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Abstract This paper reports on the development of a multi–agent approach to long-term information collection in networks of

energy harvesting wireless sensors. In particular, we focus on developing energy management and data routing policiesthat adapt

their behaviour according to the energy that is harvested, in order to maximise the amount of information collected given the available

energy budget. In so doing, we introduce a new energy management technique, based on multi–armed bandit learning, that allows each

agent to adaptively allocate its energy budget across the tasks of data sampling, receiving and transmitting. By using this approach, each

agent can learn the optimal energy budget settings that giveit efficient information collection in the long run. Then, wepropose two

novel decentralised multi–hop algorithms for data routing. The first proveably maximises the information throughput in the network,

but can sometimes involve high communication cost. The second algorithm provides near–optimal performance, but with reduced

computational and communication costs. Finally, we demonstrate that, by using our approaches for energy management and routing,

we can achieve a120% improvement in long-term information collection against state–of–the–art benchmarks.

1 Introduction

Due to their flexibility, low cost and ease of deployment, networks of wireless sensors are being used in a wide
variety of applications ranging from environmental, habitat and traffic monitoring, to object tracking and military
field observations (Chong and Kumar, 2003; Merrett, 2008; Rogerset al., 2009; Romer and Mattern, 2004).
Specifically, in this context, awireless sensor network(WSN) is viewed as a network of small, densely deployed,
spatially decentralised autonomous sensor devices (referred to hereafter as “nodes”) communicating through
a wireless communication network, whose task is monitoringphysical or environmental conditions including,
but not limited to, temperature, sound, vibration, pressure, seismic, infrared, magnetic and motion information
(Balduset al., 2004; Juanget al., 2002; Simonet al., 2004).

These networks are typically deployed for collecting information from a heterogeneous and dynamically
changing environment (i.e. the characteristics may vary over both space and time), and are typically required
to operate over an extended period of time (covering months or even years). Within this paper, we typically
focus on environmental changes such as varying occurrence of the observed phenomena, varying distribution
of collectable information (both in space and time), or network topology changes during operation time. The
information collected is then typically forwarded to a basestation (BS) (also referred to as a sink or gateway)1.
Information that arrives at theBS is then processed or transmitted outside the sensor networkto end-users for
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1 In most cases, theBS is a specialised node that has significantly more power than the ordinary ones and, depending on the
application, there can be more than one of them in the network.
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further analysis, fulfilling the specific goals of the WSN deployment. Note that some real–world WSNs requires
newest data only, and thus, the value of information that is sampled in the past rapidly decays as time passes by.
Such WSNs are typically deployed for real–time target tracking or real–time object localisation (Heet al., 2006;
Simonet al., 2004). Within these networks, a fundamental goal is to sendcollected data to theBS as fast as
possible (i.e. the data has a strict delivery time constraint). On the other hand, other networks focus on collecting
information within a non real–time manner. That is, the deployed network continuously collects information from
the surrounding environment, without having the aforementioned strict delivery time constraint (i.e. the collected
information can be delayed for a longer time before it is delivered to theBS). Since most of the WSN applications
are deployed to fulfil the latter type of monitoring (Chong and Kumar, 2003; Merrett, 2008; Rogerset al., 2009),
here we focus on networks where the goal is to collect information over a period of time, in a non real–time
manner.

Since the energy capacity of sensor nodes is typically limited, the total operation time of WSNs is often
heavily restricted (Akyildizet al., 2002; Rogerset al., 2009). In particular, limited energy capacity implies rapid
depletion of the sensor batteries, which may lead to insufficient data collection from the network. Given this, in
order to extend the operation time of sensor networks, a number of recent research works have proposedenergy
harvesting sensors, which have the capability of scavenging ambient energy from their surrounding environment,
using solar, vibration, temperature, and radioactive sources (Beebyet al., 2006; Torahet al., 2008; Zhanget al.,
2004). Within such settings, sensor nodes typically seek tocomply with the concept ofenergy–neutrality, in
which the energy consumption of a node should be equal to its harvested energy (Khoet al., 2009; Vigoritoet al.,
2007). The advantage of such approaches is that sensors can indefinitely extend their life span, which is especially
important when information collection has to operate over aprolonged period of time. Given this background, in
this paper, we focus in particular on the challenges associated withefficient long–term information collectionin
networks of sensors with rechargeable batteries. That is, we aim to maximise the total information value collected
and delivered to theBS in a given extended time interval of operation, or over the entire lifetime of the network,
where the nodes follow the concept of energy–neutrality.

Now, to forward data to theBS, sensor nodes can use single-hop (i.e. sensors directly send data to theBS)
or multi–hop (i.e. data is forwarded towards theBS via relay nodes) routing scenarios. The former needs no
coordination and cooperation between the nodes. However, due the limited communication range of the sensor
nodes, this scenario is only feasible when the nodes are deployed in a small area (since theBS needs to be within
the communication range of all the nodes). Since WSNs typically cover a significantly larger area, the multi–hop
routing scenario is more desirable in such networks. However, this demands anefficient control mechanismthat
coordinates the nodes to collect information. In particular, this mechanism dictates the information collecting and
forwarding actions of the sensor nodes, so that the objective of the network deployment can be achieved (Horling
et al., 2006; Kho, 2009). Against this background, this paper focuses on the control side of the WSN; that is, we
propose a sensory task control mechanism that sensor nodes can use in order to maximise the total amount of
information collected within a prolonged period of time.

Such control mechanisms fall into two broad categories:centralisedanddecentralised. In the former, a single
controller receives information from all the nodes, and then determines the actions of each node indicating how
they should sample, receive, forward, and route data. Within this approach, however, the central controller is
required to perform a large number of computations in order to find each node’s optimal actions. Thus, it often
represents a significant computational bottleneck, especially in large networks. Furthermore, since the controller
needs to collect all the information from the nodes, there istypically a delay in time before it can start determining
the nodes’ actions. Given this, the centralised approach may not respond well to the environmental changes,
and thus, it can suffer from a lack of ability to efficiently adapt to those changes. In contrast, in decentralised
control regimes such a central controller does not exist. Instead, the nodes are autonomous and each decides its
individual actions based on its own local state and observations, and those of its neighbouring nodes. Thus, the
aforementioned disadvantages disappear within the decentralised control regime (Boukerche, 2008; Wagner and
Wattenhofer, 2007). Therefore, in this work, we focus on decentralised control mechanism for WSNs. However,
this approach raises several new challenges. Specifically,to achieve system–wide goals, the nodes must typically
coordinate their actions with their neighbours (e.g. to forward data or to track objects). In addition, since the
nodes typically operate in a dynamically changing environment, they must be able to autonomously adapt their
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behaviour, without having global information about the system, in order to achieve the long-term global goals (e.g.
maximal information collection or optimal coverage) (Bulka et al., 2007). Such issues naturally lend themselves
to a multi–agent system(MAS) perspective (Lesseret al., 2003; Pchouek and Mak, 2008; Soh and Tsatsoulis,
2005), in which each sensor is represented by an agent, whichautonomously and cooperatively acts, in order to
achieve system-wide objectives (Jennings, 2001).

Against this background, the information collection problem that we address consists of a set of energy
harvesting sensor agents (i.e. nodes), collecting information from a dynamic environment over an extended period
of time, without the aid of a centralised controller. However, due to the limited energy harvesting capacity of the
agents (Kansal and Srivastava, 2003), energy efficiency is perhaps the most important issue within the information
collection problem (Chong and Kumar, 2003; Stankovic, 2004). In particular, since the agents follow the concept
of energy–neutrality, their energy consumption cannot exceed the amount of energy that they can harvest. Given
this, it is important to wiselymanage the energy consumptionof the agents, such that they can decide whether to
allocate more of this scarce resource to the tasks of sampling, receiving, or transmitting data, in order to achieve
maximal long–term information collection. In addition, wealso need to develop routing techniques in order to
deliver the data to theBS, and thus, to maximise the amount of information collected in the network. Given this,
in this paper, we focus in particular on the challenges of energy management and data routing. However, tackling
this joint problem of energy management and routing is hard.In particular, each agent has a number of options
to allocate amounts of energy to its sensory tasks. In addition, it needs to decide which packet it has to send,
and to whom among its neighbouring agents. These options together result in a large task combination space (i.e.
the space of combined tasks of energy allocation and packet transmission/receiving), from which the agent has
to determine an optimal one (i.e. the task combination that leads to the desired goal of the network). This task
combination space is typically exponential, compared to the size of the network, so the joint problem quickly
becomes infeasible in terms of complexity. Thus, to simplify the complexity of the original joint problem, we
separate the energy management and data routing problems. However, as we will show, by using the solutions of
the separated problems, efficient information collection can be still achieved.

In more detail, the decomposition of the original problem can be described as follows. It is based on the obser-
vation that by adaptively setting the value of the energy budgets allocated to the various sensory tasks, the agents
should achieve better performance in dynamic environmentsthan systems without the ability to adapt in this
fashion. However, in order to determine which energy budgetallocation combinations are optimal (exploitation),
the agent first has tolearn the performance of all the combinations (exploration). Thus, it has to balance between
exploration and exploitation. Given this, within the energy management problem, we seek for an efficient learn-
ing method that finds a trade–off between exploring and exploiting the energy budget allocation combinations, in
order to achieve optimal performance of long–term information collection. Now, suppose that all the agents have
already set their energy budget value for sampling, receiving, and transmitting tasks. In this case, to maximise
the value of the total collected information, it is obvious that we need to maximise the total information value
of data sampled or relayed by agents that are one hop from theBS. The latter, however, is equal to data that is
sampled or relayed by agents that are two hops from theBS, and so on. Thus, it is also important to maximise
the information throughput(i.e. the total transmitted information value) between neighbouringlayersof agents
(i.e. the group of agents that are the same distance from theBS) by using efficient routing techniques. This forms
the routing problem we aim to solve within our paper.

To solve the energy management problem, we propose amulti–armed bandit learning(MAB) based energy
management model for each agent within the network. In particular, within the MAB model, each agent chooses
from its action set (i.e. set of energy budget allocations) at each round, and, based on this choice, it gets a reward.
The goal of the agent is simply to maximise its total reward over a given time period. For the routing problem,
we propose two simple decentralised routing algorithms. The first is proveably optimal, but can sometimes use a
large number of communication messages to coordinate the routing. The second algorithm is near–optimal, but
its communication cost is significantly lower. By using one of the proposed routing algorithms, our approach can
calculate the total amount of information throughput that the routing algorithm produces within that particular
time step. This amount of information then forms the reward value that the MAB model gets by using the chosen
energy budget allocation combination (see Section 4 for more details). With this reward value, the MAB model
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gets the feedback about the efficiency of the chosen energy allocation combination, and thus, it can learn which
combinations are more efficient ones.

Given this context, this work advances the-state-of-the-art in the following specific ways:

– We introduce the first integrated model for WSNs that considers energy neutrality, adaptability, information
content valuation techniques and long-term efficiency.

– We devise the first multi–armed bandit learning based energybudget allocation approach, called MAB/EM.
Based on this, we show how efficient energy management can be sustained in the long term, by using this
approach.

– We propose two simple decentralised routing algorithms, MITRA and MITRAτ . The former is the first
to proveably maximise the total information throughput between layers of agents, whilst the latter has a
near–optimal performance (it achieves, on average,98% of the optimal solution), but with a reduced commu-
nication cost.

– We empirically evaluate the performance of these algorithms through extensive simulations and show that
information collection is increased by up to120%, by applying the proposed algorithms, compared to that of
USAC, a state-of-the-art method (see Section 2 for more details of USAC). Furthermore, we show that the
communication cost of our approaches are low, compared to the cost of real data transmission.

The remainder of this paper is organised as follows. First, we present related work in this area in Section 2, and
detail why it does not meet all our requirements. Following this, we give the formal descriptions of our network
model and research objectives in Sections 3. We then discussour approach for efficient long-term data collection,
which includes the MAB learning based energy management method (Section 4), and routing algorithms (Section
5), respectively. Our approach is then empirically evaluated in Section 6. Finally, Section 7 concludes.

2 Literature Review

Previous work on information collection in WSNs has primarily focused on energy efficiency, and thus, aims
to lengthen the life span of the network. In particular, a number of energy efficient algorithms use clustering
techniques to minimise energy consumption during routing through the rotation of cluster–heads such that the
high energy consumption in communicating with theBS is spread across all nodes. These algorithms include
low energy adaptive clustering hierarchy(LEACH), proposed by Heinzelmanet al. (2000), andpower efficient
gathering in sensor information systems(PEGASIS), proposed by Lindsey and Raghavendra (2002). In general,
these methods make a good attempt to balance the energy consumption by electing cluster–heads, each of which
is responsible for relaying the data from a subset of nodes back to theBS in an intelligent way. However, these
cluster–heads all need to be placed inside theBS’s radio range as they communicate with it directly. Thus, this
assumption limits the size of the monitoring environment, since the wireless radio range of theBS is limited.
Moreover, these single cluster–heads can become a communication bottleneck of the network, since in each round
they need to communicate with a large number of nodes within their cluster. Hence, this aspect contains many of
the drawbacks of the centralised control regime.

In addition, energy efficiency can be maintained by reducingthe total energy consumption needed to deliver
the packets to theBS. From this perspective, Dekorsyet al.(2007) proposed an approach that jointly controls the
routing and energy management, in order to achieve efficientdata forwarding. In particular, their approach aims
to minimise the total energy consumption of each node, whilst the collected data has to be delivered to theBS

using multipath routing (i.e. there can be multiple routingpaths between a node and theBS). In so doing, the
approach considers each node’s residual energy level, the transmission power level, and maximal communication
bandwidth. This approach, however, assumes that the data isalready sampled, and that future data is not taken
into consideration when optimal routing paths are calculated. Given this, whenever the environment changes (e.g.
node failure occurs, or the distribution of collected information changes), it has to recalculate the optimal paths,
and thus, it requires significant computational resources.

