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Abstract This paper reports on the development of a multi-agent agpréo long-term information collection in networks of
energy harvesting wireless sensors. In particular, wesfarudeveloping energy management and data routing poticésadapt
their behaviour according to the energy that is harvestedrder to maximise the amount of information collected gitiee available
energy budget. In so doing, we introduce a new energy marameathnique, based on multi-armed bandit learning, tleaégeach
agent to adaptively allocate its energy budget across e tf data sampling, receiving and transmitting. By udiigapproach, each
agent can learn the optimal energy budget settings thatitgdféicient information collection in the long run. Then, \weopose two
novel decentralised multi-hop algorithms for data routifige first proveably maximises the information throughputhie network,
but can sometimes involve high communication cost. Therskebgorithm provides near—optimal performance, but wétiuced
computational and communication costs. Finally, we dermatesthat, by using our approaches for energy managemdrroating,
we can achieve 820% improvement in long-term information collection againstte—of—the—art benchmarks.

1 Introduction

Due to their flexibility, low cost and ease of deploymentwaks of wireless sensors are being used in a wide
variety of applications ranging from environmental, habénd traffic monitoring, to object tracking and military
field observations (Chong and Kumar, 2003; Merrett, 2008yeReet al, 2009; Romer and Mattern, 2004).
Specifically, in this context, wireless sensor netwokkVSN) is viewed as a network of small, densely deployed,
spatially decentralised autonomous sensor devices Keefeo hereafter as “nodes”) communicating through
a wireless communication network, whose task is monitoghgsical or environmental conditions including,
but not limited to, temperature, sound, vibration, pressaeismic, infrared, magnetic and motion information
(Balduset al,, 2004; Juangt al,, 2002; Simoret al,, 2004).

These networks are typically deployed for collecting infation from a heterogeneous and dynamically
changing environment (i.e. the characteristics may vaer ®oth space and time), and are typically required
to operate over an extended period of time (covering montteven years). Within this paper, we typically
focus on environmental changes such as varying occurreinttee @bserved phenomena, varying distribution
of collectable information (both in space and time), or r@twtopology changes during operation time. The
information collected is then typically forwarded to a batation (35) (also referred to as a sink or gateway)
Information that arrives at th&S is then processed or transmitted outside the sensor netaakd-users for
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1 In most cases, th@S is a specialised node that has significantly more power tharotdinary ones and, depending on the
application, there can be more than one of them in the network
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further analysis, fulfilling the specific goals of the WSN bispnent. Note that some real-world WSNSs requires
newest data only, and thus, the value of information thatised in the past rapidly decays as time passes by.
Such WSNs are typically deployed for real-time target tieglor real-time object localisation (H al., 2006;
Simonet al, 2004). Within these networks, a fundamental goal is to smliécted data to théS as fast as
possible (i.e. the data has a strict delivery time condixa®n the other hand, other networks focus on collecting
information within a non real-time manner. That is, the dgptl network continuously collects information from
the surrounding environment, without having the aforenoaed strict delivery time constraint (i.e. the collected
information can be delayed for a longer time before it iswdtd to theB.S). Since most of the WSN applications
are deployed to fulfil the latter type of monitoring (Chongldumar, 2003; Merrett, 2008; Rogezgsal., 2009),
here we focus on networks where the goal is to collect inféionaover a period of time, in a non real-time
manner.

Since the energy capacity of sensor nodes is typically didhithe total operation time of WSNs is often
heavily restricted (Akyildizt al, 2002; Roger®t al,, 2009). In particular, limited energy capacity impliesitap
depletion of the sensor batteries, which may lead to inseffialata collection from the network. Given this, in
order to extend the operation time of sensor networks, a puwiirecent research works have proposedrgy
harvesting sensorsvhich have the capability of scavenging ambient energwfiteeir surrounding environment,
using solar, vibration, temperature, and radioactive cesi({Beebyet al., 2006; Toraket al, 2008; Zhanget al,
2004). Within such settings, sensor nodes typically seetotaply with the concept oénergy—neutralityin
which the energy consumption of a node should be equal taitekted energy (Khet al., 2009; Vigoritoet al.,
2007). The advantage of such approaches is that sensorgiedimitely extend their life span, which is especially
important when information collection has to operate overaonged period of time. Given this background, in
this paper, we focus in particular on the challenges aswatiaith efficient long—term information collectidn
networks of sensors with rechargeable batteries. Thatigim to maximise the total information value collected
and delivered to thé& .S in a given extended time interval of operation, or over thiérefifetime of the network,
where the nodes follow the concept of energy—neutrality.

Now, to forward data to thé.S, sensor nodes can use single-hop (i.e. sensors directlydsea to theBS)
or multi-hop (i.e. data is forwarded towards tB& via relay nodes) routing scenarios. The former needs no
coordination and cooperation between the nodes. Howewerttee limited communication range of the sensor
nodes, this scenario is only feasible when the nodes areylpln a small area (since tli5 needs to be within
the communication range of all the nodes). Since WSNs tilpicaver a significantly larger area, the multi-hop
routing scenario is more desirable in such networks. Howéliiss demands aefficient control mechanisithat
coordinates the nodes to collect information. In particutdas mechanism dictates the information collecting and
forwarding actions of the sensor nodes, so that the obgofithe network deployment can be achieved (Horling
et al,, 2006; Kho, 2009). Against this background, this paper $eswn the control side of the WSN; that is, we
propose a sensory task control mechanism that sensor nadasse in order to maximise the total amount of
information collected within a prolonged period of time.

Such control mechanisms fall into two broad categogestralisedanddecentralisedin the former, a single
controller receives information from all the nodes, anchtbetermines the actions of each node indicating how
they should sample, receive, forward, and route data. Withis approach, however, the central controller is
required to perform a large number of computations in orddind each node’s optimal actions. Thus, it often
represents a significant computational bottleneck, eafhan large networks. Furthermore, since the controller
needs to collect all the information from the nodes, thetgidieally a delay in time before it can start determining
the nodes’ actions. Given this, the centralised approach moa respond well to the environmental changes,
and thus, it can suffer from a lack of ability to efficientlyegd to those changes. In contrast, in decentralised
control regimes such a central controller does not existebd, the nodes are autonomous and each decides its
individual actions based on its own local state and obsenstand those of its neighbouring nodes. Thus, the
aforementioned disadvantages disappear within the datiset! control regime (Boukerche, 2008; Wagner and
Wattenhofer, 2007). Therefore, in this work, we focus oneté@lised control mechanism for WSNs. However,
this approach raises several new challenges. Specifitatighieve system-wide goals, the nodes must typically
coordinate their actions with their neighbours (e.g. tavmd data or to track objects). In addition, since the
nodes typically operate in a dynamically changing envirentnthey must be able to autonomously adapt their
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behaviour, without having global information about theteys, in order to achieve the long-term global goals (e.g.
maximal information collection or optimal coverage) (Bailit al., 2007). Such issues naturally lend themselves
to amulti-agent systertMAS) perspective (Lesseat al, 2003; Pchouek and Mak, 2008; Soh and Tsatsoulis,
2005), in which each sensor is represented by an agent, \whicimomously and cooperatively acts, in order to
achieve system-wide objectives (Jennings, 2001).

Against this background, the information collection peshl that we address consists of a set of energy
harvesting sensor agents (i.e. nodes), collecting infoomdérom a dynamic environment over an extended period
of time, without the aid of a centralised controller. Howewkie to the limited energy harvesting capacity of the
agents (Kansal and Srivastava, 2003), energy efficien@rigps the most important issue within the information
collection problem (Chong and Kumar, 2003; Stankovic, 200¥particular, since the agents follow the concept
of energy—neutrality, their energy consumption cannoeegdhe amount of energy that they can harvest. Given
this, it is important to wiselynanage the energy consumptioithe agents, such that they can decide whether to
allocate more of this scarce resource to the tasks of sagapéiceiving, or transmitting data, in order to achieve
maximal long—term information collection. In addition, \&kso need to develop routing techniques in order to
deliver the data to th&S, and thus, to maximise the amount of information collectethe network. Given this,
in this paper, we focus in particular on the challenges ofggnmanagement and data routing. However, tackling
this joint problem of energy management and routing is hiargarticular, each agent has a number of options
to allocate amounts of energy to its sensory tasks. In aaditt needs to decide which packet it has to send,
and to whom among its neighbouring agents. These optiorshttegresult in a large task combination space (i.e.
the space of combined tasks of energy allocation and pa@erission/receiving), from which the agent has
to determine an optimal one (i.e. the task combination tadd to the desired goal of the network). This task
combination space is typically exponential, compared &odiae of the network, so the joint problem quickly
becomes infeasible in terms of complexity. Thus, to singpife complexity of the original joint problem, we
separate the energy management and data routing problemvevelr, as we will show, by using the solutions of
the separated problems, efficient information collectian be still achieved.

In more detail, the decomposition of the original problem ba described as follows. It is based on the obser-
vation that by adaptively setting the value of the energygetsiallocated to the various sensory tasks, the agents
should achieve better performance in dynamic environmémas systems without the ability to adapt in this
fashion. However, in order to determine which energy budfjetation combinations are optimaxploitatior),
the agent first has tearn the performance of all the combinatiorexploratior). Thus, it has to balance between
exploration and exploitation. Given this, within the enenganagement problem, we seek for an efficient learn-
ing method that finds a trade—off between exploring and éipdpthe energy budget allocation combinations, in
order to achieve optimal performance of long—term infoioratollection. Now, suppose that all the agents have
already set their energy budget value for sampling, reegjv@nd transmitting tasks. In this case, to maximise
the value of the total collected information, it is obviolsit we need to maximise the total information value
of data sampled or relayed by agents that are one hop fromB théhe latter, however, is equal to data that is
sampled or relayed by agents that are two hops fromBtheand so on. Thus, it is also important to maximise
theinformation throughpu{i.e. the total transmitted information value) betweerghbouringlayersof agents
(i.e. the group of agents that are the same distance froB f)doy using efficient routing techniques. This forms
the routing problem we aim to solve within our paper.

To solve the energy management problem, we proposalg—armed bandit learningMAB) based energy
management model for each agent within the network. Inqa4ati, within the MAB model, each agent chooses
from its action set (i.e. set of energy budget allocationgpah round, and, based on this choice, it gets a reward.
The goal of the agent is simply to maximise its total rewardrav given time period. For the routing problem,
we propose two simple decentralised routing algorithme. fiist is proveably optimal, but can sometimes use a
large number of communication messages to coordinate thiigo The second algorithm is near—optimal, but
its communication cost is significantly lower. By using ori¢h@ proposed routing algorithms, our approach can
calculate the total amount of information throughput ttnet touting algorithm produces within that particular
time step. This amount of information then forms the rewaidie that the MAB model gets by using the chosen
energy budget allocation combination (see Section 4 forendetails). With this reward value, the MAB model
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gets the feedback about the efficiency of the chosen endigatibn combination, and thus, it can learn which
combinations are more efficient ones.
Given this context, this work advances the-state-of-tthéacthe following specific ways:

— We introduce the first integrated model for WSNs that considaergy neutrality, adaptability, information
content valuation techniques and long-term efficiency.

— We devise the first multi-armed bandit learning based enaugget allocation approach, called MAB/EM.
Based on this, we show how efficient energy management candbairsed in the long term, by using this
approach.

— We propose two simple decentralised routing algorithmsTRA and MITRA . The former is the first
to proveably maximise the total information throughputviestn layers of agents, whilst the latter has a
near—optimal performance (it achieves, on aver@g#; of the optimal solution), but with a reduced commu-
nication cost.

— We empirically evaluate the performance of these algostiinnough extensive simulations and show that
information collection is increased by up120%, by applying the proposed algorithms, compared to that of
USAC, a state-of-the-art method (see Section 2 for moreldetBUSAC). Furthermore, we show that the
communication cost of our approaches are low, comparedetodkt of real data transmission.

The remainder of this paper is organised as follows. Firspresent related work in this area in Section 2, and
detail why it does not meet all our requirements. Followinig twe give the formal descriptions of our network
model and research objectives in Sections 3. We then discuisgpproach for efficient long-term data collection,
which includes the MAB learning based energy managemertoddgSection 4), and routing algorithms (Section
5), respectively. Our approach is then empirically evadah Section 6. Finally, Section 7 concludes.

2 Literature Review

Previous work on information collection in WSNs has priyafocused on energy efficiency, and thus, aims
to lengthen the life span of the network. In particular, a bamof energy efficient algorithms use clustering
techniques to minimise energy consumption during routhmgugh the rotation of cluster-heads such that the
high energy consumption in communicating with tB& is spread across all nodes. These algorithms include
low energy adaptive clustering hierarciilyEACH), proposed by Heinzelmaet al. (2000), andpower efficient
gathering in sensor information systefPEGASIS), proposed by Lindsey and Raghavendra (2002energl,
these methods make a good attempt to balance the energyngatiu by electing cluster—heads, each of which
is responsible for relaying the data from a subset of nodek tmathe BS in an intelligent way. However, these
cluster—heads all need to be placed insideAt$es radio range as they communicate with it directly. Thuss th
assumption limits the size of the monitoring environmeitce the wireless radio range of this is limited.
Moreover, these single cluster—heads can become a comationibottleneck of the network, since in each round
they need to communicate with a large number of nodes wiltgin tluster. Hence, this aspect contains many of
the drawbacks of the centralised control regime.

