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Abstract— In this contribution, we analyze the asymptotic spectral-
efficiency (ASE) of multiuser MIMO-CDMA systems, when assuming com-
munications over flat fading channels with arbitrary spatial correlation.
Our analysis is built on the operator-valued free probability theory, which
is applied to obtain the limit distribution of the correlati on matrix’s eigen-
values, as the MIMO-CDMA systems’ size tends to infinity. The spectral-
efficiency (SE) performance of the MIMO-CDMA systems is investigated
via both analysis and simulations. Our simulation and numerical results
show that the ASE is capable of providing a good measure of theSE
achieved by the corresponding realistic MIMO-CDMA systems.

I. I NTRODUCTION

In this paper, we study the asymptotic spectral-efficiency (ASE)
of uplink multiuser MIMO-CDMA systems, whereasymptotic means
that both the number of users, denotedK, supported by a MIMO-
CDMA system and the spreading factor, denoted byN , tend to infinity,
while their ratio β = K/N is fixed. In the considered MIMO-
CDMA systems, the number of transmit antennas of a mobile terminal
(MT) and the number of receive antennas at the base-station (BS)
are denoted byNt andNr, respectively, which are assumed finite.
We assume that channels from different MTs to the BS experience
independent Rayleigh fading, since different MTs in general distribute
geographically at different locations. However, for a given MT, we
assume that the signals from different transmit antennas to different
receive antennas may be arbitrarily correlated in the spatial domain.
In this paper, the ASE of the MIMO-CDMA systems is analyzed with
the aid of random matrix theory and operator-valued free probability
theory [1–4]. A range of closed-form formulas are derived and analgo-
rithm is proposed for supporting the ASE computation. Furthermore,
the spectral-efficiency (SE) performance of some MIMO-CDMA sys-
tems is investigated based on evaluation of our derived formulas as
well as by simulations. Our studies show that the analytical ASE
obtained in this paper is capable of providing good approximation for
the SE achieved by the uplink MIMO-CDMA systems with realistic
assumptions for supporting a fixed number of users and using a fixed
spreading factor.

In wireless communications, the SE performance of MIMO sys-
tems with or without spatial correlation as well as that of CDMA
systems supported by various multiuser detection schemes have been
investigated based on random matrix and free probability theories,
as seen, e.g., the references [1–11] as well as the references there
in. Specifically, in [2, 5], the ASE performance of multiuser MIMO-
CDMA systems has been studied, when assuming that multiple anten-
nas are employed at the BS-receiver and single antenna is employed
by every MT-transmitter. By contrast, in [6, 7], the ASE of MIMO-
CDMA systems has been considered, when multiple transmit and
multiple receive antennas are employed. Explicitly, in this type of
MIMO-CDMA systems, data transmitted by different antennas of the
same MT may be spread either by the same spreading code for all
the transmit antennas or by different spreading codes respectively
for different transmit antennas. For convenience, these two schemes
are respectively referred to as thesame code assignment scheme
and different code assignment scheme. When comparing these two
schemes, in general, the same code assignment scheme is capable
of achieving better SE performance, when the system loadβ =
K/N is high, while the different code assignment scheme achieve

better SE performance, when system load is low [6]. In [2, 5–7], no
spatial correlation among the transmit/receive antennas was assumed.
However, as we know, spatial correlation may significantly degrade the
capacity of MIMO systems. For this sake, in [8], spatial correlation
and line-of-sight components have been invoked and, furthermore,a
generalized resource pooling scheme has been proposed. However,
in order to derive the ASE, the approach in [8] requires to obtain
first the limit of the received amplitudes’ joint distribution and, then,
to solve a matrix differential equation. Additionally, the asymptotic
outage region in MIMO-CDMA systems has been studied in [9], under
the assumption that the two transmit antennas are without correlation.

