14: end for

e It must use information content valuation, in order to distinguish important data

from unimportant one.

e It must contain an energy management policy, which allocates energy budgets to

different sensory tasks of sampling, receiving, and transmitting.

Among state-of-the—art approaches, it has been shown that USAC achieves efficient per-
formance in long term data collection, especially in dynamic environments. Given this,
we choose USAC as the first benchmark algorithm, in order to compare the performance
of our approach to that of the state—of~the—art. However, since USAC does not follow
the concept of energy neutrality, it would be unfair to compare it unmodifiedly, since
the agents may deplete during operation (see section 2.1.4 for more details). Therefore,
in our simulations, we modify USAC so that each agent i, analogously to MAB/EM,

cannot exceed the energy budget B; at each time slot.

The second benchmark algorithm, whereby the best fixed policy over a given finite time
horizon is chosen for each agent, is depicted in algorithm 5.3. The algorithm works as
follows. First, for each time round t € [0, 7], it runs the auxiliary algorithm Simulation,
which returns the best decision of each agent over the time interval [0,¢] (line 3 in

algorithm 5.3). Here, the best decision of an agent is the one that maximises the overall
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amount of information collected until time round t. Following this, it sets the best

decisions for each of the agents in the network (lines 5 — 7 in algorithm 5.3).

The algorithm Simulation (see algorithm 5.4), which is responsible for determining the
best decisions of each action given time interval [0, ¢], works as follows. For each agent
i and decision m; of that agent, it runs the simulation for the network in order to
calculate the overall amount of information collected until time round ¢, assuming that
all the events until time round ¢ are known (lines 3 — 10 in algorithm 5.4). Following
this, it chooses the best decision for each agent, that maximises the amount of collected

information value (lines 11 — 14 in algorithm 5.4).

This algorithm is centralised, since it needs complete knowledge of the environment
in order to calculate the overall amount of information collected until time round t.
Moreover, it also needs to know the future events as well, with which it can compare the
performance of each particular in order to choose the best one. Thus, it is not feasible for
our setting, since perfect knowledge is impossible, and centralised regime is not allowed
here. However, its performance is the optimal (i.e. maximal in information collection)
among the fixed policy algorithms. Thus, by comparing its performance with that of the
MAB/EM, we can measure the (weak) regret of our proposed algorithm’s performance

(for more details see section 5.4.3).

5.4.3 Numerical Results

In this section, we discuss the numerical results of the simulations, which are run by using
the parameter settings given in section 5.4.1, and the benchmark algorithms described

in section 5.4.2.

Given this, the total information collected by each algorithm is depicted in figure 5.1.
Here, each test case is run with 10000 simulations, each of which has different initial
parameter values. The error bars demonstrate the 95% confidence interval. As can be
seen, USAC has the best performance at the beginning, due to its efficiently combined
sampling and routing behaviour (e.g. it outperforms the others by around 80% in the
static case). In particular, USAC increases the sensors’ sampling rate in unknown envi-
ronments or when changes occur, and will decrease this rate as time goes by. However,
within USAC, when a packet is chosen to be delivered to the B.S, it is guaranteed to
be delivered to the BS, regardless of possible future events. That is, USAC does not
consider situations when future events may be more important, and thus, the delivery of
that future information has a higher priority. Rather, the resources are already occupied
to deliver the current data. This is not the case in our solution, where such delivery
guarantees do not hold, and thus, USAC is outperformed by our proposed approach up
to 80% in the long run.
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FIGURE 5.1: Information collection in a network with 100 agents, in static, moderately

dynamic, and extremely dynamic environments.
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Note that, as expected, the efficiency of our approach decreases as the environment
becomes more dynamic. Specifically, when the environment is static, the performance
of our approach is only slightly worse than that of the optimal policy. However, as
the environment becomes more dynamic, the performance of our approach degrades,
compared to that of the optimal. The reason is that whenever changes occur, MAB/EM
has to find a new, efficient setting again. That is, it has to learn how to adapt to the
new environment characteristics. This learning period decreases the performance of the
algorithm, since bad settings have to be explored before good ones can be exploited.
Nevertheless, in all cases, our algorithm outperforms USAC; that is, it is still able adapt

more efficiently to the environmental changes.

To conclude the performance evaluation of MAB/EM, we can state that it significantly
outperforms USAC, and it approaches the performance of the best fixed policy algorithm
with an efficient approximation rate. Since the latter is just an idealistic algorithm, which
is infeasible for our setting, it is reasonable to use learning—based techniques in order to

achieve efficient long-term information collection in the WSNs.

5.5 Summary

In this chapter, we have proposed a MAB based energy management approach for the
case of energy—harvesting sensor agents. In so doing, we first have discussed the non—
stochastic MAB problem, which was originally developed by Auer et al. [2003]. In more
detail, we have discussed this MAB model, then we have described the Exp3 algorithm.

Following this, we have studied the performance regret of Exp3.

We then have described our energy management problem as a non-stochastic multi-
armed bandit (MAB) problem (Contribution 2). In particular, we have defined the action
set of each agent, whereby each action is a combination of energy budget allocation to
the tasks of the agent. Furthermore, we have also determined the reward function. We
have proved that, by maximising the reward function, the agents together maximise the
total information collection at the BS as well. Then we have described the application
of the Exp3 algorithm for the MAB/EM problem. Following this, we have discuss the
performance of this approach, by analysing its performance regret, and highlighting its

advantages and drawbacks, respectively.

Finally, to demonstrate the efficiency of our approach, we have run a number of simula-
tions. In more detail, we first have defined the parameter settings for both test network
topology and test environment. Then we have introduced the benchmark algorithms,
namely: (i) the USAC algorithm; and (ii) a centralised best fixed policy algorithm. Fol-
lowing this, we have compared the performance of the MAB/EM in terms of the total

amount of the collected information value over time horizon 7' = 1000 to that of the
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benchmark algorithms. With this comparison, we have shown that MAB/EM signifi-
cantly outperforms the USAC algorithm on average and efficiently approaches the best
fixed policy algorithm. That is, we have shown that by using learning—based techniques,
we can achieve more efficient performance of long—term information collection in the
WSNSs, which is the primary objective of this report. Furthermore, we also have shown
that by using the learning approach, our proposed algorithm can perform well in any

kind of environments, without using any prior knowledge of that environment.






Chapter 6

Energy Management with

Non—Harvesting Sensors

In chapter 5, we have introduced a MAB learning based approach for efficient energy
management in WSNs, in order to achieve good performance in long—term information
collection. However, that approach exploits the fact that the agents can harvest energy
from the environment. In particular, due to their capability of energy—harvesting, they
can comply with the concept of energy—neutrality, in order to indefinitely extend their
life span, which is especially important when information collection has to operate over
a prolonged period of time. Furthermore, the amount of harvested energy over a single
time slot can be regarded as constant. Given this, within the energy management
problem, the action set of each agent is fixed over time (see section 5.2 for more details).
Thus, we can formulate the energy management problem that a single agent faces as an
existing MAB model, the non—stochastic MAB, in order to achieve efficient long—term

information collection.

However, in many real world applications, it may occur that energy—harvesting is difficult
or not possible (e.g. the energy recharging module is malfunctioning, or no energy
sources are provided). In this case, the agents cannot follow the concept of energy—
neutrality, and thus, they cannot use the aforementioned MAB model to manage the
energy budget allocation to the sensory tasks (see section 3.3 for more details). Against
this background, this chapter focuses on the energy management problem for non-—
harvesting sensor agents. In so doing, we first introduce a new MAB model, the budgeted
MAB with pulling cost, which forms the foundation of our MAB based approach for the
energy management problem (contribution 3). We then devise the budgeted efirst
approach, in order to efficiently deal with the budgeted MAB problem with pulling
cost (contribution 4). Following this, we describe our MAB based energy management

approach, based on the aforementioned new MAB model. By using this approach, it is

83
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possible to achieve good long-term performance in information collection when energy—

harvesting is not possible.

Against this background, the remainder of this chapter is organised as follows. In section
6.1, we introduce the problem budgeted MAB with pulling cost. Specifically, we first
formulate the model, then we introduce a simple, but efficient approach, the e-first
policy for that MAB problem. Then we analyse both theoretically and numerically
the performance of the the efirst policy. Following this, we discuss the MAB based
energy management approach in section 6.2. Finally, we analyse the performance of this

approach in section 6.3.

6.1 Budgeted Multi-Armed Bandits with Pulling Cost

As mentioned in section 2.3, the multi-armed bandit is a classical problem in decision
theory, and presents one of the clearest examples of the trade—off between exploration
and exploitation in reinforcement learning. However, this standard MAB gives an in-
complete description of the sequential decision—making problem facing an agent in many
real-world scenarios. To this end, a variety of other related models have been studied
recently, and, in particular, a number of researchers have focused on MABs with a lim-
ited exploration budget. Specifically, they consider cases where pulling an arm incurs
a pulling cost, whose currency is not commensurable with that of their rewards. The
agent’s exploration budget then limits the number of times it can sample the arms, thus
defining an initial exploration phase, during which the agent’s sole goal is to determine
the optimal arm to pull during the subsequent cost—free exploitation phase (see section
2.3.2 for more details).