In addition, energy efficiency can be maintained by redutirgtotal energy consumption needed to deliver
the packets to th&S. From this perspective, Dekorgy al. (2007) proposed an approach that jointly controls the
routing and energy management, in order to achieve efficiatat forwarding. In particular, their approach aims
to minimise the total energy consumption of each node, wiiks collected data has to be delivered to the
using multipath routing (i.e. there can be multiple routpaghs between a node and tB&). In so doing, the
approach considers each node’s residual energy levelahemission power level, and maximal communication
bandwidth. This approach, however, assumes that the dateeady sampled, and that future data is not taken
into consideration when optimal routing paths are caledaGiven this, whenever the environment changes (e.g.
node failure occurs, or the distribution of collected imi@ation changes), it has to recalculate the optimal paths,
and thus, it requires significant computational resources.

Another way to lengthen the life span of the network is to gerfenergy balancingDingaet al,, 2004). That
is, to maximise the residual energy level of the bottlenemien(i.e. the node with the lowest energy level) in the
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network during the routing. In this vein, G al. (2009) used a metric to take the energy cost of transmisan,
well as the sensors’ remaining energies into account. Teisiogives rise to the design of tligstributed energy
balanced routing DEBR) algorithm, to balance the data traffic of sensor nétean a decentralised manner.
Furthermore, Liet al. (2007) proposed a global—energy balancing routing sch&&BR) for real-time traffic.
Now, whilst both of these algorithms perform well in prolamg the lifetime of the WSN, they are not designed
for adapting to dynamic environments, since they do not tagenvironmental changes into account.

More recently, Merrett (2008) developed timformation managed energy aware algorithm for sensor net-
works(IDEALS) protocol, which aims to extend the network lifegémof WSNs. IDEALS is an application spe-
cific heuristic protocol as it requires that every sensorenddcides its individual network involvement based
on its own energy state and the importance of informatiortainad in each message. Similarly, USAC (for
utility based sensing and communication protocol) usespportunity cosof the energy used by each sensor
to balance the energy consumption of the tasks of samplidgf@warding (Padhyet al, 2010). That is, by
evaluating its own opportunity cost, each sensor can dedidgher it spends energy on sampling or forwarding,
depending on which is the more preferable opportunity ferdansor. Moreover, USAC also considers the total
energy consumption required to transmit a packet alongtacpkar path as well. These methods, since they can
vary the energy budgets allocated to the sensory tasksuiable for adapting to environmental changes. How-
ever, they are not designed for sensors with rechargeatiteriea, and thus, they do not follow the concept of
energy—neutrality. Given this, an increasing percentdgeimmsor batteries will deplete as time goes by, and thus,
the global performance of the network will be decreasederdhg term.

Beside the concept of energy—neutrality, another way téesetefficient long—term information collection
in WSNs is to distinguish important from less important data that the network can preferentially deliver
important data to thé3 .S, in order to maximise the amount of collected informatiohislis especially vital when
communication cost is much higher than other costs, as éndfte case with lower power devices (Merrett,
2008). To achieve thisnformation content valuatiotechniques are typically used to calculate the importance
of data (Frieden, 2004; Kho, 2009; Kraustal., 2006). In so doing, an information value metric, such abétis
information or mutual information, is often used to detarenthe level of importance of information. Given this,
in this paper, we also use the concept of information contaluation, in order to maximise the performance of
the network in long—term information.

Within the literature, routing approaches that use theemf@ntioned information content valuation tech-
niques are typically referred to &sformation—centric routingprotocols. One of these algorithndirected dif-
fusion(DD), has been developed by Intanagonwiwail. (2003). In DD, theBS sends out a data collection
query description by flooding the query to the entire netwdhat is, data collection happens only when ihg
needs a certain type of data. However, since data colleapptications (e.g environmental monitoring or area
surveillance) typically require continuous data delivemthe BS, a significant number of queries will be sent
to the network. In this case, the communication cost of DDsedwby query floodings is high, meaning DD is
not suitable for long—term information collection. To aydlooding, therumour routing(RR) protocol routes
the queries to the nodes that have observed a particular eviegtrieve information about the occurrence of the
event, and thus, it reduces the total communication costyiBsky and Estri, 2002). However, both DD and RR
perform well only when the number of events is small, and thents are predictable and periodic. Otherwise,
if a large number of unexpected events occur in the futueeatorithms become infeasible, since they cannot
predict these events a priori, and thus, Bh& does not know where to send the query in order to collectinéer
tion of the particular events that occur within the netwdvlareover, all such information—centric protocols do
not take into account the network’s dynamism (i.e. the charaj network topology) in forwarding data packets.
Given this, these algorithms are not suitable in our sedting

Whilst in DD and RR, information is collected by sending é@giplqueries from theB.S, other methods focus
on continuous information collection. That is, they pravidformation collection, without the need of sending
any queries, during the whole operation of the network. Retance, USAC considers the remaining battery
power of the communicating nodes and the importance of tkee llEing transmitted, in order to determine the
appropriate routing path for the packet. In a similar velrg adaptive routing algorithm(ARA) of Zhou and
de Roure (2007) considers the link cost (assumed to be propar to the distance) between the nodes into
account as well. However, these protocols are not desigmeddlving the maximal information throughput
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routing problem, since their main goal is not to maximiseitiiermation throughput between the neighbouring
layers of sensor agents, but rather to identify optimal pattween each node and tBe, that can be used for
forwarding data.

Despite their efficiency in energy consumption, none of fbessnentioned approaches is designed to comply
with the concept of energy—neutrality. To date, very fewdss have focused particularly on data collection in
networks of energy harvesting nodes. A notable exceptiongeker, is the work of Kansal and Srivastava (2003).
In their work, the authors used spectral estimation funstind prediction filters to estimate the expected amount
of harvested energy of each sensor in a given future timevaiteBased on these estimations, the sensors are
able to schedule their tasks, in order to achieve long-tevaisg However, their approach does not consider
information content valuation, and thus, will not perforneliMn information collection. More recently, Kho
et al. (2010) proposed an energy neutral information—centria datlection algorithm, that combines sampling
and routing policies, in order to maximise the collectedinfation in one time slot. That method, however, does
not plan for long—term operation, since it does not congiy@aamic changes of the environment.

To date, very few approaches have attempted to use leamihg WSN domain. Notable exceptions, how-
ever, typically focus on sleep—awake cycle schedulingdapgve routing. In the former, Mihaylost al. (2009)
proposed a reinforcement learning based technique to éxtenlife span of the network by learning the most
efficient sleep—awake ratio. This topic is outside the sadpmur interest, since we assume that our sensors are
able to recharge their battery, and thus, they do not neaethtedsile their sleep—awake cycles. On the other hand,
in the latter research area, a number of researchers pfEEsaing—based technigues to maintain a routing tree
that efficiently handles the node failures, creating aniefitcconnectivity between the nodes to tB¢ in all
circumstances (Zhang and Huang, 2006). In addition, Adlledeil. (2007) developed swarm intelligence—based
algorithms which use learning for data packet routing in VESRurthermore, Gelenbe and Lent (2004) proposed
a concept called €ognitive Packet NetworkCPN) for intelligent packet forwarding in wireless ad hogt-n
works. In particular, CPN is an autonomous adaptjuality of servicQoS) driven network, which adaptively
selects paths so as to offer best effort QoS to the end usses loa user defined QoS. CPN uses neural network
based reinforcement learning to make routing decisionaraggly at each node. However, these approaches do
not focus on maximising the collected information in a loreym operation, and thus, will not perform well in
the long run. More recently, Jaiet al. (2009) proposed a reinforcement learning based techniyweder to
efficiently coordinate the sensors over a prolonged perfdoine. This work can be regarded as most related to
our paper, since it also aims to maximise the total amoungwérds (e.g. information value) over the operation
time. However, their approach exploits the fact that therenment is static, and thus, the reward matrix (i.e. an
action—reward mapping) is static over time. Thus, this @aagh will not perform well in dynamic environments.

Finally, note that apart from the MAB approach, there extekeq more sophisticated, learning concepts to
tackle the information collection problem. This includbst is not limited to, the following: multi—state Markov
decision processes (MDPs) (Sutton and Barto, 1998), panibservable MDPs (POMDPs) (Cassandra, 1998),
and decentralised POMDPs (DecPOMDPSs) (Seuken and Ziders2008). However, these learning methods
require higher computational complexity, compared to tifathe MAB learning. In particular, these learning
concepts also take into account the state of the environméinth is modified by the actions of the agents. This
implies that within the concepts above, an agent needs tsid@na significantly larger space of options (i.e.
space of state—action pairs), compared to that of the MABahathere the space of options only contains the
set of the agent’s actions. In addition, as we will see ldber MAB approach produces remarkably good results
in data collection (see Section 6 for more details).

3 System Models and Problem Definitions

Having described the research objective and related woduopaper, we now introduce a formalisation of the
long—term information collection problem for WSNs in thextion. To this end, we first provide a formal descrip-
tion of the WSN system in Section 3.1. In particular, we dibgcthe models of adaptive sampling, information
content valuation, data routing, and energy managemeitigmlthat play fundamental roles in efficient infor-
mation collection of WSNs. Here, we also discuss the assongton which the model formalisation is based.
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Following this, in Section 3.2, we formulate the main obijezbf our research: that is, to achieve efficient long-
term information collection in WSNs. Finally, we decompdbke information collection problem into the two

separate sub—problems described in Section 1: (i) energagement; and (i) maximal information throughput
routing, which we introduce in Sections 3.3, and 3.4, rethpely.

3.1 The Wireless Sensor Network Model

In order to formalise the long—term information collectiohallenge introduced earlier, we first need to intro-
duce a suitable WSN model. Given this, we now present our W8Nemthat covers the energy management,
sampling, information content valuation, and routing comgnts, respectively. Recall that for all the reasons
outlined in Section 1, we pursue a multi-agent system medereby sensor nodes are represented as agents.

Now, since the main focus of the paper is on the control sidbeo¥WSN, we make the following assumptions
about the physical world of the network, in order to simptifiie complexity of the model:

— The network that we are studying is not a mobile network ¢he. agents cannot change their location),
however, link failures, node failures and node additiorestaken into account. That is, the network can be
topologically dynamic, but not mobile

— In our model, theenergy consumption of memory managenieat reading from memory and writing to
memory)is negligiblecompared to the energy consumption of data sampling andafdimg. This assump-
tion is reasonable according to the experimental studigarted in Mathuret al. (2006) and Anastagit al.
(2004).

— We also assume that once the communication channel is segdretwo nodes, data transmission between
these nodes igerfect(i.e. no data loss occurs). This assumption is reasonatpecelly in networks where
there is a demand of high quality of service (QoS) (Youtial, 2004). In particular, if the ratio of successful
transmission of a communication channel is low (i.e. the @®w), then that communication channel
cannot be established. In order to guarantee high QoS witt8Ns, efficient techniques can be used, such
as time synchronisation policies (Degesys and Nagpal, ;2B88n and Estrin, 2001; Sundararanetral,
2005), or medium access control (MAC) protocols that cdnbe data transmission of each node (Demirkol
et al, 2006; Wu and Biswas, 2007). By using the aforementionelhigoes, we can guarantee that no data
loss occurs during data transmission.

— Each node caperiodically recharge its batterymaking it independent of human intervention. Here, we use
a realistic model taken from existing WSN applications. f'sowdels can be found for example, in Beeby
et al. (2006), Toratet al. (2008), Zhanget al. (2004), Roundyet al. (2004), or Merrett (2008).

Given this, we can formulate the WSN model as follows. Let 1,2, ..., N be the set of agents in the network,
which contains one base station, denofgf. We assume that each agent knows its distance in hops from the
BS. This can be achieved by using any of the standard shortéstapgorithms (e.g. distributed breadth-first
search or distributed Bellman—Ford). Furthermore, eaeimiagan only communicate with those who are inside
its communication range, and different agents may haverdifit ranges.

Here, for the sake of simplicity, we split the time line intots. That is, hereafter we assume that time is
discrete, and can be denoted with the sequenae-of0,1,2,.... We consider three specific kinds of energy
consumption for each agent in the network, namely: the emexguired to (i) acquire (i.e. sample); (ii) receive;
and (jii) transmit a single data packet (we assume that eackep has the same size in bytes). Given thissSlet
ePx andel™ denote the energy consumption that agemas to spend for sampling, receiving, and transmitting
a single data packet, respectively.

Let B; denote the average amount of harvested energy of ageer a single time period. Since the agents
comply with the concept of energy—neutrality, the totalrggebudget agent can use is equal to the amount
of energy that agentcan harvest. Note that this assumption slightly simpliffesreal-world models, since in
reality the energy consumption limit does not need to pégfenatch the amount of harvested energy as long as

2 Our model can easily be extended to cover systems with reultipse stations.
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the battery of the agents is not depleted. However, for tke sbsimplicity, we assume that the energy harvesting
is stable within this papér Given this, we assume that the amount of harvested energjgpés constant, and we
denote it withB;. That is, for each time slat the energy consumption of agertannot exceed; in our settings.

In addition, we disregard the energy required for other sypleprocessing since it is negligible in comparison
(Mathuret al, 2006; Merrett, 2008).

For data sampling, since our goal is not to develop new sagéchniques, we use existing sampling
techniques from the literature. Specifically, we focusadilaptive data samplingechniques. Such policies have
been advocated as the way to achieve accurate estimates efitironmental conditions, whilst minimising
redundant sampling of the environment. Relevant exammesbe found in Kheet al. (2009), Willettet al.
(2004), Jain and Chang (2004), or Cover and Thomas (200@articular, adaptive sampling techniques often
include sets of rules that control a nodeampling rate(i.e. how often a node is required to collect data by
sampling during a particular time interval) asdmpling schedulingi.e. when a node is required to sample).
The advantage of adaptive sampling is that it can efficieshtlgl with the environmental changes by adaptively
changing the sampling rate, and thus, is capable of aclgeond performance in the long—term. Given this, we
aim to use an efficient adaptive method for data samplingigwibrk.