Another way to lengthen the life span of the network is to performenergy balancing(Dingaet al., 2004). That
is, to maximise the residual energy level of the bottleneck node (i.e. the node with the lowest energy level) in the
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network during the routing. In this vein, Oket al. (2009) used a metric to take the energy cost of transmission,as
well as the sensors’ remaining energies into account. This metric gives rise to the design of thedistributed energy
balanced routing(DEBR) algorithm, to balance the data traffic of sensor networks in a decentralised manner.
Furthermore, Liet al. (2007) proposed a global–energy balancing routing scheme (GEBR) for real–time traffic.
Now, whilst both of these algorithms perform well in prolonging the lifetime of the WSN, they are not designed
for adapting to dynamic environments, since they do not takethe environmental changes into account.

More recently, Merrett (2008) developed theinformation managed energy aware algorithm for sensor net-
works(IDEALS) protocol, which aims to extend the network lifetime of WSNs. IDEALS is an application spe-
cific heuristic protocol as it requires that every sensor node decides its individual network involvement based
on its own energy state and the importance of information contained in each message. Similarly, USAC (for
utility based sensing and communication protocol) uses anopportunity costof the energy used by each sensor
to balance the energy consumption of the tasks of sampling and forwarding (Padhyet al., 2010). That is, by
evaluating its own opportunity cost, each sensor can decidewhether it spends energy on sampling or forwarding,
depending on which is the more preferable opportunity for the sensor. Moreover, USAC also considers the total
energy consumption required to transmit a packet along a particular path as well. These methods, since they can
vary the energy budgets allocated to the sensory tasks, are suitable for adapting to environmental changes. How-
ever, they are not designed for sensors with rechargeable batteries, and thus, they do not follow the concept of
energy–neutrality. Given this, an increasing percentage of sensor batteries will deplete as time goes by, and thus,
the global performance of the network will be decreased in the long term.

Beside the concept of energy–neutrality, another way to achieve efficient long–term information collection
in WSNs is to distinguish important from less important data, so that the network can preferentially deliver
important data to theBS, in order to maximise the amount of collected information. This is especially vital when
communication cost is much higher than other costs, as is often the case with lower power devices (Merrett,
2008). To achieve this,information content valuationtechniques are typically used to calculate the importance
of data (Frieden, 2004; Kho, 2009; Krauseet al., 2006). In so doing, an information value metric, such as Fisher
information or mutual information, is often used to determine the level of importance of information. Given this,
in this paper, we also use the concept of information contentvaluation, in order to maximise the performance of
the network in long–term information.

Within the literature, routing approaches that use the aforementioned information content valuation tech-
niques are typically referred to asinformation–centric routingprotocols. One of these algorithms,directed dif-
fusion (DD), has been developed by Intanagonwiwatet al. (2003). In DD, theBS sends out a data collection
query description by flooding the query to the entire network. That is, data collection happens only when theBS

needs a certain type of data. However, since data collectionapplications (e.g environmental monitoring or area
surveillance) typically require continuous data deliveryto theBS, a significant number of queries will be sent
to the network. In this case, the communication cost of DD caused by query floodings is high, meaning DD is
not suitable for long–term information collection. To avoid flooding, therumour routing(RR) protocol routes
the queries to the nodes that have observed a particular event to retrieve information about the occurrence of the
event, and thus, it reduces the total communication cost (Braginsky and Estri, 2002). However, both DD and RR
perform well only when the number of events is small, and the events are predictable and periodic. Otherwise,
if a large number of unexpected events occur in the future, the algorithms become infeasible, since they cannot
predict these events a priori, and thus, theBS does not know where to send the query in order to collect informa-
tion of the particular events that occur within the network.Moreover, all such information–centric protocols do
not take into account the network’s dynamism (i.e. the changes of network topology) in forwarding data packets.
Given this, these algorithms are not suitable in our settings.

Whilst in DD and RR, information is collected by sending explicit queries from theBS, other methods focus
on continuous information collection. That is, they provide information collection, without the need of sending
any queries, during the whole operation of the network. For instance, USAC considers the remaining battery
power of the communicating nodes and the importance of the data being transmitted, in order to determine the
appropriate routing path for the packet. In a similar vein, the adaptive routing algorithm(ARA) of Zhou and
de Roure (2007) considers the link cost (assumed to be proportional to the distance) between the nodes into
account as well. However, these protocols are not designed for solving the maximal information throughput
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routing problem, since their main goal is not to maximise theinformation throughput between the neighbouring
layers of sensor agents, but rather to identify optimal paths between each node and theBS, that can be used for
forwarding data.

Despite their efficiency in energy consumption, none of the aforementioned approaches is designed to comply
with the concept of energy–neutrality. To date, very few studies have focused particularly on data collection in
networks of energy harvesting nodes. A notable exception, however, is the work of Kansal and Srivastava (2003).
In their work, the authors used spectral estimation functions and prediction filters to estimate the expected amount
of harvested energy of each sensor in a given future time interval. Based on these estimations, the sensors are
able to schedule their tasks, in order to achieve long-term goals. However, their approach does not consider
information content valuation, and thus, will not perform well in information collection. More recently, Kho
et al. (2010) proposed an energy neutral information–centric data collection algorithm, that combines sampling
and routing policies, in order to maximise the collected information in one time slot. That method, however, does
not plan for long–term operation, since it does not considerdynamic changes of the environment.

To date, very few approaches have attempted to use learning in the WSN domain. Notable exceptions, how-
ever, typically focus on sleep–awake cycle scheduling, or adaptive routing. In the former, Mihaylovet al. (2009)
proposed a reinforcement learning based technique to extend the life span of the network by learning the most
efficient sleep–awake ratio. This topic is outside the scopeof our interest, since we assume that our sensors are
able to recharge their battery, and thus, they do not need to schedule their sleep–awake cycles. On the other hand,
in the latter research area, a number of researchers proposed learning–based techniques to maintain a routing tree
that efficiently handles the node failures, creating an efficient connectivity between the nodes to theBS in all
circumstances (Zhang and Huang, 2006). In addition, Aghaeil et al. (2007) developed swarm intelligence–based
algorithms which use learning for data packet routing in WSNs. Furthermore, Gelenbe and Lent (2004) proposed
a concept called aCognitive Packet Network(CPN) for intelligent packet forwarding in wireless ad hoc net-
works. In particular, CPN is an autonomous adaptivequality of service(QoS) driven network, which adaptively
selects paths so as to offer best effort QoS to the end users based on user defined QoS. CPN uses neural network
based reinforcement learning to make routing decisions separately at each node. However, these approaches do
not focus on maximising the collected information in a long–term operation, and thus, will not perform well in
the long run. More recently, Jainet al. (2009) proposed a reinforcement learning based technique in order to
efficiently coordinate the sensors over a prolonged period of time. This work can be regarded as most related to
our paper, since it also aims to maximise the total amount of rewards (e.g. information value) over the operation
time. However, their approach exploits the fact that the environment is static, and thus, the reward matrix (i.e. an
action–reward mapping) is static over time. Thus, this approach will not perform well in dynamic environments.

Finally, note that apart from the MAB approach, there exist other, more sophisticated, learning concepts to
tackle the information collection problem. This includes,but is not limited to, the following: multi–state Markov
decision processes (MDPs) (Sutton and Barto, 1998), partially observable MDPs (POMDPs) (Cassandra, 1998),
and decentralised POMDPs (DecPOMDPs) (Seuken and Zilberstein, 2008). However, these learning methods
require higher computational complexity, compared to thatof the MAB learning. In particular, these learning
concepts also take into account the state of the environment, which is modified by the actions of the agents. This
implies that within the concepts above, an agent needs to consider a significantly larger space of options (i.e.
space of state–action pairs), compared to that of the MAB model, where the space of options only contains the
set of the agent’s actions. In addition, as we will see later,the MAB approach produces remarkably good results
in data collection (see Section 6 for more details).

3 System Models and Problem Definitions

Having described the research objective and related work ofour paper, we now introduce a formalisation of the
long–term information collection problem for WSNs in this section. To this end, we first provide a formal descrip-
tion of the WSN system in Section 3.1. In particular, we describe the models of adaptive sampling, information
content valuation, data routing, and energy management policies that play fundamental roles in efficient infor-
mation collection of WSNs. Here, we also discuss the assumptions, on which the model formalisation is based.
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Following this, in Section 3.2, we formulate the main objective of our research: that is, to achieve efficient long-
term information collection in WSNs. Finally, we decomposethe information collection problem into the two
separate sub–problems described in Section 1: (i) energy management; and (ii) maximal information throughput
routing, which we introduce in Sections 3.3, and 3.4, respectively.

3.1 The Wireless Sensor Network Model

In order to formalise the long–term information collectionchallenge introduced earlier, we first need to intro-
duce a suitable WSN model. Given this, we now present our WSN model, that covers the energy management,
sampling, information content valuation, and routing components, respectively. Recall that for all the reasons
outlined in Section 1, we pursue a multi–agent system model,whereby sensor nodes are represented as agents.

Now, since the main focus of the paper is on the control side ofthe WSN, we make the following assumptions
about the physical world of the network, in order to simplifythe complexity of the model:

– The network that we are studying is not a mobile network (i.e.the agents cannot change their location),
however, link failures, node failures and node additions are taken into account. That is, the network can be
topologically dynamic, but not mobile.

– In our model, theenergy consumption of memory management(i.e. reading from memory and writing to
memory)is negligiblecompared to the energy consumption of data sampling and forwarding. This assump-
tion is reasonable according to the experimental studies reported in Mathuret al. (2006) and Anastasiet al.
(2004).

– We also assume that once the communication channel is set between two nodes, data transmission between
these nodes isperfect(i.e. no data loss occurs). This assumption is reasonable, espacially in networks where
there is a demand of high quality of service (QoS) (Youniset al., 2004). In particular, if the ratio of successful
transmission of a communication channel is low (i.e. the QoSis low), then that communication channel
cannot be established. In order to guarantee high QoS withinWSNs, efficient techniques can be used, such
as time synchronisation policies (Degesys and Nagpal, 2008; Elson and Estrin, 2001; Sundararamanet al.,
2005), or medium access control (MAC) protocols that control the data transmission of each node (Demirkol
et al., 2006; Wu and Biswas, 2007). By using the aforementioned techniques, we can guarantee that no data
loss occurs during data transmission.

– Each node canperiodically recharge its battery, making it independent of human intervention. Here, we use
a realistic model taken from existing WSN applications. Such models can be found for example, in Beeby
et al. (2006), Torahet al. (2008), Zhanget al. (2004), Roundyet al. (2004), or Merrett (2008).

Given this, we can formulate the WSN model as follows. LetI = 1, 2, . . . , N be the set of agents in the network,
which contains one base station, denotedBS2. We assume that each agent knows its distance in hops from the
BS. This can be achieved by using any of the standard shortest path algorithms (e.g. distributed breadth-first
search or distributed Bellman–Ford). Furthermore, each agent can only communicate with those who are inside
its communication range, and different agents may have different ranges.

Here, for the sake of simplicity, we split the time line into slots. That is, hereafter we assume that time is
discrete, and can be denoted with the sequence oft = 0,1, 2, . . . . We consider three specific kinds of energy
consumption for each agent in the network, namely: the energy required to (i) acquire (i.e. sample); (ii) receive;
and (iii) transmit a single data packet (we assume that each packet has the same size in bytes). Given this, leteS

i ,
eRx
i , andeTx

i denote the energy consumption that agenti has to spend for sampling, receiving, and transmitting
a single data packet, respectively.

Let Bi denote the average amount of harvested energy of agenti over a single time period. Since the agents
comply with the concept of energy–neutrality, the total energy budget agenti can use is equal to the amount
of energy that agenti can harvest. Note that this assumption slightly simplifies the real–world models, since in
reality the energy consumption limit does not need to perfectly match the amount of harvested energy as long as

2 Our model can easily be extended to cover systems with multiple base stations.



8 Long Tran-Thanh et al.

the battery of the agents is not depleted. However, for the sake of simplicity, we assume that the energy harvesting
is stable within this paper3. Given this, we assume that the amount of harvested energy per slot is constant, and we
denote it withBi. That is, for each time slott, the energy consumption of agenti cannot exceedBi in our settings.
In addition, we disregard the energy required for other types of processing since it is negligible in comparison
(Mathuret al., 2006; Merrett, 2008).

For data sampling, since our goal is not to develop new sampling techniques, we use existing sampling
techniques from the literature. Specifically, we focus onadaptive data samplingtechniques. Such policies have
been advocated as the way to achieve accurate estimates of the environmental conditions, whilst minimising
redundant sampling of the environment. Relevant examples can be found in Khoet al. (2009), Willett et al.
(2004), Jain and Chang (2004), or Cover and Thomas (2006). Inparticular, adaptive sampling techniques often
include sets of rules that control a node’ssampling rate(i.e. how often a node is required to collect data by
sampling during a particular time interval) andsampling scheduling(i.e. when a node is required to sample).
The advantage of adaptive sampling is that it can efficientlydeal with the environmental changes by adaptively
changing the sampling rate, and thus, is capable of achieving good performance in the long–term. Given this, we
aim to use an efficient adaptive method for data sampling in this work.

To calculate the importance of sampled data, we use information content valuation methods. Similar to the
sampling case, any existing technique from the literature can be used for this. Such techniques can be found, for
example, in Guestrinet al.(2005), Osborneet al.(2008), or Khoet al.(2009). This information content valuation
method should assign real values to each of the sampled data packets in the way that more important packets
have higher values. Since the environmental characteristics of the network may vary over space and time, the
value of data that agents can sample may vary as well. However, the agents within the network do not havea
priori information about these environmental changes. Furthermore, we also assume that the information value
of the collected data isdiscountedover time by a factorλ ∈ (0,1] (i.e. loses its value as time passes by), if
it is not delivered to theBS yet. This assumption is justified by the fact that in many applications, more up
to date information is preferable to older information. Since our main focus is on networks without real–time
delivery constraints (see Section 1 for more details), we assume that the information discount factor is typically
high (i.e.λ > 0.5). The intuition of this assumption is that with higher information discount factor, the collected
information then can be delayed for a longer time, without losing much of its value, before it is delivered to the
BS. Note that within our model, the information value of non–collected data (i.e. data that are not sampled yet by
the agents) may also decay over time. However, we assume thatthe underlying sampling method can efficiently
sample data so that important data can be collected earlier than less important data.

