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SUMMARY

By monitoring the future process status via information prediction, process fault prognosis is able to give
an early alarm and therefore prevent faults, when the faults are still in their early stages. A fuzzy-adaptive
unscented Kalman filter (FAUKF)-based predictor is proposed to improve the tracking and forecasting
capability for process fault prognosis. The predictor combines the strong tracking concept and fuzzy logic
idea. Similar to the standard adaptive unscented Kalman filter (AUKF) that employs an adaptive parameter
to correct the estimation error covariance, a Takagi–Sugeno fuzzy logic system is designed to provide a
better adaptive parameter for smoothing this regulation. Compared with the standard AUKF, the proposed
FAUKF has the same strong tracking ability but does not suffer from the drawback of serious tracking
fluctuation. Two simulation examples demonstrate the effectiveness of the proposed predictor. Copyright
� 2011 John Wiley & Sons, Ltd.

Received 23 November 2010; Revised 21 January 2011; Accepted 20 February 2011

KEY WORDS: process fault prognosis; unscented Kalman predictor; fuzzy logic; error covariance

1. INTRODUCTION

Process safety and reliability are critically important for large-scale and highly integrated modern
industry. Faults can cause long-term disturbances, influence normal operation, and may even lead
to large economical loss and ecological crisis. The development of fault detection and diagnosis
techniques began in 1970s [1]. In the early stage, fault detection and diagnosis is designed to
monitor process status, to detect fault, and to isolate the causes of faults. A fault alarm is given
when the current measurements or statistics lie outside the normal-operation region. By this time,
however, the fault may have already developed into a serious state. In order to minimize the loss
caused by faults and to guarantee that the process operates in a safe, stable, and optimal status, it
is important to be able to predict the future process status. Future prediction can help to detect the
faults as early as possible and to deal with the faults when the current measurements are still within
the normal-operation region. Moreover, predictive maintenance based on fault prognosis can reduce
maintenance and production costs. Hence, process fault prognosis has become an active research
area [2, 3]. Lu and Saeks [4] investigated failure prediction for an online maintenance system,
which may be considered as the earliest example of fault prognosis. However, the development
of fault prognosis techniques have been slow, owing to the difficulty in predicting the faults that
have small amplitude and inexplicit characteristics.
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Recently, fault prognosis has attracted renewed interests from both academic and industrial
communities with the development of various fault detection and diagnosis techniques, which
may be divided into three main categories: model-based approaches [5–9], signal processing-
based approaches [10–17], and intelligent approaches [18, 19]. Model-based approaches may be
considered as the most effective by using system kernel information such as the inherent structure
and first-principles. In particular, Yang [5, 6] used Kalman filter (KF) to predict one-step-ahead as
well as two-step-ahead states for prognosing ageing failure, and provided a Monte–Carlo simulation
as well as an actual experiment on a DC motor for predictive maintenance. Juricek et al. [7] applied
KF to forecast the future outputs and to signal the impeding emergency limit violations. Both these
works employed KF and, therefore, they require the assumption that the process involved can be
accurately described by a linear stochastic state space model. For nonlinear fault prognosis, we used
the support vector machine to forecast the future Kalman innovation, and applied the innovation to
predict multi-step-ahead outputs [8]. Chen et al. [9] proposed a new particle predictor for nonlinear
time-varying systems, in which the process fault model was simplified into a parameter vector.

Information forecasting is the key issue for fault prognosis. By estimating the states and fault
parameters, KF can be used to track the process running trend and to predict the future outputs.
At the initial stages of a fault process, however, the fault amplitude is small and, therefore, it is
difficult to estimate the states and fault parameters accurately. For filtering problems, the innovation
can be used as feedback to correct the estimation. But for forecasting problems, the innovation
is unavailable, and such a correction cannot take place. Thus, predictors with accurate estimation
ability and strong tracking ability are essential for fault prognosis. Extended KF (EKF) is the most
widely used filtering method for nonlinear dynamic system. EKF however has poor robustness
against model mismatch as well as has poor tracking ability to sudden changes in the steady
state. For this reason, Zhou et al. [20] proposed a concept of strong tracking filter (STF), and
presented a suboptimal fading EKF (SFEKF), which employs a suboptimal fading factor to adjust
the error covariance using the innovation. Jwo and Wang [21] proposed an adaptive fuzzy algorithm
to calculate the smoothing factor in the SFEKF for the GPS navigation application. However,
first-order linearization in EKF can introduce large error and high instability as a consequence of
propagating the covariance information through a linear transformation. Specifically, the EKF-based
approach for nonlinear process fault prognosis has the following three drawbacks: (i) the linearized
transformation is reliable only if the error propagation can be well approximated by a linear
function, which is generally not the case for a nonlinear process; (ii) this linearization can be
applied only if the Jacobian matrix exists; and (iii) calculating the Jacobian matrix is a very difficult
and costly as well as error-prone process.