The so-called operator-valued free probability theory is a more
general version of the free probability theory [1, 10]. It allows us to
deal with the very general scenarios where arbitrary correlation exists.
The landmark work of applying the operator-valued free probability
theory in wireless communications is [10], which has analyzed the
asymptotic capacity of MIMO systems, either when communicating
over multipath fading channels without spatial correlation, or when
communicating over flat fading channels with non-separable spatial
correlation. Based on the approaches and results provided in [10], [11]
has also studied the asymptotic capacity of the MIMO orthogonal
frequency-division multiplex (MIMO-OFDM) systems, when with-
out considering spatial correlation. However, to the best of authors’
knowledge, no other applications in the wireless communications have
so far invoked the operator-valued free probability theory. In this
contribution, we make use of the operator-valued free probability
theory for analyzing the ASE of MIMO-CDMA systems. As shown
in Section III, the channel matrix in the considered MIMO-CDMA
systems can be expressed as a block matrix, whose entries are arbitrary
correlated due to the spatial correlation. The asymptotic eigenvalue
distribution (AED) of this type of channel matrices cannot be directly
obtained by the free probability theory, but can be efficiently derived
with the aid of the operator-valued free probability theory.

Throughout the paper, there are some not well-known notations
used, which are listed below for convenience.

• C, C
+: Complex field and complex upper half-plane;

• Md(C): Set of(d× d) matrices with their entries fromC;
• trd: Normalized trace ofMd(C), trd(XXX) = Tr(XXX)/d;
• I(x): Imaginary part ofx.

II. SYSTEM MODEL AND MAIN ASSUMPTIONS

A single-cell uplink MIMO-CDMA system with its schematic block
diagram as shown in Fig. 1 is considered. It supportsK number of
uplink MTs, each of which employsNt transmit antennas. The BS
hasNr receive antennas. The complex channel gain between then-
th receive antenna and them-th transmit antenna of thek-th MT is
denoted byan,m

k for m = 1, . . . , Nt; n = 1, . . . , Nr; k = 1, . . . ,K.
Although CDMA channels typically experience frequency-selective
fading, in this paper, we, however as done in [2, 5–9], assume flat fad-
ing for the sake of simplicity to make the analysis manageable. In this
paper, we assume that all user signals are synchronously receivedand
that power-control is employed to make the average power received
from each of theK MTs the same. Furthermore, we assume that each
of theK MTs is assigned one spreading code ofN -length, which is
used for spreading by all the transmit antennas of the MT. Therefore,
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Fig. 1. Schematic block diagram for uplink MIMO-CDMA systems.

our spreading codes are assigned based on the same code assignment
scheme, as mentioned in Section I. Note that, the reason for us to use
this code assignment is that a full-multiplexing MIMO transmission
scheme is assumed, which is capable of distinguishing the symbols
transmitted by a MT based on, e.g., the BLAST coding and decoding
principles.

At the BS, each of theNr receive antennas uses a chip-waveform
matched-filter (MF) to generate observation samples for detection.
Based on the above assumptions, we can readily show that the discrete-
time signals received by then-th, n = 1, . . . , Nr, receive antenna at
the BS can be expressed as

yyyn =

Nt
X

m=1

K
X

k=1

an,m
k ssskxk,m +nnnn =

Nt
X

m=1

SSSAAAn,mxxxm +nnnn

= [SSSAAAn,1,SSSAAAn,2, · · · ,SSSAAAn,Nt
]xxx+nnnn (1)

where, by definition, we have

AAAn,m = diag{an,m
1 , an,m

2 , · · · , an,m
K }

SSS = [sss1, sss2, · · · , sssK ] , xxxm = [x1,m, · · · , xK,m]T (2)

xxx =
h

xxxT
1 , · · · ,xxxT

Nt

iT

, nnnn = [n0, n1, · · · , nN−1]
T

In (1) and (2),sssk is anN -length column vector denoting thek-th MT’s
spreading code,xk,m is the symbol transmitted by them-th transmit
antenna of thek-th MT andnnnn is the corresponding Gaussian noise
vector. When the observation samples received by all theNr receive
antennas are collected intoyyy = [yyyT

1 , · · · , yyyT
Nr

]T , we can represent it
as

yyy =HHHxxx+nnn (3)

whereHHH is a(NNr ×KNt) block matrix given by

HHH =

0

B

B

@

SSSAAA1,1 SSSAAA1,2 · · · SSSAAA1,Nt

SSSAAA2,1 SSSAAA2,2 · · · SSSAAA2,Nt

...
...