To calculate the importance of sampled data, we use infeamabntent valuation methods. Similar to the
sampling case, any existing technique from the literatarele used for this. Such techniques can be found, for
example, in Guestriet al.(2005), Osbornet al. (2008), or Kheet al. (2009). This information content valuation
method should assign real values to each of the sampled dekatp in the way that more important packets
have higher values. Since the environmental charactesisfi the network may vary over space and time, the
value of data that agents can sample may vary as well. Hopéheeagents within the network do not haae
priori information about these environmental changes. Furthernwee also assume that the information value
of the collected data idiscountedover time by a factonn € (0,1] (i.e. loses its value as time passes by), if
it is not delivered to theBS yet. This assumption is justified by the fact that in many aagilons, more up
to date information is preferable to older information. &irour main focus is on networks without real-time
delivery constraints (see Section 1 for more details), veei@e that the information discount factor is typically
high (i.e.A > 0.5). The intuition of this assumption is that with higher infaation discount factor, the collected
information then can be delayed for a longer time, withostrig much of its value, before it is delivered to the
BS. Note that within our model, the information value of nonlected data (i.e. data that are not sampled yet by
the agents) may also decay over time. However, we assumththahderlying sampling method can efficiently
sample data so that important data can be collected edréiariéss important data.

In existing routing protocols, agents typically forwardal#o other agents, which are closer to €, either
in terms of physical distance or number of hops. Thus, fdhowthis concept, we assume that in our model,
agents can send data to those which are closer t&@$é terms of number of hops. Finally, we assume that
data sampled or received at each agextslott can only be forwarded from sl¢t + 1). This assumption is also
reasonable, since without it, newly sampled data could beeded to theB.S instantaneously.

3.2 The Long—Term Information Collection Problem

Given the model that considers adaptive sampling, roufimfigrmation valuation and energy management of
WSNSs, we now aim to give a formal description of the resealgjbative. That is, to maximise the total collected
information in WSNSs, in a given finite time interval. In moretdil, letS; (¢), Rx; (t) andTx; (¢) denote the

set of sampled, received and transmitted data packets of agetime slott. Let p denote a single data packet,
whose information value at time slotis v (p, t). Furthermore, we assume that the WSN operates in the finite
time interval[0, T]. Given this, our objective is formulated as follows:

T
max Z { Z v (p,t) } 1)

t=0 \ pcRzpg(t)

3 The relaxation of this assumption, however, remains asdutork (see discussion in Section 7).
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Here, Rz pg (t) denotes the set of packets that tB§ receives at time slat That is, we aim to maximise the
total information value delivered to thS over the time interva0, T'], with respect to the following constraints:

Tx; () C Qi (1) @
for each agent and time slot, whereQ; () is the set of total transmittable data packets in the menTdvst is,
the set of transmitted data is the subset of the total tretedoie data (packets that were sampled or arrived until
the previous time slot) of each agenturthermore,

Qi(t+1)=(Qi()/Tx; (t))US; (t) URx; (¢) (3)
for each agent. Note thatQ; (¢) /Tx; (¢) denotes the set of packets that is@j (¢) but not inTx; (¢) (i.e.
exclusion). That is, the set of transmittable data of agemtime slot(¢ + 1) is the union of the sets of residual
data (i.e.(Q; (¢) /Tx; (t))), the received data and the sampled data at timetskeor the concept of energy-
neutrality, we have the following constraints:

€5 ISi ()] + e |Rx; ()| + €] |Tx; ()| < B; 4

for each agent, where|{.}| denotes the size of sét}. Furthermore¢?, eR*, ande]* are the costs of sampling,

receiving, and transmitting a single data packet, as defm&ection 3.1. This constraint demonstrates that the

energy consumption of each action taken by ageannot exceed the energy budget given in timeslot
Furthermore, for each € S; (k) U Rx; (t) (i.e. received data or sampled data of agesittime slott), that

is not delivered to thé3 S before time slot:

v(p,t+1)=xv(pt) )

where\ € (0, 1] is the discount coefficient. That is, the information valipaxcketp is decayed with the discount
factor )\, as time goes by.

As mentioned in Section 1, to efficiently solve the problemnfolated in Equation 1, we separate the study
of the energy management and routing of the WSN, whilst warasghat efficient sampling and information
content valuation can be achieved by using existing teclesigGiven this, Section 3.3 discusses the energy
management problem in more detail, whilst Section 3.4 feswus the routing problem.

3.3 The Energy Management Problem

As mentioned in Section 1, the definition of the energy mamesye problem is based on the observation that
since each agent can sample, receive or transmit datagicessary for the agents to vary the energy budget they
associate with each of these action types, so that theiathparformance can effectively adapt to environmental
changes. That is, by adaptively setting the value of theggrtmrdgets assigned to the sensory tasks, the agents can
decide whether to put more effort on sampling (e.g. whenifsigmt events are occurring in the monitored area),
receiving important data from the others (e.g. when theyelallected high value information that has to be
delivered to theBS), or transmitting data (e.g. when the delivery of data cabeaelayed too long). With such
capabilities, our hypothesis is that the agents shouldegetietter performance than systems without the ability
to adapt in this fashion. However, in order to find the optic@hbination of budget allocation, the agents first
have to learn the efficiency of each combination, which leadbhe dilemma of exploration versus exploitation
(see Section 1). In more detall, if the agent only focusessaming the optimal combination (i.e. exploration),
the total collected information of that agent over the openatime might not be maximal, since the agents has
to try out all the combinations (including those with low eifincy). On the other hand, if the agent decides to
focus on the best combination so far (i.e. exploitationjpéy miss the chance to find a better combination that
results in better overall performance (i.e. better colddhformation over a long term). Furthermore, since the
environment is dynamic, the optimal combinations may vasrdime. Thus, the learning method has to be able
to adapt to these environmental changes as well. Givenlihissing the notations of the WSN model and the
information collection problem described above, the epengnagement problem can be described as follows:
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Definition 1 Theenergy management problethat we are facing with, is a sequential decision makindglern
where at each time slet each agent has to choose a combination of energy budget allocationsaimpling,
receiving, and transmitting, respectively. Followingsthiigent; evaluates the efficiency of the chosen combi-
nation by measuring the amount of sampled, received, andridted information within that time slot, with
respect to the chosen energy budgets. The goal of each agettt find a sequence of decisions (i.e. learning
method) that efficiently tackles the trade—off betweenapgilon and exploitation, and the dynamic behaviour of
the environment, leading the overall system to achieve mabiong—term information collection.

This problem can be formalised as follows. Since energydsiing is possible, we follow the concept of energy—
neutrality, in order to guarantee the long—term operaticth@ network (see Section 1 for more details). Conse-
quently, the total amount of energy that agénan use at each slot is equal to the total harvested enerbgtin t
slot. Given this, recall thaB; denotes the average amount of agénharvested energy for each time sipthat
is, the amount of energy available for ageint slott is B;.

Now, let B (t), BR* (t), and BI* (t) denote the energy budgets that ageaitocates to sampling, receiving
and transmitting at time slat respectively. That is, at each time step, the agent makesiaion of choosing
values forB? (t), BR* (), andB}™ (t). In so doing, it has to take into account the following comistis:

eF1Si (1) < BY (t)
ei™ [Rx; ()] < Bi™* (t) (6)
el X [T (t)] < B (¢)

for each agent. These constraints demonstrate that the energy consumgitieach action made by agent
cannot exceed the energy budget of each task given in time $larthermore, we have:

Bf (t) + B (t) + B (t) < B;

Now, it is obvious that by allocating more energy to a sensasl, each ageritcan improve the performance of
that task (i.e. it can sample, receive, or transmit more i@dnigher energy budget is allocated to the tasks of
sampling, receiving, or transmitting). Given this, we amseuthat at each time slot each agent fully allocates

its energy budget to its sensory tasks. That is, we have tlesviog modified constraint:

B} (t) + BF*(t) + Bf* (t) = B; @

Thus, the set of combinations, from which ageritas to choose one, is the set of energy budget allocations
that satisfy Equation 7. Given all this, our goal is to masenthe objective given in Equation 1 by providing
an efficient decision making policy to the energy managerpestilem described in Definition 1. Therefore, in
Section 4, we propose a MAB learning based approach, in ¢odficiently tackle this problem.

3.4 The Maximal Information Throughput Routing Problem

Having described the energy management problem, we nowsdishe maximal information throughput routing
problem, which aims to maximise the total information thau de forwarded between neighbouring layers (i.e.
the group of agents that are the same distance froB#jeof agents. Given this, we group the agents within the
network into layers, such tha denotes the set of agents that aheps from theBS. Let L denote the number
of layers in the network. Note that thS itself is layer0. Thus, we have the following:

Definition 2 Themaximal information throughput probleisithe optimisation problem where agents in lager
have to perform the maximal total information throughpulatger £, _; in time slot¢, with respect to the energy
budgets of each agent.

The formulation of the problem can be described as follows:

max { Z Z v (p, t)} (8)

i€L; peTa; (k)
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with respect to the following constraints:
EF|Tx; ()] < B (1) ©)

for eachi € £;, whereTx; (¢) is the set of transmitted data of nodat time slott, andv (p, t) is the information
value of packep att. That is, each sender agent cannot exceed its transmittieigyye budget during its data
transmission operation. Furthermore,

E™ |Rx; (t)] < B (1) (10)

for eachj € £,_,), whereRx; (t) is the set of received data of nodlat time slott. Thus, each receiver agent
cannot exceed its receiving budget during data receivimallly, constraints described in Equations 2, 3, and 5,
that express the conservation of information within outisgf have to be taken into account as well.

In order to solve this problem, we propose two decentral&@gdrithms, one is optimal, but with significant
communication costs, whilst the other is near—optimal viith reduced costs. We describe these algorithms in
more details in Section 5.

4 Multi-Armed Bandit Based Energy Management

Given the problem definitions described above, we now cdragnon the energy management problem pre-
sented in Definition 1. Therefore, we first introduce the ftation of the method used for energy management,
namely the multi-armed bandit (MAB) problem, in Section. & allowing this, we describe the MAB learning
based energy management approach in Section 4.2. Then lysatfze computational complexity of this ap-
proach in Section 4.3. In particular, we show that our apgrdeas linear running time, and linear memory usage,
compared to the number of each agent’s available optionsesfyy budget allocation.

4.1 The Multi-Armed Bandit Problem

The standardnulti-armed bandi{MAB) problem was originally proposed by Robbins, (1952).the MAB
problem, there is a machine witki arms, each of which delivers rewards, that are independerélvn from

an unknown distribution, when the machine’s arm is pullete® this, a gambler must choose which of these
arms to play. At each time slot, he pulls one arm of the macantereceives a reward or payoff. The gambler’'s
purpose is to maximise his return; that is, the sum of the m@svhe receives over a sequence of pulls. As the
reward distributions differ from arm to arm, the goal is tadfthe arm with the highest expected payoff as early
as possible, and then to keep gambling using that best arm.

Using the terminology of multi-agent systems hereafterrefer to the gambler as an agent, and refer to
each arm pulling action of the gambler as an action of thaiquéar agent. Thus, we can formulate the MAB
problem as follows. LeK denote the number of actions that the agent can make. At emelslott, the agent
takes actioru:, which delivers the reward,, (¢). Finally, letT > 0 denote the time horizon in which the agent
operates. Thus, we have the following optimisation problem

T
max Z ra; (t) (11)
t=1

Thus, the agent has to choose a policy (i.e. a sequence ohaxtthat may deliver the maximal reward at each
time slott in order to achieve the maximum of Equation 11.

A fundamental dilemma in the MAB problem is the trade-offieetn exploration and exploitation outlined
in Section 1. However, in applications with a dynamic enwvinent, such as WSNs, beside the aforementioned
trade-off, we face the challenge that the expected valubeftms may vary over time. In addition, the time
(i.e. when) and the magnitude (i.e. how) of the change ar@awk to the agent. Specifically, in our settings,
these changes can also be due to changes in the behavioureofagients, that also use learning methods in
order to determine their best actions. This indicates tiagfent has to repeatedly re—learn the current optimal
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Algorithm 1 Algorithm Exp3.Sub

1: Initialisation: Let~y € (0, 1], andwy, (1) =1fork =1,2,..., K;
2: forall t=1,2,... do

3: Setpk(t):(177)%+%fork:1,2,...,1(;
4:  Draway randomly accordingly to the probabilities (¢) ,p2 (¢),...,px (t);
5:  Receive rewart,, (t) € [A, B];

6: forall i=1,2,...,K do

7: if (¢ == a¢) then

8 " (0) = FE R

9: else

10: 75 (t) = 0;

11: end if X

12: w; (t+1) = w; (¢) exp (%(t))

13:  end for

14: end for

arm, since this may also vary as well. Furthermore, thisegring must be done without knowing when and
how the values have changed. To address this complex prpBleen et al. (2003) proposed a simple learning
technique, Exp3, that has been shown to achieve efficiefrpgance in dynamic environments. Other MAB
techniques, such as Adapt-EVE (for adaptive exploratiosugeexploitation) (Hartlanét al., 2006), and D-
MAB (for dynamic multi-armed bandit) (DaCosta al., 2008), are also suitable for dealing with the dynamic
environmental changes. However, these techniques reli@agsumption that the reward value a single agent
receives is piece-wise stationary (i.e. the distributibine reward value remains the same in intervals of operation
time), which does not hold in our case. In particular, in oettisgs, the reward value that an agent receives
depends on the environment and the behaviour of other agen&ll. Thus, piece-wise stationarity cannot be
guaranteed (see Section 4.2 for more details). On the otiret, iExp3 does not have any assumptions about the
environment of the agent, and thus, it is suitable for ouirsgs as well. Given this, in this paper, we focus on the
Exp3 algorithm.

