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Abstract— With the rise of social networking, and other sites
which collect vast amounts of user data, the issue of user
privacy has never been more important. When creating user
profiles care must be taken to avoid collecting sensitive infor-
mation, while ensuring that these profiles are fit for purpose.
In this paper we present a specific instance of the privacy-
preserving profiling problem in an expert-finding application.
We present a dataset of profiles, as well as several datasets
for contaminating these profiles, and provide experiments to
test data quality and privacy-preserving performance. We
present a simple solution based on training an LSA model
on a clean profile corpus, which maintains performance and
provides a moderate level of privacy.
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1. Introduction

People spend an increasing amount of their time using
social networking sites. In building and maintaining so-
cial networking profiles, users provide large amounts of
information to these sites. Of course these users expect
something in return; providing this information may help to
find new friends or business contacts, and strengthen existing
relationships, while the social networking provider gains
access to profiles which it can use to provide personalized
advertisements.

There have been a number of cases of privacy being
compromised or potentially compromised by user profiling.
Facebook have been criticized for their use of profiling in
providing personalized adverts, which may allow advertisers
and others to discover the sexual orientation of users[1]. Pri-
vacy concerns also led to the second Netflix recommendation
prize being cancelled, and the dataset for the first prize being
made unavailable for download[2].

While the user shares information about their interests and
contacts, they may unwittingly disclose private information
about themselves. Relying on a user to ensure their own
privacy is an unacceptable solution, both because it places
an additional burden on the user, and because the user may
not be the best judge of what information about themselves
should be made available. They may also be broadcasting
their details more widely than they realise; privacy settings
may be set incorrectly, and third-party applications may col-
lect data from profiles without users’ knowledge or consent.

In this paper we will introduce the problem of privacy-
preserving profiling. We will look at the specific problem
of generating profiles within the Instant Knowledge project.
We will describe a series of experiments to determine the
preservation of privacy, and use these experiments to evaluate
our early attempts to solve this problem.

2. Instant Knowledge

The Instant Knowledge (IK) project aims to provide as
solution to the problem of finding experts within an organi-
zation. It can be difficult to keep track of expertise within
an organization, which can limit collaboration, or make it
difficult to find the appropriate people to work on a new
project. In academia researchers often find out too late that
somebody was working on a similar problem in the same
department, with each unaware of the other’s work.

The IK system is a keyword-based information system
utilizing a client-server architecture. Users’ personal devices
collect context information, and generate queries based on
user activity. Keywords relating to an area of expertise are
sent to the server which returns a ranked list of experts. In
this paper we will focus on the generation of profiles, and
ignore more complex aspects of the system such as context
awareness, distributed algorithms, and query augmentation.

The IK system requires accurate, up-to-date profiles of
expert interests in order to provide the best responses to user
queries. The simplest method of generating these profiles
would be for the experts to enter free-text describing their
professional interests. This may, however, lead to profiles
which are poorly maintained as the user loses interest in the
task.

The next step would be for users to manually provide doc-
uments which they feel represent their interests, for example
technical reports or academic publications. This approach is
not without its problems, as it still requires user effort. Even
if documents are added automatically, for example if they
are added to a publication repository, if these documents are
added infrequently, they might not fully represent a user’s
interests. Certain approaches to a problem may not lead to a
publication but may nonetheless help enrich a user’s profile.

Instead we favour a fully automatic approach, building a
profile from all the documents authored or collected by a user,
as well as other sources of information, such as email, web
browsing activity, and social networking. By including these



additional sources of information we hope to build profiles
which are more accurate and up-to-date than those produced
manually.

This approach does, however, present some challenges;
some of the information collected will be irrelevant or private.
In the case of irrelevant data, recommendation performance
may be reduced, in the case of private information disclosure
may have serious negative consequences.

3. Privacy

Profiles within the IK system are assumed to be private
in the sense that their exact contents is only known to the
user they belong to and the system itself. In this paper we
will assume that there are no third parties who can peek at
the profile, or observe it in transit from the expert to the IK
server. The user profile is however assumed to be accessible,
either publicly or within an organization, through the profile
recommendation system.

The main attack vector we consider is profile reconstruc-
tion through repeated queries. By making a series of carefully
constructed queries it may be possible to infer the presence
and weights of certain terms and concepts within a profile, by
observing how highly a given user is ranked for these queries.
The construction of such an attack will not be addressed in
this paper.

While a notion of privacy in data mining and user pro-
filing can have a number of different interpretations, from
anonymity to an uncertainty in the particular values of an
attribute, we consider profiles to be made up of public and
private information, and it is our job to remove the private
information while leaving the public information intact. This
is in contrast to some applications where the whole profile
is assumed to be private; the need to recommend specific,
named users is incompatible with absolute privacy.

