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Chapter 1

Introduction

This is a nine month report detailing my initial research and experiments toward the under-
standing of the reciprocal relationship between social networks and bibliometric networks.
This work is trying to answer some of the follow up questions in my previous MSc course
project, which focused on analysing an institutional co-authorship network[67]. The re-
search questions raised are split into two parts.

• To focus onto individuals: How does the co-authorship network reflect the actual
working relations between the individuals? How does their job position co-relate to
their network position?

• To scale up and include bigger entities: What does the universities’ co-authorship
network graph look like? Is there a split in co-authorship network between top uni-
versities and others? If so, what are the factors that split universities up?

This report attempts to rank the authors using the bibliometric network structure and
analyses the university collaboration patterns.

1.1 Outline of the Report

Chapter 2 reviews previous works on social network and bibliometric network from various
disciplines, giving an overview of the subject and providing a solid foundation which this
work will be built on. It includes a review of existing software and tools for effectively
conducting network analysis and graph visualisation for this work.

Chapter 3 describes one of the experiments that rank authors from ECS based on the
co-authorship graph structure.

Chapter 4 describes the other experiment which analysed university level co-authorship
collaboration using the ACM data.
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Chapter 5 summarises the report and proposes future work.



Chapter 2

Literature Review

To fully understand networks attracted research from a wide range of fields including math-
ematics, physics, computer science and social science. Mathematicians consider networks
as graphs. They use vertices and edges to describe a network, then by experimenting the
way the vertices connected the by the edges, to understand the properties of networks;
Physicists and Computer Scientists are interested in understanding how real networks are
formed and evolve, for example computer networks, the transport network and the in-
fectious disease transmission network. Social scientists are concerned with networks that
involve people. They would like to know how people interact, how people obtain informa-
tion and how people collaborate within their people-network. This class of networks that
models the relationship between people are often called social networks.

In this chapter, we give an overview of research in various domains that concerning social
networks and bibliometric networks.

Section 2.1 reviews network studies from the mathematical perspective, primarily the net-
work models that are widely used in most network analyses.

Section 2.2 reviews works in the social science domain.

Section 2.3 reviews works in bibliometric analysis and how it relates to social networks.

Section 2.4 evaluates some common network analysis tools.

2.1 Network Models

The mathematical network model provides a solid foundation for network analysis. Any
network can be modelled by a graph – nodes represent objects of interest and links represent
relations between those objects. Modelling real networks using graphs recorded as early as
18th century. Leonardo Euler tackled the famous Königsberg’s Seven Bridges problem – is
it possible to traverse the seven bridges exactly once – by modelling the islands and bridge
connection as a graph. He proved that the graph cannot be traversed only once.
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A mathematical graph is defined as a pair of sets G = {V,E}, where V is set of vertices (or
nodes) v1, v2...vn and E is set of edges (or links) that connect two vertices. The edges can
also have values attached, so the graph becomes a valued graph. we discuss it in section
2.2.1.

In the following sections, three network models that were most widely studied are intro-
duced.

2.1.1 Random Network Models

This is the class of network models that include the original Erdős and Rényi random graph
model[20, 21] and the variations. The original model defines a very simple graph: a graph
Gn,p is defined as n nodes then connects each pair of nodes with probability p. In fact,
graph Gn,p is not a single graph, but the collection of graphs with n nodes and all the
possible ways of connecting the nodes together with probability p.

There are two critical points that the Erdős and Rényi’s graph model cannot model in
social networks:

1. Degree distribution1. Due to the random nature of this model, the degree distri-
bution follows the Poisson distribution. This is very different from many real net-
works, for example, social networks and citation networks follow the power-law degree
distribution[44, 53].

2. Clustering. Social networks have high clustering[25], indicating a locally well con-
nected structure. However, random network model can not produce this local struc-
ture due to its random nature.

There are variations of the Erdős and Rényi network model to address these problems. The
configuration model[37] and Chung and Lu’s model[11, 12] specifically targeted the degree
distribution of random networks. Holland and Leinhardt [29], Strauss [22, 58] proposed
models to address the clustering. But the common problem of these variations is that they
become too complex to be useful in other studies.

So researchers start questioning themselves: are we starting from the correct foundation
for modelling social networks?

2.1.2 The Scale-Free Network Model

The Erdős and Rényi random network model is one of the simplest yet most studied network
models. However, as we have already discussed, it has major weaknesses in modelling social
networks. Barabási and Albert [3, 4] presented a new way of modelling networks. They
emphasized on the growth of networks found in real life. The social network, the citation

1Degree of a node is the number of edges connected to that node.



CHAPTER 2. LITERATURE REVIEW 6

network and the World Wide Web are evolving networks. They all started with few nodes,
then new nodes created and attached to existing nodes in the graph, finally resulted the
current network. Barabási and Albert showed that in order to produce a real network’s
degree distribution, whenever a new node is added to the graph, the node must have a
higher chance to connect to nodes that already have many connections. For instance in
citation network growth, a new publication has higher chance to cite one that thousands
of other publications cite, than one with only a few dozen publications cite.2 They call
this the ‘preferential attachment’. The resulting topology is that their degree distribution
follows a power law. This means that most nodes have very few links, but the remaining
few nodes have all the rest.

The importance of their contribution is not only on a new network model, but also a
whole new way of viewing a network – it is a dynamic, evolving structure. Some of the
network features are rooted in evolution of the networks rather than the network topological
characteristics.

2.1.3 Small-World Phenomenon

Before we talk about this phenomenon, we need to introduce a metric that measures the
connectedness of a network – the Average Path Length (APL). The APL in a network is
the average of the shortest path between all pairs of nodes. A network with APL of 3
tells us that on average, the path length between any pair of nodes is 3. The Small-World
Phenomenon that often found in many real networks is the observation that a large network
– with millions or billions of nodes – has only a small APL. The human acquaintanceship
network [60] consists of billions of nodes and its APL is only 6; the mathematics co-
authorship network with 250 thousand researchers[45] has an APL of only 7. One of the
properties of this class of networks is that information transmitted on them is much faster
than, for example, a network that has APL in the order of thousands or millions. Therefore,
the small-world effect is desirable in networks like the scientific collaboration network and
the WWW, where knowledge can channel through quickly, but not so desirable in situations
like disease transmission or the spread of rumours in social networks. More recently, the
small-world phenomenon has taken a precise meaning: networks are said to show small-
world phenomenon if the APL of the network scales logarithmically or slower with the
network size for fixed average degree.