Recently, unscented KF (UKF), proposed by Julier et al. [22, 23], has attracted wide interests
[24, 25]. UKF uses a minimal set of sigma points to approximate the state’s mean and covari-
ance. These sigma points are propagated through a nonlinear transformation and, therefore, it is
not necessary to compute Jacobian matrices in UKF. In other words, the mean and covariance
information are propagated through nonlinear transformations in an UKF, which is more accurate
and easier to implement. Consequently, the UKF-based approach does not suffer from the above-
mentioned drawbacks of the EKF method. In particular, the UKF matches the mean correctly up
to the second order in Taylor series and predicts the covariance correctly up to the third order,
while the EKF can only approximate the mean up to the first order [22, 23]. UKF has been used
for nonlinear estimation and process monitoring [26–30]. We also combined the UKF with the
concept of STF to improve its tracking ability to states and fault parameters, so as to improve fault
prognosis performance [31]. Although the stability of the UKF was not addressed in the original
work of Julier et al. [22], this important issue has been discussed in [24, 32, 33]. The estimation
error behavior of the UKF was analyzed in [24] for nonlinear stochastic processes with linear
measurement equations. It was proved that by adding an appropriately chosen positive-definite
matrix to the covariance matrix, the stability of the UKF can be ensured and the estimation error
of the UKF remains bounded under certain conditions. This result was then extended to the more
general case involving nonlinear measurement equations in [32]. Based on a similar modification
to the covariance matrix, the authors of [33] also proved that the estimation error of the UKF
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remains bounded under certain conditions. Stability analysis of the UKF remains an active research
area and is beyond the scope of this study.

Adaptive UKF (AUKF) based on the concept of STF [20, 22, 23] can capture process changes
quickly and offers much superior tracking performance over UKF, while possessing all the advan-
tages of UKF. This makes it a powerful technique for application to nonlinear process fault
prognosis. However, we note that the introduction of the suboptimal fading factor in AUKF, while
enhancing the tracking ability, can increase the tracking fluctuation of the process state and fault
parameters, especially when the process is in steady state. The fluctuation of the state and fault
parameter estimation in turn may degrade the prediction performance. Our motivation is to prevent
this overregulation to the error covariance by the AUKF, while maintaining its fast tracking ability.
In this contribution, a fuzzy-adaptive UKF (FAUKF) is proposed to alleviate the unnecessary regu-
lation of the error covariance, leading to an enhanced prediction accuracy without any sacrifice in
the tracking performance. Specifically, a Takagi–Sugeno fuzzy logical system [34] is designed to
calculate a fuzzy-adaptive parameter, which depends on the membership functions of the normal
and failure states. A predictor based on the proposed FAUKF is applied for fault prognosis. We
demonstrate that the proposed FAUKF has the same strong tracking ability as the standard AUKF
while avoiding the unnecessary regulation drawback of the latter, resulting in an enhanced perfor-
mance in fault prognosis. The simulation results obtained confirm the effectiveness of this FAUKF
for process fault prognosis application.

The remainder of this contribution is organized as follows. Section 2 briefly describes the
problem of nonlinear process fault prognosis. After introducing the AUKF-based approach, the
proposed FAUKF is presented in Section 3 for the application to nonlinear process fault prognosis.
Monte–Carlo simulations involving two nonlinear stochastic systems are given in Section 4 to
compare the performance of the proposed FAUKF with that of the standard AUKF. The concluding
remarks are summarized in Section 5.

2. PROBLEM FORMULATION

Consider the following nonlinear dynamic system:

x(k+1) = f(x(k),u(k))+d(k)+e(k), (1)

y(k) = H(k)x(k)+t(k), (2)

where u(k)∈Rl×1, x(k)∈Rn×1, and y(k)∈Rm×1 are the vectors of measured inputs, state vari-
ables, and measured outputs, respectively, d(k)∈Rn×1 denotes the vector of unmeasurable fault
variables, while e(k)∈Rn×1 and t(k)∈Rm×1 are the process and measurement noise vectors, which
are uncorrelated with one another and obey the zero-mean normal distributions with the covari-
ance matrices Q(k)= E[e(k)eT(k)] and R(k)= E[t(k)tT(k)], respectively. The nonlinear vector
function f(•) :R(n+l)×1 →Rn×1 in the state equation (1) is assumed to be continuously differ-
entiable with respect to x(k), while the matrix H(k)∈Rm×n specifies the linear measurement
Equation (2).