Building on these works, in this section, we consider a further limitation on the agent’s
behaviour, in which pulling an arm is costly, and both the exploration and exploitation
phases are limited by a budget. This type of limitation is well motivated by real world
applications. For example, consider our WSN application, whereby a sensor node’s
energy allocation to sensory tasks, such as sampling or data forwarding, can be regarded
as an arm of a MAB model (see chapter 5 for more details). Now, because the battery
charge is limited, both the exploration (i.e. learning the rewards for different arms) and
exploitation phases (i.e. taking the optimal arms given reward estimates) are budget
limited as well. In particular, as mentioned earlier, this chapter focuses on the problem

of energy management with non—harvesting sensors (see section 6.2 for more details).

Another related example of a this type of problem is that of a company that aims
to advertise itself on the web. In so doing, it has a limited budget for renting on—
line advertising banners on any of a number of web sites, each of which charges a

different rental price. The company wishes to maximise the number visitors who click
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on its banners, however, it does not know the click—through rate for banners on each
site. As such the company needs to estimate the click—through rate for each banner
(exploration), and then to choose the combination of banners that maximises the sum
of clicks (exploitation). In terms of the model described above, the price of renting an
advertising banner from a website is the pulling cost of an arm, and the click—through
rate of a banner on a particular website is the true reward for pulling that arm, which

is unknown at the outset of the problem.

Previous MAB models, however, are not suitable in either of these example problems,
because they do not consider the case where the agent’s exploration and exploitation
activities are both limited by a budget. However, as the examples above show, this type
of problem is commonly encountered in real world applications of reinforcement learning
agents. In order to address this gap, in this chapter we introduce a new version of MAB,
a budgeted MAB with pulling cost (i.e. pulling an arm is costly, and both exploration
and exploitation phases are budget—limited). The overall budget limit differentiates it
from previous models in that the overall number of arms pulled is finite. Consequently,
the optimal solution is not to repeatedly pull the optimal arm ad infinitum, but to pull
the combination of arms that maximises the reward and fully exploits the budget. To see
this, first suppose the expected rewards for pulling the arms are known. In this case, a
MAB with an overall budget limit reduces to an unbounded knapsack problem [Andonov
et al., 2000], as follows. Pulling an arm corresponds to placing an item into the knapsack,
with the arm’s expected reward equal to the item’s value and the pulling cost the item’s
weight. The overall budget is then the weight capacity of the knapsack. Given this, the
optimal combination of items for the knapsack problem is also the optimal combination
of pulls for our MAB problem. This difference in desired optimal solution from existing
MAB problems means that (now faced with unknown rewards), when defining a decision—
making policy for our problem, we must be cognizant of the fact that an optimal policy
will involve pulling a combination of arms. As such, it is not sufficient to learn the
expected reward of only the highest—value arm; we must also learn the other arms’
rewards, because they may appear in the optimal combination. Importantly, we cannot
simply import existing policies that are based on upper confidence bound or €,—greedy
arguments, because they concentrate on learning only the value of the highest expected

reward arm, and so will not work in this setting.

For example, consider a three—armed bandit, with arms X, ¥ and Z that have true
expected reward-pulling cost value pairs {9, 4}, {1.5, 1} and {2, 1}. Suppose the
remaining budget is 15. At this point, the optimal solution is to pull arms X and Z
three times each, giving an expected total reward of 33. Now consider the case where the
estimates of expected reward for arms Y and Z have been generated using a less efficient
exploration policy, and as such are not particularly accurate (whereas the estimate of X

is considerably more refined). Specifically, imagine a situation where the estimates are
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1.76 and 1.74 for arms Y and Z, respectively. In this case, the proposed best solution
would be to pull arms X and Y three times each, which on average returns a suboptimal
payment with real expected total reward of 31.5. It is clear from this example that better
estimates of the mean reward of all arms would allow the agent to determine the optimal
combination of pulls. It is also evident that new techniques must be developed for this
new problem, which do consider the combinatorial aspect of the optimal solution to the

MARB problem investigated in this paper.

Against this background, we propose a budgeted e—first approach for our MAB, in which
the first € of the overall budget B is dedicated to exploration, and the remaining portion
is dedicated to exploitation. In more detail, we split the budget into two parts, €B
reserved exclusively for exploration, and (1 — €)B for exploitation. In the exploration
phase, the agent estimates the expected rewards by uniformly sampling the arms (i.e.
the arms are sequentially pulled one after the other). Then, in the exploitation phase, it
calculates the optimal combination of pulls based on the estimates generated during the
exploration phase. The key benefit of this approach is that we can easily measure the
accuracy of the estimates associated with a particular value of €, because all of the arms
are sampled the same number of times. Hence, we can control the expected performance
regret (i.e. the difference between the optimal and the proposed combination of pulls)
as a function of €, which gives us a method of choosing an optimal € for a given scenario.
Furthermore, it also gives us a bound on the performance of the e-first approach to the

MARB problem with an overall budget.

To this end, we first introduce the model of the budgeted MAB with pulling cost in
section 6.1.1. Following this, we discuss the budgeted e-first policy in section 6.1.2.
Section 6.1.3 studies the theoretical regret bounds of performance of the budgeted e-first
algorithm. Finally, we evaluate the performance of the budgeted e-first policy through

extensive simulations in section 6.1.4.

6.1.1 Model Description

In this section, we describe the budgeted MAB with pulling cost. In more detail, we
consider a K—armed bandit problem, in which only one arm can be pulled at any time
by the agent. Upon pulling arm a; of the machine at time slot ¢, the agent pays a pulling
cost, denoted c¢,,, and receives a reward drawn from a distribution associated with that
specific arm. The pulling cost ¢,, depends only on the arm a;, and is constant over
time. Note that in our model, the only restriction on the distribution of these rewards
is that they have bounded supports. This assumption is reasonable, since in real-world
applications, reward values are typically bounded. Given this, the agent’s goal is to

maximise the sum of rewards it earns from pulling the arms of the machine. Let pq,
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denote the mean value of the reward that we get by pulling arm a; that is:
te =K [Ta] (6.1)

where r, is the reward value we can get by pulling arm a. However, initially, the agent
has no knowledge about p, of each arm a, so must learn these values in order to deduce
a policy that maximises its sum of rewards. Furthermore, in our model, the agent has a
cost budget B, which it cannot exceed during its operation time. That is, the total cost
of pulling arms cannot exceed this budget limit. Given this, the agent’s objective is to
find the optimal sequence of pulls, that maximises the expectation of the total reward

the agent can achieve, without exceeding the cost budget B.

Formally, let A = {aj1,a2,as ...} be a finite sequence of pulls, where a; denotes the arm
pulled at time t. The set of possible sequences is limited by the budget. That is, the

total cost of the sequence A cannot exceed budget B:

antSB

at€A

Let R(A) denote the total reward the agent receives by pulling the sequence A. The
expectation of R (A) is:

E[R(A)] = Z Hay

ar€A

Then, let A* denote the optimal sequence that maximises the expected total reward,

which can be formulated as follows:

A" = arg mjLXE [R(A)] = arg max %uat (6.2)
at

Note that in order to determine A*, we have to know the value of y,, in advance, which
does not hold in our case. Thus, A* represents a theoretical optimum value, which is

unachievable in practice.

However, for any sequence A, we can define the regret for A as the difference between
the expected cumulative reward for A and the theoretical optimum A*. More precisely,

letting L (A) denote the regret function, we have:
L(A) =E[R(A")] - E[R(4)] (6.3)

Given this, our objective is to derive a method of generating a sequence, A, that min-

imises this regret function for the class of MAB problems defined above.
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6.1.2 The Budgeted «First Approach

In this section we introduce our efirst approach for the MAB with budget limits prob-
lem. The structure of the e—first approach is such that the exploration and exploitation
phases are independent of each other, so in what follows, the methods used in each phase
are discussed separately. Now, several combinations of methods can be used for both
exploration and exploitation. However, we investigate only one exploration and one ex-
ploitation method in detail, while the study of other methods is left for future work. In
particular, for the former, we use a uniform pull sampling method, in which all of the
arms are uniformly pulled until the exploration budget is exceeded, because we can put
a higher bound for the performance regret of an efirst algorithm using this exploration
method than for other methods. In the exploitation phase, due to the similarities of
our MAB to unbounded knapsack problems when the rewards are known, we use the
reward—cost ratio ordered greedy method, a variant of an efficient greedy approximation

algorithm for knapsack problems.

6.1.2.1 Uniform Pull Exploration

In this phase, we uniformly pull the arms, with respect to the exploration budget eB.
That is, we sequentially pull all of the arms, one after the other, until the budget is
exceeded. For the sake of simplicity, hereafter we refer to the i'" arm as i (1 <1i < K).

Letting n; denote the number of pulls of arm ¢, we have:

eB eB
— | < < | ——— 1 6.4
\\Zf:lch B {Zj(zlch " o4

The reason of choosing this method is that, in order to bound the regret of the algorithm,
since we do not know which arms will be pulled in the exploitation phase, we need to
treat the arms equally in the exploration phase. Hereafter we refer to the sequence

sampled by the uniform algorithm as Ap;.

6.1.2.2 Reward—Cost Ratio Ordered Exploitation

We first introduce the foundation of the method used in this phase of our algorithm, the
unbounded knapsack problem. We then describe an efficient approximation method for
solving this knapsack problem, which we subsequently use in the second phase of our

budgeted e-first algorithm.