In existing routing protocols, agents typically forward data to other agents, which are closer to theBS, either
in terms of physical distance or number of hops. Thus, following this concept, we assume that in our model,
agents can send data to those which are closer to theBS in terms of number of hops. Finally, we assume that
data sampled or received at each agenti at slott can only be forwarded from slot(t + 1). This assumption is also
reasonable, since without it, newly sampled data could be delivered to theBS instantaneously.

3.2 The Long–Term Information Collection Problem

Given the model that considers adaptive sampling, routing,information valuation and energy management of
WSNs, we now aim to give a formal description of the research objective. That is, to maximise the total collected
information in WSNs, in a given finite time interval. In more detail, letSi (t), Rxi (t) andTxi (t) denote the
set of sampled, received and transmitted data packets of agent i at time slott. Let p denote a single data packet,
whose information value at time slott is v (p, t). Furthermore, we assume that the WSN operates in the finite
time interval[0, T ]. Given this, our objective is formulated as follows:

max
T

X

t=0

(

X

p∈RxBS(t)

v (p, t)

)

(1)

3 The relaxation of this assumption, however, remains as future work (see discussion in Section 7).
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Here,RxBS (t) denotes the set of packets that theBS receives at time slott. That is, we aim to maximise the
total information value delivered to theBS over the time interval[0, T ], with respect to the following constraints:

Txi (t) ⊆ Qi (t) (2)

for each agenti and time slott, whereQi (t) is the set of total transmittable data packets in the memory.That is,
the set of transmitted data is the subset of the total transmittable data (packets that were sampled or arrived until
the previous time slot) of each agenti. Furthermore,

Qi (t + 1) = (Qi (t) /Txi (t)) ∪ Si (t) ∪Rxi (t) (3)

for each agenti. Note thatQi (t) /Txi (t) denotes the set of packets that is inQi (t) but not inTxi (t) (i.e.
exclusion). That is, the set of transmittable data of agenti at time slot(t + 1) is the union of the sets of residual
data (i.e.(Qi (t) /Txi (t))), the received data and the sampled data at time slott. For the concept of energy-
neutrality, we have the following constraints:

eS
i |Si (t)|+ eRx

i |Rxi (t)|+ eTx
i |Txi (t)| ≤ Bi (4)

for each agenti, where|{.}| denotes the size of set{.}. Furthermore,eS
i , eRx

i , andeTx
i are the costs of sampling,

receiving, and transmitting a single data packet, as definedin Section 3.1. This constraint demonstrates that the
energy consumption of each action taken by agenti cannot exceed the energy budget given in time slott.

Furthermore, for eachp ∈ Si (k) ∪ Rxi (t) (i.e. received data or sampled data of agenti at time slott), that
is not delivered to theBS before time slott:

v (p, t + 1) = λv (p, t) (5)

whereλ ∈ (0, 1] is the discount coefficient. That is, the information value of packetp is decayed with the discount
factorλ, as time goes by.

As mentioned in Section 1, to efficiently solve the problem formulated in Equation 1, we separate the study
of the energy management and routing of the WSN, whilst we assume that efficient sampling and information
content valuation can be achieved by using existing techniques. Given this, Section 3.3 discusses the energy
management problem in more detail, whilst Section 3.4 focuses on the routing problem.

3.3 The Energy Management Problem

As mentioned in Section 1, the definition of the energy management problem is based on the observation that
since each agent can sample, receive or transmit data, it is necessary for the agents to vary the energy budget they
associate with each of these action types, so that their overall performance can effectively adapt to environmental
changes. That is, by adaptively setting the value of the energy budgets assigned to the sensory tasks, the agents can
decide whether to put more effort on sampling (e.g. when significant events are occurring in the monitored area),
receiving important data from the others (e.g. when they have collected high value information that has to be
delivered to theBS), or transmitting data (e.g. when the delivery of data cannot be delayed too long). With such
capabilities, our hypothesis is that the agents should achieve better performance than systems without the ability
to adapt in this fashion. However, in order to find the optimalcombination of budget allocation, the agents first
have to learn the efficiency of each combination, which leadsto the dilemma of exploration versus exploitation
(see Section 1). In more detail, if the agent only focuses on learning the optimal combination (i.e. exploration),
the total collected information of that agent over the operation time might not be maximal, since the agents has
to try out all the combinations (including those with low efficiency). On the other hand, if the agent decides to
focus on the best combination so far (i.e. exploitation), itmay miss the chance to find a better combination that
results in better overall performance (i.e. better collected information over a long term). Furthermore, since the
environment is dynamic, the optimal combinations may vary over time. Thus, the learning method has to be able
to adapt to these environmental changes as well. Given this,by using the notations of the WSN model and the
information collection problem described above, the energy management problem can be described as follows:
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Definition 1 Theenergy management problem, that we are facing with, is a sequential decision making problem
where at each time slott, each agenti has to choose a combination of energy budget allocations forsampling,
receiving, and transmitting, respectively. Following this, agenti evaluates the efficiency of the chosen combi-
nation by measuring the amount of sampled, received, and transmitted information within that time slot, with
respect to the chosen energy budgets. The goal of each agenti is to find a sequence of decisions (i.e. learning
method) that efficiently tackles the trade–off between exploration and exploitation, and the dynamic behaviour of
the environment, leading the overall system to achieve maximal long–term information collection.

This problem can be formalised as follows. Since energy harvesting is possible, we follow the concept of energy–
neutrality, in order to guarantee the long–term operation of the network (see Section 1 for more details). Conse-
quently, the total amount of energy that agenti can use at each slot is equal to the total harvested energy in that
slot. Given this, recall thatBi denotes the average amount of agenti’s harvested energy for each time slott; that
is, the amount of energy available for agenti in slot t is Bi.

Now, letBS
i (t), BRx

i (t), andBTx
i (t) denote the energy budgets that agenti allocates to sampling, receiving

and transmitting at time slott, respectively. That is, at each time step, the agent makes a decision of choosing
values forBS

i (t), BRx
i (t), andBTx

i (t). In so doing, it has to take into account the following constraints:

eS
i |Si (t)| ≤ BS

i (t)

eRx
i |Rxi (t)| ≤ BRx

i (t) (6)

eTx
i |Txi (t)| ≤ BTx

i (t)

for each agenti. These constraints demonstrate that the energy consumption of each action made by agenti

cannot exceed the energy budget of each task given in time slot t. Furthermore, we have:

BS
i (t) + BRx

i (t) + BTx
i (t) ≤ Bi

Now, it is obvious that by allocating more energy to a sensorytask, each agenti can improve the performance of
that task (i.e. it can sample, receive, or transmit more dataif a higher energy budget is allocated to the tasks of
sampling, receiving, or transmitting). Given this, we assume that at each time slott, each agenti fully allocates
its energy budget to its sensory tasks. That is, we have the following modified constraint:

BS
i (t) + BRx

i (t) + BTx
i (t) = Bi (7)

Thus, the set of combinations, from which agenti has to choose one, is the set of energy budget allocations
that satisfy Equation 7. Given all this, our goal is to maximise the objective given in Equation 1 by providing
an efficient decision making policy to the energy managementproblem described in Definition 1. Therefore, in
Section 4, we propose a MAB learning based approach, in orderto efficiently tackle this problem.

3.4 The Maximal Information Throughput Routing Problem

Having described the energy management problem, we now discuss the maximal information throughput routing
problem, which aims to maximise the total information that can be forwarded between neighbouring layers (i.e.
the group of agents that are the same distance from theBS) of agents. Given this, we group the agents within the
network into layers, such thatLl denotes the set of agents that arel hops from theBS. Let L denote the number
of layers in the network. Note that theBS itself is layer0. Thus, we have the following:

Definition 2 Themaximal information throughput problemis the optimisation problem where agents in layerLl

have to perform the maximal total information throughput tolayerLl−1 in time slott, with respect to the energy
budgets of each agent.

The formulation of the problem can be described as follows:

max

(

X

i∈Ll

X

p∈Txi(k)

v (p, t)

)

(8)
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with respect to the following constraints:

ETx
i |Txi (t)| ≤ BTx

i (t) (9)

for eachi ∈ Ll, whereTxi (t) is the set of transmitted data of nodei at time slott, andv (p, t) is the information
value of packetp at t. That is, each sender agent cannot exceed its transmitting energy budget during its data
transmission operation. Furthermore,

ERx
j |Rxj (t)| ≤ BRx

j (t) (10)

for eachj ∈ L(l−1), whereRxj (t) is the set of received data of nodei at time slott. Thus, each receiver agent
cannot exceed its receiving budget during data receiving. Finally, constraints described in Equations 2, 3, and 5,
that express the conservation of information within our setting, have to be taken into account as well.

In order to solve this problem, we propose two decentralisedalgorithms, one is optimal, but with significant
communication costs, whilst the other is near–optimal, butwith reduced costs. We describe these algorithms in
more details in Section 5.

4 Multi–Armed Bandit Based Energy Management

Given the problem definitions described above, we now concentrate on the energy management problem pre-
sented in Definition 1. Therefore, we first introduce the foundation of the method used for energy management,
namely the multi–armed bandit (MAB) problem, in Section 4.1. Following this, we describe the MAB learning
based energy management approach in Section 4.2. Then we analyse the computational complexity of this ap-
proach in Section 4.3. In particular, we show that our approach has linear running time, and linear memory usage,
compared to the number of each agent’s available options of energy budget allocation.

4.1 The Multi–Armed Bandit Problem

The standardmulti–armed bandit(MAB) problem was originally proposed by Robbins, (1952). In the MAB
problem, there is a machine withK arms, each of which delivers rewards, that are independently drawn from
an unknown distribution, when the machine’s arm is pulled. Given this, a gambler must choose which of these
arms to play. At each time slot, he pulls one arm of the machineand receives a reward or payoff. The gambler’s
purpose is to maximise his return; that is, the sum of the rewards he receives over a sequence of pulls. As the
reward distributions differ from arm to arm, the goal is to find the arm with the highest expected payoff as early
as possible, and then to keep gambling using that best arm.

Using the terminology of multi–agent systems hereafter, werefer to the gambler as an agent, and refer to
each arm pulling action of the gambler as an action of that particular agent. Thus, we can formulate the MAB
problem as follows. LetK denote the number of actions that the agent can make. At each time slott, the agent
takes actionat, which delivers the rewardrat (t). Finally, letT > 0 denote the time horizon in which the agent
operates. Thus, we have the following optimisation problem:

max
T

X

t=1

rat (t) (11)

Thus, the agent has to choose a policy (i.e. a sequence of actions), that may deliver the maximal reward at each
time slott in order to achieve the maximum of Equation 11.

A fundamental dilemma in the MAB problem is the trade-off between exploration and exploitation outlined
in Section 1. However, in applications with a dynamic environment, such as WSNs, beside the aforementioned
trade-off, we face the challenge that the expected value of the arms may vary over time. In addition, the time
(i.e. when) and the magnitude (i.e. how) of the change are unknown to the agent. Specifically, in our settings,
these changes can also be due to changes in the behaviour of other agents, that also use learning methods in
order to determine their best actions. This indicates that the agent has to repeatedly re–learn the current optimal
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Algorithm 1 Algorithm Exp3.Sub
1: Initialisation: Let γ ∈ (0, 1], andwk (1) = 1 for k = 1, 2, ...,K;
2: for all t = 1, 2, . . . do
3: Setpk (t) = (1− γ)

wk(t)
P

K
j=1 wj (t)

+ γ
K

for k = 1, 2, . . . , K ;

4: Drawat randomly accordingly to the probabilitiesp1 (t) , p2 (t) , . . . , pK (t);
5: Receive rewardrat (t) ∈ [A, B];
6: for all i = 1, 2, ..., K do
7: if (i == at) then

8: r̂i (t) = ri(t)−A

(B−A)pi(t)
;

9: else
10: r̂i (t) = 0;
11: end if
12: wi (t + 1) = wi (t) exp

“

γr̂i(t)
K

”

;

13: end for
14: end for

arm, since this may also vary as well. Furthermore, this re-learning must be done without knowing when and
how the values have changed. To address this complex problem, Auer et al. (2003) proposed a simple learning
technique, Exp3, that has been shown to achieve efficient performance in dynamic environments. Other MAB
techniques, such as Adapt-EvE (for adaptive exploration versus exploitation) (Hartlandet al., 2006), and D-
MAB (for dynamic multi–armed bandit) (DaCostaet al., 2008), are also suitable for dealing with the dynamic
environmental changes. However, these techniques rely on the assumption that the reward value a single agent
receives is piece-wise stationary (i.e. the distribution of the reward value remains the same in intervals of operation
time), which does not hold in our case. In particular, in our settings, the reward value that an agent receives
depends on the environment and the behaviour of other agentsas well. Thus, piece-wise stationarity cannot be
guaranteed (see Section 4.2 for more details). On the other hand, Exp3 does not have any assumptions about the
environment of the agent, and thus, it is suitable for our settings as well. Given this, in this paper, we focus on the
Exp3 algorithm.