Now, before describing Exp3, let us introduce the basicrilym Exp3.Sulthat is used as a subroutine in
Exp3. This subroutine is shown in Algorithm 1. At each timets| Exp3.Sub randomly chooses an action
(¢ < K) with probability p; (¢). Then, for all the actions (including the chosen one), itaipd the probability
p; (t) for the next slot, proportionally to the current estimatehaf expected reward value of the action (i.e. the
higher the current estimate is, the higher the probabitighboses that action). In particular, suppose that the
reward values are taken from the interidl B], whereA < B are arbitrary real numbers (Algorithm 1, stgp
Given this, Exp3.Sub maintains a weight vatug(t) for each actiori. The update of these weights is shown in
stepst — 13. Using the new value of the weights, Exp3.Sub adaptivelyatgsieach probability; (¢) as shown
in step3. This indicates that the higher the current estimate bespEw3.Sub will increase the valuemf(t),
and thus, will choose actiarwith higher probability, andice versaConsequently, the algorithm always focuses
on the actions with highest current estimates; that is, osdlactions which are more likely to be the current best
choice. In effect, this update policy guarantees that tlemtgan efficiently adapt to environmental changes.

The efficiency of Exp3.Sub, however, depends on the valuerrmpetery, since it uses this parameter to
calculate the probabilities (see stem Algorithm 1). Since thisy has to be givem priori (Algorithm 1, stepl),
it may happen that the chosen value is not efficient for theeotiiMAB model. However, we can overcome this
shortcoming by adaptively modifying the valuewfThis modification leads to the Exp3 algorithm, described in
Algorithm 2. In particular, Exp3 divides the time line intounds. At each round, a new, is chosen (see step
in Algorithm 2), and at each time slotExp3 calls subroutine Exp3.Sub (s@&p Exp3 changes round when the
maximal cumulative reward of an arm (i.e. the total amountwefards Exp3 achieves when that arm is pulled)
exceeds a given threshold (st&pIn this case, it restarts the subroutine Exp3.Sub as well.
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Algorithm 2 Algorithm Exp3

1: Initialisation: Lett =1, andGy (1) =0fork=1,2,..., K;
2: forall r=0,1,2,... do

3 g = (K In K)47 |

e—1
Restart Exp3.Sub choosing = -

4
5. while max Gy, (t) < gr — % do

6 Leta; be the random action chosen by Exp3.Suband(t) the corresponding reward;
7 Ga, (t +1) =Gq, (t) + Tray (t);

8: t:=t+1;
9

10:

end while
end for

4.2 Using Multi-Armed Bandits for Energy Management

Given the description of the MAB model above, we now applpitite energy management problem described
in Section 3.3. In so doing, consider the formal model wepihiiced in Section 3. Recall that within this model,
each agenthas an energy budg&; for each time slot, which is constant over time. Furthermore, agdms to
allocate budget®? (), BR* (t), and Bf* (¢) to sampling, receiving and transmitting, respectivelye Emergy
budget allocation, however, has to satisfy Equation 7.

Given this, we can formulate the energy management probfesmsmgle agent as a MAB as follows. We
first define the action set of each agent. Then we determineetberd function of each action. The latter is the
mechanism that assigns reward values to the action of tha ageach time slot. Finally, we show how each
agent uses the Exp3 algorithm to efficiently tackle its MABlgem.

In so doing, let us consider a decision that ager#n make at time slat Since the decision making task for
an agent consists of setting the values of the sampling, receivirdyteansmitting budgets of that agent at time
slot¢, we have the following definition:

Definition 3 Letn? (¢) = L%J,nf‘" (t) = L%L andn™ (t) = L@J denote the sampling, receiving
and transmitting capacities (iz.e. the maximal number oketcthat the agént can sample, receive, or transmit) of
agent; at time slott, respectively. At each action, agermthooses a combination of the values of those capacities,

with respect to the constraint described in Equation 7. Tthes3-tuplea; (t) = <n§ (t),nBx(t),nF* (t)>
denotes an actionf agent: at time slott.

That s, an action of agentt time slot: is a combination of. (t), n* (¢), andn]* (t), where the corresponding
B? (t), BR* (t), and B (t) satisfy Equation 7. Given this, thetion setof agenti at time slott is determined
as follows:

% = { ®) = (nf O, m™ 0,1 ) } (12)

wherea; (t) is presented in Definition 3. That igl; is the set of 3-tuple of capacities where the total energy
consumption does not exceed the energy limit given at eawhglott. Since the energy consumption limit (i.e.
B;) is fixed for each time slat the number of options far; (¢) (i.e. the number of combinations of the capacities)
is constant over time as well. Given th%; is fixed over time, and thus, it can be regarded as a{gattion set
(since in MAB models, the action set cannot vary over time).

In contrast with the action set above, the definition of alsirapent’s reward function is not obvious. In
particular, the reward function has to satisfy the follogvirequirement: By maximising the total rewards that
each agent can receive, the agents together maximise #hénformation collected in the network. However, in
so doing, each agent has to take into account the behaviathef agents within the network as well. Thus, the
reward function has to capture the affect of other agentsabieur on the performance of a single agent. Given
this, we develop a reward function for each agess follows. Recall tha8; (¢), Rx; (t) andTx; (t) are the set
of sampled, received and transmitted data packets of agenime slot:. Furthermore(Q; (¢) is the set of total
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transmittable data packets in the memory (see Section Biadoe details). LeRe; (¢) denote agent’s set of
residual packets from sl@t — 1) that are not transmitted until sletThat is,

Re; (t) = Qi (t) /Tx; (t) (13)
Given this, before we determine the reward function, letarssider the following. Assume that= 1; that is,
there is no information decay as time passes by. Given tivisughout the operational tinig of the network,
the total information that is delivered to ti#S is equal to the difference in the total information samplgdhe
agents in the network until time sI¢f" — 1), and the total amount of information that remains in the nmgnod
the agents in the network at time sibt In particular, since we assume that there is no data losarimaodel,
sampled data until time sI¢f” — 1) is either successfully delivered to tiS or still remains as residual data in
the network at time sIdf’. Note that data sampled in time sibtis not considered here, since we assume that it
cannot be delivered immediately to tBe, and as defined in Equations 13 andR®;; (7") does not contain data
that are sampled in time sl@t Thus, for each € [1,T7, letr (¢) denote the following function:

)= >, vpt-1)— > wmH+ Y wpt-1) (14)
peS; (t—1) pERe; (t) pERe; (t—1)

Note that the first term on the right hand side of this equatdhe total amount of sampled information of agent
¢ at time slot(¢ — 1). The second term is the total information value of the reslidiata on agentat time slot
t, whilst the third term is the total information value of thesidual data on agemntat time slot(¢ — 1). The
intuition behind Equation 15 can be explained as followsnirthe definitions given in Equations 3 and 13, the
sum of the first and the third terms form the total amount adrimfation that agentcan transmit in time slat In
more detail, as we mentioned in Section 3.1, data sampléshéndlot(¢ — 1) can only be transmitted from time
slot¢, and not earlier. Thus, first term represents the total atafthis sampled data. The third term represents
the amount of information that is not transmitted until tistet (¢ — 1). Both the sampled data and residual data,
however, is available at time slofor transmission. On the other hand, the second term repegee information
value of data that is not sent by the end of time slaind thus, by subtracting it from the set of transmittabla da
(i.e. sum of previously sampled data and residual data from1)), we get the throughput of agentithin time
slot¢. Given this, by using; (¢) as the reward function within the caseof= 1, each part of agernits chosen
action (i.e. the chosen energy budgets) will effect theevaifr-; (¢). In particular, the size ok? (¢) affects the
total amount of sampled information, whilé** () andn}* (t) affect the size of residual data.

Now, we show that by maximising the sum @f(¢) over all¢t and: indeed leads to the maximisation of
the total amount of collected information within the netloin the case o\ = 1. In so doing, recall that
Y peRe;(t—1) v (p,0) = 0 for each agent, since there is no residual data at all at the beginning. Gk, it
is easy to see that if we sum up(¢) by ¢ from 1 to T, what we get as a result is exactly the difference of the
total information collected by the network and the total amtcof information that remains in the memory of the
agents in the network. More precisely, we have

T T-1 T T-1
dNorm =Y > viet)=>, > vt + >, > v(pt)
t=1 t=0 peS;(t) t=1pEcRe;(t) t=0 pERe; (1)
T-1
= Z U(p>t)_ Z U(va)'i— Z U(p>0)
t=0 pes, (t) pERe; (T) pERe; (0)
T—1
= Z U(p,t) - Z U(p, T)
t=0 peS;(t) pERe;(T)

Recall that this value is equal to the total information ibatelivered to theB.S throughout the operation time of
the network. Thusg; (¢) could be a possible reward function for agergince by maximising the total reward on
interval [0, T'], the agents together also maximise the total amount ofatetiénformation value that is delivered
to theBS as well.

Note that the definition of; (¢) in Equation 14 guarantees that in order to maximise the sotadunt of
collected information, agertcannot either ignore sampling, receiving or transmittingarticular, for example,
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suppose that agentgnores transmitting, and only focus on sampling/or rdogivin this case, the set of residual
data at the end of time slois equal to the accumulated set of sampled data and residtsahtitime sloft — 1),
and thus, the value of the rewardisNow, it is easy to see that if the transmitting capacity sager thard (i.e.
n* (t) > 0), the reward value is definitely higher tharas well. In similar veins, we can easily see that agent
cannot get high reward values on the long term if it ignoresdther sensory tasks as well.

Now, to generalise Equation 14 to the case 6f 1, consider the following:

R; (t) = Adi—l{ Do ovlt-1— > veh+x Y v(pt- 1)} (15)
peS; (t—1) pERe; (t) pERe; (t—1)

whered; is the distance of ageritfrom the BS (in hops), and\ is the information discount coefficient. This
equation differs from Equation 14 in two places. First, itisighted by the factoa? ~!. The intuition behind
using this factor is that since agenis d; hops away from thé3.S, the information value that agentransmits
is discounted with a factok? ~! when theBS receives that data. The second difference is that the third t
of Equation 15 is weighted with. The reason here is that since the third term representettud packets that
are not sent by the end of time slgt— 1), the information value of those packets is discounted im#h time
slot. Note that in the case af= 1, this equation is reduced to Equation 14. To show that thisure function is
suitable for maximising the total collected informationtioé network in the long term, we state the following:

Theorem 1 (Main result 1) Using the reward function defined in Equation 15, the totalaed value that the
agents in the WSN achieve together over the intdfdl] is equal to the total information content value delivered
to the BS over that time interval.

That is, Theorem 1 states that by maximising each agents$ teivard over interval0, T'], where the reward
function is defined as in Equation 15, we can achieve the nabiinformation collected and delivered to ths.
We prove the theorem as follows:

Proof (Theorem 1Jor the sake of simplicity, le€; denote the set of agents that greops from theB.S. That
is,

d; =j,Vi € £ (16)
Now, consider Equation 1 in Section 3.2. Let us note thaksicdata can be sampled and forwarded, or received

and forwarded at the same time slot (see Section 3.1), ngpdateets are transmitted or received at time 8lot
in the whole WSN. Thus, using the notation of Section 3, thearobjective can be rewritten as follows.

T

max Z { Z v (p, t)} 17)
t=1 \ pcRzpg(t)

Let us consider a particular member of Equation 17, whicis- ., . 1) v (p, 1). This equation determines

the total information value that arrives to tis at time slotl. According to our assumptions in Section 3.1, no
data loss occurs during any transmission. Thus, the améueteived information at th&S is equal to the total
amount of information that is transmitted from agents tmatlahop from theBS at time slotl. That is,

o v => > vl (18)

pERzps(1) Jje€L1 peT=;(1)

Note that the set of transmitted datadafat time slotl is equal to the set of sampled data at time 8)@&xcluding
the set of residual data at time slofsince there is no received data and the residual set iestjty at time slot
0). Since newly sampled data does not suffer from informatigine discounting, the right side of Equation 18
can be rewritten as the following:

Z Z ’U(p,l) = Z Z v(pvo)f Z Z ’U(p,l) (19)

JEL1 pETa (1) i€L1 peS;(0) i€L1 peRe; (1)

Now, let us consider the second member of Equation 17, WIS jc g, . .2y v (p, 2). Similarly, this can be
rewritten as follows.