Another property of real-life small-world networks is that nodes are locally clustered. This
means that if node A is connected to node B and C, then B and C are very likely connected
too. One demonstration in social networks is two close friends of someone are very likely
friends themselves too.

The Erdős and Rényi random network model and its variations reproduces the small-world
effect well[5, 12, 18, 23]. But as we have already discussed in section 2.1.1, the random

2This can be simply explained by probability: If thousands of publications cite a paper, then this paper
is much easier to be found than one that only a few paper cites.
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Figure 2.1: Watts and Strogatz Model. Left: the regular ring lattice with no randomness; middle, some
randomness introduced when connecting neighbours, the network became small-world; right, a complete
random graph.

network model cannot easily produce high clustering.

Watts and Strogatz[62] proposed a simple model that has both small-world effect and high
clustering (Figure 2.1). The model starts with a ring of nodes, then each node is connected
to one nearest neighbour from both sides. A randomness parameter p is introduced, such
that the amount of edges in the model is randomly rewired according to p. When p = 0, no
edge is rewired and the graph remains a lattice; while when p = 1 the graph is completely
rewired and becomes a random graph. By varying the randomness p, there is a sizeable
region, as shown by Watts and Strogatz using numerical simulation, where the model has
small-world phenomenon and is highly clustered.

This model demonstrated observations in many social systems, where most people are
friends with people they are geographically close to – colleagues, house neighbours, class-
mates – and the lattice represents these connections. Many people also have a few friends
that live a long way away – friends live in other cities or other countries – the randomness
adds long distance connections to the network.

Analysis of this model shows surprising result: in order to convert a lattice network into a
small-world network, only a tiny fraction of rewiring is required. What this means is that
the small-world phenomenon found in social networks is stable and is not on the edge of
collapse.

There are many variations of the Watts and Strogatz model. A much studied variant
was proposed by Newman and Watt [46], which randomly adds edges to the graph but
does not remove edges from the regular lattice. This prevents isolated clusters forming so
that it is easier to analyse. Models with higher dimensions have also been proposed and
studied[16, 39, 47, 50], and the results are qualitatively similar to the one-dimensional case.
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2.2 Social Networks From A Social Science Perspective

2.2.1 Tie Strength

There is a thread of study in social science that considers the tie strength between people.
These studies demonstrated that the strength of the relationship plays vital roles in shaping
the social structure. Granovetter[26] conducted an experiment on how people acquire
information about job opportunities in a small town. He found that their social contacts
are the primary channel. But what is also interesting is that most of these social contacts
were not even their friends, they were just acquaintances. So he suggested that ‘weak ties’
between people are where they get valuable information form. His explanation was that
even though family members and friends would like to help when they are between jobs,
because they and their friends are a tightly connected network they don’t have much new
information to offer. However acquaintances would have access to information from their
side of the circle of friends, providing valuable opportunities.

There are many follow-up studies: Onnela et al.[49] studied the telephone communication
network. They used the length of the telephone call as a measure of the strength of the
tie. Studies on Facebook and Twitter using message frequency for tie strength are also
conducted [30, 35]. Ahuja et al.[1] also proposed methods to use tie strength to partition
networks.

2.2.2 Social Data Collection

When conducting social network analysis, it is important to understand what kinds of
data that need to be collected for an effective analysis. Scott[8] produced a social network
analysis handbook detailing common methodologies. He introduced two principal types
of data one needs to collect to conduct an analysis: ‘attribute data’ and ‘relational data’.
Attribute data is regarded as opinions, attributes and behaviours of individuals. These are
properties, qualities or characteristics that belong to the people in study. Relational data
are the contacts, ties and connections that relate one individual to another. Relational data
cannot be further reduced to properties of the individuals themselves. This formalisation
provides a good guideline in the data collection stage of any network analysis.

In this study, the social data is encapsulated in the research paper’s metadata. The author’s
name and affiliation are the attribute data that used to describe the author; whenever two
authors appear on a same paper, it implies a relation between the two authors.

Computational Approaches The data collection methods used in many social science
studies were mostly questionnaires. The downside is that the data is subjective to the per-
son filling out the questionnaire. For instance, different people may give different definitions
to friendship. In addition, the amount of data one could collect by handout questionnaires
are rather limited.
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In recent years, as more and more social interactions are moving to the web, social scientists
are starting to obtain data from online resources. King et al. [32] grouped on-line social
data sources into the following categories:

• Social Networks. eg. Facebook, where people are connected in this virtual society.

• Social Media. eg. Youtube, where people are connected because they have viewed,
or commented on the same media.

• Social Game/Human Computation. People are connected because they interacted
with each other in a game.

• Social Bookmarking/Tagging. eg. Del.icio.us, where people are connected because
they have bookmarked the same resource, or used the same word to tag resources.

• Social News and Social Knowledge Sharing. eg. Wikipedia, where people get con-
nected because they edited the same article together.

2.3 Social Network Meets Bibliometric Network

2.3.1 The Citation Network

Citation networks are classic knowledge networks. Papers represent nodes and citing papers
represent directed links between papers. Because only the later papers can cite the previous
published papers, this is a non-cyclic network and arrows on the links point back in time.
Researchers started studying this network in the 1950s. Price[52] investigated the patterns
of the citation network. He found that the small amount of papers are cited more frequently
than average, while the majority of papers are cited less frequent than average. This work
was one of the first empirical results for scale-free networks introduced in section 2.1.2.

Citation data is often used as an indicator to measure scientific performance. Redner[54]
studied the citation count and scientific impact; Cronin[14] investigated the h-index and
ranking of authors; Cole[13] and van Raan [61] evaluated the influence by awards, honours,
and Nobel laureateships.