The unbounded knapsack problem is formulated as follows. Given K types of items,
each item type ¢ has a corresponding value v;, and weight w;. In addition, there is also

a knapsack with weight capacity B. The unbounded knapsack problem selects integer
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units of those items that maximise the total value of items in the knapsack, such that
the total weight of the items does not exceed the knapsack weight capacity. That is, the

goal is to find the non—negative integers x1, o, ..., xx that

K K
max E z;v;  s.t. g zw; < C
i=1 i=1

This problem is NP-hard, however, near—optimal approximation methods have been
proposed to solve this problem (a detailed survey of these algorithms can be found in
[Andonov et al., 2000]).

In particular, here we make use of a simple, but efficient approximation method, the den-
sity ordered greedy algorithm, which has O (K log K) computational complexity, where
K is the number of type of items [Kohli et al., 2004]. This algorithm works as follows:
Let vi/w; denote the density of item type i. At the beginning, we sort the item types in
order of the value of their density. This needs O (K log K') computational complexity.
Following this, in the first round of this algorithm, we choose the item type with the
highest density and select as many units of this item as are feasible, without exceeding
the knapsack capacity. Then, in the second round, we identify the item type with the
highest density among the remaining feasible items (i.e. items that still fit into the
residual capacity of the knapsack), and again select as many units as are feasible. We
repeat this step in each subsequent round, until there is no feasible item left. Clearly,

the maximal number of rounds is K.

We now reduce the problem faced by an agent in the exploitation phase of our algorithm
to the unbounded knapsack problem, and show that an analogue of the density ordered
greedy algorithm can be used to efficiently solve it. To begin, recall that in the exploita-
tion phase, the agent makes use of the expected reward estimates from the exploration
phase. Let ji; denote the estimate of u; after the first phase. Given this we aim to solve

the following integer program:

K K
maxz.’xi,ai s.t. inci <(l1-¢B
i=1 i=1

where z; is the number of pulls of arm 7 in the exploitation phase. In this case, the
ratio of an arm’s reward estimate to its pulling cost, #i/c;, is analogous to the “density”
of an item, because it represents the reward for consuming one unit of the budget, or
one unit of the carrying capacity of the knapsack. As such, the problem is equivalent
to the knapsack problem above, and in order to solve it, we can use a reward—cost ratio
(density) ordered greedy algorithm. Hereafter we refer to the sequence pulled by this
algorithm as Agreedy -
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Now, let ngreedy denote the solution for arm ¢ given by the value density ordered algo-

rithm. The expected total reward is:

E [R (Aefﬁrst)] = Z (nl + x;greedy) i
=1

where Ac_girst = Auni + Agreedy denotes the sequence of pulls resulted by our proposed

algorithm.

6.1.3 Regret Bounds on the Performance of the e—First Policies

In this section, we first derive an upper bound for the performance regret of any explo-
ration policy and the reward—cost ratio ordered greedy exploitation algorithm (i.e. the
upper bound is independent of the choice of the exploration algorithm). We then refine
this bound for the specific case of uniform pull exploration, in order to have a more

practical and efficient bound.

Recall that both Ay, and Agreedy together form sequence Ac_g, which is the policy
generated by our e-first algorithm. The expected reward for this policy is then:

E[R (Acfirst)] = B[R (Auni)] + E [R (Agreeay)] , (6.5)

which is the expected reward of the exploration phase plus the expected reward of the

exploitation phase.

In what follows, we derive lower bounds for E[R (Auyi)] and E[R (Agreedy)] indepen-
dently. Then, putting these together, we have a lower bound for the expected reward
of A._grst- Following this, we derive an upper bound for the expected reward of the
optimal sequence A*. The difference between the lower bound of E [R (A._frst)] and the
upper bound of E [R (A*)] then gives us the upper bound of the regret function of our
proposed algorithm. However, this bound is constructed using Hoeffding’s inequality,
so it correct only with a certain probability. Specifically, it is correct with probability
(1 —3)", where § € (0,1) is a predefined confidence parameter (i.e. the confidence with

which we want the upper bound to hold) and k& is the number of arms.

Given this, without loss of generality, for ease of exposition we assume that the reward
distribution of each arm has support in [0, 1], and the pulling cost ¢; > 1 for each i (our
result can be scaled for different size supports and costs as appropriate). We now define
some terms. Let

~

= arg max Hi (6.6)
1 G

Imax

denote the arm with the highest mean value density estimate. Similarly, let i™** and ™"

denote the arm with the highest and the lowest real mean value densities, respectively.
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That is, we have:

i = arg max Hi (6.7)
G

i™M = arg min 1 (6.8)
t G

Then, let Dy, denote the difference between the highest and the lowest mean value
densities; that is:
Dipare = 2222 L (6.9)

C;max Cjmin

Finally, let A, be an arbitrary exploration sequence of pulls. We say that A,,1, exploits
the budget dedicated to the exploration if and only if after A, stops, none of the arms
can be additionally pulled without exceeding the exploration budget. Given this, we

now state the main contribution of the paper.

Theorem 6.1. Suppose that Aap is an arbitrary exploration sequence, that exploits
the given exploration budget, and that within this sequence, each arm i is pulled n;
times. Let A denote the joint sequence of Aap and Agreedy, Where Agrecdy 15 as defined
in section 6.1.2.2. Then, for any k > 1, B > 0, and 0 < €, < 1, with probability
(1- ﬂ)K, the regret function of sequence A is at most:

2+€BDMH_:;(\/—mﬂJr —1nﬁ>

Tjmax T max

X Imax

where nimax and nmax are the number of pulls of arms i™** and , respectively.

Before we prove this theorem, let us prove the following auxiliary lemmas.

Lemma 6.2. Let A, denote an arbitrary exploration sequence that exploits its explo-

ration budget. Within this sequence, each arm i is pulled n; times. Thus, we have:

K

B ;min
Zniﬂi > EOMimin
=1

C;jmin
Lemma 6.3. If Agreedy is the density-ordered greedy exploitation algorithm, then

B,l,l,]max

E [R (Agreedy)] > (1 - 6)

Clmax
Lemma 6.4. If A* is the optimal sequence defined in equation (6.2), then

B/_,Limaz

E[R(A%)] <

Cimaac

Lemma 6.5. If|a —b| <41, |[c—d| < b2, and a > ¢, then d < b+ §; + 02
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Proof of lemma 6.2. If A, exploits the budget for exploration, it is true that for
any c;, Zfi L ni¢; > €B — ¢}, since none of the arms can be pulled after the stop of A,

without exceeding eB. Thus, we have:

K K » K .
S = Yowel s (zn> Z
i=1 =1 i=1

4 C;jmin

jmin B jmin
Z (GB - Cimin) qu > ¢ ILLZ - 1

4min Cz‘min

since u; < 1 for Vi.

a

Imax

Proof of lemma 6.3. By just pulling arm in the exploitation phase, which is

the first round of Ageedy, the expected reward we can get there is L(i;gfj fimax, where
L—(cl;:gfj is the number of pulls of arm I™#*, Thus, we have:
1—¢)B
E [R (Agreedy)] > \‘%J [ max
1 - B B max
> (g—:l);umaxz(l—e)L—l

Cmax CJmax

since u; < 1 for Vi.
O

Proof of lemma 6.4. Suppose that in the optimal sequence, NN; is the total number of
pulls of arm ¢. Thus, the cost constraint can be formulated as Zfil N;c; < B. Given

this, we have:

K K s K L B,
E[R(A")] =) Nipi = ZNiCiC_'Z < <Z Nici> — < —
i=1 i=1 ! =1

C;max C;max

a

Proof of lemma 6.5. Since |a —b| < §;, we have a < b+ §;. Similarly, we have
d < ¢+ dy. Since a > ¢, we have the following: d < ¢+ 6y < a+ 6y < b+ 01 + do.

a

Proof of theorem 6.1. Let n; denote the number of pulls of arm 7 in the exploration

phase. Using Hoeffding’s inequality for each arm 4, we have:

P (|fii — il > 6;) < exp{—nid7}
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that is, dividing by ¢;, we have:

,az 2%} i 2
Pl|——=— < —n;0;
(CZ' Ci _Ci>_exp{ i}
which is equivalent to the following:
P ( Hi M) 5) < exp {—n;d’c; (6.10)
CZ CZ

Setting 8; = , /=2 Qﬂ , equation (6.10) can be reformulated as follows:

(- 2fos)s

Thus, with probability (1 — 5)K , for each arm %, we have:

Hi M
Ci Ci

Mz 2%}

< 9; 6.11
C; c| ( )

Hereafter, we strictly focus on the case, whereby equation (6.11) holds for each arm i.

The reward collected in the exploration phase can be calculated as follows:

eB Hlll]
arb Z nz,uz = Hi -1 (612)

anln

The right side of equation (6.12) holds, due to lemma 6.2. Using lemma 6.3 and equation
(6.12), we get the following:

E[R(A)] = E[R(Aab)] + E[R (Agreeay)]

B smin B max
> CHmn g g ) 2R
Cjmin CJmax
B smin B max
P Ly § RSl L (6.13)
Cjmin CJmax

By denifition, we have L= > pamax ) fymex ’”mx . Furthermore, equation (6.11)

Crmax — (’,‘max7 C;max ~—— Cjym,

holds for each arm i. According to lemma 6.5, we have.