Yo=Y > v(2) (20)

pERxzps(2) j€Ly peTz;(2)



16 Long Tran-Thanh et al.

However, this is equal to the union of the set of received,dhtaset of sampled data, and the set of residual data
at time slot 1, excluding the set of residual data of layer tinag slot2. Furthermore, any of these sets may not
be empty. The packets in the sets of received and residumkdéfer from value discounting, thus, Equation 20
is equal to the following:

Yo=Y, > vp2=

pERzps(2) JEL1 pETZ;(2)
=> > veD+AY. D v+
€L peS;(1) i€L1 pERe; (1)
+AD Y - D> w2 (21)
i€L1 pERxz;(1) i€£1 peRe;(2)

where is the discount coefficient of the network. Now let us consiig o, >, gy, (1) v (P, 1). Similar to
Equation 18, this can be written as:

AT DT v =2> > vl (22)

i€Lq pERx; (1) i€Lo peTz;(1)

Using Equations 21 and 22, and replaciiigwith £2 in Equation 19, we obtain the following:

Y, v =3

pERzps(2) 1€L1 peS; (1)
- > ve+AY D> v+
i€L1 pERe;(2) i€EL1 pERe;(1)
A D em0O =AY > e (23)
i€L2 peS;(0) i€L2 pERe; (1)

In general, if we take thé™ member of Equation 17, then it can be decomposed as folléws: IL, whereL is
the number of the layers in the network, then:

t

dovlet) =D N > wpt—j) -

PERzps(t) Jj=1 i€l peS;(t—j)

t
- SNty oo vpt—i+1)+
Jj=1

1€L; 11 pERe; (t—j+1)

t
2\ Z Z v(p,t—j) (24)

Jj=1 i€L; pERe; (t—j)

Let us note that her® ;.o 3" c g, (o) v (p,0) = 0 for any layer;. That is, we can say that the amount of

information that arrives to th&s5 at time slott can be decomposed into the sum of data on layer 1 at time slot
(t — 1), onlayer 2 at time sloft — 2), and so on. It > L, however, the equation for this case is slightly different,
since the decomposition stops at the last layer of agentss, Te have:

L
)DRRTATED SIVD DI SRR

pERz s (k) j=1 i€EL; peS;(t—j)

fz,\ﬂ Y > v(p,t—j+1)+

i€L 41 pERe; (t—j+1)

+ Z” > > vt (25)

j=1 i€L pERe; (t—7)
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Given this, combining Equations 24 and 25, and taking eaao account, we can reformulate our main objective
to the following:

TSRy

t=1 \p cRaepg(t) (26)

T min (t,L) )
vy w-lz{ S wt-— S emi—irner S U@,t,j)}
t=1

j=1 i€L; \ peS;(t—j) pERe; (k—j+1) pERe; (k—3j)

Consider the core part of Equation 26 in the braces. Nowgusia definition of the reward function in Equation
15 to replace that part, and recall that the distance of agemefined in Equation 16, we can reformulate 26 as
follows:

min (T,L) T—j

max Z Z Z R; (1) (27)

J=1 t=0i€g;

That is, the original objective can be decomposed to the gusward functions of agents on each layefrom
time slot0 to time slotT" — 5. O

Now, using the aforementioned reward function and the acté, the energy management problem of each
agenti can be reduced to a MAB problem. Thus, the multi-armed bdradied energy management algorithm
works as follows. Each agemtruns the Exp3 algorithm, in order to determine the energygbti@llocation
combination for each time slat In particular, agent first assigns a probability valug/ to each of the its
possible energy budget allocation combinations (i.e. grmRl;, such thab p{ = 1. According to Algorithm
1 (step3), these probability values are initially set to be uniforeng( it is the same for all the combinations).
Based on these probability values, each ageamdomly chooses an energy budget allocation combinati¢t)
at time slott, and allocates energy budgets to each of the tasks of saynpdiceiving and transmitting. This
energy budget allocation combinatien(t) is chosen as shown in Algorithm 2. Then, as mentioned eattier
control the sampling task, the agent can use an existingisdaampling technique. On the other hand, the tasks
of receiving and transmitting are controlled by the routidgorithm, which we will describe later in Section 5.
Following this, after agentfinishes the sampling, receiving and transmitting tasksrewvard value of the chosen
energy budget allocation combination is evaluated. Thep3Eipdates the value of probabilitigs, such that
higher probability values will be assigned to energy buddleication combinations with higher average reward
(see algorithm 2 for more details). Let us hereafter refehi® approach (i.e. using Exp3 for allocating energy
budgets) as theulti-armed bandit based energy managen{&AB/EM).

Now, by using MAB/EM, the agents do not explicitly coordieatith each other (i.e. they do not use coordi-
nation messages). In more detail, our approach uses éxygioimunication messages within the routing part (for
more details, see Section 5), but not within the energy buakmcation phase. However, these communication
messages are only for evaluating the reward value of theechastion (i.e. the chosen combination of energy
budget allocations). Given this, the agents do not needdadomate when they take an action. Despite the lack
of explicit coordination within MAB/EM, the agents can ttthieve coordination by only observing the reward
value they get. In more detail, consider the definition ofréhveard function (Equation 15). Note that this reward
function is affected by the agent’s current chosen acti@n {he energy amounts allocated to sampling, receiv-
ing and transmission). In particular, according to Equeti8 and 13Re; (¢) (i.e. the list of residual packets)
depends on the lists of sent and received packets, resglgciihus, in order to achieve higher rewards, each
agent aims to find actions that result in better reward valdesgvever, the effectiveness of a chosen action also
depends on other agents’ action as well. Indeed, the eféedts of data receiving (or transmitting) depends on
the allocated budget to transmitting (or receiving) of otheighbouring agents. For example, it is not efficient
for agent: to allocate a large amount of energy to receiving if its nbalrs are only willing to send a small
amount of data, andice versaGiven this, by only observing which actions result in highewards, the agents
also learn to cooperate with the others as well.
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4.3 Computational Complexity Analysis

Since WSNs are heavily resource constrained (i.e. the l@wggncapacity, small size and tight computational
constraints), algorithms that are implemented for suctvokds need to take into consideration the limited com-
putational capacity and memory space (Akyildizal., 2002; Roger®t al, 2009). Thus, in order to ensure that
MAB/EM is suitable for WSNs (i.e. it can be installed to reahsors), we have to guarantee that it has low
computational complexity and low memory demand. Given, this study the performance of the MAB/EM in
terms of computational complexity in this section. Moregisely, we investigate the number of computational
steps (i.e. running time cost) and the memory usage that ABises at each time slot.

From the aspect of computational cost, each aglas to update the probability valpé for each of its ac-
tions;. In so doing, agentneeds to maintain a weight valws}, which also needs to be updated (see Algorithms
1 and 2 for more details). Given this, the number of compaoitati steps of ageritat each time slot i© (2 |2;]),
where|2l;] is the size of agents action se®l;. That is, the running time of MAB/EM is linear to the size otha
agent’s action set.

In terms of memory usage, MAB/EM is also efficient. In paricurecall that each agentmaintains the
arrays ofw’, and ofp], respectively. Furthermore, each action is representad-asiple of integers (see Defini-
tion 3). Given this, the memory usage of MAB/EMGs(5 |2(;]). To demonstrate that the memory usage is indeed
low, compared to the size of data packets, consider theAfritpexample. Note that the action set typically has
the size of few hundreds. This can be easily calculated mgubie typical sensory parameter values, which can
be found, for example, in Kansal and Srivastava (2003). Moywpose that to store a number, each agentdises
bytes of memory. Given this, the total memory usage (i.etdeghe arrays of probability and weight parameters)
is typically a few kilobytes. This is small, compared to tbtat size of real data that the agents typically have to
forward in many applications (e.g. in wireless visual semsiworks) the average size of a single data packet is
likely to be10 — 100 kBytes (Khoet al.,, 2010).

5 Optimal Data Routing

Given the energy management approach described in theopsesection, we now focus on the maximal infor-
mation throughput problem presented in Section 3.4. Thus,section outlines the work undertaken towards
addressing this routing problem. Specifically, here we idiesd¢wo decentralised algorithms that allow agents to
achieve maximal information throughput between neighinguayers, with respect to their energy constraints. In
particular, the first algorithm, called MITRA (for maximalformation throughput routing algorithm), achieves
optimal performance in terms of solving the maximal infotima throughput problem. However, it may have
significant computational and communication costs. On therchand, the second algorithm, calledTRA -,
produces near—optimal performance (approximaiéf of the optimal performance), but with reduced commu-
nication and computational costs. To this end, we first thice MITRA in more detail in Section 5.1. Following
this, we show that this approach is optimal in terms of masing the information throughput in Section 5.2.
Furthermore, we provide a theoretical upper bound for theprdational and communication costs of MITRA
in Section 5.3. Finally, we propodITRA -, a modified version of MITRA with reduced communication and
computational costs in Section 5.4.

5.1 The Maximal Information Throughput Routing Algorithm

Recall that at each time slot all the agents within the system run the MAB/EM in order tbge the energy
budgets for that current time slot. Then, their next step lmaximise the amount of forwarded information value
conditional on the budgets in that given time slot. Thathie,agents aim to maximise the total information value
forwarded between neighbouring layers of agents (see tefir# for more details). Now, let; and£;_; denote
the corresponding layers. The pseudocode of the MITRA ruthbyagents within these layers is depicted in
Algorithm 3. In more detail, we refer to the agents in laygrsaind £;_; as senders, and receivers, respectively.
The algorithm can be outlined as follows:
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Algorithm 3 MITRA

1:
2
3:
4
5

6
7
8
9:
10:
11
12

for all pair of layersg; and£;_, do

agents in layeg£l; < senders, agents in lay®;_, < receivers;
Vi senders; broadcasts list of information values;
while data transmission is feasibi®
Vj: when receiverr; receives all the broadcast information (or time threshofgires), it identifies best packets it can
receive;
Vj receiverr; sendsREQUEST messages to senders;
Vi when sendes; receives all th&REQUEST messages (or time threshold expires), it sends data toveeaeith best offer;
if 3 senders; has not exceed transmission budten
sendes; broadcasts 8END message to receivers;
end if
end while

: end for

Step 3 First, each sendet, broadcasts a message that contains the I&tfples to each of its neighbouring

receivers. The first element of the tuple contains the pd€kethilst the second element contains the infor-
mation value of sendey;’s transmittable packets (i.e. the list &, (¢), see Section 3.2 for more details).
Then, whilst data transmission is still feasible, the dthon repeatedly executes steps- 10 as follows.

Step 5 Based on the received information lists from the neighlbgusenders, each receiver chooses
the best packets (i.e. packets with the highest informatauoe) it can receive, with respect to its residual
receiving capacity (i.e. the maximal number of packetsritstdll receive without exceeding its total receiving
capacityn;** (t)). Note thatn,** (t) is set by the MAB/EM (see definition 3 for more details). In song,

it needs to wait until it receives all the broadcast inforimratrom its neighbouring senders. However, since
node failures may occur, agent does not exactly know which of its neighbours is availabléhini the
current time slot, and thus, will send te; a broadcast message. In such casgsloes not know when to
stop waiting for the broadcast messages, and thus, it camoe¢ on to the next step of MITRA. In order
to avoid this situation, we set a time threshold, so thatig threshold expires, the sender stops waiting for
further broadcast messages. Following thjschooses the best packets it can receive as follows. It first so
the received lists of 2—tuples in decreasing order of thaevaf information, then it merges these lists into
a joint list, also with the decreasing order of the inforroatvalue. From this joint list, it chooses the best
packets it can receive.

Step 6 Following this, receiver; propagateREQUEST messages to each of its neighbouring senders. In
particular, eaciREQUEST message contains the number of packets thaequests from that sender. This
number is calculated in steépof the algorithm.

Step 7 When s; receives all thdREQUEST messages from its neighbouring receivers, it chooses téle be
offer; that is, the one with the highest number of requestackgts. However, similarly to step of the
algorithm, it may occur that; does not know when to stop waiting for all tREQUEST messages, due to
node failure. Thus, to prevent it from waiting indefinitety the messages, we also use a time threshold here.
Given this, after all th&@EQUEST messages arrive tq, or the time threshold expires, sends the requested
packets to the receiver with the best offer. If the receivith the best offer is not unique, then randomly
chooses one among them.

Steps 8-10After data transmission in the previous step, if sengestill has the capacity to transmit data
(i.e.nk* (t) is not exceeded), then it broadcastSEND message to each of its neighbouring receivers. This
message contains the number of packets that it transmittetep7. Based on this message, all the receivers
can update the list of packets they can request fegrti.e. they update the joint list described in st&p
Furthermore, they also update the value of their remairgcgiving capacity.

Now, to detect whether data transmission is still feasithle, participating agents do the following. From the
sender side, when sendgrdoes not receive anREQUEST messages in step it considers data transmission
as not feasible. From the receiver side, when receiyetoes not receive any broadcast messages (e.g. the list
of information value, or th&END messages) in step then it also considers data transmission as not feasible.
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Given this, if an agent sees that it cannot receive and triardata anymore (i.e. receiving and transmission
is not feasible), it stops running MITRA for that time slothdt is, the agents rerun MITRA at each time slot
t. Note that the time thresholds in stepsand 7 are for only communication messages (REQUEST and
broadcast messages). Once the agent receives one of thesage®efrom its corresponding neighbour, it sets up
a communication channel, in which data packets are asswnsguccessfully forwarded, without any loss.

5.2 Performance Analysis

Given the description of MITRA above, we now show this altfori provides the optimal solution to the maximal
information throughput routing problem presented in Dé&fini 2. In so doing, we state the following:

Theorem 2 (Main result 2) Assuming that the communication between senders and eesé\perfect, that is,
none of the messages arrive after the timeout, the MITRAithgo results in an optimal solution for the maximal
information throughput routing problem (i.e. the solutitrat gives the maximal throughput of information value
between the sender and receiver layers).

Proof (Theorem 2)Here we use the contradiction technique. Let us assuméhdITRA algorithm given in

the previous section is not optimal. That is, the outputtsmhudoes not maximise the total transmitted informa-
tion value between the two layers. L8tdenote the output solution of the MITRA algorithm afg, o be one

of the optimal solutions. Since we assume has not optimal, there should g andp2 packets such that only
one of them is allocated i®» and the other one is allocatedsr, p7. Without loss of generality, we can assume
thatp, is allocated inD andp, is allocated inD o p7. We can also assume that bgthandp. are sent to the
same receiver;. Itis easy to prove that b # O pr then there exist two packets such that these assumptions
hold.

In particular, there are two cases to investigate. In thg facgthp; andp- are from the same sender. Note
that it is easy to show that(pi,k) > v (p2,k). That is,p: has a higher information value than, since the
corollary states that those data which are sent from theesendst be the packets with the highest values in the
set of packets of that sender.

In the second casey andp. are from different senders. Since in MITRA, the receiversuaeyreedy ap-
proach to allocate possible arriving packets, wheis accepted angs is not atr ;, the only explanation is that
v (p1,k) > v(p2, k).