We aim to conceal two main types of private information
within a profile: passwords, bank account details, usernames,
and other private tokens; interests which would be embar-
rassing, controversial, or would cause some harm to the
user should they be disclosed. We are also interested in
removing irrelevant information from a profile, for example
non-professional interests such as musical tastes, or hobbies.

4. Privacy-Preserving Profiling

Our goals in automatic privacy-preserving profiling are the
production of an useful user profile, and the preservation of
user privacy. These goals are to some extent at opposition
with each other: as we remove private information we will
remove useful profile which will reduce performance; as
more information is retained in a profile the greater the risk
of disclosing sensitive information will be.

Our task is made harder as our privacy-preserving tech-
niques must operate without user input. It would be much
simpler to train a classifier to identify public and private doc-
uments by using user labelled documents, building a model

for each user. We could consider building a global model
using a profile corpus and examples of private information.

The problem here is that what each user considers private
may vary considerably. It could be argued that there are
subjects that most users would consider private for example
sexual preferences and habits, political affiliation, or health
concerns. For some users, however, these controversial topics
may be their main area of expertise, so we cannot filter them
outright.

Determining the nature of information without help from
the owner of that information requires us to rely on patterns
in the data itself, and the overall properties of public and
private data in general. It is difficult and may be impossible
to build a privacy-preserving profile by analysing an expert’s
documents in vacuo.

5. Methodology

As our focus is on the automatic production of profiles
and their privacy preserving attributes we have implemented
a very simple information retrieval system.

The documents belonging to a user are converted into
a bag-of-words representation, removing structure, turning
them into an unordered collection of words. Commonly
words with little discriminative power, called stop words, are
removed. We use the list provided by Fox in [3]. Finally
words are reduced to their root form using a stemming
algorithm, for example ‘computer’ and ‘computation’ may be
reduced to the stem ‘comput’. Finally these processed words
are counted to produce a term frequency representation of
the original document. While this processing removes some
information from the documents and may result in reduced
performance, it should also remove private information.

We could produce profiles by adding together term fre-
quency representations of their constituent documents, how-
ever this could lead to larger documents dominating the
profile. Instead we normalize these document representations
by their length before adding them together,
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where TW,, ; is the weight of term ¢ in profile p, D), is the set
of documents that profile p contains, TF; ; is the frequency
of term ¢ in document j, and N; is the size of document j.

We then use a vector-space model (VSM)[4], treating each
profile as a multidimensional vector, where each dimension
corresponds to the weight of a particular term in the profile.
We apply a weighting scheme to the raw frequency based
weights called TF-IDF, here the term frequency weight is
normalized by the profile length, and multiplied by the
inverse document frequency (IDF), giving a higher weighting
to terms which occur in fewer documents. The TF-IDF



weighting equations are given below,
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where t f; ; is the term frequency of term ¢ in document 7, n; ;
is the number of times term 4 occurs in document j, idf; is
the inverse document frequency of term ¢, D is the collection
of documents, and ¢ fidf; ; is the TF-IDF weighting of term
1 in document j.

The process described so far will produce vectors which
may have many thousands of dimensions. Differences in the
terms used means that documents which concern similar
topics may have few terms in common. In addition high-
dimensional vectors require more resources to manipulate
and compare. To solve these problems we apply a dimen-
sionality reduction technique to our profile vectors.

Latent Semantic Analysis (LSA), or Latent Semantic In-
dexing (LSI) is a technique for taking document vectors
and projecting them into a lower dimensional space[S]. As
well as reducing the dimensions, LSA has the advantage
of projecting the term vectors into a concept space, where
concepts are represented rather than specific terms. This
means that terms with similar meanings are close in this
space, where in term space there would be no match.

LSA is implemented using a singular value decomposition
(SVD) of the profile matrix. The details of this process are
beyond the scope of this paper, but essentially the matrix is
factorized into a form capturing the directions of maximal
variance in the data,
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where U and V' are matrices corresponding to rows (terms)
and columns (profiles) in the matrix respectively, and .S con-
tains the singular values. By retaining only the top singular
values it is possible to reduce the dimensionality of the
matrix. This also has the effect of removing noise in the
matrix at the expense of fine detail.

To compare profiles and queries we must first project them
into concept space,
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where D is the document, and D is its concept-space repre-
sentation. We compare vectors by using the cosine similarity
which gives a value between O and 1 indicating the degree
to which two vectors point in the same direction,
L A-B
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To recommend a profile given a query, we simply order
profiles in descending order of their similarity to the query
vector.

While these simple techniques may lead to useful in-
formation being removed from profiles, such as the con-
text of words in a bag-of-words model, or the same word
being used with a different meaning being ignored by an
LSA model, their simplicity makes analysis of the privacy-
preserving aspects easier. Removing structural information
from documents should also lead to an increase in privacy.