Jb [max > [jmax

— Ojmax — (5Imax (614)

CJmax Cjmax

Substituting this into equation (6.13), we have:

B ;min jmax

E[R(A)] Z w—i—(l—G)B <IU”L _(Simax —(5[max> -2
Cjmax

B/,Lzmax B GB/_,LZ‘max _

szm Cjmax Cjmax

—(1 —E)B((simax +(5[ma>c) -2 (615)

Y
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According to lemma 6.4, E[R(A*)] < % Thus, by substituting it into equation
(6.15), we have:

B smin B gmax
E[R(A)] > E[R(A")] 4 e R

Cjmin C;max

Using the definition of regret function, defined in equation (6.3), and that (1 —€) < 1,
we have the following upper bound for L (A):

L (A) S 2 + GBDmaX + B ((5Z‘max + (Sjmax) (617)
where Dy = ’C‘;:;‘:;‘ — % Thus, by replacing §; = ;rclf for i = I™@* and ¢ = ¢™M&,

and using the fact that ¢; > 1 for each 7, we get:

L(A) < 2+€BDmax+B<\/_lnﬂ+ _lnﬂ>

nimax nImax

Note that this theorem is of no practical use, since it assumes knowledge of i™** and
i™n which is unlikely in real applications. However, it gives us a generic upper bound

for the regret function that can be refined for specific exploration methods.

In particular, we now refine this upper bound for the case of uniform pull exploration
Auni- Since we uniformly pull the arms, Ay exploits the exploration budget. Further-
more, according to Equation 6.4, each arm is pulled at least [¢B/S°%, ¢;] times. Thus,

we can state the following:

Corollary 6.6. Let A._ g5t denote the pulling sequence of the e-first algorithm with
uniform pull exploration and density value—ordered greedy exploitation. For any k > 1,

B >0, and 0 <€, <1, with probability (1 — 5)K, regret function of Ac_grst 1S at most

(—Ing)
L (A _grst) <2 BDpax + 2B _—
( fst) < 2+ € + ( LGB/Z£101J>

Apart from the uniform pull algorithm, other exploration policies, such as UCB, or
Boltzmann exploration [Cicirello and Smith, 2005], can be applied within our e-first
approach. The upper bound given in Theorem 6.1 also holds for those policies. How-
ever, refining this upper bound, as we did in the case of the uniform pull algorithm, is
a challenge. In particular, estimating the number of times each arm is pulled is diffi-
cult in both UCB and Boltzmann explorations. Thus, refined upper bounds cannot be

derived for these policies using the same technique as for the uniform pull policy. As
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such, we must rely on empirically comparisons of e-first with uniform and non—uniform

exploration policies.

6.1.4 Performance Evaluation

In this section, we evaluate our efirst algorithm with uniform exploration and with
UCB-based exploration, and compare them to a modified version of the ¢, —greedy al-
gorithm. The latter was originally proposed to solve the standard MAB problem, while
UCB-exploration was developed to solve the MAB with pure exploration. We compare
these algorithms in three scenarios, which highlight the benefits of using an algorithm
that is tailored to the budget—limited MAB. However, before discussing the experiments,

we first describe the benchmark algorithms and explain why they were chosen.

The ¢,—greedy algorithm is designed for standard MABs. It learns the values of all arms
while still selecting the arm with the highest reward infinitely more frequently than any
other, and can be described as follows: At each time-step n, the arm with the highest
expected reward estimate is pulled with probability 1 —¢,,, otherwise a randomly selected
arm is pulled. The value of ¢, is decreased over time, proportional to O (1/n), starting
from an initial value ¢g. However, since ¢,—greedy does not take pulling cost into account,
we modify it to fit our model’s cost constraints. Specifically, the arm with the highest
reward value—cost ratio is pulled with probability 1—e¢,, with any other randomly chosen
arm pulled with probability e. Now, consider the case of a budget-limited MAB when
the budget B is considerably larger than the pulling cost of each arm (e.g. B — o0). In
this situation, the difference between the pulling cost of the arms are not significant, and
thus, this version of our problem could be approximated by a standard MAB (without
pulling cost). However, when B is comparable to the arms’ pulling costs, it is not obvious

how traditional MAB algorithms, such as €,-greedy, behave.

Conversely, since our proposed e-first approach relies significantly on the efficiency of the
exploration phase, it is not obvious that uniformly pulling the arms is the best choice
for exploration. Thus, there is a need to compare our proposed algorithm with e-first
approaches that use different exploration techniques. Given this, we choose an e-first
approach with UCB-based exploration as the second benchmark algorithm. The UCB
exploration phase pulls the arm with the highest upper confidence bound on the arm’s
expected value, in order to determine the arm with the highest expected reward (see
section 2.3 for more details). Since UCB was proposed for MAB with non—costly arms,
we also have to modify its goal, similarly to the case of €,-greedy. Note that, according
to Bubeck et al. [2009a], UCB typically results in better performance in exploration than

the uniform pull approach.

Now, recall that due to the limited budget, the optimal solution of our MAB problem

is not to repeatedly pull the optimal arm, but to pull the optimal combination of arms.
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Performance comparison on homogeneous arms
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FI1GURE 6.1: Performance of the algorithms in the case of 6-armed bandit machine,
which has: (A) homogeneous arms with expected reward value—cost parameter pairs
{4,4}, {4,4}, {4,4}, {2.7,3}, {2.7,3}, {2.7,3}; (B) diverse arms with parameter pairs
{3,4},{2,4}, {0.2,2}, {0.16, 2}, {18,20}, {18,16}; and (C) extremely diverse arms with
with parameter pairs {0.44, 5}, {0.4,4}, {0.2,3}, {0.08, 1}, {14,120}, {18,150}.
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However, our proposed exploitation algorithm, the reward—cost ratio ordered greedy
method, does not always return an optimal combination, because it is an approximate
algorithm. Specifically, if the arms are homogeneous, that is, the pulling costs do not
significantly differ from each other, then the reward—cost ratio ordered greedy typically
results in solely pulling the arm with highest reward estimate—cost ratio. Consequently,
it shows similarities to the e,—greedy policy in this case. On the other hand, when the
arms are more diverse, that is, the pulling costs are significantly different, the algorithm

pulls more arms (for more details see [Kohli et al., 2004]).

Given this, in order to measure the efficiency of the reward—cost ratio ordered greedy
in different situations, we set three test cases, each of which considers a 6-armed ban-
dit machine which has: (i) homogenous arms; (ii) moderately diverse arms; and (iii)
extremely diverse arms. In the moderately and extremely cases, two out of six arms
have moderately /extremely more expensive pulling cost than the others. Given this, the
expected reward and cost values were randomly chosen, with regard to these diversity
properties. Specifically, the distribution of the rewards are Gaussian, with means given
as the first element of the expected reward value—cost pairs in the caption of Figure 6.1,
with 0.1 variance value , and supports [0, 20]. The cost of each arm is given as the second
element of the expected reward value—cost pairs. Finally, for all test cases, we run our
simulation with different budget values, from 400 to 4000. The numerical results are
depicted in Figure 6.1. Within this figure, the error bars represent the 95% confidence

intervals.

From Figure 6.1, we can see that in the homogeneous case, both ¢,—greedy and the
e—first with uniform exploration approach achieve similar efficiency. However, our al-
gorithm results in better performance when the arms are more diverse. In particular,
the performance regret of our algorithm is 50% less in the diverse case, and 80% less in
the extremely diverse case, than that of the ¢,—greedy. In addition, despite the better
performance of UCB in exploration, the performance of our algorithm surprisingly does
not significantly differ from that of the efirst with UCB-based exploration. This is
due to both uniform and UCB-based explorations can efficiently determine those arms

which are pulled in the reward—cost ratio ordered greedy algorithm.

In order to show this, and to highlight the differences of each algorithm’s behaviour as
well, consider a single run of the case of extremely diverse arms, with budget B = 3500.
Figure 6.2 depicts the number of pulls of each particular arm. Here, the optimal solution
is to pull arm 2 twelve times, arm 4 two times, and arm 6 twenty—three times. We can see
that both efirst with uniform and with UCB—based exploration show similar behaviour
to the optimal solution, however, ¢,—greedy focuses on arms 2 and 5 instead, while arm
6 is not sampled at all. The reason is, due to its nature, if €,—greedy starts with a wrong

arm (i.e. not the best arm), it will stick with it for a while. Therefore, in order to learn
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Distribution of pulls in case of diverse arms
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FIGURE 6.2: Number of pulls of each arm in the case of 6-armed bandit with extremely
diverse arms, and budget B = 3500.

the best combination, it needs more time. However, due to the limited budget, it does

not have enough time to do this.

6.2 Budgeted Multi-Armed Bandits with Pulling Cost for
Energy Management

As mentioned earlier, in this section, we study the energy management problem with
non—harvesting sensors. In particular, within this problem, it is not possible for the
agents to harvest energy from the environment (see section 3.3.2 for more details). Given
this, in order to tackle this problem, we use the the formal model and the notations

introduced in section 3.3.2.

Recall that within this model, each agent ¢ has an energy budget BZT (t) for each time
slot ¢, where BZ-T (t) is the total residual energy level of the battery. That is, each agent
has to rely on its battery level in the whole operation time. The value of B}l (t) is

updated by using equation 3.10. Since at each time slot, the agents have to allocate
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energy to the tasks of sampling, receiving, and transmitting data packets, the goal here
is to efficiently allocate the energy budgets to these tasks, such that the total energy

consumption does not exceed the total energy budget.