One can see that in both caggshas a higher, or at least the same valuepadf p; has a higher value
than that ofp2, then by replacing. in O p7 with p;, we would have a better solution thary p-. However,
this is a contradiction, sinc®@o pr is assumed to be optimal. #fi has the same value as, then by replacing
all the possibley;-s that are ind but not inO o pr (since they all have the same value, otherwise we would be
faced with the former case), we would have thais also an optimal solution, which would also contradict our
assumption at the beginning. Therefore one can see thatithiead assumption, that is) is not optimal, is not
true.O

5.3 Computational and Communication Cost of MITRA

In the previous section, we showed that MITRA achieves amgbtsolution for the maximal information
throughput problem. Given this, here we continue the amalysMITRA by studying its computational and
communication cost. In particular, similarly to the casé/#B/EM, we need to analyse whether MITRA is ef-
ficient in terms of computational and communication comiyein so doing, recall that at each time sloeach
agent; within the network repeatedly runs steps11 of Algorithm 3 until data transmission is not feasible attha
time slot. For the sake of simplicity, hereafter we refeihis tycle as theommunication roundf MITRA (since
the agents communicate with each other during this cyclederdo find the maximal information throughput).
Note that since MITRA is rerun at every time slot, each tinot stontains a number of communication rounds.
Thus, the number of communication rounds that MITRA usehiwia particular time slot cannot be larger in
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time, compared to the length of a single time slot. Given thése we aim to analyse whether we can upper bound
the number of communication rounds. Furthermore, notelibtit the computational and communication costs
of agent; depend on the number of communication rounds that the agedrto run. Thus, in order to guarantee
low computational and communication costs of a single agemtlso need to ensure that the number of commu-
nication rounds that an agent uses within the MITRA is algo Io more detail, each receiver determines the best
packets (i.e. packets with highest information value) it ieceive by sorting the list of receivable packets at each
communication round (stépof Algorithm 3). Since this list typically has a size at mostew thousands, sorting
it is simple and fast (e.g. by quicksort). However, sincesirting is repeatedly executed at each communication
round, if the number of those rounds is high, then the totalmaational cost can be significant. Now, note that
the communication cost of a single agent consists of the afoséndingREQUEST messages and the cost of
sending éSEND broadcast message at each communication round. Thus, dghénumber of communication
rounds is high, then the total communication cost can alssidveficant.

Against this background, we provide a worst—case upperdd@ue an upper bound that holds for all the
cases) for the number of communication rounds that MITRAuS®re precisely, we state the following:

Theorem 3 (Main result 3) Consider neighbouring layerg; and .£; ;. At each time slot, let Tcom (¢) denote
the total number of communication rounds, that MITRA needsuh until data transmission is not feasible
between layerg; and £;_; within time slott. Given this, we have:

< ln (Z’I"j €L ngjx (t))
T Inlg | —In(|€-1] - 1)

Teom (1)

where|£;_| denote the size of laya};_, (i.e. layer of receivers).

Proof Recall that, at each communication round, each receivehooses the best packets it can receive, condi-
tional to the value of its residual receiving capacity (siep $ of algorithm 3). LeD,-, () denote the maximal
number of packets; can receive from its neighbouring senders at communicationdr. It is easy to see that
for eachr;, D, (7) is monotone decreasing function-gfwithin time slott. In more detail, recall that the senders
cannot forward information that are sampled or receiveira slott. Given this,D.; () only contains data that
are sampled/or received until time slgt— 1). This set of data, however, is already given at the beginning
time slott, and thus, during the communication rounds, the size oftdaga cannot be increased. Furthermore,
at each communication round (within time siptreceiverr; receives a non—-negative number of packets. Given
this, the value oD, () is monotone decreasing.

Given this, we first show that at each communication rounthe total number of successfully received
packets within MITRA is at leasbmax (1), where

Dimas (v) = max Dy, (7)
J

Indeed, according to algorithm 3, each receivesendREQUEST messages to its neighbours at each communi-
cation roundr, requestingD;; (7) packets in total. Some of these requests will be accepteluggenders, whilst

the others will be rejected. However, a sender only rejectsjaest, if it gets a better request (or a same request)
of total amount of information value from another receivéris implies that the number of packets of the better
request is not lower than the number of packgtsequests from that sender. Given this, it is easy to see that
the total amount of transmitted (received) packets is &t |Ba, (1) for anyr; (i.e. it is also at leasDmax (7)).
Therefore, we have the following inequality:

> Dy (74 1) <> Dy (1) = Dimax (7) (28)

Now, note that at each communication roundve have:

Drnax (T) > er DTj (T)

B YRSy (29)
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That is,Dmax (7) is not lower than the average valueof, (7). Using Equations 28 and 29, we get:
1€i-1] -1
> Dy (r+1) < BT ZDTJ (1)
T -
That is, we can show by induction that the following holdsdachr:

ST Dy (r+1) < ('£|l£l1|_1) ZDTJ (30)

Note thatD,, (1) < nTRjX (t); that is, the maximal number of packets thatan receive at the first communication
round is not greater than the receiving capacity,0iGiven this, from Equation 30 we get:

> Dy (r+1) < (%) > e (t) (31)

L]
Now, note that MITRA stops after communication rounds if and only if

> Dy (r+1)<1

Tj

That is, no more packets can be sent to the receivers. GiigmMITRA still runs afterr communication rounds
if

() o= @
This can be reformulated as:
Taking the logarithmic function of both sides, we get:

In ( s (ﬂ) 27 (]| =In(]€1| - 1)) (34)

SubstitutingTcom (t) into this inequality concludes the proaf.

Note that from the proof, it is easy to show that this upperriols tight. ThusTcom (t) = O (ln (ere,:l_l nTRjX (t))) ;

that is, the upper bound @t..m is the logarithm of the total number of packets that need tfobvearded within
each time slot.
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5.4 Communication Round Limited MITRA

In the previous section, we provided an upper bound for tmelar of communication rounds that MITRA uses.
In particular, we demonstrated that the number of these agmwation rounds is low, compared to the total
size of data to be forwarded at a single time slot. Howevacesthis upper bound is tight, the total number of
communication rounds that MITRA uses in the worst case sae(iae. when the bound is tight) is still significant
in terms of total time length. For example, consider a WSNemgteach layer half) agents on average, and each
agent can receivé00 packets per time slot. Given this, according to Theoremeughper bound of the number
of communication rounds is arou8. Note that each communication round consumes a certainrgtrobtime,
and thus66 communication rounds together may not fit into the length single time slot (since MITRA has
to terminate within the same time slot).

In order to address this shortcoming, we can either shohietime length of a communication round, risk-
ing the higher rate of data loss in WSNs (i.e. not all of 8#ND and REQUEST messages arrive on time), or
limit the number of communication rounds that MITRA can Uk show that by using the latter solution, we
can significantly reduce the number of communication roumdsist the reduction in the performance of the
algorithm is not significant. We denote the communicatiomnoblimited MITRA with MITRA -, wherer is
the threshold value of the number of communication roundgerGthis, the algorithm foMITRA - is similar
to that of MITRA, except that it stops executing steips 11 after exactlyr rounds (see Algorithm 3 for more
details). In Section 6.4, we will demonstrate that with lewalues (e.gr = 8), MITRA - can still achieve®d8%
of MITRA's performance.

6 Performance Evaluation

Having calculated the computational and communicationpgterity of MAB/EM and MITRA in the previous
sections, we now demonstrate that by using MAB/EM for enengynagement anMITRA - for data routing,
our proposed algorithms together significantly outperftimnstate—of—the—art. In so doing, we present empirical
results against state—of-the—art algorithms in long—ieformation collection in the WSN domain. The reason
we chooseMITRA - instead of MITRA to route data is that the communication cdITRA - is guaranteed

to be low (see Section 5.4 for more details). However, as westwow later, it achieves, on averadiy% of

the performance of MITRA. Now, to show the efficiency of ouoposed approach compared to that of the
state—of-the—art, we need to choose a benchmark algotithinhas to fulfil the following requirements:

— It must be capable of using efficient adaptive sampling matHor collecting data from the environment.

— It must use information content valuation, in order to digtiish important data from unimportant data.

— It must contain an energy management policy, which allacatergy budgets to different sensory tasks of
sampling, receiving, and transmitting.

In particular, as we discussed in Section 2, algorithms go@arantee these requirements may perform well in
WSNSs with dynamic environments for efficient long—term mf@tion collection. On the other hand, those which
fail to fulfil the aforementioned requirements are not sl@dor long—term information collection in our settings
(see Section 2 for more details). Since it has been showJBAC achieves significant performance improve-
ment in long—term data collection, compared to that of ogiere—of—the—art algorithms, especially in dynamic
environments (Padhgt al,, 2010). On the other hand, as we demonstrated within Se2tiother state—of-the—
art methods typically fail to fulfil these criteria. Giverishwe choose USAC as a benchmark for our performance
evaluation. In more detail, we compare the performance o&pproach to USAC through extensive simulations,
and we show that our approach typically outperforms USACwvamage by around20%. Furthermore, we also
benchmark the performance of our approach against a nonidgaapproach, that solely uses MITRA for rout-
ing. In particular, within this benchmark approach, eachragandomly chooses an energy budget allocation
combination, that it uses throughout its operating time ¢he budgets are fixed over time). Here, MITRA with
fixed budgets represents a benchmark algorithm that doeéstebigently set the budgets of the sensory tasks to
adapt to the environmental changes. With this comparisendemonstrate that by using adaptive learning (i.e.
the MAB/EM), we can also double the amount of collected infation in the long term.
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In addition, we also benchmark the performance of our agpraegainst the theoretical optimal performance
of the network (i.e. the maximal value of collected inforioatthat the network can achieve). This benchmark
aims to provide the theoretical upper bound of the perforadhat we can achieve within long—term information
collection in WSNs. In particular, in order to determine tdpimal performance of the network, we need global
information about each agent’s sampled information vaktesach time slot. However, to gather this global
information, a centralised control mechanism is neededctwis not feasible in our settings (as outlined in
Section 1). Thus this is a benchmark algorithm only, not aifda solution to our information collection problem.

Finally, we demonstrate that by usidgdITRA ; with small values ofr, we can still achieve near—optimal
routing performance, while the number of communicatiomdsuneeded is significantly reduced (compared to
that of the MITRA).

To this end, we first set the parameters, that will be useditiirout our simulations, in Section 6.1. Following
this, to demonstrate the efficiency of MAB/EM combined Witi TR A -, we analyse simulation results in detail
in Section 6.2. Here, we compare the performance of our apprto that of USAC, and the centralised optimal
algorithm. We then study the behaviour of each agent withémietwork in more detail in Section 6.3. Finally, in
Section 6.4, we show that by using a small value oMITRA ; achieves near optimal performance (8%
of the optimal solution can be achieved with= 8).

6.1 Parameter Settings

To compare the performance of the algorithms, we measureverll amount of information collected by
each algorithm over time. To this end, we run each algorithnseveral networks with different topologies and
environmental characteristics (e.g. the occurrence &ecqy of the events, or the expected value of information
of each event). Then, we take the average of the specifidsaduhe networks. In order to do this, we have to
create a number of networks that may differ from each othépth topology and environmental characteristics.
Given this, we now describe the parameter settings, thatssed throughout our simulations, in order to create
these networks and their environments.

In our simulation model, the dynamic behaviour of the nelwsicaptured in both the changing environmen-
tal characteristics and the varying network topology. ldesrto demonstrate the dynamic nature of the former,
we set up our simulation environment as follows. We first be¢d test environments, namely: (i) static (i.e.
the environmental characteristics do not change); (ii) enatkly dynamic (i.e. the environmental characteristics
slowly change); and (iii) extremely dynamic (i.e. the eomimental characteristics rapidly change). Note that
in real world applications, the environment is typicallepé—wise stationary. That is, there are time intervals
whereby the environmental characteristics remain the satris, however, does not indicate that from the per-
spective of one single agent, the environment is also pise-stationary. In particular, as outlined in Section
4.2, the performance of each agent also depends on the bahafithe others. Thus, the reward value it can
get cannot be guaranteed to be piece—wise stationary, dififeent combinations of the behaviour of the others
may provide different reward distributions. This verifiag ahoice of Exp3, instead of D-MAB or Adapt-EVE,
as the learning method within MAB/EM (see Section 4.2 for endetails).

Now, in order to capture the piece—wise stationarity of tieN\environment, we divide the simulation time
period into intervals called epochs (which are obviously knmwn to the agents). In each epoch, the environ-
ment has different characteristics, which affect the imfation value of the collected data. Here, we assume that
within each epoch, the information value is randomly geteetdrom a normal distribution, and that the mean
and variance of this normal distribution changes at thesitiom from one epoch to the next. For example, in
one epoch, ageritcan collect data with information value generated from tis¢ridution A (5, 3) (i.e. normal
distribution with mearb and variance3). Whilst in the next epoch, the distribution may change\t¢45, 10).
Furthermore, since information content valuation techegtypically assign higher information value to pack-
ets collected when extreme phenomena occur within the@mvient (e.g. sudden temperature increment due to
fire, or unidentified vehicles enter the area) (Guestial., 2005; Khoet al,, 2009; Osbornet al,, 2008), the
agents can sample data with higher information value in lepdlcat contain more extreme phenomena. Given
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this, we definé types of environmental characteristics, each of whichesgnts epochs which contain different
environmental phenomena, as follows:

1. In this environment, packets are sampled with the inféionavalue in the range of 0 and 10, with distribution
N (5, 3) (i.e. the distribution is truncated &tand10).

. Here, packets are sampled with the information valuearréinge of 10 and 20, with distributiowf (15, 3).

. The information value of each packet is in the range of 204 with distribution\ (30, 6).

. The information value of each packet is in the range of 3DGih with distribution\ (45, 10).