5.1 Privacy Preservation

The projection of data onto a lower dimensional concept
space provides some blurring of information, and innocuous
documents and terms will share some similarity with private
documents and terms. This provides some measure of plau-
sible deniability, at the expense of loss of fine detail. Some
evidence of private terms may remain.

We propose a method of privacy-preserving profiling using
a technique we have already described in this paper, Latent
Semantic Analysis. LSA works by finding a concept space
representing a collection of documents, whose dimensions
represent the directions of greatest variability in the collection
of documents.

Making the assumption that public information differs
significantly from private information, and using the fact that
the LSA projection depends on the corpus of documents that
was used to create it, we propose the simple technique of
using a corpus of public information to build a projection,
and then projecting all information into this concept space.

Our hypothesis is that as the public concept space has
been learned using public documents it will be less well
suited to representing private information. In this way private
information will be “projected out” of the profiles.

6. Related Work

While there has been quite a lot of research into privacy in
data mining in profiling generally, there has been surprisingly
little research into the problems described earlier in the paper.
That is profiles are usually treated as objects which are either
wholly private or public.

Reichling et al.[6] presented a similar approach to user
profiling for the purpose of finding experts, using an LSA
model to represent profiles. In their approach privacy is dealt
with manually: the user is responsible for selecting directories
which the system is allowed to search for documents.

Privacy preserving data mining (PPDM) is a growing area
of research which aims to ensure that data mining activities
can be conducted while safeguarding user privacy[7]. While
there are some overlaps with what we are doing, most
research in PPDM seems to deal with anonymity[8], hiding
precise values of data[9], and cryptographic methods.

While the problem may at first appear to be superficially
similar to the problem of spam filtering, except the aim
is to prevent information leaking out rather than being
received, there are some important differences. Firstly with
spam filtering it is possible to maintain a global model of



spam which can be used to filter incoming messages for
every user, this may then be tweaked by user feedback (e.g.
identifying misclassified messages), but large changes to the
global model seem unlikely. Secondly, instead of filtering
documents out completely, we may have documents which
contain a mixture of private and public information and it
would be ideal to have this public information added to the
profile.

7. Experiments

Bertino et al.[10] describe five criteria with which to
evaluate PPDM algorithms:

« Efficiency

o Scalability

o Data Quality

o Hiding Failure

o Privacy Level
Of these criteria the most applicable to our problem are data
quality and hiding failure.

Data quality describes the effect that the privacy preserving
process has on the original data. They suggest that this can
be tested by the change in data mining performance on the
when using the processed data versus the original dataset.
Hiding failure relates to the amount of private data that can
be recovered from the sanitized data.

In the following sections we will describe the experiments
we performed to test our techniques given these criteria.

7.1 Datasets

In order to test our hypothesis and carry out experiments in
user profiling we require both a source of user profiles, and of
private information with which to “poison” them. It would be
difficult and time consuming to obtain samples of real user
profile data, as well as real private information, so instead
we have created profiles from academic publications data
and obtained surrogate private information from a different
source.

The RKBExplorer website! which is part of the ReSIST
project at the University of Southampton provides a semantic
web database containing information from a number of insti-
tutions where authors of academic papers have self-archived
their publications in ePrints repositories. This dataset has
information on authors and their publications, including titles
and abstracts, but unfortunately not full document texts. We
have sampled this database to create a dataset with around
750 profiles and a total of around 14,000 documents. We
believe this is a good representation of a set of expert profiles.

We decided to create a dataset of “poison” documents
from another source; a collection of text files obtained from
BBS (Bulletin Board Systems), grouped broadly by topic.
Amongst these groups were collections of files categorized
as “Anarchy” and “Drugs”. We processed these documents

'www.RKBExplorer.com

in the same way as our profile data to create datasets with
around 1500 and 500 documents respectively.

7.2 Data Quality

For each experiment we first split our collection of aca-
demic publications randomly in two, holding back half the
data for the creation of a corpus and using the rest of the
data for training and testing.

We performed two experiments, the first was to determine
the appropriate number of dimensions to retain in our LSA
model. For this experiment we compared the performance
of the corpus derived LSA model, with one built using the
documents themselves, and another model built using the
documents filtered to remove terms which are not present
in the corpus. For the corpus derived model we looked at a
model built from individual documents, as well as one built
from profiles in this withheld data. At this stage no poison
is added to the documents.

We used ten fold cross-validation, using the withheld
documents as queries. Relevance is binary (i.e. a document
is relevant or not) and will be determined by authorship of
each query. This leads to very low scores, as many documents
only have a single author, and if this author is not at the top
of recommendation list then performance will be less than
perfect. Additionally some experts who are not authors of
the query document may nonetheless be relevant to it.