. . .
...

SSSAAANr,1 SSSAAANr,2 · · · SSSAAANr,Nt

1

C

C

A

(4)

while the NrN -length complex Gaussian noise vectornnn =
ˆ

nnnT
1 ,nnn

T
2 , · · · ,nnnT

Nr

˜T
has zero mean and a covariance matrix of

σ2IIINNr
, whereσ2 denotes the Gaussian noise’s variance.

Let the autocorrelation matrix ofHHH be expressed byRRRHHH , which
is a nonnegative definite matrix. In order to derive the ASE of the
MIMO-CDMA systems, the distribution of the eigenvalues ofRRRHHH is
required to be obtained first. Our forthcoming analysis is based on the
assumptions summarized as follows.
A1. Random spreading codes are employed, whose elements are

independently identically distributed (iid) circularly symmetric
complex random variables with zero mean and a variance of
1/N . Hence, they satisfy‖sssk‖ = 1, k = 1, · · · ,K.

A2. Symbols transmitted by any MTs are iid Gaussian variables with
zero mean and a common variance of1/Nt. Correspondingly,
the signal-to-noise ratio (SNR) in terms of a MT is1/σ2.

A3. Signals transmitted by MTs experience flat Rayleigh fading.
Since uplink communications are considered and MTs are in
general geographically at different locations, we hence as-
sume that the channels with respect to different MTs expe-
rience independent fading. In mathematics, this implies that
E[an,m

k (an̄,m̄

k̄
)∗] = 0, provided thatk 6= k̄.

A4. For thek-th MT, its channel gainsan,m
k , n = 1, · · · , Nr; m =

1, · · · , Nt, can be arbitrarily correlated in the spatial domain.
Furthermore, owing to the variance ofan,m

k being normalized to
one, the correlation coefficient can be expressed as

ρk(n,m; n̄, m̄) = E[an,m
k (an̄,m̄

k )∗]

≡


= 1, if n = n̄,m = m̄
< 1, otherwise (5)

A5. Different MTs have the same spatial correlation character-
istics, meaning thatρ1(n,m; n̄, m̄) = ρ2(n,m; n̄, m̄) =
· · · = ρK(n,m; n̄, m̄) = ρ(n,m; n̄, m̄), when the values for
m, n, m̄ andn̄ are the same.

Based on above assumptions, the correlation coefficient between
an,m

k andan̄,m̄

k̄
can be expressed in a compact form as

ρkk̄(n,m; n̄, m̄) = E[an,m
k (an̄,m̄

k̄
)∗] = δkk̄ · ρ(n,m; n̄, m̄)

k, k̄ = 1, . . . ,K; n, n̄ = 1, · · · , Nr; m, m̄ = 1, · · · , Nt (6)

whereδij is the Dirac-delta function, defined asδij = 1, wheni = j,
andδij = 0, otherwise. Let us below analyze the SE of MIMO-CDMA
systems based on the above assumptions.

III. A SYMPTOTIC SPECTRAL-EFFICIENCY

When assuming that the BS employs the ideal knowledge aboutHHH,
while the MTs know only the distribution information of the fading
channels, the optimum detection can be carried out at the BS. In this
case, the ergodic SE of the MIMO-CDMA systems normalized by the
spreading factor can be formulated as [3, 4, 12]

CErg =
1

N
E

»

log2 det

„

IIIKNt
+

RRRHHH

Ntσ2

«–

(7)

where the average is taken with respect to both the random spreading
codes and the random fading channels. When ASE is concerned by
lettingK,N →∞ andK/N = β, we have

CAsy = lim
N→∞

K→∞

1

N
log2

»

det

„

IIINtK +
RRRHHH

Ntσ2

«–

= lim
N→∞

K→∞

NtK

N

"

1

NtK

NtK
X

i=1

log2

„

1 +
λRRRHHH

(i)

Ntσ2

«

#

=Ntβ

Z ∞

0

log2

„

1 +
x

Ntσ2

«

fRRRHHH
(x)dx (8)

whereλRRRHHH
(i) represents theith eigenvalue of the(NtK × NtK)

matrixRRRHHH , while fRRRHHH
(x) is the AED of matrixRRRHHH , which needs to

be derived first in order to obtain the ASE formula for the MIMO-
CDMA systems.