In general, process fault prognosis is suitable for the slowly changing behavior caused by fault.
The root cause of fault may be step or ramp change in the unmeasured disturbance caused by d(k).
Yang used the exponential model to describe ageing failure [5, 6], while Juricek et al. adopted
a pseudo-disturbance term to describe step or ramp changes [7]. In the work [9], a time-varying
equivalent parameter vector was used to represent the difference between the fault process and the
known normal model. We will also adopt the approach of Juricek et al. [7] by considering the
pseudo-fault model

d(k)=C(k,k0)h, (3)
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Figure 1. Schematic diagram of process fault prognosis program.

where h∈Rq×1 denotes the vector of fault parameters, k0 is the beginning time of the fault, and
C(k,k0) is a matrix function of time. A pseudo-fault model for second-order system is given by
Juricek et al. [7]

d(k)=C(k,k0)h=
[

�1,0 +�1,sTs(k−k0)

�2,0 +�2,sTs(k−k0)

]
with

C(k,k0)�
[

1 0 Ts(k−k0) 0

0 1 0 Ts(k−k0)

]
, h�[�1,0 �2,0 �1,s �2,s]

T,

where Ts is the sampling period. The pseudo-fault model (3) has no physical interpretation, and it
simply describes the process changes caused by faults.

Process fault prognosis techniques use the collected data and the information prediction model
to forecast the future status and trend, and then apply fault detection and diagnosis methods
to determine whether the monitored variables or statistics will be outside the normal-operating
region in the future. Thus, the prognosis program can be summarized in two steps: (1) information
forecasting and (2) fault detection and diagnosis, as illustrated in Figure 1. The ability to accurately
predict future outputs is very important, since process fault prognosis techniques use the future
prediction values to judge the process operating status. Define the measurement innovation or the
predicted output error as ỹ(k)=y(k)− ŷ(k), where ŷ(k) is the prediction for y(k). The autocorrelation
function of the predicted output error, defined as

Rỹ(k+ j,k)= E[ỹ(k+ j)ỹT(k)], 1� j�N (4)

can be used as a forecast measure. If Rỹ(k+ j,k)=0m×m , 1� j�N , the predicted output error
sequence {ỹ(k), ỹ(k+1), . . . , ỹ(k+ N )} is uncorrelated and has a zero-mean Gaussian distribution.
Then the error is only caused by the Gaussian measurement noise. If, on the other hand, Rỹ(k+
j,k) �=0m×m , the error sequence is correlated. Then the errors fluctuate around a nonzero constant or
increase gradually. A key problem of process fault prognosis is to find the future output predictions
which ensure Rỹ(k+ j,k)=0m×m .

3. A FUZZY-ADAPTIVE UNSCENTED KALMAN PREDICTOR

In the area of adaptive KF and UKF, most studies focused on the process noise covariance
estimation [35–37]. However, Zhou et al. [20] proposed the SFEFK, in which the error covariance
was regulated with the innovation. The adaptive algorithm of Zhou et al. [20] was then integrated
into the UKF by the work [38]. We consider the AUKF, which introduces an adaptive parameter to
correct the error covariance based on innovations [31]. In this AUKF, the filter gain is regulated so
that the filter output can better track the actual process state. While enhancing the tracking ability,
the introduction of this adaptive parameter may cause the estimated values of the process state
and fault parameters to fluctuate. The fluctuation of the fault parameter estimation in turn may
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affect the prediction performance. In order to prevent overregulation and to smooth estimation, we
combine a fuzzy logic method with the AUKF to form a FAUKF-based predictor.

3.1. Adaptive unscented Kalman filter

3.1.1. Unscented Kalman filter. The UKF [22, 23] uses the unscented transform (UT) to propagate
the state’s mean and covariance. Unlike EKF, linearization and computation of Jacobian matrices
are unnecessary in UKF. In particular, linearization is done at a single point in EKF, while UKF
samples nonlinear behavior at multiple sigma points. Furthermore, UKF matches the mean correctly
up to the second order in Taylor series, while EKF only approximates it up to the first order
[22, 23]. Consider the nonlinear system given in (1) and (2), in which d(k)=0 is assumed. The
standard UKF algorithm can be summarized as follows.

(a) Prediction: Form a set of sigma points X̃i (k−1)∈Rns×1 and their weights wi , where
0�i�2ns and ns =2n+m, for the enlarged state variable x̄s(k−1)= [xT(k−1) eT(k−1) tT(k−1)]T.
Specifically,

X̃i (k−1) =

⎧⎪⎨⎪⎩
x̃s(k−1), i =0,

x̃s(k−1)+Ai (k−1), i =1,2, . . . ,ns,

x̃s(k−1)−Ai−ns (k−1), i =ns +1,ns +2, . . . ,2ns,

(5)

wi =

⎧⎪⎪⎨⎪⎪⎩
�

ns +�
, i =0,

1

2(ns +�)
, i =1,2, . . .2ns.