. The information value of each packet is in the range of @100, with distribution\ (80, 10).

ga b~ WN

Note that these numerical values are chosen such that thegsent the differences between the characteristics
types. Other settings with different values also show theeshroad patterns in the result of the simulations.
Thus, in order to capture the dynamic nature of the enviranirfiee. how often it changes its characteristics), we
set the length of each epoch to b#®00 time slots for the moderately dynamic cage( for the dynamic case,
and50 for the extremely dynamic case. Whilst in the static cas&gtiis only one epoch (i.e. there is no change),
with type 1 of environmental characteristics. When the environmeangRs its epoch, it randomly chooses one
of the aforementioned characteristics types, with the godities of 0.5, 0.25, 0.1, 0.1 and0.05, respectively.
This represents the common observation that more extremi®emental phenomena occur less frequently.

To capture the dynamic behaviour of the network topologyall@v node failures during the operation of
the WSN. In so doing, we again divide the time line into epanf0 (i.e. each epoch lasts faf time steps). At
each epoch, each agent node may stop functioning for theevapaich with probability).2, independently from
other nodes. Nodes with failures may be functioning agathémnext epoch. Note that in our settings, epochs of
node failures are independent from the epochs of envirotahehanges.

Now, we set the energy settings of each agent node as follBach sensor’s transmission, receiving and
sampling energy consumption is uniformly and randomly endsom intervals o80 — 42, 20 — 34, and15 — 25
per packet, respectively, and the solar energy harvestiegyg budget of each node varies betwséhand1500
4, Given this, in our simulations, we use these values to septhameters, such a$, ef*, e}, andB;, of the
agents. In addition, the network contail®) agents, forming d0—layer topology, withl0 nodes in each layer.
The communication edges of the network are randomly gesetratth probability0.5 (i.e. two nodes within
neighbouring layers can communicate with each other withaloility 0.5).

Now, note that within our paper, we focus on the long-ternarimfation collection, and thus, we do not have
strict constraints on the delivery time of each collectédrimation (see Section 1 for more details). Given this,
the information discount factor that we consider here iscity high (see Section 3.1). However, it would be
also interesting to study the performance of our approadystems where real—time information collection is
desired. Within these systems, the real-time monitoripically requires newest data only, and thus, the value
of sampled information rapidly decreases as time passdhis/indicates that the discount factor is significantly
low within such systems. Now, note that MITRA does not havegrarantee that it will deliver the sampled data
to the B.S within a certain time threshold (which is a key requirementdal-time monitoring systems). Given
this, our hypothesis is that our approach may not perform wedystems that demand low discount factors. In
order to evaluate this hypothesis in more detail, we varyweiee of A\ during our simulations. In particular, we
set the information discount coefficieht= 0.9, 0.5, and0.2, respectively. The former represents the discount
factor of non real-time systems, while the latter two arepécl values for real-time WSNSs.

6.2 Overall Performance Evaluation

Given the parameter settings above, we now discuss the rmahesults of the simulations in more detalil. In
particular, we study the performance of MAB/EM combinednMITRAs (i.e. 7 = 8). As we will show later
in Section 6.4, the choice af = 8 results in both low performance loss and low number of comoation

4 These values are proportional to real world sensor valuespasted in Kansal and Srivastava (2003).
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Fig. 1 Information collection in a 100—agent network with statpalogy and\ = 0.9, in static, moderately dynamic, dynamic, and
extremely dynamic environments.



Long-Term Information Collection with Energy Harvestingréless Sensors 27

< 10° Static environment «1¢  Moderately dynamic environment
25 ‘ ‘ ‘ ‘ 3 ‘ ; ‘ ‘
MAB/EM with MITRAg MAB/EM with MITRAg
““““ MITRA with fixed energy budget allocation o MITRAwith fixed energy budget allocation
o - - - 2.5 — — — usac 1
= 2t USAC 4 g
< | - Optimal performance = | T Optimal performance
> >
c L
i) .5 2 /7
© 1.5f /1 ] T 1
£ ‘ £ 7
.g S 15} )
= . £ ’ 7
|5} I ] ° L /] 7
e S HE
Q 4 . > : -+ LL 7]
8 1 - f H
0.5} ] -7 T o ’ {,I
: 0.5t . i -
SR AR RER!
g4 I A IVI"
QLLEZ — ‘ ‘ ‘ 0L=_ ‘ ‘ ‘ ‘
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Time slots Time slots
(A) B
< 10° Dynamic environment X 10° Extremely dynamic environment
45 ‘ ‘ ‘ ‘ 45 ‘ ‘ ; ‘
MAB/EM with MITRAg MAB/EM with MITRAg
4r MITRA with fixed energy budget allocation 1 4r MITRA with fixed energy budget allocation 1
% — — — USAC % — — — USAC
= 35— —. Optimal performance 1 = 35f - —. Optimal performance |
> >
S 3 ’ S 3 ’
© IS
€ 25; / 1 E 25f : 1
el 4 S | %
Ve
E 2 L l/ % . .E 2 - y; B
© . ho} .
g ~ & .
7/ -
§ 1.5} /l § 15 /‘}
I5) _ I5) ,
O 1t O 1 I
05/ y - _ _ It 05 11334 TL1F11
o= = : : : o= = : : :
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Time slots Time slots
(©) (D)
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rounds within MITRA. Note that within our simulations, botdSAC and our approach are run with the same
environmental characteristics.

Now, since USAC does not follow the concept of energy neityrad would be unfair to compare it directly,
since the agents may deplete their batteries during opardti more detail, if USAC does not use the concept of
energy neutrality, in the long term, a large number of nodidisbe depleted, and thus, they cannot contribute to
the overall performance of the network (see Section 2 forendetails). Therefore, in our simulations, we modify
USAC so that each agefjtanalogously to MAB/EM, cannot exceed the energy budgjeit each time slot. Note
that with respect to this total energy budget limit, USAC st intelligently allocate each agent’s budget to the
tasks it thinks to be important (see Padtiyal. (2010) for more details).

In our simulations, we first focus on the performance evanah systems where only the surrounding envi-
ronment is dynamic. We then run simulations on systems withreamic environment and a changing topology
as well. Furthermore, we evaluate the performance of ouroagp in real-time monitoring systems, where the
data has to be delivered very quickly to th& (i.e. the discount factor is low). The reason we choose these
scenarios is that we aim to analyse the impact of differenadyic behaviours that can effect the performance
of our algorithm. In more detail, within the first scenarioAB/EM has to deal with the environmental changes
only, while in the second scenario, it has to take the varyapplogy into account as well. In addition, within
the third scenario, the system is forced to deliver the padketheB.S as fast as possible, since the information
value of the packets rapidly convergesitoGiven this, we group our simulations into three scenanesyely:

(i) network with no node failures (i.e. the topology is fixe(l)) network with node failures (i.e. with changing
topology); and (iii) network with node failures and low

The results of the first scenario (i.e. network with no nodlefas) are depicted in Figures 1a, 1b, 1c, and 1d,
respectively. More precisely, these figures show the padioce of the algorithms in static, moderately dynamic,
dynamic, and extremely dynamic environments, where theldgy is fixed. In addition, we set = 0.9, that
is, we assume that the network is not a real-time monitorysgesn. Here, the error bars demonstrateth#
confidence interval. From Figure 1la, we can see that our apprachieves up t80% of the optimal solution
in the case of a static environment. Since the environmetiatacteristics do not change over time, by using
our approach, the agents learn the energy budget allocatioinations that best fit these characteristics. In
particular, the agents achieve the best performance 2ft#)0 time slots, compared to that of the others. In
contrast, USAC has the best performance at the beginnirgtadiss efficiently combined sampling and routing
behaviour (e.g. it outperforms our approach by arowid%). In more detail, USAC increases the sensors’
sampling rate in unknown environments or when changes pecwr will decrease this rate as time goes by
(for more details see Padhgt al., 2010). However, within USAC, when a packet is chosen to bieated to
the BS, it is assumed to be delivered to tiS, regardless of possible future events. That is, USAC doés no
consider situations when future events may be more impraa thus, the delivery of that future information
has a higher priority. Rather, the resources are alreadypi®d to deliver the current data. This is not the case
in our approach, where such delivery guarantees do not aottithus, USAC is outperformed by our proposed
approach up t80% in the long run. However, from Figure 1, we can also see thttout the adaptive learning
part (i.e. MAB/EM), our approach cannot outperform USACphrticular, the non—learning approach (denoted
as “MITRA with fixed energy budget allocation” in the figurak)es not outperform USAC, and is the worst of
the benchmarks. Thus, MITRA itself cannot efficiently cotléhe information from the environment, compared
to state—of-the—art algorithms, such as USAC.

Now, as the environment becomes more dynamic, the perfaenahour approach is decreased, compared
to that of the optimal solution (see Figures 1b,1c, and lsheetively). The reason is that whenever changes
occur, each agent has to find a new, efficient energy budgetatibn combination that fits the best to the new
environmental characteristics. That is, it has to learn hmadapt to the new environment characteristics. This
learning period decreases the performance of the algarihmoe less efficient energy budget allocations have to
be explored before good ones can be exploited. In particolarrapproach achieves, on average, up of
the optimal solution in the moderately dynamic environm@ee Figure 1b), and it only achieves aroutids
of the optimal method in the dynamic environment (see Fiduje Furthermore, this value decreases down to
25% in the case of the extremely dynamic environment. Howeuar,approach is better in all three cases. In
particular, it outperforms USAC with arounid0% in moderately dynamic environments20% in the case of
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dynamic environments, and up 88% in extremely dynamic environments. Thus, within the firgrsrio, our
approach is more efficient in adapting to the environmeritahges than USAC.

The simulation results for the scenario of networks withendailures are depicted in Figures 2a, 2b, 2c,
and 2d, respectively. Similarly to Figures la—d, these &igwhow the performance of the algorithms in static,
moderately dynamic, dynamic, and extremely dynamic enwrents, but within networks with node failures.
Here, we also set = 0.9, and thus, we assume that there is no significant need teedétformation to theBS
as quick as possible. Note that within this scenario, duleadiigh number of dynamic parameters to be taken into
account, the centralised optimal solution, that we use hs@etical benchmark, becomes intractable, typically
after6000 time slots®. Now, we can see from Figures 2a—d that the performance apmoach is decreased in
this scenario, compared to that of the case of networks vathate failures. In more detail, by comparing our
approach’s performance to that of the optimal solutionyé#tie® we get in the case of networks with node failures
is significantly lower than that of the case of networks withaode failures. The main reason of this performance
decrement is that when node failures are allowed to be otteigystem is more dynamic from the view of each
single agent, since node failures may occur besides theommental changes. That is, our approach has to
adapt to significantly more dynamic behaviours here, coatp&r the case of networks with no node failures.
Given this, since there is less time to learn the changes, MAMBachieves a worse performance within the case
of having node failures. This fact can be easily verified bynparing the performance of our approach to that
of the non—learning approach, that only ud4EI'RAs. Specifically, by combining MAB/EM wittMITR Ag,
the overall performance in the case of networks without rfadares is typically doubled (see Figures 1a—d).
However, it is not the case within networks with node faiturln fact, the performance improvement that we
get here is typically lower, especially in the cases wheeeettvironment is highly dynamic (see Figures 2b—d).
However, our approach still outperforms USAC in all envir@ntal settings. The main reason is that within
USAC, when a packet is chosen to be delivered toward$tfiean optimal routing path is chosen, and is fixed
over the time of delivery (see Padhy et al., 2010). This teghenbrings up the following issue: a data packet,
which is already on the way towards tti#S, may not be physically delivered, due to possible node rasiu
within the routing path of that packet. Thus, USAC may walséeliudgets of the agents by occupying them with
delivering the current data. This is not the case in our aggrpwhere such delivery guarantees do not hold. Note
that these delivery guarantees are also the reasons why WSé@performed by our approach in the case of
networks without node failures. However, here (i.e. witheiworks with node failures) our approach achieves
less significant improvement, compared to the improvemecan achieve in networks without node failures.
This indicates that our approach is more sensitive to theléggcal changes than USAC.

We now focus on the simulation results of the third scenavi®re both the environment and the topology of
the networks are dynamic, and the discount factor is lowalrigular, we seh = 0.5. The results are depicted
in Figures 3a—d. Again, these figures show the performandbeotlgorithms in static, moderately dynamic,
dynamic, and extremely dynamic environments, respegtivétre, since the high probability of node failures
may significantly modify the performance of the algorithresd the numerical results of the previous scenario),
we set the probability of node failures(@al, in order to show a clear effect of lowvalues on the performance of
the approaches. Given this, we can clearly see that witilistienario, the performance of MITRA is significantly
decreased, compared to that of USAC (recall that in the puavcenarios, these two approaches shows similar
performances). The reason here is that while USAC can gtegrdime delivery of packets towards tB& within a
time threshold by choosing a full routing path, MITRA does.Aderefore, with our approach, a large portion of
collected packets are delayed within the network, and theg,information value is typically close tbwhen the
BS receives them. This performance loss is compensated wheomiine MAB/EM with MITRA, especially
when environmental changes are slow enough so that MAB/EMackapt to the changes (see Figures 3a—c).
However, in all the cases, our approach cannot outperfor#@)Since it is not designed for fast packet delivery.
In more detail, we can clearly see this in Figure 3a, wheretivdonment is static. In this case, since USAC does
not have to deal with the challenges of environmental chginigsignificantly outperforms our approach. As the
environmental changes become more frequent, but still sfmugh so that MAB/EM can adapt to these changes,
the performance of USAC is decreased, while our approaclvshmoprovement in its performance (see Figures
3b—c). However, when the environment becomes extremelgrdio) the learning approach cannot adapt to the

5 During our simulations, we used a In®@|Core ZM Quad 9400 computer with 4GB memory, and J&v4.6.018 RE.
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End node | Middle node | Start node
BRx 6.6% 35.3% 39.7%
A=09 | BTx 56.3% 46.9% 43.1%
BS 37.1% 17.8% 17.2%
End node | Middle node | Start node
BRx 4.9% 30.7% 26.9%
A=05 | BT 53.3% 42.4% 41.3%
BS 41.8% 26.9% 31.8%
End node | Middle node | Start node
BERx 5.1% 17.4% 9.1%
A=0.2 | BT 25.7% 42.5% 49.5%
BS 69.2% 40.1% 41.4%
Table 1 Detailed agent behaviour within network with random toggio
End node | Middle node | Start node
BRx 5.2% 40.3% 37.2%
A=0.9 | BT 57.4% 51.6% 44.5%
BS 37.4% 8.1% 18.3%
End node | Middle node | Start node
BERx 4.8% 31.7% 30.3%
A=05 | BT 56.5% 46.8% 45.1%
BS 38.7% 21.5% 24.6%
End node | Middle node | Start node
BERx 4.7% 18.4% 6.7%
A=02 | BT 22.1% 31.3% 53.7%
BS 73.2% 50.3% 39.6%

Table 2 Detailed agent behaviour within network with star topology

changes anymore, and thus, both USAC and MAB/EM show sigmifig lower performance (see Figure 3d).
Note that we also run the simulations with= 0.2. However, due to the very low discount factor, both USAC
and our approach show very poor performance in informatalection, and there is no significant differences
between their performance. Against this background, wectearly state that our approach is not suitable for
systems where information rapidly decays.