However, other studies suggested that citations are not a suitable measure for scientific
activities [24, 66]. They claim that the citation depends on many factors besides scientific
impact. These include, for example,

• Time-dependent factor: the more frequently a publication was cited, the more fre-
quently it will be cited in the future [9, 52];

• Availability of the publication: physical accessibility [57], open access of publications[7,
27] and the publishing media influence the probability of citations[56];
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• Author-reader dependent factors: results from Mählck and Persson [34] and White[63]
showed that citations are affected by social networks, authors cite personally ac-
quainted author more often.

Bornmann and Daniel[6] reviewed the citing behaviour of scientists. They claim that at
the micro-level, citing is a social and psychological process that is mixed with personal bias
and social pressures; but at the macro-level, scientists give credits to colleagues by citing
their work. Thus, citations represent intellectual or cognitive influence on scientific work.

Studies of the citation network enabled us to understand the structure of knowledge and
anticipate developments in various domains. The network constructed using citation re-
lations between published papers are generally treated as a knowledge network. Since
papers are written by researchers, a network of researchers can also be constructed. In
coming sections, we show how data gathered from publications can construct a network
that represents meaningful social relations.

2.3.2 The Co-citation Network

Two types of co-citation networks are discussed commonly in the literature: the paper
co-citation network and the author co-citation network. These are two different networks
- one connects papers together and one connects people. We discuss the author co-citation
network here.

The author co-citation network is generally defined as follows: a pair of authors is said to
be co-cited if they are cited together in a later paper, regardless of which of their work
is cited. In a broad sense, the researchers cite two papers together when the content of
those papers are somewhat relevant. So previous authors who wrote those co-cited papers
can have similarities in their research. The more the authors are co-cited, the stronger the
similarity in their research work. We can consider citing a pair of paper together as one
vote to ‘these papers are similar’, so the co-citation network represents a collective decision
of later authors in grouping previous papers.

The idea of co-citation is an attempt to push the knowledge network onto the people who
produced the knowledge.

The original methodology by White [64] only considers the first author of any given paper
and disregards the contributions of other co-authors. Follow up studies by Persson[51]
and Zhao[68] consider all authors listed on a paper, helping to identify the domains of
authors who are seldom listed as first authors. Beyond that, Su[59] proposed an algorithm
to discover authors with multiple expertise in a co-citation network.

A few domain co-citation analyses have also been performed. White et al. [65] analysed
the information science field from 1972 to 1995 using the author co-citation. They gener-
ated maps of the top 100 authors in the field and used factor analysis to identify major
specialities. They found that information science consists of two major specialities with
little overlap.
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Chen and Carr [10] used ACM publication data to study the structure of the hypertext lit-
erature. Authors cited less than 5 times during the period 1989-1998 were filtered, resulting
in 367 authors. An author co-citation matrix was constructed and Principal Component
Analysis (PCA) was applied. The temporal information of the papers was included in the
visualization methods, allowing them to identify emerging research directions in the field.

Co-citation networks start to bring people to the network, and provide a unique author-
knowledge network that allows us to understand the focus of papers, and hence individual
author’s research interests. In the next section, we look at more direct people-to-people
relations – the co-authorship network.

2.3.3 The Co-authorship Network

In these networks two researchers form co-authorship links if their names both appear on
the same paper, so the nodes are authors and links represent co-authorship. In research
activities, co-authors generally know each other and many of them collaborate with each
other. As a result, the co-authorship network is, to certain degree, a researchers’ collab-
oration circle. While the networks discussed previously were not collaboration networks
between people, the co-authorship network is truly a proxy to the social collaboration
network of the researchers. It has attracted much research attention in recent years.

The Erdős Number Calculating the Erdős Number is one of the earliest co-authorship
activities. The Erdős Number is a measurement of the number of collaboration hops a
researcher co-authored with the famous Mathematician - Paul Erdős. Researchers who
co-authored a paper with Paul Erdős have Erdős Number 1; researchers who co-authored
a paper with a co-author of Paul Erdős have Erdős Number 2 and so on. Those authors
who never co-authored a paper with Paul Erdős don’t have an Erdős Number or are said
to have an infinite Erdős Number. De Castro and Grossman[15] found that many famous
researchers, whatever their research areas, have a finite Erdős Number. Because the famous
researchers also are tightly connected with their own research domain, so it leads to the fact
that the entire research community is connected through co-authorship. The implication
is that the scientific research is a collaborative work rather than individuals making their
own discoveries. Another finding by them, probably the obvious one, is that in order to
have a smaller Erdős Number, whom one collaborated with is more important than the
number of collaborators – quality is more significant than quantity.

Domain analyses Co-authorship analysis is widely used to understand publication and
collaboration patterns among researchers in a specific domain.

Newman [40–42, 45] carried out a series of co-authorship analyses in 2001. He answered
a broad variety of questions about collaboration patterns by analysing co-authorship net-
works, such as the number of papers authors write, how many people they write them
with, the typical distance between researchers through the network. He compared these
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attributes across several domains – Biology, Physics, Computer Science and Maths. Here
are some of his findings:

• The number of papers written per author is similar across the domains in the study;

• The number of authors per paper and the average number of collaborators vary
substantially across domains;

• All of the subject domains have a largest component connecting at least 80% of the
researchers;

• The average collaboration distance is small, typically 4 to 6 steps for a network
containing millions of nodes;

• The clustering coefficient is much smaller than a random network expected value.

After Newman’s work, Moody[38] investigated social science collaboration networks; Liu[33],
Sharma[55] studied digital library community, and Elmacioglu[19] analysed database com-
munity using co-authorship network.

All of these works came to one similar conclusion – researchers are mostly connected, the
distance between them is short and the network is highly clustered. The co-authorship
networks, therefore, are small-world networks.

Network Dynamics The co-authorship relation is also used in many network evolution
studies. Each publication has a published date, which is used as the time variable for a
dynamic network.

Barabási[3] studied the co-authorship network and proposed a simple model that captured
the network’s time evolution. By studying the model, they discovered that the measure-
ments on incomplete databases could offer opposite trends. For example, the node sep-
aration exhibits a decreasing tendency on datasets that only cover certain periods, while
their numerical simulation uncovers this inconsistency. They also found that the average
degree, the diameter and the clustering coefficient, which are commonly used to charac-
terise a network, are in fact time dependent, therefore can not be used to characterise an
evolving network. On the other hand, they claim that degree distribution is a stationary
measurement for a dynamic network.