(6)

Here �∈R is determined by the distribution of the state x(k), and �=3−ns for the Gaussian
distribution. Moreover, x̃s(k−1)= [x̂T(k−1) 01×n 01×m]T, x̂(k−1) is the estimate of x(k−1), and
Ai denotes the i th column of the matrix A∈Rns×ns which satisfies

A(k−1)AT(k−1)= (ns +�)̂Ps(k−1), (7)

where P̂s(k−1) is the enlarged error covariance defined by

P̂s(k−1)=

⎡⎢⎢⎣
P̂(k−1) 0 0

0 Q(k−1) 0

0 0 R(k−1)

⎤⎥⎥⎦∈Rns×ns (8)

with P̂(k−1)∈Rn×n denoting the state error covariance. Then, the predicted state x̂(k|k−1)∈Rn×1

and the related error covariance P̂(k|k−1)∈Rn×n are computed according to

X̂i (k) = f(X̃x
i (k−1),u(k−1))+X̃ε

i (k−1), (9)

x̂(k|k−1) =
2ns∑
i=0

wi X̂i (k), (10)

P̂(k|k−1) =
2ns∑
i=0

wi (X̂i (k)− x̂(k|k−1))(X̂i (k)− x̂(k|k−1))T, (11)

where X̃x
i (k−1)∈Rn×1 and X̃ε

i (k−1)∈Rn×1 are the sigma-point components which correspond
to the process state and noise variables, respectively. More specifically, X̃x

i (k−1) consists of
the first n elements of X̃i (k−1), while X̃ε

i (k−1) contains the (n+1)th to (2n)th elements
of X̃i (k−1).
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(b) Update: The predicted output ŷ(k)∈Rm×1, the corrected state estimate x̂(k)∈Rn×1 and the
corresponding error covariance P̂(k) are updated according to

ŷ(k) = H(k)x̂(k|k−1), (12)

K(k) = P̂(k|k−1)HT(k)(H(k )̂P(k|k−1)HT(k)+R(k))−1, (13)

x̂(k) = x̂(k|k−1)+K(k)(y(k)− ŷ(k)), (14)

P̂(k) = P̂(k|k−1)−K(k)(H(k )̂P(k|k−1)HT(k)+R(k))KT(k). (15)

3.1.2. Adaptive unscented Kalman filter. The error covariance P̂(k|k−1) for the standard UKF is
computed in open loop. The predicted output error ỹ(k) can be used as feedback to correct the
error covariance adaptively, and AUKF introduces a regulation parameter �(k)�1 to regulate the
error covariance, yielding the actual error covariance used̂̄P(k|k−1)=�(k )̂P(k|k−1). (16)

Thus, for the AUKF, equations (13) and (15) are replaced by

K(k) = ̂̄P(k|k−1)HT(k)(H(k )̂P̄(k|k−1)HT(k)+R(k))−1, (17)

P̂(k) = ̂̄P(k|k−1)−K(k)(H(k )̂P̄(k|k−1)HT(k)+R(k))KT(k). (18)

The adaptive regulation parameter �(k) is designed to fullfill Rỹ(k+ j,k)=0m×m , 1� j�N . In the
study [20], Rỹ(k+ j,k)=0m×m is used as the performance measure for STF. When this measure
is met, the error sequence is orthogonal. This measure is referred to as the orthogonality principle,
and it ensures that the predictor is insensitive to the initial states and the system model mismatch
as well as has the strong tracking ability to suddenly change the system status even in the steady
state.

Define Pỹ(k)= E[ỹ(k)ỹT(k)]∈Rm×m . From the system model and the UKF algorithm described
above, the autocorrelation Rỹ(k+ j,k) given in (4) becomes [31]

Rỹ(k+ j,k) = H(k+ j)b(k+ j −1)F(k+ j −1)

(
k∏

i=k+ j−2
(I−K(i +1)H(i +1))b(i)F(i)

)

×�(k )̂P(k|k−1)HT(k)(I−(�(k)H(k )̂P(k|k−1)HT(k)+R(k))−1Pỹ(k)), (19)

where I denotes the identity matrix of appropriate dimension, while F(k+ j −1) denotes the
Jacobian matrix of the nonlinear function f(•) and b(k)=diag{�1(k), . . . ,�n(k)} is a diagonal matrix,
which have no effect on the following derivation of �(k). Setting Rỹ(k+ j,k)=0m×m leads to

I−(�(k)H(k )̂P(k|k−1)HT(k)+R(k))−1Pỹ(k)=0m×m . (20)

From (20), a suboptimal �(k) can be found as follows [20]:

�(k)=max

{
tr[Pỹ(k)−�R(k)]

tr[H(k )̂P(k|k−1)HT]
,1

}
, (21)

where tr[•] denotes the matrix trace operator and ��1 is a smoothing factor. Define V(k)= ỹ(k)ỹT(k)
and give 0���1. Then the matrix Pỹ(k) can be approximated using

Pỹ(k)=

⎧⎪⎨⎪⎩
V(k), k =1,

�V(k−1)+V(k)

1+�
, k�2.