Against this background, we use a budgeted MAB model with pulling cost to tackle
this energy management problem. More precisely, we first demonstrate that it is not
possible to use the standard MAB model to describe this problem, as we did in the case
of energy—harvesting sensors. Following this, we show how to model this problem as a
budgeted MAB with pulling cost model.

In so doing, we first define the reward function and the action set of each agent, in
order to formulate a MAB model. Since theorem 5.4 does not assume anything related
to the capability of energy—harvesting, it holds for the case of non—harvesting sensors
as well. Given this, for the reward function, we can use the reward function defined
in equation 5.9. Similarly, to define a single action of an agent, we can use definition
5.3 of section 5.2. That is, each agent’s single action can be described with a 3-tuple
a; (t) = (nf (t),nB(t),nI*(t)), where n? (t), nl* (t), and n]* (t) denote the capacity
of sampling, receiving, and transmitting, respectively. However, since in the case of
non—harvesting sensors, the budget limit for each time slot is not fixed, we have the
following constraint:

g (t) e +ni (1) e + nl> (1) ef* < BI (1) (6.18)
Since B; (t) varies over time, the set of actions of each agent varies ovet time as well.
This indicates that standard MAB models do not fit this problem of energy management.
On the other hand, we can formulate this problem as a budgeted MAB with pulling cost

as follows.

Note that the agents consumes energy when it allocates energy budgets to its tasks of
sampling, receiving, and transmitting. Since an action of the agent is to allocate energy
to these tasks, the actions here can be regarded as costly. Furthermore, the overall
budget of an agent is the initial energy level of the agent’s battery. Given this, both
the exploration and exploitation phases of the agent is limited by that overall budget.
Thus, this problem can be regarded as a budgeted MAB with pulling cost.

Since the budgeted e-first approach, introduced in section 6.1.2, is the first algorithm
developed for the problem of budgeted MAB with pulling cost, hereafter we focus on
the use of this approach for our energy management problem. Given this, we analyse
the performance of this approach in the next section. Furthermore, we also highlight on

its advantages and drawbacks as well.
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6.3 Performance Analysis

In this section, we focus on the performance analysis of the budgeted e-first approach
for our energy management problem. Specifically, we analyse its regret bound in the
network level (i.e. taking all the agents into account). Furthermore, we highlight its
major advantages and disadvantages. Given this, section 6.3.1 discusses the regret bound
of the network’s performance. In addition, section 6.3.2 studies the advantages and

disadvantages of MAB/EM against the research requirements given in section 1.1.

6.3.1 Regret Bounds on the Performance

As mentioned in section 6.1.3, budgeted e—first approach with uniform pull exploration
has a practical regret upper bound for its performance (see corollary 6.6 for more details).
Given this, we analyse the performance of the network of agents in which each agent
uses budgeted e-first approach with uniform pull exploration for energy management.

7
max

Now, in the vein of equation 6.9, let D denote the difference between the highest
and the lowest mean value densities of agent i. Let K’ denote the number of actions
agent i can choose (i.e. the total number of energy budget allocation combinations of
agent 7). Furthermore, let cé» denote the cost of agent i’s action j (i.e. the total energy
allocated to the sensory tasks when agent i chooses allocation combination j). Finally,
let B’ denote the initial total energy budget of agent i’s battery. According to corollary

6.6, for each agent i, we have the following upper bound for the performance regret:

o A —1
L; (Ae—ﬁrst) <2+ EBZDinax + 2B’ % (619)
{EB /Zj:l C}

where L; (Ac_grst) 18 the regret function of agent 4, by using the budgeted efirst approach

with uniform pull exploration.

Given this, if N denotes the number of agents in the network, then for the upper bound

of the total performance regret of the network, we have:

ad ad ;i ; (—Inpg)
;Li (Ac—first) < 2N+; €B' Dy o + 2B" m (6.20)

That is, the total performance regret of the network is bounded by equation 6.20.

6.3.2 Advantages and Shortcomings

From the aspect of computational complexity, energy management with the budgeted

efirst approach is simple. In particular, since we focus on uniform pull exploration,
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the total computational complexity of each agent i is O (K ‘InK ‘) in total, where K*
is the size of agent i’s action set. This value of complexity is calculated as follows. In
the exploration phase, the uniform pull policy simply pulls the next arm, that is, the
complexity is O (1). In the exploitation phase, the agent uses the reward—cost ratio
ordered greedy algorithm, which has the complexity of O (K ‘In K ‘) in total (see section
6.1.2.2 for more details).

In addition, similarly to MAB/EM, here the agents do not have to communicate to
each other, in order to coordinate their actions in energy management (see section 5.3.2
for more details). However, since the budgeted e-first approach explicitly separates
the exploration from the exploitation phase by first exploring and then exploiting, this
approach is not efficient in dynamic environments. Specifically, by having the exploration
phase before exploitation, the agent can only learn the initial characteristics of the
environment. Thus, if environmental changes occur during the exploitation phase (i.e.
after the exploration), the agent cannot determine those, and thus, it cannot adopt to
the changes. Given this, budgeted efirst approach cannot perform well in the WSN
domain, since it cannot adopt to the environmental changes. Furthermore, to date,
none of other approaches has been proposed for the dynamic case of the budgeted MAB
problem with pulling cost. Due to these reasons, at the moment, we do not implement
any algorithms to the budgeted MAB based energy management approach. However, in
the future work, we aim to develop such algorithms for the problem of budgeted MAB
with pulling cost, that are efficient in dynamic environments as well. These algorithms
then can be used for tackling the energy management problem with non—harvesting

sensor nodes.

6.4 Summary

In this chapter, we have proposed a MAB learning based energy management approach
for the case of non—harvesting sensor agents. Since none of the existing MAB models
can fit this problem, we have introduced a new version of MAB, the budgeted MAB
with pulling cost, in order to tackle the energy management problem. In this model, the
number of pulls is limited, and the pulls are costly. Thus, different pulling behaviour
is needed within this model, in order to achieve maximal expected total reward. Given
this, we have proposed an e-first based approach that splits the overall budget into
exploration and exploitation budgets. Our algorithm uses a uniform pull policy for
exploration, and the reward—cost ratio ordered greedy algorithm for exploitation. Beside
this, we have devised a theoretical upper bound for the regret function of generic efirst
approaches with arbitrary exploration policies. We also have refined this upper bound

to the specific case of uniform pull exploration. Finally, through simulation, we have
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demonstrated that the e-first approaches outperform the €,—greedy method, an efficient

algorithm for standard MAB problems.

Following this, we have introduced devised the budgeted e—first approach for this prob-
lem. In more detail, we have proposed a uniform pull exploration and reward reward—cost
ratio ordered exploitation policies. In addition, we have analysed the performance of
the budgeted efirst approach, by proposing an upper bound for the performance of the
approach. This upper bound is generic in the following sense: it holds for any arbitrary
exploration policy. We then have refined the upper bound for the case of uniform pull
exploration. Following this, we have also analysed the performance of the proposed ap-
proach by running extensive simulations. Here, we have demonstrated that traditional
MAB approaches are not suitable for the new MAB problem, since their performance
is outperformed by that of the efirst approach. Besides, although efirst approach
with uniform exploration does not perform well in every cases, we have shown that the

performance of the uniform exploration is as good as that of the UCB-based exploration.

Based on the budgeted MAB with pulling cost model, we have developed a MAB based
approach for the energy management problem with non—harvesting sensors. Since to
date, only the budgeted efirst approach is proposed for the budgeted MAB with pulling
cost problem, we have used this approach to tackle the energy management problem.
However, this approach is not suitable for dynamic environments, since it only explores
at the beginning. Given this, new approaches are needed to develop in the future, in

order to efficiently deal with the dynamism of the environment.
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Conclusions and Future Work

In this chapter, we present a global view on the contributions of this report towards de-
veloping efficient long—term information collection policies for wireless sensor networks.
To begin, in section 7.1, we first summarise the research carried out in order to achieve
this goal. In so doing we also explain how we satisfied each of the research requirements
that we initially set out at the beginning of this report. Then, in section 7.2, we outline

some general areas of future work that follow from this report.

7.1 Summary of Results

In this report, we have studied long-term information collection in the WSN domain. In
particular, first we have looked at previous work on adaptive sampling, adaptive routing,
information processing and energy management in WSNs. These are the perspectives
from which efficient information collection can be achieved. Following this, we have
introduced our model for WSNs that includes the aforementioned perspectives, and
we have formalised our main objective of maximising the total amount of collected

information at the base stations over a given finite time interval.

In a review of the relevant literature, we have shown that none of the state-of-the-art
algorithms in the aforementioned perspectives meets our research requirements for long-
term information collection. Against this background, we have developed a novel model
that enables learning and adopting to the environmental changes. We assumed that
the data sampling and information content valuation parts of the model use state-of-
the-art techniques. On the other hand, we have focused specifically on the routing and
energy management parts. Given this, we have decomposed our main objective into
two parts, one for the routing and one for the energy management. Given this, we
have decomposed the original problem into two sub—problems, namely: (i) the maximal

information throughput routing problem; and (ii) the energy management problem. For
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the former, we have proposed the maximal information throughput routing algorithm
(MITRA), a decentralised method that provides the optimal solution for the maximal
information throughput routing problem (contribution 1). We also have provided a proof
of the optimality of the MITRA. In order to do this, we first solved the routing problem
in a centralised way, by using graph theory approach. Following this, based on the
results of the solution for the centralised case, we proposed a decentralised algorithm,
whose optimality has been proven as well. Moreover, by comparing its performance to a
greedy and naive algorithm, we have shown that this algorithm has low communication

and computational costs, compared to the size of the network.