Newman[43] analysed what affects researchers’ choice over who to collaborate with. He
found that the probability a pair of researchers would collaborate with each other increases
with the number of other collaborators they have in common; and the probability of a par-
ticular researcher acquiring new collaborators increases with the number of his or her past
collaborators. This result demonstrated preferential attachment in co-authorship networks
when one is deciding who to collaborate with.
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Author Name Disambiguation There is a common problem in publication co-authorship:
the names printed on the paper do not globally identify an author. Multiple authors may
be mixed into one when their names are not spelt out in full or one author is recognised as
several because different name spellings used on publications. The name ambiguity prob-
lem affects the accuracy of co-authorship network analysis and many applications that rely
on unambiguous author names. As shown by Kang et al.[31] and On[48], the co-authorship
network itself could help identify authors. The assumption is that an author would work
closely with the same group of researchers. By analysing the frequent co-authors of a given
name string, it is possible to recognise whether this particular name presents many authors
or just one.

As we have shown here, co-authorship is a fruitful data source for social network analysis.
It revealed authors’s collaboration trends both within domains and across domains[38, 40–
42, 45, 55]; it identified top authors and their affiliations as well as the pattern of co-
authorship among them[33, 41]; it also provided data for studying the network dynamics
in social networks[3, 43]. In the remaining of the PhD program, co-authorship data is used
as the building blocks for researcher collaborations.

2.4 Evaluation of Network Analysis Tools

A powerful network-analysis tool would enable one to conduct network analysis effectively.
This section reviews some common network analysis software. We use a network consisting
of 1.6 million edges as the test network to assess whether the tool is able to handle large
networks.

Network Workbench Tool

http://nwb.slis.indiana.edu/

The Network Workbench Tool is an open source project led by researchers from Indiana
University and Northeastern University funded by cyberinfrastructure for network science
center. It is network analysis software with graphical user interface(GUI) and it runs on
most common desktop operating systems and supports a variety of network file formats.

This software provides a range of graph pre-processors, for example, extract nodes above
or below certain criteria; remove self loops; delete high degree nodes – allowing one to
trim the network before applying any algorithm. It computes most network properties
by a single click and there are many pre-programmed algorithms ready to be applied to
networks including PageRank, Hits, clustering coefficient, degree distribution and shortest
path distribution. It also provides a GUESS module for graph visualisation.

It successfully loaded the test network and performed the analysis, but it was unstable
when processing large networks.

This is the main tool that we used to analyse our networks.
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Figure 2.2: GUI Interface of the tool with network visualisation

NodeXL

http://nodexl.codeplex.com/

NodeXL is a Microsoft Excel 2007 plug-in that enables the Excel to manipulate and analyse
networks.

By leveraging the existing Excel interface and spreadsheet functions it means that it is easy
and quick to start working. It does not load any established network file format, instead
it recognises the vertex pair as an edge in the network. A few network pre-processing
algorithms are available, for example, to convert duplicated edges into edge weight; extract
vertices from edge list. Many other pre-processing operations can also be achieved using
spreadsheet formulas. The calculation of basic network properties, the graph visualisation
and the chart generation are also supported.

However, the network size this plug-in can handle is limited. Excel permits a maximum
1,048,576 rows in a workbook, hence any graph can have a maximum of that number of
edges, which is below our test network size. Availability of this package is also limited as
this plug-in only works for Excel 2007.
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GUI OS Loads
Large
Network

Visualisation Extensible

NWB 3 All 3 3 3

NodeXL 3 Windows 7 3 7

SN Visualiser 3 All 7 3 7

SONIVIS 3 Windows
Linux

7 3 7

Pajek 3 Windows 7 3 7

UCINET 3 Windows 7 3 7

Gephi 3 All 7 3 3

prefuse 7 All N/A 3 3

JUNG 7 All N/A 3 3

NetworkX 7 All N/A 3 3

SNAP 7 All N/A 3 3

igraph 7 All N/A 3 3

Table 2.1: Network Tools Comparison

Social Networks Visualizer

http://socnetv.sourceforge.net/

Social Networks Visualizer is an analysis and visualisation tool for social networks. It
supports many graph file formats including Graphml, which we use heavily. One feature of
this software is that it has an integrated web crawler to enable quick web graph analysis.

But Social Networks Visualizer doesn’t provide a way to manipulate graphs and it treats
any graph as directed, which limits its usage. It does not have a flexible graph visualiser
and it failed our large network test.

SONIVIS

http://www.sonivis.org/

This is an open source project which aims to create network analysis and network mining
software. Its graphical user interface is based on Eclipse. Like many other tools, it is
able to calculate many graph attributes and supports graph visualisation. Unfortunately,
it is still in development (as of July 2010), and it currently only supports direct database
connection to import network data. Therefore we have no way to import our test data.
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Figure 2.3: NodeXL plug-in for Microsoft Excel 2007

Gephi

http://gephi.org/

Gehpi is an interactive network visualisation and exploration tool. Apart from general
graph property calculations, its main feature is direct visual graph manipulation. It allows
one to interactively select nodes from the visualisation and perform actions. For example,
it can select some nodes and combine them into one; change the colour of nodes; draw
new nodes to the graph; connect nodes together and rank nodes by colouring them. This
software can be very useful when constructing visualisations, but direct graph manipulation
requires high-end hardware and is sometimes unstable. It fails to load our test network.

NetworkX

http://networkx.lanl.gov/

This is a Python extension package for network analysis. It enables the Python program-
ming language to load, construct, analyse and visualise networks. Many popular graph
analysis functions are provided. This package is a library extension, therefore requires
writing Python programs. It is suitable for specific analyses that need to use custom
algorithms that are not provided by any other graphical tools.
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SNAP

http://snap.stanford.edu/

SNAP is a general purpose network analysis and graph mining library. Like NetworkX, it
provides a set of libraries to enable network analysis. It is implemented in C++, therefore
would be more efficient than those implemented in a higher level language. Again, it is a
programming language extension which requires writing code.

igraph

http://igraph.sourceforge.net/

igraph is yet another programming language extension providing functions that specifically
help network analysis. It is programmed in C, with many high level program language
interfaces available, including R, Python and Ruby.