(22)
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3.2. Takagi–Sugeno fuzzy logic system

For the above AUKF, the smoothing factor � is used to soften the regulation of �(k). However, � is
a time-invariant constant, which cannot adapt to the process operating status. In order to adapt the
regulation according to the actual process operating status, a Takagi–Sugeno fuzzy logic system
[34] is adopted to produce a fuzzy-adaptive regulation parameter �∗(k) for replacing �(k). This
fuzzy logic system is designed to fullfill the following requirement: when the process y(k) is in
a normal-operating status, correcting the error covariance P̂(k|k−1) is undesired; while when the
status of y(k) is failure, it is necessary to regulate P̂(k|k−1). Specifically, this Takagi–Sugeno fuzzy
logic system takes the measured variable vector y(k) as its input and produces the fuzzy-adaptive
parameter �∗(k) as its output. Let the fuzzy sets ‘Normal’ and ‘Failure’ denote the normal- and
failure-operating states, respectively. Furthermore, let �N(y(k)) be the membership function of the
fuzzy set ‘Normal’ and �F(y(k)) be the membership function of the fuzzy set ‘Failure’. Design the
fuzzy inference rules as follows:

If y(k) is ‘Normal’, then �∗
N(k)=1,

If y(k) is ‘Failure’, then �∗
F(k)=�(k).

Then, the output �∗(k) of the fuzzy logic system is the weighted average

�∗(k)=�N(y(k))�∗
N(k)+�F(y(k))�∗

F(k). (23)

To explain the selection of membership function, consider that y(k)= y(k) is univariate. When
the process is in the ‘Normal’ status, the variable y(k) can be described by the normal distribution
N (�,	2) with the mean � and the standard deviation 	, according to the central limit theorem.
The collected data will be centralized around �. The further away from �, the fewer data are.
The cumulative probability that the data lie within (�−3	, �+3	) is 99.7%, and the event that
the data lie outside the region (�−3	, �+3	) is a very small probability event. In the statistical
process control (SPC) [39], it is considered that such a small probability event will not occur
normally. If it occurs, a fault may exist and the process may be in a fault status. This is the
so-called 3	 theory. In the work [40], control limit for the SPC Shewhart charts is designed based
on the 3	 theory to signal faults. Since the measurement noise and the process noise will make
the data noisy, the boundary between the normal status and the failure status is fuzzy. The closer
the data are to �, the more possibly that the process belongs to ‘Normal’. On the other hand,
the further the data are away from �, the more possibly that the process belongs to ‘Failure’.
Thus, the cumulative probability distribution function of y(k) can be selected as the membership
function.

In general, assume that the probability distribution of y(k)= [y1(k) y2(k) . . . ym(k)]T is the
normal distribution N (l,R) with the mean vector l and the covariance matrix R. Since �N(y(k))+
�F(y(k))=1, we only need to calculate one membership function. Based on the above discussion
on the ‘3	 theory’, the membership function of the fuzzy set ‘Failure’ can be defined as

�F(y(k)) = P(−|y1(k)|�
1 < |y1(k)|, . . . ,−|ym(k)|�
m < |ym(k)|)

= 1√
(2�)m |R|

∫ |y1(k)|

−|y1(k)|
. . .
∫ |ym (k)|

−|ym (k)|
e− 1

2 (w−l)TR−1(w−l)dw, (24)

where w= [
1 
2 . . .
m]T. Equation (24) can be evaluated using Monte–Carlo methods or subre-
gion adaptive methods through a series of transformation [41]. Process fault prognosis often deals
with low-dimensional y(k). Taking the bivariate y(k)= [y1(k) y2(k)]T for instance, define the prob-
ability distribution function g(c,d)= P(
1 <c,
2 <d). Then, Equation (24) can be evaluated by
several values of this probability distribution function as

�F(y(k)) = P(−|y1(k)|�
1 < |y1(k)|,−|y2(k)|�
2 < |y2(k)|)=g(|y1(k)|, |y2(k)|)
−g(|y1(k)|,−|y2(k)|)−g(−|y1(k)|, |y2(k)|)+g(−|y1(k)|,−|y2(k)|). (25)
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The function g(c,d)= P(
1 <c,
2 <d) can be computed using the Gauss–Legendre integration
algorithm [42].