Following this, we have focused on the energy management problem. Here, we have
identified two cases, namely: (i) energy management with energy—harvesting sensors;
and (ii) energy management with non—harvesting sensors. For the first case, we have
developed a multi-armed bandit based approach called MAB/EM (contribution 2). In
particular, we first have introduced the non—stochastic MAB model, which forms the
foundation of our approach. Then we have reduced the energy management problem
into a non-stochastic MAB problem, by defining the actions and the reward functions
for the agents. Following this, we have described in more detail a state-of-the-art MAB
algorithm, the Exp3, that can be used to efficiently deal with the energy management
problem. To measure the efficiency of this MAB based approach, we have compared
the performance of the MAB/EM with a state-of-the—art non-learning information
collection algorithm, USAC. Moreover, to measure the (weak) performance regret of
MAB/EM, we have also compared its performance with the centralised best fixed policy
algorithm, which is centralised and uses global information in order to calculate the
optimal solution. Both comparisons showed that MAB/EM and MITRA together are
efficient in terms of long—term information collection, since it can adopt to the environ-
mental changes, and outperforms the other state—of-the—art non—learning algorithms.

Furthermore, it has low computational and communication cost as well.

For the case of energy management with non—harvesting sensors, we have shown that
existing MAB models are not suitable to formulate the problem. Given this, we have
introduced a new MAB model, the budgeted MAB with pulling cost (contribution 3).
In order to efficiently tackle this problem, we have proposed the budgeted e-first ap-
proach. In particular, we have proposed a uniform pull method for exploration, and the
reward—cost ratio ordered algorithm for exploitation. Following this, we have devised an
upper bound of the performance regret for this approach (contribution 4). This bound
holds for any arbitrary exploration method. We then have refined this bound for the
case of uniform pull exploration. By using extensive simulations, we have shown that
existing standard MAB approaches do not perform well in this MAB problem, since our
approach outperforms them on average. Based on this MAB model, we have reduced the

energy management problem with non—-harvesting sensors to a budgeted MAB model
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with pulling cost. We also have analysed the performance of the budgeted efirst ap-
proach in the WSN domain. We have showed that from the aspect of computational
complexity, this approach is simple. However, since the agent first explores and then
exploits in the budgeted efirst approach, it cannot perform well in dynamic environ-
ments. Thus, it does not fulfill the research requirement of adaptivity. Given this, we
aim to develop an algorithm for the budgeted MAB problem with pulling cost, that is

adaptive to environmental changes as well.

7.2 Future Work

The work described in this report attempts to advance research on information collection
in wireless sensor networks, and forms the basis for future work. In particular, we have
identified several directions for this future work, ranging from the short—term goals that
we will pursue in the upcoming months, to the more general ideas that are considered
for the remainder of the time allocated for the PhD. Specifically, the general areas of

research that we intend to investigate are:

Maximal Information Throughput Routing: In our model, we have assumed a
number restrictions, such as the communication is perfect (i.e. no data loss oc-
curs), or the agents can only forward data to other agents that are closer to the
BS. These restrictions allowed us to simplify the WSN model, and thus, the
maximal information throughput problem in the following ways. Due to perfect
communication, our proposed algorithm does not have to deal with data loss. That
is, it assumes that whenever a packet is transmitted, it will successfully arrive at
the receiver. In fact, in real world applications, data loss typically occurs during
communication. Furthermore, since data can only be forwarded to nodes that are
closer to the BS, the routing paths are in fact the shortest paths between the
nodes and the BS. This simplifies the routing topology of the WSN. However,
in some settings it may be sensible for a sensor to initially route data away from
the BS, if this results in a better route overall. Given this, in the near future, we
aim to relax these restrictions, in order to make our WSN model more realistic.
That is, we have to modify MITRA so that it can take data loss and non—shortest
routing paths into account. In particular, we have to deal with data loss by using
techniques that guarantee successful data forwarding, such as retransmission (i.e.
data will be repeatedly sent until the receiver receives it), or multi-casting (i.e.
multiple copy of the packet is sent to a number of receivers). In addition, the
routing algorithm should take into account the case when non-shortest paths are
better choices for data forwarding. These tasks will be done in the next three

months (see Gantt chart in figure 7.1 for more details).
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Energy Management with Energy—Harvesting Sensors: In this report, we have
assumed that when energy harvesting is possible, the budget of harvested energy
is fixed over time. However, due to the dynamic characteristics of the environment
of the WSN, it may occur that the harvested energy budget vary over time (e.g.
due to different weather conditions in the case of sensors with solar batteries).
In this case, the standard MAB model cannot efficiently formulate the energy
management problem. In particular, due to the varying harvested energy budget,
the action set (i.e. the set of energy budget allocation combinations) of each agent
varies over time as well. Thus, the agent not only has to learn the best arm, but to
learn the best arms of each different action set. Given this, our goal in the future
is to develop a MAB model that fits this type of problem (i.e. MAB with varying
action sets). Furthermore, we aim to devise MAB algorithms that can efficiently
solve this new MAB problem. In more detail, these algorithms should satisfy the
research requirements, namely: (i) adaptivity; (ii) robustness and flexibility; (iii)
computational feasibility; and (iv) limited use of communication. Finally, we also
aim to devise regret bounds for the performance of the proposed algorithms. These
tasks will be carried out after finishing the development of extending routing model
with data loss. The total time for studying this problem is approximately three to

four months (see figure 7.1).

Energy Management with Non—Harvesting Sensors: In the case of energy man-
agement with non—harvesting sensors, so far we have introduced the budgeted
MAB with pulling cost model for formulating the energy management problem.
Furthermore, we have proposed the budgeted efirst approach for dealing with this
problem. However, this approach is only suitable for networks with static envi-
ronments, and it is not efficient in the dynamic case. Given this, our goal is to
develop algorithms that can efficiently handle the dynamic environments as well
(i.e. it satisfies the research requirement of adaptivity). In more detail, we aim
to propose algorithms that have low computational complexity, and work well in
environments with limited communication. Furthermore, we also aim to devise
regret bounds for the performance of the proposed algorithms. These algorithms
then can be the basis of the energy management policy for the case of energy
management with non—harvesting sensors. We aim to focus on these tasks after
the extension of the energy management model with energy—harvesting sensors.
The total time for studying this problem is approximately five months (again, see
figure 7.1).

Figure 7.1 summarises our planning of the research activities in the future.
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F1GURE 7.1: Gantt chart outlining the planning for future work.






Bibliography

P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of reinforcement learning
to aerobatic helicopter flight. In Proceedings of the Twentieth Annual Conference on

Neural Information Processing Systems, pages 1-8, 2006.

R. G. Aghaeil, Md. A. Rahman, W. Gueaieb, and A. El Saddik. Ant colony-based rein-
forcement learning algorithm for routing in wireless sensor networks. In Proceedings

of the Instrumentation and Measurement Technology Conference, pages 1-6, 2007.

R. Agrawal. Sample mean based index policies with o(logn) regret for the multi-armed
bandit problem. Advances in Applied Probability, 27:1054-1078, 1995.

F. Ahdi, V. Srinivasan, and K.-C. Chua. Topology control for delay sensitive applications
in wireless sensor networks. Mobile Networks and Applications, 12(5):406-421, 2007.

K. Akkaya and M. Younis. A survey on routing protocols for wireless sensor networks.
Ad Hoc Networks, 3(3):325-349, 2005.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks:
a survey. Computer Networks, 38:393-422, 2002.

J. N. Al-Karaki and A. E. Kamal. Routing techniques in wireless sensor networks: A
survey. IEEE Wireless Communications, 11(6):6-28, 2004.

G. Anastasi, M. Conti, A. Falchi, E. Gregori, and A. Passarella. Performance mea-
surements of mote sensor networks. Proceedings of the ACM/IEEE International
Symposium on Modeling, Analysis and Simulation of Wireless and Mobile System,
pages 174-181, 2004.

R. Andonov, V. Poirriez, and S Rajopadhye. Unbounded knapsack problem: dynamic
programming revisited. European Journal of Operational Research, 123(2):394-407,
2000.

A. Antos, V. Grover, and Cs. Szepesvari. Active learning in multi-armed bandits. In
the Proceedings of the Nineteenth International Conference on Algorithmic Learning
Theory, pages 287-302, 2008.

109



110 BIBLIOGRAPHY

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47:235-256, 2002.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed
bandit problem. The Society for Industrial and Applied Mathematics Journal on
Computing, 32(1):48-77, 2003.

H. Baldus, K. Klabunde, and G. Muesch. Reliable set-up of medical body-sensor net-
works. In Proceedings of the First European Workshop on Wireless Sensor Networks,
pages 353-363, 2004.

Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with Applications to Tracking
and Navigation. Wiley Interscience, 2001. ISBN 047141655X.

S. P. Beeby, M. J. Tudor, and N. M. White. Energy harvesting vibration sources for
microsystems applications. Measurement Science and Technology, 9:175-195, 2006.