2.4.1 Summary

There are two classes of software package in this review. One class is the graphical user
interface applications that can load and analyse networks interactively. The best two in this
class are the Network Workbench Tool and the NodeXL plug-in for Excel. Both provide
standard algorithms to apply to the networks and are capable of visualising networks.
Compared to the others, their advantages are the ability to load large networks and perform
calculations on those networks in a reasonable time.

The other class is the programming extension libraries that implement standard graph
manipulation and analysis algorithms. These include NetworkX, SNAP and igraph. The
benefit of doing network analysis at a programming level is that there is no limitation
on what one can or cannot do, and it would be no problem to handle large networks.
However, the drawback is also clear: it takes time getting started both in terms of learning
the language and writing standard analysis functions. It is always beneficial to keep in
mind that there is this set of lower-level tools that can become useful when the graphical
tools are unable to perform certain desired tasks.



Chapter 3

Graph-Structure Based Author
Rankings

3.1 Ranking authors

The PageRank algorithm is an established ranking method used by a successful search
engine to rank web pages. The key idea of the PageRank algorithm is instead of ranking
pages by the frequency of re-occurring words on a particular web page, it examines link
structures of web pages. It ranks a page highly if there are many highly ranked pages
linking to it.

The PageRank algorithm can only be applied to directed and unweighed networks. In order
to apply it to a undirected graph, Mihalcea[36] suggested a way of converting undirected
graph into directed graph by treating each edge as one in-edge and out-edge. Ding [17]
applied the PageRank algorithm on the co-citation network to rank authors and they found
to be co-cited with an important author boosts the rankings. We apply the algorithm on
the co-authorship network in this report.

There are other ways to rank authors by, for example, rank using the h-index[28], the
citation count, the collaboration count and betweenness centrality. Since we are trying
to rank authors using institutional database, the h-index, the citation count would be
incomplete. We used the collaboration count and the betweenness centrality.

Collaboration Count Collaboration count is also called degree centrality. The degree
centrality of a node is the number of edges the node has. In a co-authorship network, degree
centrality of an author is the size of his collaboration. An author who has co-authored
papers with 100 authors would have a bigger collaboration circle than, for example an
author who only co-authored with 5 authors. Therefore, the degree centrality ranking can
be interpreted as the popularity of an author.

18
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Figure 3.1: The ranking of top ECS authors. Used three algorithms: PageRank, degree centrality and
betweenness centrality. The authors are ordered by PageRank.

Betweenness Ranking Betweenness of a node within a network is the number of times
this node sits on the shortest path of other two nodes. An author with high betweenness
in a co-authorship network means that he is in the centre of information flow for the
network. Therefore the betweenness ranking reveals information controller within that
network. The higher the author’s rank, the more important that author is in passing the
information across the network.

We have ranked all the authors who have published papers between 1965 and 2009 within
the School of Electronic and computer Science (ECS) in the University of Southampton.
Here we compare the three ranking methods – PageRank, degree centrality and betweenness
centrality (Figure 3.1).

The chart shows the authors in PageRank order, hence the straight blue line. The red
and the green straight lines are the trend lines of the degree and betweenness rankings.
All the three ranking methods show an increasing trend. However, degree centrality and
betweenness centrality show disagreement for a few authors in their rankings. While Hugh
Davis is 12th in degree ranking, he is only 53rd in betweenness ranking; while Stephan
Weiss is 14th in betweenness ranking, he is 54th in degree ranking. Interestingly, in these
two particular cases, the PageRank gives one vote each – in formal one, PageRank is in
agreement with degree ranking, given 12th to Huge Davis; but in latter, PageRank agrees
with betweenness ranking, gives 18 to Stephan Weiss.
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Figure 3.2: Visualisation of ECS co-authorship network. Highly ranked authors are labelled. Two research
groups are marked with different node symbol to demonstrate the key positions of these highly collaborative
authors in the network

3.1.1 Ranking and Roles

In the top 20 PageRanked authors, 16 of them are professors; 8 (out of 11) heads of research
group are presented; 1 Deputy Head of research is also in the list. All these facts show
high correlation between the role and the ranking of a researcher. One explanation could
be the head of a research group have the opportunity to sign every single paper that the
group produces, making them appear to be highly collaborative and hence ranked high.

Figure 3.2 is a visualisation of the collaborations between ECS researchers with top ranked
people labelled. On one hand, we could see that these highly PageRanked authors have
direct links to almost all members in his group, making them the centre for their group; on
the other hand, they hold the ‘bridge’ position, which they are the only path or shortest
path to connect to the outside world, controlling the information flow.

Figure 3.3 shows the heads of ECS research groups arranged at the bottom of the graph, the
edges cut off at the top of the graph connects mostly to their group members. Interestingly,
although each of them has many connections from their own research group as shown from
the dense edges towards the top, they do not have close collaborations. Only three of them
have a closed triangle, and one of them is even disconnected from the others.
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Figure 3.3: Collaborations between Head of research groups is very sparse. All the edges cut off at the
top of the graph connects mostly to their group members.

3.2 Discussion

In section 3.1, we described the results of ranking using three different methods – PageR-
ank, degree centrality and betweenness centrality. While three ranking methods show
consistency in ordering the authors, they show significant variance at individual levels.

Degree ranking works well on those highly collaborative authors who have many collabora-
tors, but is seriously flawed when it ranks less collaborative author – it is unable to order
authors with same number of collaborations. Both PageRank and betweenness rank do not
have this problem.

All three rankings are inversely proportional to the number of articles one has published –
the more paper an author has, the higher his ranking is. However, it is not the only factor.
Lajos Hanzo had published 1003 papers ranked 2 in PageRank, behind Bashir Al-Hashimi
who only published 254 papers. If we look at the Lajos’s collaboration circle, he has only
worked with 72 authors out of his 1003 publications, while Bashir Al-Hashimi has 63 unique
co-authors out of 254.