From (4), we can see that the channel matrixHHH of the uplink
MIMO-CDMA systems can be decomposed into

HHH = CCCAAAK (9)

where

AAAK =

0

B

B

@

AAA1,1 AAA1,2 · · · AAA1,Nt

AAA2,1 AAA2,2 · · · AAA2,Nt

...
...

. . .
...

AAANr,1 AAANr,2 · · · AAANr,Nt

1

C

C

A

(10)



is an(NrK ×NtK) block matrix and

CCC =

0

B

B

@

SSS
SSS

. . .
SSS

1

C

C

A

= IIINr
⊗SSS (11)

is an (NrN × NrK) matrix. In (11) ⊗ denotes the Kronecker
product operation. Therefore, with the aid of (9), we can rewrite the
autocorrelation matrix ofHHH as

RRRHHH =HHHHHHH = AAAH
KCCC

HCCCAAAK (12)

According to the matrix theory [4], the(NtK ×NtK) matrixRRRHHH

and the(NrK × NrK) matrix R̄RRHHH = AAAKAAA
H
KCCC

HCCC have the same
non-zero eigenvalues. Furthermore, the relationship between the AEDs
ofRRRHHH andR̄RRHHH is formulated by [4]

ηRRRHHH
(γ) = 1− Nr

Nt

+
Nr

Nt

ηR̄RRHHH
(γ) (13)

hereηRRRHHH
(γ) and ηR̄RRHHH

(γ) are, respectively, theη-transform [4] of
fRRRHHH

(x) andfR̄RRHHH
(x) of the AEDs of matricesRRRHHH andR̄RRHHH , which

are given by [4]

ηX(γ) =

Z ∞

0

„

1

1 + γx

«

fX(x)dx (14)

whereX is forRRRHHH or R̄RRHHH . Therefore, from above we are implied that
the AED ofRRRHHH can be found through deriving first the AED ofR̄RRHHH ,
which is now considered below.

A. Asymptotic Eigenvalue Distribution of R̄RRHHH

Let RRRAAAK
= AAAKAAA

H
K andRRRCCC = CCCHCCC. Then, we havēRRRHHH =

RRRAAAK
RRRCCC . In order to make it possible to derive the AED ofR̄RRHHH ,

we assume (or approximate) thatRRRAAAK
andRRRCCC are asymptotically

free. This assumption is reasonable, since, according to [4, 13], two
independent unitarily invariant matrices are asymptotically free. In
our case, first,RRRAAAK

andRRRCCC are independent. Second, as pointed
out in [14], unitary invariance is a property employed by a set of
random matrices with the set size being much larger than the iid
Gaussian ensemble. Hence, we can be confident thatRRRAAAK

andRRRCCC

are asymptotically free, which is also verified by our results shown
in Section IV. Consequently, with the aid of Theorem 2.68 in [4], the
η-transform of the AED of̄RRRHHH can be represented as

ηR̄RRHHH
(γ) = ηRRRAAAK

 

γ

SRRRCCC
(ηR̄RRHHH

(γ)− 1)

!

(15)

whereSRRRCCC
(x) denotes the S-transform of the AED ofRRRCCC , which is

defined [4] by theη-transform asSRRRCCC
(x) = −x+1

x
η−1

RRRCCC
(1 + x).