Now, before describing Exp3, let us introduce the basic algorithm Exp3.Subthat is used as a subroutine in
Exp3. This subroutine is shown in Algorithm 1. At each time slot t, Exp3.Sub randomly chooses an actioni

(i ≤ K) with probability pi (t). Then, for all the actions (including the chosen one), it updates the probability
pi (t) for the next slot, proportionally to the current estimate ofthe expected reward value of the action (i.e. the
higher the current estimate is, the higher the probability it chooses that action). In particular, suppose that the
reward values are taken from the interval[A, B], whereA < B are arbitrary real numbers (Algorithm 1, step5).
Given this, Exp3.Sub maintains a weight valuewi (t) for each actioni. The update of these weights is shown in
steps6 − 13. Using the new value of the weights, Exp3.Sub adaptively updates each probabilitypi (t) as shown
in step3. This indicates that the higher the current estimate becomes, Exp3.Sub will increase the value ofpi (t),
and thus, will choose actioni with higher probability, andvice versa. Consequently, the algorithm always focuses
on the actions with highest current estimates; that is, on those actions which are more likely to be the current best
choice. In effect, this update policy guarantees that the agent can efficiently adapt to environmental changes.

The efficiency of Exp3.Sub, however, depends on the value of parameterγ, since it uses this parameter to
calculate the probabilities (see step3 in Algorithm 1). Since thisγ has to be givena priori (Algorithm 1, step1),
it may happen that the chosen value is not efficient for the current MAB model. However, we can overcome this
shortcoming by adaptively modifying the value ofγ. This modification leads to the Exp3 algorithm, described in
Algorithm 2. In particular, Exp3 divides the time line into rounds. At each roundr, a newγr is chosen (see step4
in Algorithm 2), and at each time slott, Exp3 calls subroutine Exp3.Sub (step6). Exp3 changes round when the
maximal cumulative reward of an arm (i.e. the total amount ofrewards Exp3 achieves when that arm is pulled)
exceeds a given threshold (step5). In this case, it restarts the subroutine Exp3.Sub as well.
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Algorithm 2 Algorithm Exp3
1: Initialisation: Let t = 1, andGk (1) = 0 for k = 1, 2, ...,K;
2: for all r = 0, 1, 2, . . . do
3: gr =

(K ln K)4r

e−1
;

4: Restart Exp3.Sub choosingγr = 1
4r

5: while maxk Gk (t) ≤ gr −
K
γr

do
6: Letat be the random action chosen by Exp3.Sub andrat (t) the corresponding reward;
7: Gat (t + 1) = Gat (t) + rat (t);
8: t := t + 1;
9: end while

10: end for

4.2 Using Multi–Armed Bandits for Energy Management

Given the description of the MAB model above, we now apply it to the energy management problem described
in Section 3.3. In so doing, consider the formal model we introduced in Section 3. Recall that within this model,
each agenti has an energy budgetBi for each time slott, which is constant over time. Furthermore, agenti has to
allocate budgetsBS

i (t), BRx
i (t), andBTx

i (t) to sampling, receiving and transmitting, respectively. The energy
budget allocation, however, has to satisfy Equation 7.

Given this, we can formulate the energy management problem of a single agent as a MAB as follows. We
first define the action set of each agent. Then we determine thereward function of each action. The latter is the
mechanism that assigns reward values to the action of the agent at each time slot. Finally, we show how each
agent uses the Exp3 algorithm to efficiently tackle its MAB problem.

In so doing, let us consider a decision that agenti can make at time slott. Since the decision making task for
an agenti consists of setting the values of the sampling, receiving and transmitting budgets of that agent at time
slot t, we have the following definition:

Definition 3 LetnS
i (t) = ⌊

BS
i (t)

eS
i

⌋, nRx
i (t) = ⌊

BRx
i (t)

eRx
i

⌋, andnTx
i (t) = ⌊

BTx
i (t)

eTx
i

⌋ denote the sampling, receiving

and transmitting capacities (i.e. the maximal number of packets that the agent can sample, receive, or transmit) of
agenti at time slott, respectively. At each action, agenti chooses a combination of the values of those capacities,

with respect to the constraint described in Equation 7. Thus, the 3-tuple ai (t) =
D

nS
i (t) , nRx

i (t) , nTx
i (t)

E

denotes an actionof agenti at time slott.

That is, an action of agenti at time slott is a combination ofnS
i (t), nRx

i (t), andnTx
i (t), where the corresponding

BS
i (t), BRx

i (t), andBTx
i (t) satisfy Equation 7. Given this, theaction setof agenti at time slott is determined

as follows:

Ai :=

(

ai (t) =
D

nS
i (t) , nRx

i (t) , nTx
i (t)

E

)

(12)

whereai (t) is presented in Definition 3. That is,Ai is the set of 3-tuple of capacities where the total energy
consumption does not exceed the energy limit given at each time slott. Since the energy consumption limit (i.e.
Bi) is fixed for each time slott, the number of options forai (t) (i.e. the number of combinations of the capacities)
is constant over time as well. Given this,Ai is fixed over time, and thus, it can be regarded as agenti’s action set
(since in MAB models, the action set cannot vary over time).

In contrast with the action set above, the definition of a single agent’s reward function is not obvious. In
particular, the reward function has to satisfy the following requirement: By maximising the total rewards that
each agent can receive, the agents together maximise the total information collected in the network. However, in
so doing, each agent has to take into account the behaviour ofother agents within the network as well. Thus, the
reward function has to capture the affect of other agents’ behaviour on the performance of a single agent. Given
this, we develop a reward function for each agenti as follows. Recall thatSi (t), Rxi (t) andTxi (t) are the set
of sampled, received and transmitted data packets of agenti at time slott. Furthermore,Qi (t) is the set of total



14 Long Tran-Thanh et al.

transmittable data packets in the memory (see Section 3.2 for more details). LetRei (t) denote agenti’s set of
residual packets from slot(t − 1) that are not transmitted until slott. That is,

Rei (t) = Qi (t) /Txi (t) (13)

Given this, before we determine the reward function, let us consider the following. Assume thatλ = 1; that is,
there is no information decay as time passes by. Given this, throughout the operational timeT of the network,
the total information that is delivered to theBS is equal to the difference in the total information sampled by the
agents in the network until time slot(T − 1), and the total amount of information that remains in the memory of
the agents in the network at time slotT . In particular, since we assume that there is no data loss in our model,
sampled data until time slot(T − 1) is either successfully delivered to theBS or still remains as residual data in
the network at time slotT . Note that data sampled in time slotT is not considered here, since we assume that it
cannot be delivered immediately to theBS, and as defined in Equations 13 and 3,Rei (T ) does not contain data
that are sampled in time slotT . Thus, for eacht ∈ [1, T ], let r (t) denote the following function:

ri (t) =
X

p∈Si(t−1)

v (p, t− 1)−
X

p∈Rei(t)

v (p, t) +
X

p∈Rei(t−1)

v (p, t − 1) (14)

Note that the first term on the right hand side of this equationis the total amount of sampled information of agent
i at time slot(t − 1). The second term is the total information value of the residual data on agenti at time slot
t, whilst the third term is the total information value of the residual data on agenti at time slot(t − 1). The
intuition behind Equation 15 can be explained as follows. From the definitions given in Equations 3 and 13, the
sum of the first and the third terms form the total amount of information that agenti can transmit in time slott. In
more detail, as we mentioned in Section 3.1, data sampled in time slot(t − 1) can only be transmitted from time
slot t, and not earlier. Thus, first term represents the total amount of this sampled data. The third term represents
the amount of information that is not transmitted until timeslot (t − 1). Both the sampled data and residual data,
however, is available at time slott for transmission. On the other hand, the second term represents the information
value of data that is not sent by the end of time slott, and thus, by subtracting it from the set of transmittable data
(i.e. sum of previously sampled data and residual data from(t − 1)), we get the throughput of agenti within time
slot t. Given this, by usingri (t) as the reward function within the case ofλ = 1, each part of agenti’s chosen
action (i.e. the chosen energy budgets) will effect the value of ri (t). In particular, the size ofnS

i (t) affects the
total amount of sampled information, whilenRx

i (t) andnTx
i (t) affect the size of residual data.

Now, we show that by maximising the sum ofri (t) over all t and i indeed leads to the maximisation of
the total amount of collected information within the network, in the case ofλ = 1. In so doing, recall that
P

p∈Rei(t−1) v (p, 0) = 0 for each agenti, since there is no residual data at all at the beginning. Given this, it
is easy to see that if we sum upri (t) by t from 1 to T , what we get as a result is exactly the difference of the
total information collected by the network and the total amount of information that remains in the memory of the
agents in the network. More precisely, we have

T
X

t=1

ri (t) =

T−1
X

t=0

X

p∈Si(t)

v (p, t)−
T

X

t=1

X

p∈Rei(t)

v (p, t) +

T−1
X

t=0

X

p∈Rei(t)

v (p, t)

=

T−1
X

t=0

X

p∈Si(t)

v (p, t)−
X

p∈Rei(T )

v (p, T ) +
X

p∈Rei(0)

v (p, 0)

=

T−1
X

t=0

X

p∈Si(t)

v (p, t)−
X

p∈Rei(T )

v (p, T )

Recall that this value is equal to the total information thatis delivered to theBS throughout the operation time of
the network. Thus,ri (t) could be a possible reward function for agenti, since by maximising the total reward on
interval[0, T ], the agents together also maximise the total amount of collected information value that is delivered
to theBS as well.

Note that the definition ofri (t) in Equation 14 guarantees that in order to maximise the totalamount of
collected information, agenti cannot either ignore sampling, receiving or transmitting.In particular, for example,
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suppose that agenti ignores transmitting, and only focus on sampling/or receiving. In this case, the set of residual
data at the end of time slott is equal to the accumulated set of sampled data and residual data at time slot(t − 1),
and thus, the value of the reward is0. Now, it is easy to see that if the transmitting capacity is greater than0 (i.e.
nTx

i (t) > 0), the reward value is definitely higher than0 as well. In similar veins, we can easily see that agenti

cannot get high reward values on the long term if it ignores the other sensory tasks as well.
Now, to generalise Equation 14 to the case ofλ 6= 1, consider the following:

Ri (t) = λdi−1

(

X

p∈Si(t−1)

v (p, t− 1)−
X

p∈Rei(t)

v (p, t) + λ
X

p∈Rei(t−1)

v (p, t− 1)

)

(15)

wheredi is the distance of agenti from theBS (in hops), andλ is the information discount coefficient. This
equation differs from Equation 14 in two places. First, it isweighted by the factorλdi−1. The intuition behind
using this factor is that since agenti is di hops away from theBS, the information value that agenti transmits
is discounted with a factorλdi−1 when theBS receives that data. The second difference is that the third term
of Equation 15 is weighted withλ. The reason here is that since the third term represents the set of packets that
are not sent by the end of time slot(t − 1), the information value of those packets is discounted in thenext time
slot. Note that in the case ofλ = 1, this equation is reduced to Equation 14. To show that this reward function is
suitable for maximising the total collected information ofthe network in the long term, we state the following:

Theorem 1 (Main result 1) Using the reward function defined in Equation 15, the total reward value that the
agents in the WSN achieve together over the interval[0, T ] is equal to the total information content value delivered
to theBS over that time interval.

That is, Theorem 1 states that by maximising each agent’s total reward over interval[0, T ], where the reward
function is defined as in Equation 15, we can achieve the maximal information collected and delivered to theBS.
We prove the theorem as follows:

Proof (Theorem 1)For the sake of simplicity, letLj denote the set of agents that arej hops from theBS. That
is,

di = j, ∀i ∈ Lj (16)

Now, consider Equation 1 in Section 3.2. Let us note that since no data can be sampled and forwarded, or received
and forwarded at the same time slot (see Section 3.1), no datapackets are transmitted or received at time slot0
in the whole WSN. Thus, using the notation of Section 3, the main objective can be rewritten as follows.

max
T

X

t=1

(

X

p∈RxBS(t)

v (p, t)

)

(17)

Let us consider a particular member of Equation 17, which is
P

p∈RxBS(1) v (p,1). This equation determines
the total information value that arrives to theBS at time slot1. According to our assumptions in Section 3.1, no
data loss occurs during any transmission. Thus, the amount of received information at theBS is equal to the total
amount of information that is transmitted from agents that are1–hop from theBS at time slot1. That is,

X

p∈RxBS(1)

v (p, 1) =
X

j∈L1

X

p∈Txj(1)

v (p, 1) (18)

Note that the set of transmitted data ofL1 at time slot1 is equal to the set of sampled data at time slot0, excluding
the set of residual data at time slot1 (since there is no received data and the residual set is stillempty at time slot
0). Since newly sampled data does not suffer from informationvalue discounting, the right side of Equation 18
can be rewritten as the following:

X

j∈L1

X

p∈Txj(1)

v (p, 1) =
X

i∈L1

X

p∈Si(0)

v (p, 0) −
X

i∈L1

X

p∈Rei(1)

v (p, 1) (19)

Now, let us consider the second member of Equation 17, which is
P

p∈RxBS(2) v (p, 2). Similarly, this can be
rewritten as follows.