As we have shown in section 3.1.1, in the top 20 authors ranked by PageRank, 8 of them
are head of group for the research groups in ECS. This may indicates two situations, first,
an ordinary researcher have worked hard, collaborated with many other researchers and
published many papers, and as a result, he has got promoted to be the head of the research
group.

The other situation could be: The head of group is an ordinary researcher with a similar
amount of publications as other members in the group. Since he became the head of
the group, many collaboration opportunities arise. As a result, he collaborated more and
published more papers. It would be really interesting to carry out analysis to find out
which situation applies in each individual case.



Chapter 4

University Collaboration Analysis

As the research projects becoming more open and collaborative, researchers from different
universities form groups and produce publications together. If we relate these publications
directly to the universities which participated in these collaborations, we could create a
university collaboration network.

4.1 General Network attributes

A university collaboration network is created using the publication metadata collected from
ACM, which contains 62280 publications between year 1952 and 2010. Figure 4.1 is a visu-
alisation with only the world class universities and top UK universities shown. The edges
between the universities are weighted, the thickness represents the amount of collabora-
tions happened between them. This network consists of 1807 universities, institutes and
companies. The graph analysis show a tight collaboration between them – the network
diameter is 4, the average path length is 2.37 and the entire network is connected with no
isolated islands.

From the degree distribution (Figure 4.2), we can see that many affiliations have little
collaborations (scattered dots on the right), while most of the collaborations happen in
relatively few affiliations. This distribution pattern appears to be follow power-law. How-
ever, as shown in figure 4.3, the distribution plotted on a logarithmic scale do now follow
a straight line, therefore it is not a power-low distribution. Instead, from the shape of the
curve, this distribution shows a bias towards giving more edges to even fewer nodes. What
this means is a significant amount of collaborations only happen between very few affil-
iations; while the remaining affiliations almost don’t have collaborations. If we consider
the collaborations as the resource or assets available to an affiliation, then this dataset
shows that 80% of the resource goes to only 25.7% of the affiliations. Figure 4.4 is the
visualisation of the collaboration distribution.
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Figure 4.1: University collaboration graph

4.2 University Collaboration Pattern

The previous session shows university collaborations from a quantitative perspective. In
this session, we investigate the collaboration patterns only for selected universities.

Due to the data availability, we study the University of Oxford (2010 UK computer science
rank 2) and the Cardiff University (2010 UK rank 24) here.

All the affiliations are categorised into 5 groups: The top ten UK universities, the lower
ranking UK universities, the top ten world universities (excluding UK), the lower rank-
ing world universities (excluding UK) and non-university. Figure 4.5 and Table 4.1 show
the collaboration distribution of these categories for Oxford university and Cardiff uni-
versity. There are three noticeable differences between the two, first, Oxford has almost
equal amount of collaborations with UK top ten and with lower ranking UK universities.
This gives significantly more average collaborations with the top ten universities (59 col-
laborations per affiliation) than with the lower ranking universities (13 collaborations per
affiliation) in the UK. This gives evidence that Oxford emphasise collaborations with top
UK Universities. On the other hand, Cardiff have 5 times more percentage collaboration
with UK lower ranking universities than UK top ten universities, showing no emphasis in
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Figure 4.2: Affiliation’s collaboration distribution. The most of the affiliations have very few or no collabo-
rations (The dots towards right of the graph), while very few affiliations have most of the collaborations.(The
dense dots towards left)

collaborating with high ranking UK universities. On average, Cardiff has collaborated 10
times with top ten UK universities over this period, which is less than with lower ranking
UK universities’ 14 times.

The second one is the collaboration with world top ten ranking universities. Again, Oxford
heavily collaborated with them, producing average collaboration per affiliation of 20; while
Cardiff do not show any strong collaboration, with average collaboration just reaching 8
over the same period.

The last difference is that Oxford University has nearly three times more total collabo-
rations than Cardiff University. Within those collaborations, Oxford has twice as many
collaborated affiliations than Cardiff.

From these evidences, if we consider Oxford University as a top university, which has many
first-class researchers and many funding sources to carry out leading research work; and
consider Cardiff University as a lower ranked university with less resources available to it,
we can conclude the following:

1. Top universities work closely with top universities – both domestic and world leading
universities.

2. Lower ranked university work more frequently with lower ranked universities.

The most interesting observation is that the research quality of a university is not com-
pletely defined by itself – how good the researchers are, how well they are equipped – but
the universities that it closely works with define it.

These two findings lead to new questions: Do top universities intentionally choose top
universities to collaborate with? What are the incentives and constrains that may attach
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Figure 4.3: Affiliation’s collaboration distribution on logarithmic scale. Same data as figure 4.2, but
plotted on logarithmic scale and reversed the axis

to individuals within the university when they are choosing who to collaborate with? Are
the lower ranked universities willing to collaborate with top universities?

Since similar universities work more closely than others, it should be possible to visualise
the split between the universities.
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Figure 4.4: Degree distribution among the affiliations. The blue bars represent the number of collabora-
tions, the red bars represents number of universities sharing the amount of collaborations(blue bars) next
to the red bars. Towards the right of the diagram, there are high blue bars and low red bars indicating
that a lot of collaborations only happen between very few affiliations; towards the left of the diagram, there
are high red bars and low blue bars indicating that very few collaborations happen between most of the
affiliations.

Figure 4.5: Collaboration distribution for University of Oxford (left), and Cardiff University (right)
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University of Oxford Coll. Coll.Perc. Affs. Avg. Coll. per Aff.

Coll. with non-Univ. 556 17% 57 9.75
Coll. with World top ten Univ. 178 6% 9 19.78
Coll. with World lower Univ. 1591 49% 275 5.78
Coll. with UK top ten Univ. 410 13% 7 58.57
Coll. with UK lower Univ. 499 15% 37 13.49
Total 3234 100% 385 8.40

Cardiff University Coll. Perc. Affs. Avg. Coll. per Aff.