From (11) we haveCCC = IIINr
⊗ SSS. Hence, the AED ofRRRCCC is the

same as that ofSSSHSSS. Therefore, using the Marčenko-Pastur (M-P)
law [4] for the AED ofSSSHSSS, we can obtain the S-transform of the
AED ofRRRCCC , which is [4]

SRRRCCC
(x) =

1

1 + βx
(16)

where, as defined previously,β = K/N is the system load factor of the
MIMO-CDMA systems. Finally, applyingη(γ) = m(−γ−1)/γ of the
relationship between the Stieltjes transform1 and theη-transform [4] as
well as (16) to (15), we can obtain the Stieltjes transform ofR̄RRHHH , given
by

mR̄RRHHH
(z) =− 1

z
ηRRRAAAK

„

−1

z

ˆ

1− β − βzmR̄RRHHH
(z)
˜

«

=

Z ∞

0

fRRRAAAK
(x)

[1− β − βzmR̄RRHHH
(z)]x− z dx (17)

1Let X be a real-valued random variable with distributionFX(·). Then, the
Stieltjes transform is defined as [4]mX(x) =

R ∞
−∞ dFX(z)/(z − x)dz.

wherefRRRAAAK
(x) is the AED ofRRRAAAK

andz = −1/γ.
Finally, given the Stieltjes transform ofmR̄RRHHH

(z), the AED ofRRRH̄HH

can now be obtained by its inversion formula [4], yielding

fRRR
H̄HH

(x) =
1

π
lim

y→0+
=(mR̄RRHHH

(x+
√
−1y)) (18)

where=(z) means the imaginary part of the complex numberz.
As shown in (17), we need first to obtain the AED ofRRRAAAK

, i.e.
fRRRAAAK

(x), before finding the AED ofRRRH̄HH , which is considered in the
next subsection with the aid of the principles ofoperator-valued free
probability.

B. Asymptotic Eigenvalue Distribution ofRRRAAAK
= AAAKAAA

H
K

As shown in (10),AAAK is a block matrix, where each of theNr×Nt

blocks is an(K ×K) diagonal matrix. Due to the spatial correlation,
entries inAAAK may be correlated and the covariance is given by (6). To
the authors’ best knowledge, the accurate AED ofRRRAAAK

has not been
found and it seems extremely hard to derive this accurate AED. For this
sake, we propose an approximation approach, which approximates the
AED ofRRRAAAK

by the AED ofBBBKBBB
H
K , whereBBBK is defined as

BBBK =

0

B

B

@

BBB1,1 BBB1,2 · · · BBB1,Nt

BBB2,1 BBB2,2 · · · BBB2,Nt

...
...

. . .
...

BBBNr,1 BBBNr,2 · · · BBBNr,Nt

1

C

C

A

(19)

where each blockBBBn,m =
˘

bn,m
i,j

¯K

i,j=1
is an (K × K) Gaussian

matrix [4]. The entries ofBBBK are circularly symmetric complex
Gaussian variables, with zero mean and covariances

E

h

bn,m
i,j (bn̄,m̄

ī,j̄
)∗
i

=
1

K
δi,̄iδj,j̄ · ρ(n,m; n̄, m̄) (20)

whereρ(n,m; n̄, m̄) has been defined in (5). As our simulation results
in Section IV show, the above approximation is feasible and also very
accurate. The reason is that it can be proofed2 that the AEDs of both
BBBKBBB

H
K andRRRAAAK

are defined in the positive real axis and that they
have the same first and second moments. Furthermore, their third
moments are also very close to each other.

According to [10], the AED ofBBBKBBB
H
K can be derived based on the

operator-valued free probability theory. The results have been stated in
a theorem in [10], which is repeated here for convenience.