X

p∈RxBS(2)

v (p, 2) =
X

j∈L1

X

p∈Txj(2)

v (p, 2) (20)
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However, this is equal to the union of the set of received data, the set of sampled data, and the set of residual data
at time slot 1, excluding the set of residual data of layer 1 attime slot2. Furthermore, any of these sets may not
be empty. The packets in the sets of received and residual data suffer from value discounting, thus, Equation 20
is equal to the following:

X

p∈RxBS(2)

v (p, 2) =
X

j∈L1

X

p∈Txj(2)

v (p, 2) =

=
X

i∈L1

X

p∈Si(1)

v (p, 1) + λ
X

i∈L1

X

p∈Rei(1)

v (p, 1) +

+ λ
X

i∈L1

X

p∈Rxi(1)

v (p, 1) −
X

i∈L1

X

p∈Rei(2)

v (p, 2) (21)

whereλ is the discount coefficient of the network. Now let us consider
P

i∈L1

P

p∈Rxi(1)
v (p, 1). Similar to

Equation 18, this can be written as:

λ
X

i∈L1

X

p∈Rxi(1)

v (p, 1) = λ
X

i∈L2

X

p∈Txi(1)

v (p, 1) (22)

Using Equations 21 and 22, and replacingL1 with L2 in Equation 19, we obtain the following:

X

p∈RxBS(2)

v (p, 2) =
X

i∈L1

X

p∈Si(1)

v (p, 1) −

−
X

i∈L1

X

p∈Rei(2)

v (p, 2) + λ
X

i∈L1

X

p∈Rei(1)

v (p,1) +

+ λ
X

i∈L2

X

p∈Si(0)

v (p, 0) − λ
X

i∈L2

X

p∈Rei(1)

v (p, 1) (23)

In general, if we take thetth member of Equation 17, then it can be decomposed as follows. If t ≤ L, whereL is
the number of the layers in the network, then:

X

p∈RxBS(t)

v (p, t) =
t

X

j=1

λj−1
X

i∈Lj

X

p∈Si(t−j)

v (p, t− j)−

−
t

X

j=1

λj−1
X

i∈Lj+1

X

p∈Rei(t−j+1)

v (p, t − j + 1) +

+
t

X

j=1

λj
X

i∈Lj

X

p∈Rei(t−j)

v (p, t− j) (24)

Let us note that here
P

i∈Lj

P

p∈Rei(0)
v (p, 0) = 0 for any layerj. That is, we can say that the amount of

information that arrives to theBS at time slott can be decomposed into the sum of data on layer 1 at time slot
(t − 1), on layer 2 at time slot(t − 2), and so on. Ift > L, however, the equation for this case is slightly different,
since the decomposition stops at the last layer of agents. Thus, we have:

X

p∈RxBS(k)

v (p, k) =
L

X

j=1

λj−1
X

i∈Lj

X

p∈Si(t−j)

v (p, t − j)−

−
L

X

j=1

λj−1
X

i∈Lj+1

X

p∈Rei(t−j+1)

v (p, t− j + 1) +

+
L

X

j=1

λj
X

i∈Lj

X

p∈Rei(t−j)

v (p, t− j) (25)
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Given this, combining Equations 24 and 25, and taking eacht into account, we can reformulate our main objective
to the following:

(26)

T
X

t =1

(

X

p ∈RxBS(t)

v (p, t)

)

=

=
T

X

t=1

min (t,L)
X

j=1

λ
j−1

X

i∈Lj

(

X

p∈Si(t−j)

v (p, t − j) −

X

p∈Rei(k−j+1)

v (p, t − j + 1) + λ
X

p∈Rei(k−j)

v (p, t − j)

)

Consider the core part of Equation 26 in the braces. Now, using the definition of the reward function in Equation
15 to replace that part, and recall that the distance of agenti is defined in Equation 16, we can reformulate 26 as
follows:

max

min (T,L)
X

j=1

T−j
X

t=0

X

i∈Lj

Ri (t) (27)

That is, the original objective can be decomposed to the sum of reward functions of agents on each layerj, from
time slot0 to time slotT − j. 2

Now, using the aforementioned reward function and the action set, the energy management problem of each
agenti can be reduced to a MAB problem. Thus, the multi–armed banditbased energy management algorithm
works as follows. Each agenti runs the Exp3 algorithm, in order to determine the energy budget allocation
combination for each time slott. In particular, agenti first assigns a probability valuepj

i to each of the its
possible energy budget allocation combinations (i.e. arm)j ∈ Ai, such that

P

j pj
i = 1. According to Algorithm

1 (step3), these probability values are initially set to be uniform (e.g. it is the same for all the combinations).
Based on these probability values, each agenti randomly chooses an energy budget allocation combinationai (t)
at time slott, and allocates energy budgets to each of the tasks of sampling, receiving and transmitting. This
energy budget allocation combinationai (t) is chosen as shown in Algorithm 2. Then, as mentioned earlier, to
control the sampling task, the agent can use an existing adaptive sampling technique. On the other hand, the tasks
of receiving and transmitting are controlled by the routingalgorithm, which we will describe later in Section 5.
Following this, after agenti finishes the sampling, receiving and transmitting tasks, the reward value of the chosen
energy budget allocation combination is evaluated. Then, Exp3 updates the value of probabilitiespj

i , such that
higher probability values will be assigned to energy budgetallocation combinations with higher average reward
(see algorithm 2 for more details). Let us hereafter refer tothis approach (i.e. using Exp3 for allocating energy
budgets) as themulti-armed bandit based energy management(MAB/EM).

Now, by using MAB/EM, the agents do not explicitly coordinate with each other (i.e. they do not use coordi-
nation messages). In more detail, our approach uses explicit communication messages within the routing part (for
more details, see Section 5), but not within the energy budget allocation phase. However, these communication
messages are only for evaluating the reward value of the chosen action (i.e. the chosen combination of energy
budget allocations). Given this, the agents do not need to coordinate when they take an action. Despite the lack
of explicit coordination within MAB/EM, the agents can still achieve coordination by only observing the reward
value they get. In more detail, consider the definition of thereward function (Equation 15). Note that this reward
function is affected by the agent’s current chosen action (i.e. the energy amounts allocated to sampling, receiv-
ing and transmission). In particular, according to Equations 3 and 13,Rei (t) (i.e. the list of residual packets)
depends on the lists of sent and received packets, respectively. Thus, in order to achieve higher rewards, each
agent aims to find actions that result in better reward values. However, the effectiveness of a chosen action also
depends on other agents’ action as well. Indeed, the effectiveness of data receiving (or transmitting) depends on
the allocated budget to transmitting (or receiving) of other neighbouring agents. For example, it is not efficient
for agenti to allocate a large amount of energy to receiving if its neighbours are only willing to send a small
amount of data, andvice versa. Given this, by only observing which actions result in higher rewards, the agents
also learn to cooperate with the others as well.
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4.3 Computational Complexity Analysis

Since WSNs are heavily resource constrained (i.e. the low energy capacity, small size and tight computational
constraints), algorithms that are implemented for such networks need to take into consideration the limited com-
putational capacity and memory space (Akyildizet al., 2002; Rogerset al., 2009). Thus, in order to ensure that
MAB/EM is suitable for WSNs (i.e. it can be installed to real sensors), we have to guarantee that it has low
computational complexity and low memory demand. Given this, we study the performance of the MAB/EM in
terms of computational complexity in this section. More precisely, we investigate the number of computational
steps (i.e. running time cost) and the memory usage that MAB/EM uses at each time slot.

From the aspect of computational cost, each agenti has to update the probability valuepj
i for each of its ac-

tionsj. In so doing, agenti needs to maintain a weight valuewj
i , which also needs to be updated (see Algorithms

1 and 2 for more details). Given this, the number of computational steps of agenti at each time slot isO (2 |Ai|),
where|Ai| is the size of agenti’s action setAi. That is, the running time of MAB/EM is linear to the size of each
agent’s action set.

In terms of memory usage, MAB/EM is also efficient. In particular, recall that each agenti maintains the
arrays ofwj

i , and ofpj
i , respectively. Furthermore, each action is represented asa3–tuple of integers (see Defini-

tion 3). Given this, the memory usage of MAB/EM isO (5 |Ai|). To demonstrate that the memory usage is indeed
low, compared to the size of data packets, consider the following example. Note that the action set typically has
the size of few hundreds. This can be easily calculated by using the typical sensory parameter values, which can
be found, for example, in Kansal and Srivastava (2003). Now,suppose that to store a number, each agent uses4
bytes of memory. Given this, the total memory usage (i.e. to store the arrays of probability and weight parameters)
is typically a few kilobytes. This is small, compared to the total size of real data that the agents typically have to
forward in many applications (e.g. in wireless visual sensor networks) the average size of a single data packet is
likely to be10 − 100 kBytes (Khoet al., 2010).

5 Optimal Data Routing

Given the energy management approach described in the previous section, we now focus on the maximal infor-
mation throughput problem presented in Section 3.4. Thus, this section outlines the work undertaken towards
addressing this routing problem. Specifically, here we describe two decentralised algorithms that allow agents to
achieve maximal information throughput between neighbouring layers, with respect to their energy constraints. In
particular, the first algorithm, called MITRA (for maximal information throughput routing algorithm), achieves
optimal performance in terms of solving the maximal information throughput problem. However, it may have
significant computational and communication costs. On the other hand, the second algorithm, calledMITRAτ ,
produces near–optimal performance (approximately98% of the optimal performance), but with reduced commu-
nication and computational costs. To this end, we first introduce MITRA in more detail in Section 5.1. Following
this, we show that this approach is optimal in terms of maximising the information throughput in Section 5.2.
Furthermore, we provide a theoretical upper bound for the computational and communication costs of MITRA
in Section 5.3. Finally, we proposeMITRAτ , a modified version of MITRA with reduced communication and
computational costs in Section 5.4.

5.1 The Maximal Information Throughput Routing Algorithm

Recall that at each time slott, all the agents within the system run the MAB/EM in order to set up the energy
budgets for that current time slot. Then, their next step is to maximise the amount of forwarded information value
conditional on the budgets in that given time slot. That is, the agents aim to maximise the total information value
forwarded between neighbouring layers of agents (see definition 2 for more details). Now, letLl andLl−1 denote
the corresponding layers. The pseudocode of the MITRA run bythe agents within these layers is depicted in
Algorithm 3. In more detail, we refer to the agents in layersLl andLl−1 as senders, and receivers, respectively.
The algorithm can be outlined as follows:
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Algorithm 3 MITRA
1: for all pair of layersLl andLl−1 do
2: agents in layerLl← senders, agents in layerLl−1← receivers;
3: ∀i sendersi broadcasts list of information values;
4: while data transmission is feasibledo
5: ∀j: when receiverrj receives all the broadcast information (or time threshold expires), it identifies best packets it can

receive;
6: ∀j receiverrj sendsREQUEST messages to senders;
7: ∀i when sendersi receives all theREQUEST messages (or time threshold expires), it sends data to receiver with best offer;
8: if ∃ sendersi has not exceed transmission budgetthen
9: sendersi broadcasts aSEND message to receivers;

10: end if
11: end while
12: end for

– Step 3: First, each sendersi broadcasts a message that contains the list of2–tuples to each of its neighbouring
receivers. The first element of the tuple contains the packetID, whilst the second element contains the infor-
mation value of sendersi’s transmittable packets (i.e. the list ofQsi (t), see Section 3.2 for more details).
Then, whilst data transmission is still feasible, the algorithm repeatedly executes steps5 − 10 as follows.

– Step 5: Based on the received information lists from the neighbouring senders, each receiverrj chooses
the best packets (i.e. packets with the highest informationvalue) it can receive, with respect to its residual
receiving capacity (i.e. the maximal number of packets it can still receive without exceeding its total receiving
capacitynRx

rj
(t)). Note thatnRx

rj
(t) is set by the MAB/EM (see definition 3 for more details). In so doing,

it needs to wait until it receives all the broadcast information from its neighbouring senders. However, since
node failures may occur, agentrj does not exactly know which of its neighbours is available within the
current time slott, and thus, will send torj a broadcast message. In such cases,rj does not know when to
stop waiting for the broadcast messages, and thus, it cannotmove on to the next step of MITRA. In order
to avoid this situation, we set a time threshold, so that if this threshold expires, the sender stops waiting for
further broadcast messages. Following this,rj chooses the best packets it can receive as follows. It first sorts
the received lists of 2–tuples in decreasing order of the value of information, then it merges these lists into
a joint list, also with the decreasing order of the information value. From this joint list, it chooses the best
packets it can receive.

– Step 6: Following this, receiverrj propagatesREQUEST messages to each of its neighbouring senders. In
particular, eachREQUEST message contains the number of packets thatrj requests from that sender. This
number is calculated in step5 of the algorithm.

– Step 7: Whensi receives all theREQUEST messages from its neighbouring receivers, it chooses the best
offer; that is, the one with the highest number of requested packets. However, similarly to step5 of the
algorithm, it may occur thatsi does not know when to stop waiting for all theREQUEST messages, due to
node failure. Thus, to prevent it from waiting indefinitely for the messages, we also use a time threshold here.
Given this, after all theREQUEST messages arrive tosi, or the time threshold expires,si sends the requested
packets to the receiver with the best offer. If the receiver with the best offer is not unique, thensi randomly
chooses one among them.

– Steps 8–10: After data transmission in the previous step, if sendersi still has the capacity to transmit data
(i.e.nTx

si
(t) is not exceeded), then it broadcasts aSEND message to each of its neighbouring receivers. This

message contains the number of packets that it transmitted in step7. Based on this message, all the receivers
can update the list of packets they can request fromsi (i.e. they update the joint list described in step3).
Furthermore, they also update the value of their remaining receiving capacity.

Now, to detect whether data transmission is still feasible,the participating agents do the following. From the
sender side, when sendersi does not receive anyREQUEST messages in step7, it considers data transmission
as not feasible. From the receiver side, when receiverrj does not receive any broadcast messages (e.g. the list
of information value, or theSEND messages) in step5, then it also considers data transmission as not feasible.
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Given this, if an agent sees that it cannot receive and transmit data anymore (i.e. receiving and transmission
is not feasible), it stops running MITRA for that time slot. That is, the agents rerun MITRA at each time slot
t. Note that the time thresholds in steps5 and 7 are for only communication messages (i.e.REQUEST and
broadcast messages). Once the agent receives one of these messages from its corresponding neighbour, it sets up
a communication channel, in which data packets are assumed to be successfully forwarded, without any loss.

5.2 Performance Analysis

Given the description of MITRA above, we now show this algorithm provides the optimal solution to the maximal
information throughput routing problem presented in Definition 2. In so doing, we state the following:

Theorem 2 (Main result 2)Assuming that the communication between senders and receivers is perfect, that is,
none of the messages arrive after the timeout, the MITRA algorithm results in an optimal solution for the maximal
information throughput routing problem (i.e. the solutionthat gives the maximal throughput of information value
between the sender and receiver layers).