Coll. with non-Univ. 146 13% 21 6.95
Coll. with World top ten Univ. 42 4% 5 8.40
Coll. with World lower Univ. 449 41% 97 4.63
Coll. with UK top ten Univ. 75 7% 7 10.71
Coll. with UK lower Univ. 383 35% 26 14.73
Total 1095 100% 156 7.02

Table 4.1: Collaboration break down for Oxford and Cardiff universities. Collaboration (Coll.) is the
number of author level collaboration between the affiliations. Collaboration percentage (Coll.Perc.) is the
percentage of this collaboration over total number of collaborations; Affiliations is the number of affiliations
it has collaborated with; Average collaboration per affiliation (Avg. Coll. per Aff) collaboration divide by
affiliations



Chapter 5

Conclusion & Future Work

This report started by reviewing relevant aspects of social network analysis from different
domain perspectives. The mathematicians and physicists’ primarily concern is to develop
models for networks. They tried to explain observations and properties of various networks
from the topological property of the network. Three categories of models were mostly used
in studying real life networks – random network models, scale-free network models and
small-world network models. The social scientists are more concerned with the relations
between people within a social network. The study of the tie strength is an attempt to
model the closeness of people’s relationship. When social scientists collect data for studies,
not only the relational data that connects each person is collected, but also the attribute
data that describes the individual is also recorded. With these extra data, they would be
able to give more in-depth explanation to an observation.

The second part of the literature review focused on the network studies that were based on
the publication data. Publication data is particularly interesting because it is well defined
and it can form different types of networks depending on what part of the information was
used. The typical three networks which can be constructed using publication data are

• Citation networks

• Co-citation networks

• Co-authorship networks

Citation networks are knowledge networks. Previous citation network studies revealed the
structure of knowledge and citing behaviour of researchers. Co-citation networks can be
modelled as networks of papers or networks of authors. Analyses enables us to understand
the similarities in publications. Co-authorship networks are social network with the as-
sumption that people collaborate to become co-authors. Analyses on these networks reveal
the collaboration structure of the scientific community and the publishing patterns across
various domains. In addition, co-authorship networks also provide a platform for studying
network dynamics.
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The last part of the literature review evaluated network analysis tools. The Network
Workbench Tool and the NodeXL plug-in were the best because of their ability to handle
large networks and they provide a large library of algorithms. Programming extension
libraries were also considered and compared in the evaluation. Due to the extra effort
involved in writing programs to perform specific analysis, these will only be used if the
graphical user interface tool is unable to handle the network.

Chapters 3 and 4 demonstrated two experiments done using publication data. Chapter 3
analysed the author ranking of ECS researchers. Three ranking methods were adopted –
PageRank, Collaboration Count Ranking and Betweenness Ranking. The three rankings
show consistency in the broad sense, demonstrating correlation between high ranking with
high citation, high betweenness and high PageRank. However, they vary significantly at
the individual level.

Chapter 4 studied university level collaboration using the publication data. General uni-
versity collaboration-network analysis shows that the network is tightly connected with a
small diameter and small average path length. However, the collaboration distribution is
biased towards higher ranking universities which collaborate more with other higher rank-
ing universities. Therefore, we could determine whether a university is highly ranked or
not by looking at its composition of collaborators.

Emerging research questions

• As discussed in section 3.2, the head of each research group ranked highly in various
ranking methods and were very collaborative. There are two possibilities: one is their
role resulted their high ranking; the other is their collaborative research work resulted
in them being appointed to the position. It would be really interesting to carry out
analysis to find out which situation is applicable for each individual case. One possible
method is to collect as much publications as possible for each person, and group their
publications into two sets: before head of group and after head of group. It is possible
to reveal the answer by analysing and comparing the collaboration metrics of these
two sets.

• In section 4.2 we discussed university collaboration patterns. However, to confirm the
patterns presented, more university data is needed. The plan is to extract publication
data from the ACM website for universities ranked both high and low in 2010 com-
puter science ranking(Table B.1). The complete ranking can be found in appendix
A.

• We concluded that universities of similar ranking collaborate more often, therefore it
is possible to visualise the clustering between similar universities.

• Based on the assumptions that universities collaborate with one particular class of
universities more often than others, we raise a research question: what are the fun-
damental incentives that a researcher in a university would use to choose a particu-
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lar researcher in another university that shaped the current university collaboration
graph?

• Another direction that my research could develop is to investigate metrics that ranks
the conferences or workshops. Unlike journals and universities, for which researchers
have developed many ranking methods and metrics, the ranking of conferences or
workshops continues to use expert voting. For example, the well recognised and widely
used conference ranking from the Australian Research Council(ARC)[2] is performed
by deans and experts from the Australian Research and Education Association. The
problem is that only the conferences that are known to the voters are ranked fairly, so
not many conferences are on the ARC ranking list due to the manual process. Many
factors can affect the quality of the conference, an important one that determines
the grade of a conference – if voting by experts is given a convincing ranking – is
how many experts are attending or have attended. However, to determine experts
in any field is a controversial problem, so we propose to use the university ranking
as a metric. Therefore, the assumption is that a highly ranked conference should be
attended by many highly ranked universities, while lower grade conferences have few
delegate from highly ranked universities. The data for past conferences, published
papers and author affiliations can be collected from the ACM website. The resulting
ranking can be compared and evaluated with the ARC ranking.
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Appendix A

List of Universities

This is the list of universities that we aim to collect all their publications that exist in the
ACM database. These universities are chosen based on their UK 2010 Computer Science
Rankings and the data availability from ACM. Four frequently collaborated world leading
universities are also included.