If 1��(k)�a, from 0��N(y(k)),�F(y(k))�1 and �N(y(k))+�F(y(k))=1, it can be obtained that
1��∗(k)��(k)�a. This means that the fuzzy-adaptive parameter �∗(k) has a ‘weaker’ regulation
ability in comparison to �(k), particularly when the process is in the ‘Normal’ state, which is useful
for preventing overregulation and large fluctuation.

3.3. Fuzzy-adaptive predictor

3.3.1. FAUKF for state estimation. The proposed FAUKF can now be summarized.

(1) The predicted state x̂(k|k−1), the unregulated error covariance P̂(k|k−1) and the predicted
output ŷ(k) are calculated according to (9)–(12).

(2) The adaptive parameter �(k) is determined by (21), and the fuzzy-adaptive parameter �∗(k)

is computed according to (23). Then the regulated error covariance ̂̄P(k|k−1) is obtained
by substituting �(k) with �∗(k) into (16).

(3) The Kalman gain K(k), the updated state x̂(k) and the error covariance P̂(k) are calculated
according to (17), (14) and (18), respectively.

Remark
Since the FAUKF requires a numerical calculation of the fuzzy membership function �F(y), it
imposes a slightly higher complexity than the AUKF.

3.3.2. FAUKF for process fault prognosis. Assume that the fault parameter vector can be repre-
sented by the random-walk model given by

h(k+1)=h(k)+n(k), (26)

where the noise vector n(k)∈Rq×1 has a zero-mean normal distribution. Augmenting the state
vector x(k) with the fault parameter vector h(k) yields the augmented state vector xa(k)=
[xT(k) hT(k)]T ∈R(n+q)×1, with the augmented nonlinear dynamic system

xa(k+1) = fa(xa(k),u(k))+ea(k), (27)

y(k) = Ha(k)xa(k)+t(k), (28)

where the augmented process noise ea(k)= [eT(k) nT(k)]T ∈R(n+q)×1 has a covariance Qa(k)∈
R(n+q)×(n+q), and the nonlinear vector function fa(•) :R(n+q+l)×1 →R(n+q)×1 is
defined by

fa(xa(k),u(k))=
[

f(x(k),u(k))

h(k)

]
, (29)

while the ‘augmented’ linear measurement equation is specified by the matrix Ha(k)=
[H(k) 0m×q ]∈Rm×(n+q). Note that the measurement equation (28) is identical to (2). The process
state and fault parameters, namely, xa(k), can be estimated via the FAUKF.

Specifically, the set of sigma points X̃i (k−1)∈Rns×1, where 0�i�2ns, is now defined for
the enlarged state variable x̄s(k−1)= [xT

a (k−1) eTa (k−1) tT(k−1)]T, which has the dimension
ns =2(n+q)+m. In calculating these sigma points of (5), we now have x̃s(k−1)= [x̂T

a (k−
1) 01×(n+q) 01×m]T with x̂a(k−1) being the estimate of xa(k−1). Moreover, the enlarged error
covariance P̂s(k−1) of (8) becomes

P̂s(k−1)=

⎡⎢⎢⎣
P̂a(k−1) 0 0

0 Qa(k−1) 0

0 0 R(k−1)

⎤⎥⎥⎦∈Rns×ns (30)
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with P̂a(k−1)∈R(n+q)×(n+q) denoting the augmented state error covariance. Note that, for the
notational simplicity, we have kept the same notations ns, X̃i (k−1), x̄s(k−1), x̃s(k−1) and P̂s(k−
1), but their exact dimensions, as defined here, are clearly different from those given in Section 3.1.
The FAUKF for estimating the augmented state can now be summarized as follows.

(1) The predicted augmented state x̂a(k|k−1)∈R(n+q)×1, the unregulated augmented error
covariance P̂a(k|k−1)∈R(n+q)×(n+q) and the predicted output ŷ(k) are given by

X̂ai (k) = fa(X̃x
i (k−1),u(k−1))+X̃ε

i (k−1), (31)

x̂a(k|k−1) =
2ns∑
i=0

wi X̂ai (k), (32)

P̂a(k|k−1) =
2ns∑
i=0

wi (X̂ai (k)− x̂a(k|k−1))(X̂ai (k)− x̂a(k|k−1))T, (33)

ŷ(k) = Ha(k)x̂a(k|k−1), (34)

where X̃x
i (k−1)∈R(n+q)×1 consists of the first n+q elements of X̃i (k−1) and X̃ε

i (k−1)∈
R(n+q)×1 contains the (n+q +1)th to (2(n+q))th elements of X̃i (k−1), which should not
be confused with the notations defined after (11).