We use Mean Absolute Precision (MAP) to measure per-
formance, which is the Average Precision averaged over all
queries. The Average Precision is simply the precision of the
top-r results of a query averaged over each relevant result at
rank r. The equations are given below,

_ |{relevant retrieved documents <= rank r}|
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where R is the set of relevant documents, r is the rank, NV
is the number of relevant documents retrieved, and () is the
set of queries.

The results for our first experiment are shown in Figure 1.
From these results we decided to use a model rank of 500 for
good performance, but note that most of the performance is
retained down to a model rank of around 100. Additionally
we note that a corpus derived model LSA built on profiles
performs better than one built on individual documents.

The second experiment involved testing the effect of profile
poisoning on performance. For these experiments we used a
model size of 100 and 500. Increasing amounts of poison
was added to the documents. A poison level of 1 meaning
that the number of poison documents added to a profile was
equal to the number of documents already in the profile.
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Fig. 1: Experiment one.

7.3 Hiding Failure

Our privacy experiment is based on possible mining attacks
that could be used to extract information about experts from
the system. As attackers will not have direct access to profile
vectors it does not seem sensible to look at the change
in profile vectors with and without private projection, but
instead to look at what information can be obtained through
the query interface.

The scenario we consider is an attacker trying to find
experts with interest in topics which may be controversial,
embarrassing, or incriminating. We add poison to a certain
proportion of profiles and attempt to detect these profiles by
using a different set of poison documents as queries. In this
experiment we add four times as many poison documents
to each selected profile as the public documents that profile
contains.

For these experiments we follow a similar approach to
the performance experiments, except in this case success
will be judged by how poorly the system performed in the
experiment. Relevant profiles are all of the profiles which
have had poison added to them, regardless of the specific
documents used.

7.4 Results

Figure 2 shows the results for the data quality experiment
using the anarchy dataset with a model size of 100, and
Figure 3 shows the results of the same experiment with the
drugs dataset. Figure 4 shows the results for the data quality
experiment using the anarchy dataset with a model size of
100, and Figure 5 shows the results of the same experiment
with the drugs dataset.

The results of the data quality experiment are roughly the
same for both datasets. The quality of results degrades much
more slowly when the higher rank model is used, and the
corpus derived model performs the best on these tasks. It is
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interesting that simply removing words which are not in the
corpus does not help maintain performance levels. This is
probably because many of the important terms in the poison
documents are present in the corpus.

Figure 6 shows the results for the hiding failure experiment
using the anarchy dataset with a model size of 100, and
Figure 7 shows the results of the same experiment with the
drugs dataset. Figure 8 shows the results for the hiding failure
experiment using the anarchy dataset with a model size of
100, and Figure 9 shows the results of the same experiment
with the drugs dataset.

In each case the corpus derived model performs better
than the poisoned and filtered models, which reach a MAP
of almost 1 at certain points. While the corpus model does
provide some level of privacy protection, it is slight, and
much worse than the untainted profiles tested against the
same queries. A higher level of privacy is provided using
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a lower-dimensional model.

8. Conclusion

In this paper we presented a specific instance of a privacy-
preserving profiling problem relating to the Instant Knowl-
edge expert recommendation system. Our main goals are the
automatic generation of expert profiles, while preserving user
privacy with little or no user feedback.

We presented a set of datasets and experiments which can
be used to evaluate performance on this task. While our
simple initial solution to the problem failed to hide private
data adequately it significantly reduced the degradation of
performance caused by polluting a profile with poison data.

We believe that the model failed to preserve privacy
adequately as the LSA model was sufficient to represent most
of the public and private information. The private information
may be closer to public information than we had anticipated.
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While performance can be improved by reducing the rank of
the profile matrix approximation, this affects the performance
of the model on the data quality tasks.

8.1 Future Work

The simple privacy-preserving method we applied in this
paper was largely passive. The intention was to create a
model which was incapable of adequately representing the
private information, which would lead to such data being
filtered or reduced in magnitude.

Active filtering is more difficult without user feedback to
guide the classification of documents or terms in a profile. We
could, however, make better use of the profile corpus to train
a filtering model. While private information may be different
for each user, we should be able to make an educated guess
about what makes a coherent profile.

For example we might not expect papers on sexually-
transmitted infections to be present in the profile of a
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computer science researcher. While this researcher may have
coauthored a paper on STIs, it is unlikely. Using the corpus
we could calculate the probability of different interests co-
existing in the same profile and use this information to filter
out dubious interests.

The assumption of zero user input is perhaps too strong,
and a wider range of techniques could be applied even if
we have only a small number of labelled documents. We
would also like to look at the issue of updating profiles with
new documents, and how an existing profile can be used to
preserve privacy.
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