Theorem 1: [10] Considering a block matrixBBBK as defined in
(19), forK → ∞, the (KNr × KNr) matrixBBBKBBB

H
K/(Nr + Nt)

has almost surely a limiting eigenvalue distribution, whose Cauchy
transformG(z) is determined by

G(z) = trNr
(G(z)) (21)

where G(z) is an MNr
(C)-valued analytic function on the upper

complex half-plane, which is uniquely determined by the facts that

lim
|z|→∞,I(z)>0

zG(z) = IIINr
(22)

and that it satisfies for allz in the upper complex half-plane the matrix
equation

zG(z) = IIINr
+ ψ1

`

(IIINt
− ψ2(G(z)))−1´G(z) (23)

where

ψ1 : MNt
(C)→MNr

(C) and ψ2 : MNr
(C)→MNt

(C)

and the covariance mappings are given by

[ψ1(QQQ)]
i,j

:=
1

Nr +Nt

Nt
X

k,l=1

ρ(i, k; j, l)[QQQ]k,l (24)

[ψ2(QQQ)]
k,l

:=
1

Nr +Nt

Nr
X

i,j=1

ρ(i, k; j, l)[QQQ]j,i (25)

2The detailed proof is removed from this paper due to the space limit.



whereQQQ represents a matrix considered.
Note that, in Theorem 1, after multiplied it by−1, the Cauchy

transform is the same as the Stieltjes transform [4]. Consequently, the
AED of BBBKBBB

H
K/(Nr + Nt) can be obtained fromG(z) by carrying

out the inverse Stieltjes transform, as shown in (18). Finally, the AED
of RRRAAAK

can be approximated by the AED ofBBBKBBB
H
K , which can be

directly derived from the AED ofBBBKBBB
H
K/(Nr + Nt), sinceNr and

Nt are constants.

C. Solutions to Equations (17) and (23)

From the previous analysis in Sections III-A and III-B, we can see
that, in order to derive the AED of̄RRRHHH , Eqs. (17) and (23) are required
to be solved first. Due to the facts that (17) is an integral equation and
(23) is a matrix equation, it is very hard to solve these transcendental
equations directly. In this paper, with the aid of the fixed point theorem
and the principles of contraction mapping [4], we propose an iterative
method to derive the solutions of these two equation.

From Eq. (23), a mapping used in our iterative algorithm is ex-
pressed as

G 7→ Fz(G) :=
ˆ

zIIINr
− ψ1

`

(IIINt
− ψ2(G))−1´˜−1

(26)

where we have usedG(z) = G for simplicity. In [15], it has been
proofed that the mappingFz(G) is a contraction mapping. Further-
more, in order to speed up the convergence, in [15], an improved
iteration structure has been proposed, which can be expressed as

G 7→ Wz(G) :=
1

2
G +

1

2
Fz(G) (27)

In the context of Eq. (17), the mapping used in our iterative algo-
rithm can be expressed as

m 7→ Tz(m) :=

Z ∞

0

fRRRAAAK
(x)

[1− β − βzm]x− z dx (28)

where we have setm = mR̄RRHHH
(z), again, for the simplicity of

description. Furthermore, it can be shown thatTz is a contraction
mapping.

With the aid of the above mappings, the iterative algorithm for
solving Eqs. (17) and (23) can be summarized as follow:

1) For a given argumentz, setting an initial value. Specifically, for
Eq. (27), it can beG0 = IIINr

, while for Eq. (28), it can bem0 =
1 +
√
−1 · 1.

2) Forn = 1, 2, . . ., carrying out the operations:

Gn+1 ←Wz(Gn), mn+1 ← Tz(mn) (29)

until the solutions converge or the maximum number of itera-
tions is reached, yielding the solutions to Eqs. (17) and (23).

IV. PERFORMANCERESULTS

In this section, we provide some SE results evaluated from our anal-
ysis as well as the corresponding SE results obtained by simulations
to show the SE performance of the MIMO-CDMA systems as well as
to illustrate how close the analytical results agree with the simulation
results. For the sake of illustrating the effect of the correlation among
the transmit antennas and of that among the receive antennas, in the
examples considered, we assume that the overall spatial correlation is
separable in terms of the transmit and receive antennas, which can be
expressed asρ(n,m; n̄, m̄) = ρ

|n−n̄|
r ρ

|m−m̄|
t . We, however, note that,

our analytical results obtained in this paper are suitable for the MIMO
systems where the transmit and receive antennas have arbitrary spatial
correlation, no matter whether this spatial correlation is separable or
non-separable.