Proof (Theorem 2). Here we use the contradiction technique. Let us assume thatthe MITRA algorithm given in
the previous section is not optimal. That is, the output solution does not maximise the total transmitted informa-
tion value between the two layers. LetO denote the output solution of the MITRA algorithm andOOPT be one
of the optimal solutions. Since we assume thatO is not optimal, there should bep1 andp2 packets such that only
one of them is allocated inO and the other one is allocated inOOPT . Without loss of generality, we can assume
thatp1 is allocated inO andp2 is allocated inOOPT . We can also assume that bothp1 andp2 are sent to the
same receiverrj . It is easy to prove that ifO 6= OOPT then there exist two packets such that these assumptions
hold.

In particular, there are two cases to investigate. In the first, bothp1 andp2 are from the same sender. Note
that it is easy to show thatv (p1, k) ≥ v (p2, k). That is,p1 has a higher information value thanp2, since the
corollary states that those data which are sent from the sender must be the packets with the highest values in the
set of packets of that sender.

In the second case,p1 andp2 are from different senders. Since in MITRA, the receiver uses a greedy ap-
proach to allocate possible arriving packets, whenp1 is accepted andp2 is not atrJ , the only explanation is that
v (p1, k) ≥ v (p2, k).

One can see that in both casesp1 has a higher, or at least the same value, asp2. If p1 has a higher value
than that ofp2, then by replacingp2 in OOPT with p1, we would have a better solution thanOOPT . However,
this is a contradiction, sinceOOPT is assumed to be optimal. Ifp1 has the same value asp2, then by replacing
all the possiblepi-s that are inO but not inOOPT (since they all have the same value, otherwise we would be
faced with the former case), we would have thatO is also an optimal solution, which would also contradict our
assumption at the beginning. Therefore one can see that the original assumption, that is,O is not optimal, is not
true.2

5.3 Computational and Communication Cost of MITRA

In the previous section, we showed that MITRA achieves an optimal solution for the maximal information
throughput problem. Given this, here we continue the analysis of MITRA by studying its computational and
communication cost. In particular, similarly to the case ofMAB/EM, we need to analyse whether MITRA is ef-
ficient in terms of computational and communication complexity. In so doing, recall that at each time slott, each
agenti within the network repeatedly runs steps4−11 of Algorithm 3 until data transmission is not feasible at that
time slot. For the sake of simplicity, hereafter we refer to this cycle as thecommunication roundof MITRA (since
the agents communicate with each other during this cycle in order to find the maximal information throughput).
Note that since MITRA is rerun at every time slot, each time slot t contains a number of communication rounds.
Thus, the number of communication rounds that MITRA uses within a particular time slot cannot be larger in
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time, compared to the length of a single time slot. Given this, here we aim to analyse whether we can upper bound
the number of communication rounds. Furthermore, note thatboth the computational and communication costs
of agenti depend on the number of communication rounds that the agent needs to run. Thus, in order to guarantee
low computational and communication costs of a single agent, we also need to ensure that the number of commu-
nication rounds that an agent uses within the MITRA is also low. In more detail, each receiver determines the best
packets (i.e. packets with highest information value) it can receive by sorting the list of receivable packets at each
communication round (step5 of Algorithm 3). Since this list typically has a size at most of few thousands, sorting
it is simple and fast (e.g. by quicksort). However, since thesorting is repeatedly executed at each communication
round, if the number of those rounds is high, then the total computational cost can be significant. Now, note that
the communication cost of a single agent consists of the costof sendingREQUEST messages and the cost of
sending aSEND broadcast message at each communication round. Thus, again, if the number of communication
rounds is high, then the total communication cost can also besignificant.

Against this background, we provide a worst–case upper bound (i.e. an upper bound that holds for all the
cases) for the number of communication rounds that MITRA uses. More precisely, we state the following:

Theorem 3 (Main result 3)Consider neighbouring layersLl andLl−1. At each time slott, let Tcom (t) denote
the total number of communication rounds, that MITRA needs to run until data transmission is not feasible
between layersLl andLl−1 within time slott. Given this, we have:

Tcom (t) ≤
ln

“

P

rj∈Ll−1
nRx

rj
(t)

”

ln |Ll−1| − ln (|Ll−1| − 1)

where|Ll−1| denote the size of layerLl−1 (i.e. layer of receivers).

Proof Recall that, at each communication round, each receiverrj chooses the best packets it can receive, condi-
tional to the value of its residual receiving capacity (see step 5 of algorithm 3). LetDrj (τ) denote the maximal
number of packetsrj can receive from its neighbouring senders at communicationroundτ . It is easy to see that
for eachrj, Drj (τ) is monotone decreasing function ofτ , within time slott. In more detail, recall that the senders
cannot forward information that are sampled or received at time slott. Given this,Drj (τ) only contains data that
are sampled/or received until time slot(t − 1). This set of data, however, is already given at the beginningof
time slott, and thus, during the communication rounds, the size of these data cannot be increased. Furthermore,
at each communication round (within time slott), receiverrj receives a non–negative number of packets. Given
this, the value ofDrj (τ) is monotone decreasing.

Given this, we first show that at each communication roundτ , the total number of successfully received
packets within MITRA is at leastDmax (τ), where

Dmax (τ) = max
rj

Drj (τ)

Indeed, according to algorithm 3, each receiverrj sendREQUEST messages to its neighbours at each communi-
cation roundτ , requestingDrj (τ) packets in total. Some of these requests will be accepted by the senders, whilst
the others will be rejected. However, a sender only rejects arequest, if it gets a better request (or a same request)
of total amount of information value from another receiver.This implies that the number of packets of the better
request is not lower than the number of packetsrj requests from that sender. Given this, it is easy to see that
the total amount of transmitted (received) packets is at least Drj (τ) for anyrj (i.e. it is also at leastDmax (τ)).
Therefore, we have the following inequality:

(28)
X

rj

Drj (τ + 1) ≤
X

rj

Drj (τ) − Dmax (τ)

Now, note that at each communication roundτ , we have:

(29)Dmax (τ) ≥

P

rj
Drj (τ)

|Ll−1|
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That is,Dmax (τ) is not lower than the average value ofDrj (τ). Using Equations 28 and 29, we get:

X

rj

Drj (τ + 1) ≤
|Ll−1| − 1

|Ll−1|

X

rj

Drj (τ)

That is, we can show by induction that the following holds foreachτ :

(30)
X

rj

Drj (τ + 1) ≤

„

|Ll−1| − 1

|Ll−1|

«τ
X

rj

Drj (1)

Note thatDrj (1) ≤ nRx
rj

(t); that is, the maximal number of packets thatrj can receive at the first communication
round is not greater than the receiving capacity ofrj . Given this, from Equation 30 we get:

(31)
X

rj

Drj (τ + 1) ≤

„

|Ll−1| − 1

|Ll−1|

«τ
X

rj

nRx
rj

(t)

Now, note that MITRA stops afterτ communication rounds if and only if

X

rj

Drj (τ + 1) < 1

That is, no more packets can be sent to the receivers. Given this, MITRA still runs afterτ communication rounds
if

(32)
„

|Ll−1| − 1

|Ll−1|

«τ
X

rj

nRx
rj

(t) ≥ 1

This can be reformulated as:

(33)
X

rj

nRx
rj

(t) ≥

„

|Ll−1|

|Ll−1| − 1

«τ

Taking the logarithmic function of both sides, we get:

(34)ln

0

@

X

rj

nRx
rj

(t)

1

A ≥ τ (ln |Ll−1| − ln (|Ll−1| − 1))

SubstitutingTcom (t) into this inequality concludes the proof.2

Note that from the proof, it is easy to show that this upper bound is tight. Thus,Tcom (t) = O
“

ln
“

P

rj∈Ll−1
nRx

rj
(t)

””

;

that is, the upper bound ofTcom is the logarithm of the total number of packets that need to beforwarded within
each time slott.
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5.4 Communication Round Limited MITRA

In the previous section, we provided an upper bound for the number of communication rounds that MITRA uses.
In particular, we demonstrated that the number of these communication rounds is low, compared to the total
size of data to be forwarded at a single time slot. However, since this upper bound is tight, the total number of
communication rounds that MITRA uses in the worst case scenario (i.e. when the bound is tight) is still significant
in terms of total time length. For example, consider a WSN, where each layer has10 agents on average, and each
agent can receive100 packets per time slot. Given this, according to Theorem 3, the upper bound of the number
of communication rounds is around66. Note that each communication round consumes a certain amount of time,
and thus,66 communication rounds together may not fit into the length of asingle time slot (since MITRA has
to terminate within the same time slot).

In order to address this shortcoming, we can either shorten the time length of a communication round, risk-
ing the higher rate of data loss in WSNs (i.e. not all of theSEND andREQUEST messages arrive on time), or
limit the number of communication rounds that MITRA can use.We show that by using the latter solution, we
can significantly reduce the number of communication rounds, whilst the reduction in the performance of the
algorithm is not significant. We denote the communication round limited MITRA with MITRAτ , whereτ is
the threshold value of the number of communication rounds. Given this, the algorithm forMITRAτ is similar
to that of MITRA, except that it stops executing steps4 − 11 after exactlyτ rounds (see Algorithm 3 for more
details). In Section 6.4, we will demonstrate that with lowτ values (e.g.τ = 8), MITRAτ can still achieve98%
of MITRA’s performance.

6 Performance Evaluation

Having calculated the computational and communication complexity of MAB/EM and MITRA in the previous
sections, we now demonstrate that by using MAB/EM for energymanagement andMITRAτ for data routing,
our proposed algorithms together significantly outperformthe state–of–the–art. In so doing, we present empirical
results against state–of–the–art algorithms in long–terminformation collection in the WSN domain. The reason
we chooseMITRAτ instead of MITRA to route data is that the communication costof MITRAτ is guaranteed
to be low (see Section 5.4 for more details). However, as we will show later, it achieves, on average,98% of
the performance of MITRA. Now, to show the efficiency of our proposed approach compared to that of the
state–of–the–art, we need to choose a benchmark algorithm that has to fulfil the following requirements:

– It must be capable of using efficient adaptive sampling methods for collecting data from the environment.
– It must use information content valuation, in order to distinguish important data from unimportant data.
– It must contain an energy management policy, which allocates energy budgets to different sensory tasks of

sampling, receiving, and transmitting.

In particular, as we discussed in Section 2, algorithms thatguarantee these requirements may perform well in
WSNs with dynamic environments for efficient long–term information collection. On the other hand, those which
fail to fulfil the aforementioned requirements are not suitable for long–term information collection in our settings
(see Section 2 for more details). Since it has been shown thatUSAC achieves significant performance improve-
ment in long–term data collection, compared to that of otherstate–of–the–art algorithms, especially in dynamic
environments (Padhyet al., 2010). On the other hand, as we demonstrated within Section2, other state–of–the–
art methods typically fail to fulfil these criteria. Given this, we choose USAC as a benchmark for our performance
evaluation. In more detail, we compare the performance of our approach to USAC through extensive simulations,
and we show that our approach typically outperforms USAC on average by around120%. Furthermore, we also
benchmark the performance of our approach against a non–learning approach, that solely uses MITRA for rout-
ing. In particular, within this benchmark approach, each agent randomly chooses an energy budget allocation
combination, that it uses throughout its operating time (i.e. the budgets are fixed over time). Here, MITRA with
fixed budgets represents a benchmark algorithm that does notintelligently set the budgets of the sensory tasks to
adapt to the environmental changes. With this comparison, we demonstrate that by using adaptive learning (i.e.
the MAB/EM), we can also double the amount of collected information in the long term.
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In addition, we also benchmark the performance of our approach against the theoretical optimal performance
of the network (i.e. the maximal value of collected information that the network can achieve). This benchmark
aims to provide the theoretical upper bound of the performance that we can achieve within long–term information
collection in WSNs. In particular, in order to determine theoptimal performance of the network, we need global
information about each agent’s sampled information valuesat each time slot. However, to gather this global
information, a centralised control mechanism is needed, which is not feasible in our settings (as outlined in
Section 1). Thus this is a benchmark algorithm only, not a feasible solution to our information collection problem.

Finally, we demonstrate that by usingMITRAτ with small values ofτ , we can still achieve near–optimal
routing performance, while the number of communication rounds needed is significantly reduced (compared to
that of the MITRA).

To this end, we first set the parameters, that will be used throughout our simulations, in Section 6.1. Following
this, to demonstrate the efficiency of MAB/EM combined withMITRAτ , we analyse simulation results in detail
in Section 6.2. Here, we compare the performance of our approach to that of USAC, and the centralised optimal
algorithm. We then study the behaviour of each agent within the network in more detail in Section 6.3. Finally, in
Section 6.4, we show that by using a small value ofτ , MITRAτ achieves near optimal performance (e.g.98%
of the optimal solution can be achieved withτ = 8).

6.1 Parameter Settings

To compare the performance of the algorithms, we measure theoverall amount of information collected by
each algorithm over time. To this end, we run each algorithm on several networks with different topologies and
environmental characteristics (e.g. the occurrence frequency of the events, or the expected value of information
of each event). Then, we take the average of the specific results of the networks. In order to do this, we have to
create a number of networks that may differ from each other inboth topology and environmental characteristics.
Given this, we now describe the parameter settings, that areused throughout our simulations, in order to create
these networks and their environments.

In our simulation model, the dynamic behaviour of the network is captured in both the changing environmen-
tal characteristics and the varying network topology. In order to demonstrate the dynamic nature of the former,
we set up our simulation environment as follows. We first set three test environments, namely: (i) static (i.e.
the environmental characteristics do not change); (ii) moderately dynamic (i.e. the environmental characteristics
slowly change); and (iii) extremely dynamic (i.e. the environmental characteristics rapidly change). Note that
in real world applications, the environment is typically piece–wise stationary. That is, there are time intervals
whereby the environmental characteristics remain the same. This, however, does not indicate that from the per-
spective of one single agent, the environment is also piece–wise stationary. In particular, as outlined in Section
4.2, the performance of each agent also depends on the behaviour of the others. Thus, the reward value it can
get cannot be guaranteed to be piece–wise stationary, sincedifferent combinations of the behaviour of the others
may provide different reward distributions. This verifies our choice of Exp3, instead of D–MAB or Adapt–EvE,
as the learning method within MAB/EM (see Section 4.2 for more details).