(2) The adaptive parameter �(k) is determined by

�(k)=max

{
tr[Pỹ(k)−�R(k)]

tr[Ha(k )̂Pa(k|k−1)HT
a ]

,1

}
, (35)

which is identical to (21), and the fuzzy-adaptive parameter �∗(k) is computed according

to (23). Then, the regulated augmented error covariance ̂̄Pa(k|k−1)∈R(n+q)×(n+q) is
obtained by ̂̄Pa(k|k−1)=�∗(k )̂Pa(k|k−1). (36)

(3) The augmented Kalman gain Ka(k)∈R(n+q)×m , the updated augmented state x̂a(k)∈
R(n+q)×1 and the augmented error covariance P̂a(k)∈R(n+q)×(n+q) are given by

Ka(k) = ̂̄Pa(k|k−1)HT
a (k)(Ha(k )̂P̄a(k|k−1)HT

a (k)+R(k))−1, (37)

x̂a(k) = x̂a(k|k−1)+Ka(k)(y(k)− ŷ(k)), (38)

P̂a(k) = ̂̄Pa(k|k−1)−Ka(k)(Ha(k )̂P̄a(k|k−1)HT
a (k)+R(k))KT

a (k). (39)

Given the estimate x̂a(kp)= [x̂T(kp) ĥ
T

(kp)]T obtained by the FAUKF, the future forecasted
outputs starting from kp can be made by assuming that the fault parameters remain constant for
the prediction horizon N , resulting the prediction equation for the state x(kp +i)

x̂(kp +i)= f(x̂(kp +i −1),u(kp +i −1))+ d̂(kp +i −1),

ŷ(kp +i)=H(kp +i)x̂(kp +i),
(40)

where 1�i�N , d̂(kp +i −1)=C(kp +i −1,k0)ĥ(kp), and ĥ(kp) is an estimate of h(kp).
Assume that a control limit for the output variable is set by considering the process demands

or based on the knowledge of the plant operation. If a prediction value violates this control limit,
a fault may exist, which indicates that, even if the current measurement lies inside the normal-
operating region, the measurement may violate the normal operation constraint at some time in the
future. Thus, warning can be made, and corrective actions can be taken at the present to prevent
the faults when they are still small. To explain this in a simpler and clearer way, take the univariate
case y(k)= y(k), for example, and assume that the control limit is Cy which has been appropriately
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chosen and is larger than the steady-state value of y(t). If the current measurement is y(kp)>Cy ,
then the control limit is violated and a fault is detected. If the measurement is y(kp)<Cy but the
future predictions, forecasted starting from kp, violates the control limit, i.e. ŷ(kp +i)>Cy for
some i�1, then a fault may exist at its initial stage and the future measurement at some point
y(kp +k f ) may violate the control limit. In this case, a fault warning should be signaled, and
corrective actions should be taken at the present. Through this process fault prognosis, faults may
be prevented when they are still small.

4. SIMULATION RESULTS

Two simulation examples, a second-order nonlinear system and a continuous stirred tank reactor
(CSTR), were used to compare the performance of the proposed FAUKF -based fault prognosis
method with that of the standard AUKF-based method.

4.1. State estimation for the second-order nonlinear system

Consider the nonlinear stochastic system given by Xiong et al. [24][
x1(k)

x2(k)

]
=
[

x1(k−1)+�x2(k−1)

x2(k−1)+�(−x1(k−1)+(x2
1(k−1)+x2

2(k−1)−1)x2(k−1))

]
+e(k), (41)

y(k) = x2(k)+
(k), (42)

where �=0.001, the covariance matrix of e(k) and the variance of 
(k) are Q(k)=0.0032I2 and
R(k)=0.0012, respectively. The initial conditions for the system were x1(0)=0.8 and x2(0)=0.2.
Monte–Carlo simulations were carried out for 50 times, yielding the 50 realizations of the state and
measurement trajectories. The standard UKF, the AUKF, and the FAUKF were used to estimate
the state. The initial conditions for the three filters were x̂1(0)=2.3, x̂2(0)=2.2 and P̂(0)=Q(0).
The regulation rate was restricted by setting 1��(k),�∗(k)�1.1, in order to guarantee the stability
of the AUKF algorithm. For the FAUKF, the probability distribution parameters were �=0 and
3	=0.1.

Define the root mean-squared error (RMSE) for the estimation of the state x1(k) as

RMSE(k)=
√

1

50

50∑
l=1

(x (l)
1 (k)− x̂ (l)

1 (k))2, (43)

where x (l)
1 (k) and x̂ (l)

1 (k) denote the actual and estimated states for the lth Monte–Carlo simulation,
respectively. Figure 2 plots the RMSE values of the first state estimation obtained by the three
algorithms. It can be seen from Figure 2 that both the AUKF and FAUKF achieved a similar
performance at the initial-convergence stage which was better than that for the UKF. However,
the RMSE(k) values from the FAUKF after the initial convergence were smaller than those from

Figure 2. RMSE comparison of the UKF, AUKF and FAUKF for the
simulated second-order nonlinear system.
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the AUKF, as can be seen clearly in Figure 2. This confirms that the FAUKF, while preserving
the strong tracking ability of the AUKF, reduced the tracking fluctuations in the regulated error
covariance matrix to a certain extent, leading to a better performance in the state estimation.