Fig.2 shows the ASE and the SE obtained by simulations for the
specific MIMO-CDMA systems considered, when various receive
antenna correlation is assumed. The parameters configurating the
MIMO-CDMA systems are shown associated with Fig.2. When com-
paring the simulated SE with the corresponding ASE results, we can
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observe that they are in good accordance. From this we are implied
that, even for the MIMO-CDMA systems of moderate size (hereN =
16, K = 12,Nr = 5, Nt = 3), their SE can be closely estimated by
the corresponding ASE. From Fig.2, we can observe that the receive
antenna correlation has slight impact on the achievable SE of the
MIMO-CDMA systems. Specifically, there is about2.5dB loss, when
ρr changes from0.2 to 0.8. The reason behind is twofold. First, the
degrees-of-freedom (DoF) in MIMO-CDMA systems is constituted
by both the DoF in the spatial domain and the DoF provided by the
spreading codes. Second, the correlation model considered for this
figure is exponential type, which results in that the spatial correlation
reduces quickly as the spacing between two receive antennas increases.

Fig.3 compares the achievable SE versus the number of receive
antennas, when different receive antenna correlation is considered.
Again, from Fig.3 we can see that the simulated SE for a specific
MIMO-CDMA system is close to its corresponding ASE. As expected,
the achievable SE of the MIMO-CDMA systems increases asNr

increases, while decreases asρr increases. Furthermore, the SE cor-
responding to a relatively smallρr value increases faster than that
corresponding to a relatively largeρr value, whenNr is less than4.
As seen in Fig.3, the MIMO-CDMA systems withρr = 0.1 is capable
of achieving the SE of8bits/s/Hz by employingNr = 5 receive
antennas, while the MIMO-CDMA systems withρr = 0.95 requires
Nr = 8 receive antennas to attain the same SE.

In Fig.4, we compare the achievable SE of the MIMO-CDMA sys-
tems employing different number of transmit antennas. As observed in
Figs.2 and 3, the results in Fig.4 again show that the ASE can provide
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Fig. 4. SE versus the number of receive antennas for the MIMO-CDMA
systems employing different number of transmit antennas.

=K/N=1 with K and N tend to infinity
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Fig. 5. ASE versus SNR performance of the MIMO-CDMA systems when
givenNr + Nt = 6.

a good measure of SE achieved by a specific MIMO-CDMA system.
Additionally, from Fig.4 we can see that the SE of the MIMO-CDMA
systems improves, when the number of transmit antennas increases.
However, the SE improvement becomes less and less significant as the
number of transmit antennas becomes more and more.

Figs.5 and 6 show the impact of SNR and system loadβ, respec-
tively, on the ASE of the MIMO-CDMA systems, when the total
number of transmit and receive antennas isNr + Nt = 6. As shown
in these two figures, the MIMO-CDMA system employingNr = 2
receive antennas andNt = 4 transmit antennas per MT attains the
lowest SE. From Fig.5, we can observe that, at a given SNR value,
there may exist an optimal combination of the number of transmit and
receive antennas, which yields the highest ASE. The results of Fig.6
show that the ASE increases, as the system load increases. Again, at
a given system load, there may exist an optimal combination of the
number of transmit and receive antennas, which results in possibly the
highest ASE.

V. CONCLUSIONS

With the aid of the random matrix theory and the operator-valued
free probability theory, we have investigated the ASE of the MIMO-
CDMA systems, whose transmit/receive antennas exist arbitrary cor-
relation. A range of formulas have been derived and an algorithm
supporting the ASE computation has been proposed. Furthermore, the
SE performance of the MIMO-CDMA systems has been investigated
either numerically or by simulations, when various scenarios are
considered. It can be shown that the corresponding ASE can usually
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Fig. 6. ASE versus system loadβ performance of the MIMO-CDMA systems
when givenNr + Nt = 6.

provide a very close approximation for the SE achieved by a realistic
MIMO-CDMA system, which has fixed values for the number of
transmit antenna, number of receive antennas, spreading factor and the
number of MTs supported.
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