Now, in order to capture the piece–wise stationarity of the WSN environment, we divide the simulation time
period into intervals called epochs (which are obviously not known to the agents). In each epoch, the environ-
ment has different characteristics, which affect the information value of the collected data. Here, we assume that
within each epoch, the information value is randomly generated from a normal distribution, and that the mean
and variance of this normal distribution changes at the transition from one epoch to the next. For example, in
one epoch, agenti can collect data with information value generated from the distributionN (5, 3) (i.e. normal
distribution with mean5 and variance3). Whilst in the next epoch, the distribution may change toN (45,10).
Furthermore, since information content valuation techniques typically assign higher information value to pack-
ets collected when extreme phenomena occur within the environment (e.g. sudden temperature increment due to
fire, or unidentified vehicles enter the area) (Guestrinet al., 2005; Khoet al., 2009; Osborneet al., 2008), the
agents can sample data with higher information value in epochs that contain more extreme phenomena. Given
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this, we define5 types of environmental characteristics, each of which represents epochs which contain different
environmental phenomena, as follows:

1. In this environment, packets are sampled with the information value in the range of 0 and 10, with distribution
N (5, 3) (i.e. the distribution is truncated at0 and10).

2. Here, packets are sampled with the information value in the range of 10 and 20, with distributionN (15,3).

3. The information value of each packet is in the range of 20 and 40, with distributionN (30, 6).

4. The information value of each packet is in the range of 30 and 60, with distributionN (45, 10).

5. The information value of each packet is in the range of 60 and 100, with distributionN (80,10).

Note that these numerical values are chosen such that they represent the differences between the characteristics
types. Other settings with different values also show the same broad patterns in the result of the simulations.
Thus, in order to capture the dynamic nature of the environment (i.e. how often it changes its characteristics), we
set the length of each epoch to be1, 000 time slots for the moderately dynamic case,200 for the dynamic case,
and50 for the extremely dynamic case. Whilst in the static case, there is only one epoch (i.e. there is no change),
with type1 of environmental characteristics. When the environment changes its epoch, it randomly chooses one
of the aforementioned characteristics types, with the probabilities of0.5, 0.25, 0.1, 0.1 and0.05, respectively.
This represents the common observation that more extreme environmental phenomena occur less frequently.

To capture the dynamic behaviour of the network topology, weallow node failures during the operation of
the WSN. In so doing, we again divide the time line into epochsof 20 (i.e. each epoch lasts for20 time steps). At
each epoch, each agent node may stop functioning for the whole epoch with probability0.2, independently from
other nodes. Nodes with failures may be functioning again inthe next epoch. Note that in our settings, epochs of
node failures are independent from the epochs of environmental changes.

Now, we set the energy settings of each agent node as follows.Each sensor’s transmission, receiving and
sampling energy consumption is uniformly and randomly chosen from intervals of30−42, 20−34, and15−25
per packet, respectively, and the solar energy harvesting energy budget of each node varies between500 and1500
4. Given this, in our simulations, we use these values to set the parameters, such aseS

i , eTx
i , eRx

i , andBi, of the
agents. In addition, the network contains100 agents, forming a10–layer topology, with10 nodes in each layer.
The communication edges of the network are randomly generated with probability0.5 (i.e. two nodes within
neighbouring layers can communicate with each other with probability 0.5).

Now, note that within our paper, we focus on the long-term information collection, and thus, we do not have
strict constraints on the delivery time of each collected information (see Section 1 for more details). Given this,
the information discount factor that we consider here is typically high (see Section 3.1). However, it would be
also interesting to study the performance of our approach insystems where real–time information collection is
desired. Within these systems, the real–time monitoring typically requires newest data only, and thus, the value
of sampled information rapidly decreases as time passes by.This indicates that the discount factor is significantly
low within such systems. Now, note that MITRA does not have any guarantee that it will deliver the sampled data
to theBS within a certain time threshold (which is a key requirement in real–time monitoring systems). Given
this, our hypothesis is that our approach may not perform well in systems that demand low discount factors. In
order to evaluate this hypothesis in more detail, we vary thevalue ofλ during our simulations. In particular, we
set the information discount coefficientλ = 0.9, 0.5, and0.2, respectively. The former represents the discount
factor of non real–time systems, while the latter two are a typical values for real–time WSNs.

6.2 Overall Performance Evaluation

Given the parameter settings above, we now discuss the numerical results of the simulations in more detail. In
particular, we study the performance of MAB/EM combined with MITRA8 (i.e. τ = 8). As we will show later
in Section 6.4, the choice ofτ = 8 results in both low performance loss and low number of communication

4 These values are proportional to real world sensor values asreported in Kansal and Srivastava (2003).
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Fig. 1 Information collection in a 100–agent network with static topology andλ = 0.9, in static, moderately dynamic, dynamic, and
extremely dynamic environments.
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Fig. 2 Information collection in a 100–agent network with dynamictopology (probability of node failures= 0.2) andλ = 0.9, in
static, moderately dynamic, dynamic, and extremely dynamic environments.
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Fig. 3 Information collection in a 100–agent network with dynamictopology (probability of node failures= 0.1) andλ = 0.5, in
static, moderately dynamic, dynamic, and extremely dynamic environments.
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rounds within MITRA. Note that within our simulations, bothUSAC and our approach are run with the same
environmental characteristics.

Now, since USAC does not follow the concept of energy neutrality, it would be unfair to compare it directly,
since the agents may deplete their batteries during operation. In more detail, if USAC does not use the concept of
energy neutrality, in the long term, a large number of nodes will be depleted, and thus, they cannot contribute to
the overall performance of the network (see Section 2 for more details). Therefore, in our simulations, we modify
USAC so that each agenti, analogously to MAB/EM, cannot exceed the energy budgetBi at each time slot. Note
that with respect to this total energy budget limit, USAC canstill intelligently allocate each agent’s budget to the
tasks it thinks to be important (see Padhyet al. (2010) for more details).

In our simulations, we first focus on the performance evaluation in systems where only the surrounding envi-
ronment is dynamic. We then run simulations on systems with adynamic environment and a changing topology
as well. Furthermore, we evaluate the performance of our approach in real–time monitoring systems, where the
data has to be delivered very quickly to theBS (i.e. the discount factor is low). The reason we choose these
scenarios is that we aim to analyse the impact of different dynamic behaviours that can effect the performance
of our algorithm. In more detail, within the first scenario, MAB/EM has to deal with the environmental changes
only, while in the second scenario, it has to take the varyingtopology into account as well. In addition, within
the third scenario, the system is forced to deliver the packets to theBS as fast as possible, since the information
value of the packets rapidly converges to0. Given this, we group our simulations into three scenarios,namely:
(i) network with no node failures (i.e. the topology is fixed); (ii) network with node failures (i.e. with changing
topology); and (iii) network with node failures and lowλ.

The results of the first scenario (i.e. network with no node failures) are depicted in Figures 1a, 1b, 1c, and 1d,
respectively. More precisely, these figures show the performance of the algorithms in static, moderately dynamic,
dynamic, and extremely dynamic environments, where the topology is fixed. In addition, we setλ = 0.9, that
is, we assume that the network is not a real–time monitoring system. Here, the error bars demonstrate the95%
confidence interval. From Figure 1a, we can see that our approach achieves up to70% of the optimal solution
in the case of a static environment. Since the environmentalcharacteristics do not change over time, by using
our approach, the agents learn the energy budget allocationcombinations that best fit these characteristics. In
particular, the agents achieve the best performance after2,000 time slots, compared to that of the others. In
contrast, USAC has the best performance at the beginning, due to its efficiently combined sampling and routing
behaviour (e.g. it outperforms our approach by around150%). In more detail, USAC increases the sensors’
sampling rate in unknown environments or when changes occur, and will decrease this rate as time goes by
(for more details see Padhyet al., 2010). However, within USAC, when a packet is chosen to be delivered to
the BS, it is assumed to be delivered to theBS, regardless of possible future events. That is, USAC does not
consider situations when future events may be more important, and thus, the delivery of that future information
has a higher priority. Rather, the resources are already occupied to deliver the current data. This is not the case
in our approach, where such delivery guarantees do not hold,and thus, USAC is outperformed by our proposed
approach up to90% in the long run. However, from Figure 1, we can also see that without the adaptive learning
part (i.e. MAB/EM), our approach cannot outperform USAC. Inparticular, the non–learning approach (denoted
as “MITRA with fixed energy budget allocation” in the figures)does not outperform USAC, and is the worst of
the benchmarks. Thus, MITRA itself cannot efficiently collect the information from the environment, compared
to state–of–the–art algorithms, such as USAC.

Now, as the environment becomes more dynamic, the performance of our approach is decreased, compared
to that of the optimal solution (see Figures 1b,1c, and 1d, respectively). The reason is that whenever changes
occur, each agent has to find a new, efficient energy budget allocation combination that fits the best to the new
environmental characteristics. That is, it has to learn howto adapt to the new environment characteristics. This
learning period decreases the performance of the algorithm, since less efficient energy budget allocations have to
be explored before good ones can be exploited. In particular, our approach achieves, on average, up to60% of
the optimal solution in the moderately dynamic environment(see Figure 1b), and it only achieves around40%
of the optimal method in the dynamic environment (see Figure1c). Furthermore, this value decreases down to
25% in the case of the extremely dynamic environment. However, our approach is better in all three cases. In
particular, it outperforms USAC with around100% in moderately dynamic environments,120% in the case of
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dynamic environments, and up to83% in extremely dynamic environments. Thus, within the first scenario, our
approach is more efficient in adapting to the environmental changes than USAC.

The simulation results for the scenario of networks with node failures are depicted in Figures 2a, 2b, 2c,
and 2d, respectively. Similarly to Figures 1a–d, these figures show the performance of the algorithms in static,
moderately dynamic, dynamic, and extremely dynamic environments, but within networks with node failures.
Here, we also setλ = 0.9, and thus, we assume that there is no significant need to deliver information to theBS

as quick as possible. Note that within this scenario, due to the high number of dynamic parameters to be taken into
account, the centralised optimal solution, that we use as a theoretical benchmark, becomes intractable, typically
after6000 time slots5. Now, we can see from Figures 2a–d that the performance of ourapproach is decreased in
this scenario, compared to that of the case of networks with no node failures. In more detail, by comparing our
approach’s performance to that of the optimal solution, theratio we get in the case of networks with node failures
is significantly lower than that of the case of networks without node failures. The main reason of this performance
decrement is that when node failures are allowed to be occur,the system is more dynamic from the view of each
single agent, since node failures may occur besides the environmental changes. That is, our approach has to
adapt to significantly more dynamic behaviours here, compared to the case of networks with no node failures.
Given this, since there is less time to learn the changes, MAB/EM achieves a worse performance within the case
of having node failures. This fact can be easily verified by comparing the performance of our approach to that
of the non–learning approach, that only usesMITRA8. Specifically, by combining MAB/EM withMITRA8,
the overall performance in the case of networks without nodefailures is typically doubled (see Figures 1a–d).
However, it is not the case within networks with node failures. In fact, the performance improvement that we
get here is typically lower, especially in the cases where the environment is highly dynamic (see Figures 2b–d).
However, our approach still outperforms USAC in all environmental settings. The main reason is that within
USAC, when a packet is chosen to be delivered towards theBS, an optimal routing path is chosen, and is fixed
over the time of delivery (see Padhy et al., 2010). This technique brings up the following issue: a data packet,
which is already on the way towards theBS, may not be physically delivered, due to possible node failures
within the routing path of that packet. Thus, USAC may waste the budgets of the agents by occupying them with
delivering the current data. This is not the case in our approach, where such delivery guarantees do not hold. Note
that these delivery guarantees are also the reasons why USACis outperformed by our approach in the case of
networks without node failures. However, here (i.e. withinnetworks with node failures) our approach achieves
less significant improvement, compared to the improvement it can achieve in networks without node failures.
This indicates that our approach is more sensitive to the topological changes than USAC.

We now focus on the simulation results of the third scenario,where both the environment and the topology of
the networks are dynamic, and the discount factor is low. In particular, we setλ = 0.5. The results are depicted
in Figures 3a–d. Again, these figures show the performance ofthe algorithms in static, moderately dynamic,
dynamic, and extremely dynamic environments, respectively. Here, since the high probability of node failures
may significantly modify the performance of the algorithms (see the numerical results of the previous scenario),
we set the probability of node failures to0.1, in order to show a clear effect of lowλ values on the performance of
the approaches. Given this, we can clearly see that within this scenario, the performance of MITRA is significantly
decreased, compared to that of USAC (recall that in the previous scenarios, these two approaches shows similar
performances). The reason here is that while USAC can guarantee the delivery of packets towards theBS within a
time threshold by choosing a full routing path, MITRA does not. Therefore, with our approach, a large portion of
collected packets are delayed within the network, and thus,their information value is typically close to0 when the
BS receives them. This performance loss is compensated when wecombine MAB/EM with MITRA, especially
when environmental changes are slow enough so that MAB/EM can adapt to the changes (see Figures 3a–c).
However, in all the cases, our approach cannot outperform USAC, since it is not designed for fast packet delivery.
In more detail, we can clearly see this in Figure 3a, where theenvironment is static. In this case, since USAC does
not have to deal with the challenges of environmental changes, it significantly outperforms our approach. As the
environmental changes become more frequent, but still slowenough so that MAB/EM can adapt to these changes,
the performance of USAC is decreased, while our approach shows improvement in its performance (see Figures
3b–c). However, when the environment becomes extremely dynamic, the learning approach cannot adapt to the

5 During our simulations, we used a IntelR© Core 2TM Quad q9400 computer with 4GB memory, and JavaTM 1.6.018 RE.
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End node Middle node Start node
BRx 6.6% 35.3% 39.7%

λ = 0.9 BTx 56.3% 46.9% 43.1%
BS 37.1% 17.8% 17.2%

End node Middle node Start node
BRx 4.9% 30.7% 26.9%

λ = 0.5 BTx 53.3% 42.4% 41.3%
BS 41.8% 26.9% 31.8%

End node Middle node Start node
BRx 5.1% 17.4% 9.1%

λ = 0.2 BTx 25.7% 42.5% 49.5%
BS 69.2% 40.1% 41.4%

Table 1 Detailed agent behaviour within network with random topology.