A. Boukerche. Algorithms and Protocols for Wireless Sensor Networks. WileyBlackwell,
2008. ISBN : 0471798134.

D. Braginsky and D. Estri. Rumor routing algorithm for sensor networks. In Proceedings
of the ACM International Workshop on Wireless Sensor Networks and Applications,
pages 22-31, 2002.

S. Bubeck, R. Munos, and G. Stoltz. Pure exploration for multi-armed bandit problems.
Algorithmic Learning Theory, pages 23-37, 2009a.

S. Bubeck, R. Munos, G. Stoltz, and Cs. Szepesvari. Online optimization in x-armed
bandits. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances
in Neural Information Processing Systems 21, pages 201-208. MIT Press, 2009b.

A. R. Cassandra. Ezact and Approximate Algorithms for Partially Observable Markov
Decision Processes. PhD thesis, Brown University, Department of Computer Science,
Providence, RI, USA, 1998.

A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat monitoring;:
Application driver for wireless communications technology. ACM SIGCOMM Work-
shop on Data Communications in Latin America and the Caribbean, pages 20—41,
2001.

D. Chakrabarti, R. Kumar, F. Radlinski, and E. Upfal. Mortal multi-armed bandits. In
the Proceedings of Neural Information Processing Systems Conference (NIPS), pages
273-280, 2008.

A. Chandrakasan, R. Min, M. Bhardwaj, S. Cho, and A. Wang. Power aware wireless
microsensor systems. Proceedings of Proceeding of the Thirty-Second European Solid-
State Device Research Conference, pages 37-44, 2002.



BIBLIOGRAPHY 111

C.-Y. Chong and S. P. Kumar. Sensor networks: Evolution, opportunities and challenges.
Proceedings of IEEE, 91(8):1247-1256, 2003.

M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sensor querying and
routing for ad hoc heterogeneous sensor networks. International Journal of High
Performance Computing Applications, 16(3):293-313, 2002.

V. A. Cicirello and S. F. Smith. The max k-armed bandit: a new model of exploration
applied to search heuristic selection. In the Proceedings of the Twentieth National
Conference on Artificial Intelligence (AAAI), pages 1355-1361, 2005.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and Sons,
2006. ISBN 0471241954.

M. Dawande, J. Kalagnanam, P. Keskinocak, R. Ravi, and F.S. Salman. Approximation
algorithms for the multiple knapsack problem with assignment restrictions. Journal
of Combinatorial Optimization, 4:171-186, 2000.

B. Deb, S. Bhatnagar, and B. Nath. Information assurance in sensor networks. In
Proceedings of the Second ACM International Workshop Wireless Sensor networks
and Applications, pages 160168, 2003.

A. Dekorsy, J. Fliege, and M. S'ollner. Optimal distributed routing and power con-
trol decomposition for wireless networks. In Proceedings of the Fiftieth IEEE Global
Telecommunications Conference, pages 4920-4924, 2007.

I. Demirkol, C. Ersoy, and F. Alagoz. Mac protocols for wireless sensor networks: a
survey. [EEE Communications Magazine, 44(4):115-121, 2006.

W. Dinga, S.S. Iyengara, R. Kannana, and W. Rummler. Energy equivalence routing in

wireless sensor networks. Microprocessors and Microsystems, 28:467-475, 2004.

Y. Duan, Q. Liu, and X. Xu. Application of reinforcement learning in robot soccer.
Engineering Applications of Artificial Intelligence, 20(7):936-950, 2007.

J. Elson and D. Estrin. Time synchronization forwireless sensor networks. Proceedings
of the 2001 International Parallel and Distributed Processing Symposium (IPDPS),
Workshop on Parallel and Distributed Computing Issues in Wireless Networks and
Mobile Computing, 2001.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):
119-139, 1997.

B. R. Frieden. Science from Fisher Information: A Unification. Cambridge University
Press, 2004. ISBN 0521009111.



112 BIBLIOGRAPHY

E. Gelenbe and R. Lent. Power-aware ad hoc cognitive packet networks. Ad Hoc Net-
works Journal, 2(3):205-216, 2004.

J. C. Gittins. Multi-armed Bandit Allocation Indices. John Wiley & Sons, 1989. ISBN
9780471920595.

C. Guestrin, A. Krause, and A. P. Singh. Near-optimal sensor placements in gaussian
processes. In Proceedings of the Twenty-second International Conference on Machine
Learning, pages 265-272, 2005.

S. Guha and K. Munagala. Approximation algorithms for budgeted learning problems.
In the Proceedings of the Thirty-Nineth ACM Symposium on Theory of Computing,
pages 104-113, 2007.

J. P. Hardwick and Q. F. Stout. Bandit strategies for ethical sequential allocation.
Computing Science and Statistics, 23:421424, 1991.

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient commu-
nication protocol for wireless microsensor networks. In Proceedings of the Hawaii

International Conference on System Sciences, page 110, 2000.

I. S. Hwang, K. Roy, H. Balakrishnan, and C. Tomlin. A distributed multiple-target
identity management algorithm in sensor networks. In Proceedings of the Fourty-Third
IEEE Conference on Decision and Control, page 72834, 2004.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion for wireless sensor
networking. IEEE/ACM Transactions on Networking, 11(1):2-16, 2003.

T. Ishikida and P. Varaiya. Multi-armed bandit problem revisited. Journal of Optimiza-
tion Theory and Applications, 83(1):113-154, 1994.

A. Jain and E. Y. Chang. Adaptive sampling for sensor networks. In Proceedings of the
First Workshop on Data Management for Sensor Networks, pages 10-16, 2004.

N. R. Jennings. An agent-based approach for building complex software systems. Com-
munications of the ACM, 44(4):35-41, 2001.

P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. Energy-efficient
computing for wildlife tracking: Design tradeoffs and early experiences with zebranet.
In Proceedings of the Tenth International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 96-107, 2002.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237-285, 1996.

A. Kansal and M. B Srivastava. An environmental energy harvesting framework for
sensor networks. In Proceedings of the 2003 International Symposium on Low Power
FElectronics and Design, pages 481-486, 2003.



BIBLIOGRAPHY 113

J. Kho. Decentralised Control of Wireless Sensor Networks. PhD thesis, University of
Southampton, School of Electronics and Computer Science, Southampton UK, 2009.

J. Kho, A. Rogers, and N.R. Jennings. Decentralised adaptive sampling of wireless
sensor networks. ACM Transactions on Sensor Networks, 5(3):19-53, 2009a.

J. Kho, L. Tran-Thanh, A. Rogers, and N. R. Jennings. An agent-based distributed
coordination mechanism for wireless visual sensor nodes using dynamic programming.
The Computer Journal, page doi:10.1093/comjnl/bxp108, 2009b.

R. Kleinberg. Anytime algorithms for multi-armed bandit problems. In Proceedings of
the Seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 928-936,
2006.

R. D. Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In L. K.
Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing
Systems 17, pages 697-704. MIT Press, 2005.

R. Kohli, R. Krishnamurti, and P. Mirchandani. Average performance of greedy heuris-
tics for the integer knapsack problem. FEuropean Journal of Operational Research,
154(1):36-45, 2004.

D.E. Koulouriotis and A. Xanthopoulos. Reinforcement learning and evolutionary al-
gorithms for non-stationary multi-armed bandit problems. Applied Mathematics and
Computation, 196(2):913-922, 2008.

A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal sensor place-
ments:maximizing information while minimizing communication cost. In Proceedings
of the Fifth International Conference on Information Processing in Sensor Networks,
pages 2-10, 2006.

T. L. Lai and T. W. Lim. Optimal stopping for brownian motion with applications to
sequential analysis and option pricing. Journal of Statistical Planning and Inference,
130(1-2):21-47, 2005.

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics, 6:4-22, 1985.

V. Lesser, C. Ortiz, and M. Tambe, editors. Distributed sensor networks: a multiagent
perspective. Kluwer Publishing, 2003. ISBN 1402074999.

P. Li, Y. Gu, and B. Zhao. A global-energy-balancing real-time routing in wireless sensor
networks. In Proceedings of the IEEE Asia-Pacific Services Computing Conference,
pages 89-93, 2007.



114 BIBLIOGRAPHY

S. Lindsey and C. S. Raghavendra. Pegasis: Power efficient gathering in sensor infor-
mation systems. In Proceedings of the IEEE Aerospace Conference, 3:3112531130,
2002.

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and
Computation, 108:212—-261, 1994.

M. L. Littman. Memoryless policies: Theoretical limitations and practical results. The
MIT Press, 1994.

Z. Liu and 1. Elhanany. Rl-mac: a reinforcement learning based mac protocol for wireless
sensor networks. International Journal of Sensor Networks, 1(3-4):117-124, 2006.

O. Madani, D. J. Lizotte, and R. Greiner. The budgeted multi-armed bandit problem. In
the Proceedings of the Seventeenth Annual Conference on Learning Theory, (COLT),
pages 643645, 2004.

G. Mainland, D. C. Parkes, and M.Welsh. Decentralised, adaptive resource allocation
for sensor networks. In Proceedings of the Second USENIX/ACM Symposium on
Networked Systems Design and Implementation, pages 315-328, 2005.

A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sen-
sor networks for habitat monitoring. In Proceedings of the First ACM International

Workshop on Wireless Sensor Networks and Applications, pages 8897, 2002.

K. Martinez, J. Hart, and R. Ong. Environmental sensor networks. Computer, 37(8):
50-56, 2004.

G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Ultra-low power data storage
for sensor networks. Proceedings of the Fifth international conference on Information

processing in sensor networks, pages 374-381, 2006.