To conclude the performance evaluation of our approachgusiAB/EM in conjunction withMITRAg,
we can state that it significantly outperforms USAC when tifermation discount factor is high, while it is
not suitable for systems with rapidly decaying informatigve also demonstrated that the learning efficiency of
MAB/EM is decreased when the changes are rapid (e.g. theoemwent is extremely dynamic, or environmental
changes are combined with node failures). Furthermore heead that MITRA is sensitive to the value df
and thus, its inefficiency in systems with low values\afignificantly decreases the overall performance of our
approach as well. This can be verified by comparing the padace of our approach with that of the theoretical
optimal approach. However, apart from real-time systeras,approach typically outperforms USAC. Given
this, our approach is suitable for system with non real-tietpiirements.

6.3 Agent Behaviours within Different Network Settings

To better understand the behaviour of our approach, we nowusfon a more detailed study of MAB/EM in
this section. In particular, we aim to determine the typeratrgy budgets that each agent allocates to sampling,
receiving and transmitting. However, as the numericalltesuthin the previous section indicate, the behaviour
of MAB/EM depends on the value of the discount factor, and éheironmental changes. Thus, one of our
objectives is to investigate these dependencies. Furtretrthe behaviour of the agents may also depend on the
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End node | Middle node | Start node
BRx 4.1% 34.2% 40.5%
A=09 | BT 55.7% 46.9% 54.2%
BS 40.2% 18.9% 5.3%

End node | Middle node | Start node
BERx 3.5% 30.9% 25.8%
A=0.5 | BT 54.7% 44.3% 52.6%
BS 41.8% 24.8% 21.6%

End node | Middle node | Start node
BRx 4.3% 13.2% 8.7%
A=02 | BT 36.1% 35.1% 48.5%
BS 59.6% 51.7% 42.8%

Table 3 Detailed agent behaviour within network with chain topglog

network topology as well. In particular, the network togplaestricts the set of agents that a particular agent
node can interact with, while using MITRA. In addition, thistdnce between the agents and the may also
have a significant impact on the agents’ behaviour, sinceltser an agent is to thB.S, the more it needs to be
able to handle a larger amount of traffic throughput thatsttedorward to theB.S. Given this, beside the network
topology we described in Section 6.1, which we will refer sotlae “random network”, we run our simulations
on two additional networks, namely: (i) network with “stapblogy”; and (ii) network with “chain topology”.
The former ha®1 nodes, that together forfhlayers, where the middle layer contains exactly one nodettie
star node), while the other layers havaodes each. Each node can communicate with any of the notlgs wi
its neighbouring layers. On the other hand, the latter tmppohasl 0 nodes, forming d 0—layer long chain, with
exactly one node in each layer. Note that here, the randoaldgy represents a regular network (i.e. the network
topology is arbitrary), the star topology represents nétaavith some bottle—nheck nodes (i.e. all the traffic of
the network has to go through these nodes), while the chaimidgy represents networks where all the traffic
has to follow a certain routing path.

We first study the impact of the network topology and the distdactor to the behaviour of MAB/EM in
more detail. In particular, we investigate the average btuggrcentage (compared to the total energy budget)
that a single agent allocates to data sampling, receividgramsmitting. In so doing, we calculate these budget
allocation values with different, network topology, and distance of the agent fromi# For varying the latter
parameter, we focus on three different type of distances fifét type is the nodes that are farthest from B
(i.e. the node lies in the last layer). We refer to this nodé¢has'end node”. The second type of node that we
investigate is the one that is in the middle layer, which werréo as the “middle node”. Note that the middle
node is in fact the star node in the case of the star topolagyh&more, since the random topology contdifis
layers, it does not have the middle layer. Given this, withia topology, the middle node is chosen from layer
The third type is the one that is next to tB (i.e. it can directly communicate with thS), which is referred
to as the “start node”.

The results are depicted in Tables 1, 2, and 3, respectivetyore detail, Table 1 depicts the average budget
allocation values of the end node, middle node, and stag imothe random topology, witk = 0.9, 0.5, and0.2.

For example, an end node within the random topology typiallbcatess.6% of its budget to receivingy6.3%

to transmitting, and7.1% to sampling, when. = 0.9. Similarly, Tables 2 and 3 contains these values for star and
chain topologies, respectively. Here we set the environah@hmanges to be static, with no node failures, since
within this type of environment, we can clearly observe timpact of the abovementioned factors. Note that
we also evaluated our simulations with more dynamic enwremtal settings (i.e. changing information value
distributions, and occurrence of node failures). But dutanéodynamic environmental changes, the behaviour of
the agents becomes more diverse, and thus, the patterresailikely to be observed.

Now, from the tables, we can clearly see thatadecreases, the nodes becomes more selfish, that is, each
node puts more effort on sampling its own data. The reasothisiis that with low\ values, the information
value of packets, that are received/or sampled in the pastys quickly, so that the information value of newly
sampled data will dominate the reward that the agent can lgeh\t evaluates its chosen action. In addition, we
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can observe that the end node typically focuses on samplichdgransmitting only, since they can learn that there
is no data to receive. However, when the agent is closer tB et changes its focus from sampling its own data
to relaying others’. This pattern can be observed most lgléathe case o\ = 0.9. Furthermore, we can see
that the pattern of the nodes’ behaviour does not depend wuthe type of the underlying network topology.
In particular, it allocates similar budget ratios to eaclhef sensory tasks in different topologies. However, there
are notable exceptions. For example, in the case of thegtatogy and\x = 0.9, the middle node behaves
differently than in the other cases. Specifically, it alkesasignificantly lower budget to sampling, compared
to the other cases. The reason here is that it has to takedotwiat the others’ collected data as well, as the
information value of this data does not decay rapidly. Innailsir vein, the start node also allocates significantly
less budget to sampling within the case of chain topology ard 0.9, compared to other cases. To conclude,
we can say that the behaviour of the nodes typically doeseqmmtd on the topology. Furthermore, the closer the
agents are to thB.S, the more they are willing to relay other agents’ collectathdHowever, the cooperativeness
between the agents decreases, and thus, they allocate nuyet ito sampling their own data, as the information
discount factor decrease.

6.4 Performance Evaluation 8M{ITRA -

Given the simulation results in the previous section, wesesthaMITRA -, together with MAB/EM, performs
well with 7 = 8. As mentioned in Secton 5.4, the advantage of udiifRA; instead of MITRA is that the
former has limited communication cost. This limitation iieg that the performance &ilTTRA - is decreased,
compared to that of MITRA, which is proveably optimal. Howevwe shall now show tha¥IITRA ;- still
achieves near—optimal performance, even with small vatdies by studying the performance &iITRA;
with different values of-. The performance of the@dITRA ;. algorithms is compared to that of MITRA with
an unlimited number of communication rounds. Note that MATRay use tens of rounds in order to achieve
optimal routing performance (as outlined in Section 5.4).

Given this, the numerical results are depicted in Figurendrticular, the figure contains the performance
of MITRA with = = {1, 2,4, 8}. Note that we also have evaluated the performandditfRA - with higher
values ofr, but their improvement is not significant, compared to tHatldTR Ag. From Figure 4, we can see
thatMITRA; achieves the lowest performance (it perfo30$; less well than the optimal solution in the case of
networks with100 agents). Withr = 2, andr = 4, MITRA ; achieves better results, but their performance loss
(i.e. the difference between their performance and thath@foptimal solution) is still significant. In particular,
MITRA, performs, on averag&0%, whilst MITRA, achieves aroun80% of the optimal solution in the
case of100 agents. In contrast, we can see that witk= 8, even in the case of networks witld0 agents,
the performance dMITRA - is around98% of the optimal unlimited MITRA. That is, by limiting the nurab
of communication rounds that MITRA can use o= 8, our approach still achieves near—optimal solution
with around2% performance loss. On the other hand, according to TheordMT3RA without communication
round limit may use up t66 rounds in order to achieve optimal routing performance.tT§ieby limiting the
communication rounds te = 8, we can reduce the number of communication rounds8®$%. Given this,
by usingMITRAg, the number of used communication rounds is small enoughatcthe total time needed
for coordination will not exceed the size of the time slotisTtin particular, verifies our choice &iITRAg in
Section 6.2.

7 Conclusions and Future Work

In this paper, we studied long-term information collectinorthe WSN domain. In particular, first we looked at

previous on work energy management and data routing in WBMNse are the perspectives from which efficient
information collection can be achieved. Following this, ingoduced our model for WSNs that includes the
aforementioned perspectives, and we formalised our mgactie of maximising the total amount of collected

information at the base station over a given finite time ivakr
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Comparison of Performance
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Fig. 4 Performance comparison MIITRA » with that of the unlimited MITRA. The optimal performancehéved by MITRA is
100%.

In a review of the relevant literature, we demonstratedribat of the state-of-the-art algorithms in the afore-
mentioned perspectives meets all of our research requitsni@r long-term information collection. Given this,
we developed a novel model that enables learning and adapptithe environmental changes. In particular, we
focused on adaptive energy management and routing, whelstssumed that the data sampling and information
content valuation parts of the model use state-of-theeattrtiqgues. In so doing, we decomposed the original
problem into two sub—problems, namely: (i) energy managenaad (i) maximal information throughput rout-
ing.

Against this background, we proposed a multi-armed bardieth approach called MAB/EM for the energy
management problem. In particular, we first introduced th&BMmodel, which forms the foundation of our
approach. Then we reduced the energy management problera MAB problem, by defining the actions and
the reward functions for the agents. Following this, we dbsd in more detail a state-of-the-art MAB algorithm,
Exp3, that can be used to efficiently deal with the energy mement problem.

For the maximal information throughput routing problem, devised two decentralised routing algorithms,
MITRA (for maximal information throughput routing algdnin), andMITRA ;, respectively. We proved that
MITRA provides the optimal solution for the maximal infortran throughput routing problem. Furthermore, we
also provided an upper bound for the number of communicatiands that MITRA needs to use within a time
slot. Since the total number of communication rounds thalRA uses may be large, we modified MITRA so
that the number of communication rounds is reduced. Thefioation resulted in the introduction MIITRA -.

Following this, we demonstrated the efficiency of our apphoé.e. MAB/EM combined withMITRA -,
wherer = 8) through extensive simulation results. In particular, teasure the efficiency of our approach, we
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compared with a state—of-the—art non—learning informatiilection algorithm, USAC. Moreover, to measure
the performance surplus that MAB/EM adds to our approachalee used a non—learning algorithm, that solely
uses MITRA, as a benchmark method. Both comparisons shdwéeMAB/EM with MITR A - together are effi-
cient in terms of long—term information collection, sintean adapt to the environmental changes. In particular,
we demonstrated that, within systems with high values afrmftion discount factor, our approach outperforms
USAC. However, we also showed that as the discount factaedsedised, the performance of our approach also
decreases. In addition, we also empirically showed thatiopsing small values af, near—optimal routing per-
formance can still be achieved, whilst the number of comgation rounds is significantly reduced. Given this,
the integrated model and the proposed algorithms are pkatig useful for non—real time monitoring systems
(i.e. the information discount factor is high), in which #revironment has to be monitored over a prolonged time
interval, and unpredicted, important events should béndjsished from the other events.

In our WSN model, we assumed that agents can harvest enezgyh@mhole period of their operation time,
and thus, they can follow the concept of energy—neutrdlitparticular, we assumed that the energy budget that
each agent can use at each time slot is fixed over time. Thisaited that the agent’s action set does not change
over time either. However, there are systems in which thésimption does not hold. In particular, for example,
sensor agents with solar energy collectors may not perfoethimwenergy harvesting if they are deployed in en-
vironments with cloudy weather. In these cases, agents aildp tomply with the concept of energy—neutrality.
Given this, we aim to extend our work to systems in which epeagvesting is either not efficient or not feasible.
More precisely, within these systems, agents need to dedig¢her to follow the concept of energy—neutrality,
and thus, they should be able to save energy for time slots whergy harvesting is not possible, in order to
achieve efficient long—term information collection. Howeuhis implies that the current MAB model is not suit-
able for such systems, since the action set of each agentfis@w over time. Given this, we need to modify the
MAB concept so that this extended model can be efficientligléatas well.
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