End node Middle node Start node
BRx 5.2% 40.3% 37.2%

λ = 0.9 BTx 57.4% 51.6% 44.5%
BS 37.4% 8.1% 18.3%

End node Middle node Start node
BRx 4.8% 31.7% 30.3%

λ = 0.5 BTx 56.5% 46.8% 45.1%
BS 38.7% 21.5% 24.6%

End node Middle node Start node
BRx 4.7% 18.4% 6.7%

λ = 0.2 BTx 22.1% 31.3% 53.7%
BS 73.2% 50.3% 39.6%

Table 2 Detailed agent behaviour within network with star topology.

changes anymore, and thus, both USAC and MAB/EM show significantly lower performance (see Figure 3d).
Note that we also run the simulations withλ = 0.2. However, due to the very low discount factor, both USAC
and our approach show very poor performance in information collection, and there is no significant differences
between their performance. Against this background, we canclearly state that our approach is not suitable for
systems where information rapidly decays.

To conclude the performance evaluation of our approach using MAB/EM in conjunction withMITRA8,
we can state that it significantly outperforms USAC when the information discount factor is high, while it is
not suitable for systems with rapidly decaying information. We also demonstrated that the learning efficiency of
MAB/EM is decreased when the changes are rapid (e.g. the environment is extremely dynamic, or environmental
changes are combined with node failures). Furthermore, we showed that MITRA is sensitive to the value ofλ,
and thus, its inefficiency in systems with low values ofλ significantly decreases the overall performance of our
approach as well. This can be verified by comparing the performance of our approach with that of the theoretical
optimal approach. However, apart from real–time systems, our approach typically outperforms USAC. Given
this, our approach is suitable for system with non real–timerequirements.

6.3 Agent Behaviours within Different Network Settings

To better understand the behaviour of our approach, we now focus on a more detailed study of MAB/EM in
this section. In particular, we aim to determine the typicalenergy budgets that each agent allocates to sampling,
receiving and transmitting. However, as the numerical results within the previous section indicate, the behaviour
of MAB/EM depends on the value of the discount factor, and theenvironmental changes. Thus, one of our
objectives is to investigate these dependencies. Furthermore, the behaviour of the agents may also depend on the
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End node Middle node Start node
BRx 4.1% 34.2% 40.5%

λ = 0.9 BTx 55.7% 46.9% 54.2%
BS 40.2% 18.9% 5.3%

End node Middle node Start node
BRx 3.5% 30.9% 25.8%

λ = 0.5 BTx 54.7% 44.3% 52.6%
BS 41.8% 24.8% 21.6%

End node Middle node Start node
BRx 4.3% 13.2% 8.7%

λ = 0.2 BTx 36.1% 35.1% 48.5%
BS 59.6% 51.7% 42.8%

Table 3 Detailed agent behaviour within network with chain topology.

network topology as well. In particular, the network topology restricts the set of agents that a particular agent
node can interact with, while using MITRA. In addition, the distance between the agents and theBS may also
have a significant impact on the agents’ behaviour, since thecloser an agent is to theBS, the more it needs to be
able to handle a larger amount of traffic throughput that it has to forward to theBS. Given this, beside the network
topology we described in Section 6.1, which we will refer to as the “random network”, we run our simulations
on two additional networks, namely: (i) network with “star topology”; and (ii) network with “chain topology”.
The former has21 nodes, that together form5 layers, where the middle layer contains exactly one node (i.e. the
star node), while the other layers have5 nodes each. Each node can communicate with any of the nodes within
its neighbouring layers. On the other hand, the latter topology has10 nodes, forming a10–layer long chain, with
exactly one node in each layer. Note that here, the random topology represents a regular network (i.e. the network
topology is arbitrary), the star topology represents networks with some bottle–neck nodes (i.e. all the traffic of
the network has to go through these nodes), while the chain topology represents networks where all the traffic
has to follow a certain routing path.

We first study the impact of the network topology and the discount factor to the behaviour of MAB/EM in
more detail. In particular, we investigate the average budget percentage (compared to the total energy budget)
that a single agent allocates to data sampling, receiving and transmitting. In so doing, we calculate these budget
allocation values with differentλ, network topology, and distance of the agent from theBS. For varying the latter
parameter, we focus on three different type of distances. The first type is the nodes that are farthest from theBS

(i.e. the node lies in the last layer). We refer to this node asthe “end node”. The second type of node that we
investigate is the one that is in the middle layer, which we refer to as the “middle node”. Note that the middle
node is in fact the star node in the case of the star topology. Furthermore, since the random topology contains10
layers, it does not have the middle layer. Given this, withinthis topology, the middle node is chosen from layer5.
The third type is the one that is next to theBS (i.e. it can directly communicate with theBS), which is referred
to as the “start node”.

The results are depicted in Tables 1, 2, and 3, respectively.In more detail, Table 1 depicts the average budget
allocation values of the end node, middle node, and start node in the random topology, withλ = 0.9, 0.5, and0.2.
For example, an end node within the random topology typically allocates6.6% of its budget to receiving,56.3%
to transmitting, and37.1% to sampling, whenλ = 0.9. Similarly, Tables 2 and 3 contains these values for star and
chain topologies, respectively. Here we set the environmental changes to be static, with no node failures, since
within this type of environment, we can clearly observe the impact of the abovementioned factors. Note that
we also evaluated our simulations with more dynamic environmental settings (i.e. changing information value
distributions, and occurrence of node failures). But due tothe dynamic environmental changes, the behaviour of
the agents becomes more diverse, and thus, the patterns are less likely to be observed.

Now, from the tables, we can clearly see that asλ decreases, the nodes becomes more selfish, that is, each
node puts more effort on sampling its own data. The reason forthis is that with lowλ values, the information
value of packets, that are received/or sampled in the past, decays quickly, so that the information value of newly
sampled data will dominate the reward that the agent can get when it evaluates its chosen action. In addition, we
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can observe that the end node typically focuses on sampling and transmitting only, since they can learn that there
is no data to receive. However, when the agent is closer to theBS, it changes its focus from sampling its own data
to relaying others’. This pattern can be observed most clearly in the case ofλ = 0.9. Furthermore, we can see
that the pattern of the nodes’ behaviour does not depend muchon the type of the underlying network topology.
In particular, it allocates similar budget ratios to each ofthe sensory tasks in different topologies. However, there
are notable exceptions. For example, in the case of the star topology andλ = 0.9, the middle node behaves
differently than in the other cases. Specifically, it allocates significantly lower budget to sampling, compared
to the other cases. The reason here is that it has to take into account the others’ collected data as well, as the
information value of this data does not decay rapidly. In a similar vein, the start node also allocates significantly
less budget to sampling within the case of chain topology andλ = 0.9, compared to other cases. To conclude,
we can say that the behaviour of the nodes typically does not depend on the topology. Furthermore, the closer the
agents are to theBS, the more they are willing to relay other agents’ collected data. However, the cooperativeness
between the agents decreases, and thus, they allocate more budget to sampling their own data, as the information
discount factor decrease.

6.4 Performance Evaluation ofMITRAτ

Given the simulation results in the previous section, we cansee thatMITRAτ , together with MAB/EM, performs
well with τ = 8. As mentioned in Secton 5.4, the advantage of usingMITRAτ instead of MITRA is that the
former has limited communication cost. This limitation implies that the performance ofMITRAτ is decreased,
compared to that of MITRA, which is proveably optimal. However, we shall now show thatMITRAτ still
achieves near–optimal performance, even with small valuesof τ , by studying the performance ofMITRAτ

with different values ofτ . The performance of theseMITRAτ algorithms is compared to that of MITRA with
an unlimited number of communication rounds. Note that MITRA may use tens of rounds in order to achieve
optimal routing performance (as outlined in Section 5.4).

Given this, the numerical results are depicted in Figure 4. In particular, the figure contains the performance
of MITRAτ with τ = {1, 2, 4,8}. Note that we also have evaluated the performance ofMITRAτ with higher
values ofτ , but their improvement is not significant, compared to that of MITRA8. From Figure 4, we can see
thatMITRA1 achieves the lowest performance (it performs60% less well than the optimal solution in the case of
networks with100 agents). Withτ = 2, andτ = 4, MITRAτ achieves better results, but their performance loss
(i.e. the difference between their performance and that of the optimal solution) is still significant. In particular,
MITRA2 performs, on average,60%, whilst MITRA4 achieves around80% of the optimal solution in the
case of100 agents. In contrast, we can see that withτ = 8, even in the case of networks with100 agents,
the performance ofMITRAτ is around98% of the optimal unlimited MITRA. That is, by limiting the number
of communication rounds that MITRA can use toτ = 8, our approach still achieves near–optimal solution
with around2% performance loss. On the other hand, according to Theorem 3,MITRA without communication
round limit may use up to66 rounds in order to achieve optimal routing performance. That is, by limiting the
communication rounds toτ = 8, we can reduce the number of communication rounds by87.5%. Given this,
by usingMITRA8, the number of used communication rounds is small enough so that the total time needed
for coordination will not exceed the size of the time slot. This, in particular, verifies our choice ofMITRA8 in
Section 6.2.

7 Conclusions and Future Work

In this paper, we studied long-term information collectionin the WSN domain. In particular, first we looked at
previous on work energy management and data routing in WSNs.These are the perspectives from which efficient
information collection can be achieved. Following this, weintroduced our model for WSNs that includes the
aforementioned perspectives, and we formalised our main objective of maximising the total amount of collected
information at the base station over a given finite time interval.
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Fig. 4 Performance comparison ofMITRAτ with that of the unlimited MITRA. The optimal performance achieved by MITRA is
100%.

In a review of the relevant literature, we demonstrated thatnone of the state-of-the-art algorithms in the afore-
mentioned perspectives meets all of our research requirements for long-term information collection. Given this,
we developed a novel model that enables learning and adapting to the environmental changes. In particular, we
focused on adaptive energy management and routing, whilst we assumed that the data sampling and information
content valuation parts of the model use state-of-the-art techniques. In so doing, we decomposed the original
problem into two sub–problems, namely: (i) energy management; and (ii) maximal information throughput rout-
ing.

Against this background, we proposed a multi–armed bandit based approach called MAB/EM for the energy
management problem. In particular, we first introduced the MAB model, which forms the foundation of our
approach. Then we reduced the energy management problem into a MAB problem, by defining the actions and
the reward functions for the agents. Following this, we described in more detail a state-of-the-art MAB algorithm,
Exp3, that can be used to efficiently deal with the energy management problem.

For the maximal information throughput routing problem, wedevised two decentralised routing algorithms,
MITRA (for maximal information throughput routing algorithm), andMITRAτ , respectively. We proved that
MITRA provides the optimal solution for the maximal information throughput routing problem. Furthermore, we
also provided an upper bound for the number of communicationrounds that MITRA needs to use within a time
slot. Since the total number of communication rounds that MITRA uses may be large, we modified MITRA so
that the number of communication rounds is reduced. The modification resulted in the introduction ofMITRAτ .

Following this, we demonstrated the efficiency of our approach (i.e. MAB/EM combined withMITRAτ ,
whereτ = 8) through extensive simulation results. In particular, to measure the efficiency of our approach, we
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compared with a state–of–the–art non–learning information collection algorithm, USAC. Moreover, to measure
the performance surplus that MAB/EM adds to our approach, wealso used a non–learning algorithm, that solely
uses MITRA, as a benchmark method. Both comparisons showed that MAB/EM withMITRAτ together are effi-
cient in terms of long–term information collection, since it can adapt to the environmental changes. In particular,
we demonstrated that, within systems with high values of information discount factor, our approach outperforms
USAC. However, we also showed that as the discount factor is decreased, the performance of our approach also
decreases. In addition, we also empirically showed that by choosing small values ofτ , near–optimal routing per-
formance can still be achieved, whilst the number of communication rounds is significantly reduced. Given this,
the integrated model and the proposed algorithms are particularly useful for non–real time monitoring systems
(i.e. the information discount factor is high), in which theenvironment has to be monitored over a prolonged time
interval, and unpredicted, important events should be distinguished from the other events.

In our WSN model, we assumed that agents can harvest energy over the whole period of their operation time,
and thus, they can follow the concept of energy–neutrality.In particular, we assumed that the energy budget that
each agent can use at each time slot is fixed over time. This indicates that the agent’s action set does not change
over time either. However, there are systems in which this assumption does not hold. In particular, for example,
sensor agents with solar energy collectors may not perform well in energy harvesting if they are deployed in en-
vironments with cloudy weather. In these cases, agents may fail to comply with the concept of energy–neutrality.
Given this, we aim to extend our work to systems in which energy harvesting is either not efficient or not feasible.
More precisely, within these systems, agents need to decidewhether to follow the concept of energy–neutrality,
and thus, they should be able to save energy for time slots when energy harvesting is not possible, in order to
achieve efficient long–term information collection. However, this implies that the current MAB model is not suit-
able for such systems, since the action set of each agent is not fixed over time. Given this, we need to modify the
MAB concept so that this extended model can be efficiently tackled as well.
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