G. V. Merrett. Energy- and Information-Managed Wireless Sensor Networks: Modelling
and Simulation. PhD thesis, University of Southampton, School of Electronics and

Computer Science, Southampton UK, 2008.

C. Ok, S. Lee, P. Mitra, and S. Kumara. Distributed energy balanced routing for wireless
sensor networks. Computers € Industrial Engineering, 57:125-135, 2009.

M. A. Osborne, A. Rogers, S. Ramchurn, S. J. Roberts, and N. R. Jennings. Towards
real-time information processing of sensor network data using computationally effi-
cient multi-output gaussian processes. In Proceedings of the Seventh International

Conference on Information Processing in Sensor Networks, pages 109-120, 2008.



BIBLIOGRAPHY 115

P. Padhy, R. K. Dash, K. Martinez, and N. R. Jennings. A utility-based sensing and
communication model for a glacial sensor network. In Proceedings of the Fifth Interna-

tional Conference on Autonomous Agents and Multiagent Systems, pages 1353—1360,
2006.

J. B. Predd, S. R. Kulkarni, and H. V. Poor. Distributed learning in wireless sensor
networks. IEEE Signal Processing Magazine, 23(4):56— 69, 2006.

F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-
armed bandits. In the Proceedings of the Twenty-Fifth International Conference on
Machine Learning, pages 784-791, 2008.

V. Raghunathan, C. Schurgers, S. Park, and M.B. Srivastava. Energy-aware wireless

microsensor networks. Signal Processing Magazine, 19:40-50, 2002.

H. Robbins. Some aspects of the sequential design of experiments. Bulletin American
Mathematical Society, 55:527-535, 1952.

A. Rogers, D. D. Corkill, and N. R. Jennings. Agent technologies for sensor networks.
IEEFE Intelligent Systems, 24(2):13-17, 2009.

A. Rogers, E. David, and N. R. Jennings. Self-organised routing for wireless microsensor
networks. IEEE Transactions on Systems, Man, and Cybernetics (Part A), 35(3):349—
359, 2005.

K. Romer and F. Mattern. The design space of wireless sensor networks. IEEE Wireless
Communications, 11(6):54-61, 2004.

S. Roundy, D. Steingart, L. Frechette P. Wright, and J. Rabaey. Power sources for
wireless sensor networks. Proceedings of the First Furopean workshop on wireless
sensor networks, 2920:1-17, 2004.

S. Schaal and C. G. Atkeson. Robot juggling: An implementation of memory-based
learning. Control Systems Magazine, 14(1):57-71, 1994.

M. W. M. Seah, C.-K. Tham, V. Srinivasan, and A. Xin. Achieving coverage through
distributed reinforcement learning in wireless sensor networks. In Proceedings of the
Third International Conference on Intelligent Sensors, Sensor Networks and Infor-
mation, pages 425-430, 2007.

S. Seuken and S. Zilberstein. Formal models and algorithms for decentralized decision
making under uncertainty. Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS), 17(2):190-250, 2008.

K. Shah and M. Kumar. Distributed independent reinforcement learning (dirl) approach
to resource management in wireless sensor networks. In Proceedings of the Internatonal

Conference on Mobile Adhoc and Sensor Systems, pages 1-9, 2007.



116 BIBLIOGRAPHY

G. Simon, A. Ledeczi, and M. Maroti. Sensor network-based countersniper system. In
Proceedings of the Second International Conference on Embedded Networked Sensor
Systems, pages 1-12, 2004.

S. Singh, M. Woo, and C. S. Raghavendra. Power-aware routing in mobile ad hoc
networks. In Proceedings of the Fourth annual ACM/IEEE International Conference
on Mobile Computing and Networking, pages 181-190, 1998.

J. A. Stankovic. Research challenges for wireless sensor networks. ACM SIGBED Review,
1(2):9-12, 2004.

B. Sundararaman, U. Buy, and A. D. Kshemkalyani. Clock synchronization for wireless
sensor networks: a survey. Ad Hoc Networks, 3(3):281-323, 2005.

R. S. Sutton and A. G. Barto, editors. Reinforcement Learning: An Introduction. MIT
Press, 1998. ISBN 0-262-19398-1.

R. Torah, P. Glynne-Jones, M. Tudor, T. O’Donnell, S. Roy, and S. Beeby. Self-powered
autonomous wireless sensor node using vibration energy harvesting. Measurement
Science and Technology, pages 125202.1-125202.8, 2008.

C. Vigorito, D. Ganesan, and A. Barto. Adaptive control of duty-cycling in energy-
harvesting wireless sensor networks. In Proceedings of the Fourth Annual IEEE Com-
munications Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks, pages 21-30, 2007.

D. Wagner and R. Wattenhofer. Algorithms for Sensor and Ad Hoc Networks: Advanced
Lectures. Springer, 2007. ISBN : 354074990X.

X. Wang and Y. Wang. Optimal investment and consumption with stochastic dividends.
Applied Stochastic Models in Business and Industry, page doi:10.1002/asmb.823, 2009.

R. Willett, A. Martin, and R. Nowak. Backcasting: Adaptive sampling for sensor net-
works. In Proceedings of the Third International Symposium on Information Process-
ing in Sensor Networks, pages 124-156, 2004.

T. Wu and S. Biswas. Minimizing inter-cluster interference by self-reorganizing mac
allocation in sensor networks. Wireless Networks, 13(5):691-703, 2007.

J. Y. Yuand S. Mannor. Piecewise-stationary bandit problems with side observations. In
Proceedings of the Twenty-Sixth Annual International Conference on Machine Learn-
ing, pages 1177-1184, 2009.

P. Zhang, C.M. Sadler, S.A. Lyon, and M. Martonosi. Hardware design experiences in ze-
branet. In Proceedings of the Second international conference on Embedded networked
sensor systems, 19:227-238, 2004.



BIBLIOGRAPHY 117

Y. Zhang and Q. Huang. A learning-based adaptive routing tree for wireless sensor

networks. Journal of Communications, 1(2):12-21, 2006.

F. Zhao and L. J. Guibasn. Wireless Sensor Networks: An Information Processing
Approach. Morgan Kaufmann, 2004. ISBN 1558609148.

J. Zhou and D. de Roure. Floodnet: Coupling adaptive sampling with energy aware
routing in a flood warning system. Journal of Computer Science and Technology,
22(1):121130, 2007.



	1 Introduction
	1.1 Research Requirements
	1.2 Research Contributions
	1.3 Report Outline

	2 Literature Review
	2.1 Long--Term Information Collection in Wireless Sensor Networks
	2.1.1 Adaptive Data Sampling
	2.1.2 Information Content Valuation
	2.1.3 Information--Centric Routing
	2.1.4 Energy Management

	2.2 Reinforcement Learning
	2.3 Multi--Armed Bandit Problems
	2.3.1 Non--Stochastic Multi--Armed Bandits
	2.3.2 Multi--Armed Bandits with Cost Constraints

	2.4 Learning in Wireless Sensor Networks
	2.5 Summary

	3 Formal Models and Problem Definitions
	3.1 Wireless Sensor Network Model
	3.2 The Long--Term Information Collection Problem
	3.3 The Energy Management Problem
	3.3.1 Energy Management with Energy Harvesting Sensors
	3.3.2 Energy Management with Non--Harvesting Sensors

	3.4 The Maximal Information Throughput Routing Problem
	3.5 Summary

	4 Maximal Information Throughput Routing
	4.1 Problem Description
	4.2 Maximal Information Throughput Routing Algorithm
	4.2.1 A Centralised Approach
	4.2.2 The Decentralised Algorithm

	4.3 Performance Analysis
	4.3.1 Optimality of the Algorithm
	4.3.2 Advantages and Shortcomings

	4.4 Empirical Evaluation
	4.4.1 Parameter Settings
	4.4.2 The Benchmark Algorithm
	4.4.3 Numerical Results

	4.5 Summary

	5 Energy Management with Energy Harvesting Sensors
	5.1 Non--Stochastic Multi--Armed Bandits
	5.1.1 The Exp3 Algorithm
	5.1.2 Regret Bound on the Performance of the Exp3 Algorithm

	5.2 Non--Stochastic Multi--Armed Bandits for Energy Management
	5.3 Performance Analysis
	5.3.1 Regret Bounds on the Performance
	5.3.2 Advantages and Shortcomings

	5.4 Empirical Evaluation
	5.4.1 Parameter Settings
	5.4.2 Benchmark Algorithms
	5.4.3 Numerical Results

	5.5 Summary

	6 Energy Management with Non--Harvesting Sensors
	6.1 Budgeted Multi--Armed Bandits with Pulling Cost
	6.1.1 Model Description
	6.1.2 The Budgeted --First Approach
	6.1.2.1 Uniform Pull Exploration
	6.1.2.2 Reward--Cost Ratio Ordered Exploitation

	6.1.3 Regret Bounds on the Performance of the --First Policies
	6.1.4 Performance Evaluation

	6.2 Budgeted Multi--Armed Bandits with Pulling Cost for Energy Management
	6.3 Performance Analysis
	6.3.1 Regret Bounds on the Performance
	6.3.2 Advantages and Shortcomings

	6.4 Summary

	7 Conclusions and Future Work
	7.1 Summary of Results
	7.2 Future Work

	Bibliography