• Aston University

• Cardiff University

• Harvard University

• Heriot-Watt University

• Imperial College London

• King’s College London

• Lancaster University

• Massachusetts Institute of Technology

• Queen Mary University of London

• Royal Holloway University of London

• Stanford University

• University College London

• University of Bath

• University of Bristol

• University of Cambridge
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• University of Durham

• University of Edinburgh

• University of Glasgow

• University of Liverpool

• University of Manchester

• University of Maryland

• University of Nottingham

• University of Oxford

• University of Southampton

• University of Surrey

• University of Warwick

• University of Westminster

• University of York



Appendix B

UK University Computer Science
2010 Ranking (Times Online)

Ranking University Research Entry Req. Survey Prospects Total
1 Cambridge 4.6 591 82% 93% 100
2 Oxford 4 510 88% 96
3 Imperial College 4.1 467 82% 97% 95.4
4 Southampton 4.1 405 84% 82% 90.8
5 Glasgow 3.8 369 85% 85% 90
6 Edinburgh 4.1 441 78% 86% 89.9
7 St Andrews 2.8 443 89% 88.1
8 Royal Holloway 3.2 292 87% 89% 87.4
9 Warwick 2.9 464 83% 78% 87.1
10 York 3.5 430 76% 89% 86.8
11 Bath 3.5 412 79% 79% 85.5
=11 Bristol 3.6 448 74% 84% 85.5
13 Loughborough 2.6 316 87% 85% 85.3
14 University College London 4 404 75% 81% 85.2
15 Newcastle 3.2 325 84% 81% 85
16 Leeds 3.6 345 79% 80% 84
17 Strathclyde 2.5 381 82% 83% 83.9
18 Aberdeen 3.2 341 78% 86% 83.5
19 Birmingham 3.7 372 79% 73% 83.4
20 Surrey 2.2 350 81% 91% 83.3
21 Sheffield 2.9 367 74% 90% 82.5
22 Manchester 3.9 356 72% 80% 82
23 Dundee 2.9 360 84% 67% 81.9
24 Cardiff 3.2 325 77% 81% 81.4
25 East Anglia 3.1 299 83% 73% 81
26 Lancaster 3.6 319 78% 72% 80.9
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27 Bangor 2.5 267 93% 80.6
=27 Durham 3.1 409 67% 90% 80.6
29 Exeter 2.8 318 80% 78% 80.4
30 Nottingham 3.8 310 74% 78% 80.3
31 Essex 2.9 308 81% 72% 79.8
=31 King’s College London 2.8 350 75% 81% 79.8
33 Leicester 3.1 278 79% 78% 79.5
34 Heriot-Watt 2.7 347 81% 69% 79.4
35 Kent 2.9 305 75% 82% 78.8
36 Swansea 3.4 309 74% 76% 78.6
37 Liverpool 3.7 321 76% 62% 77.6
38 Sussex 3.2 340 72% 74% 77.4
39 Aberystwyth 3.4 241 80% 67% 77.2
40 Queen’s Belfast 2.7 325 71% 82% 77
41 Reading 1.6 332 78% 79% 76.4
42 Hull 1.8 249 81% 80% 75.8
43 Robert Gordon 2 298 81% 75.5
44 Glyndr 1.9 82% 75.1
45 Plymouth 3.5 207 75% 65% 73.7
46 Aston 2 320 74% 72% 73.5
47 Queen Mary, London 3.5 276 67% 69% 72.5
48 Bournemouth 1.8 241 73% 83% 72.3
49 West of England 2.2 252 72% 77% 71.9
=49 Brighton 2.6 246 70% 75% 71.9
=49 Brunel 2.7 302 72% 64% 71.9
52 City 2.6 223 68% 80% 71.1
=52 Ulster 2.4 230 76% 64% 71.1
54 Oxford Brookes 2.5 206 72% 76% 71
55 Stirling 2 261 70% 70.5
56 De Montfort 2.2 187 78% 65% 70.3
57 Greenwich 1.1 169 88% 61% 70.1
58 Portsmouth 1.4 242 74% 71% 68.9
59 Keele 262 81% 73% 68.6
60 Glamorgan 1.8 256 76% 58% 68.3
=60 Teesside 2.4 281 73% 54% 68.3
62 Central Lancashire 213 80% 78% 67.9
=62 Edinburgh Napier 1.4 265 69% 67.9
64 Nottingham Trent 1.5 217 68% 82% 67.7
=64 Glasgow Caledonian 1 300 78% 55% 67.7
66 Salford 2.7 179 72% 63% 67.6
67 Liverpool John Moores 2.2 195 69% 72% 67.4
=67 Hertfordshire 2.5 191 72% 63% 67.4
69 Northumbria 238 81% 68% 67
70 Staffordshire 1.4 207 72% 73% 66.6
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71 Coventry 1.6 280 60% 66.4
72 Goldsmiths College 2.9 219 67% 59% 66.2
73 Lincoln 2.5 243 71% 51% 65.7
=73 Manchester Metropolitan 1.7 222 71% 64% 65.7
75 Newman 156 86% 65.3
76 Huddersfield 1.5 246 70% 63% 65.2
77 Kingston 1.7 198 72% 62% 64.9
=77 Cumbria 277 74% 70% 64.9
79 Sheffield Hallam 1.3 223 68% 66% 63.4
=79 Chester 244 73% 70% 63.4
81 Chichester 272 65% 63.1
82 Bedfordshire 1.4 148 74% 60% 63
83 Abertay 314 56% 62
84 Bradford 2 229 63% 61% 61.9
=84 Gloucestershire 179 75% 69% 61.9
86 Middlesex 1.9 144 67% 57% 60.4
=86 Derby 234 68% 70% 60.4
88 Sunderland 1.3 191 69% 55% 59.9
89 Wolverhampton 172 77% 56% 59.7
90 Worcester 178 72% 67% 59.6
91 Anglia Ruskin 240 71% 59% 59.2
92 Northampton 202 71% 61% 58.9
93 London South Bank 1.6 125 76% 38% 58.6
94 Edge Hill 228 67% 63% 58
95 East London 171 71% 62% 57.8
=95 Westminster 1.5 161 68% 50% 57.8
97 UWIC, Cardiff 184 61% 57.4
98 Canterbury Christ Church 150 74% 57% 57.3
99 Southampton Solent 173 70% 61% 57
100 Roehampton 155 73% 55% 56.8
=100 Buckinghamshire New 167 72% 55% 56.8
102 Leeds Metropolitan 207 64% 56% 53.8
=102 Newport 210 62% 58% 53.8
104 Birmingham City 211 67% 47% 53.5
105 Thames Valley 0.9 51% 53

Table B.1: UK University Computer Science 2010 Ranking (Data source: Times Online)