4.2. Process fault prognosis for the CSTR

The nonisothermal CSTR with a first-order irreversible reaction Ar → B and a cooling jacket to
remove heat was described by Juricek et al. [7]

dCA

d t
=−K0e− E

RT CA + F(CF −CA)

V
,

d T

d t
= (−�H )K0e− E

RT CA

�CP
+ F(TF −T )

V
+ U Aa(TJ −T )

V �CP
,

(44)

where Aa is the heat transfer area; CA is the concentration of reactant Ar; CF is the feed concen-
tration, 1 (mol/L); CP is the mass specific heat, 239 (J/(kgK)); E is the activation energy; F is
the feed flow rate, 100 (L/min); K0 is the frequency coefficient, 7.2×1010 (min−1); R is the gas
constant, and E/R is 8750 (K); T is the reactor temperature; TF is the feed temperature, 350 (K);
TJ is the coolant temperature, 309.9 (K); U is the overall heat transfer coefficient, and U Aa is
5×104 (J/(minK)); V is the volume, 100 (L); � is the density, 1 (kg/L); �H is the reaction
enthalpy, −5×104 (J/mol).

The state vector and the output vector were both defined to be [CA T ]T, while the input vector
was given by [TJ F]T. A list of process faults are given in Table I. The normal process and the
failure process were simulated with the sampling period of 0.2 min. All the faults occurred at
k =101. The augmented state vector was given by [CA T �1,0 �2,0 �1,s �2,s]T. The output T was
monitored with the control limit 393 K. The filter parameters are listed as follows:

Augmented process noise covariance: Qa(k)=diag{10−7,10−3,10−7,10−3,10−7,10−3};
Measurement noise covariance: R(k)=diag{10−6,0.04};
Initial covariance for filters: P̂a(0)=Qa(0); Regulation rate: 1��(k),�∗(k)�2;

Probability distribution parameters for the FAUKF: l= [0.1 383.78]T, R
1
2 =diag{0.002,0.46}.

A normalized squared prediction error was defined as

e2(k)=‖R− 1
2 (y(k)− ŷ(k))‖2

2 (45)

to compare the filters’ performance. Tracking errors e2(k) under the normal-operating condition
are shown in Figure 3 for 1�k�300, where it can be seen that the squared errors of the FAUKF
have smaller magnitudes than those of the AUKF. Regulation parameters �(k) and �∗(k) are plotted
in Figure 4. It can be seen from Figure 4 that, at most of the sampling times, �∗(k) was less than or
equal to �(k), and this had the desired effect of smoothing the regulation for the error covariance
under the normal status. The averaged normalized squared prediction error over K1�k�K2 was
defined as

ASE [K1, K2]= 1

K2 −K1 +1

K2∑
k=K1

e2(k) (46)

Table I. The fault settings for the CSTR.

No. Operating condition Description and size

Fault 1 Catalyst deactivation The ramp rate for E/R is +3 (K/min).
Fault 2 Ramp change in feed temperature The ramp rate for TF is +2 (K/min).
Fault 3 Ramp change in feed concentration The ramp rate for CF is +0.01 ((mol/L)/min).
Fault 4 Heat exchanger fouling The ramp rate for U Aa is −125 ((J/(minK))/min).
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Figure 3. Tracking errors under the normal-operating condition for the CSTR.

Figure 4. Regulation parameters under the normal-operating condition for the CSTR.

Table II. Comparison of the averaged normalized square prediction errors for the AUKF and FAUKF.

Operation status Operation mode ASE AUKF FAUKF

Normal Tracking ASE [1,300] 2.7232 2.3531
Forecasting ASE [301,350] 2.4403 2.2357
Forecasting ASE [302,351] 2.1163 2.0633
Forecasting ASE [303,352] 2.0779 2.0157

Fault 1 Tracking ASE [1,100] 2.1878 1.7999
Tracking ASE [101,200] 4.8968 4.0981

Fault 2 Tracking ASE [1,122] 2.8625 2.4133
Forecasting ASE [123,172] 5.3088 5.7559

Fault 3 Tracking ASE [1,122] 2.9277 2.6013
Forecasting ASE [123,172] 3.5814 2.3728

Fault 4 Tracking ASE [1,300] 2.9730 2.7833
Forecasting ASE [301,350] 3.3502 3.3502

The values of ASE [1,300] for the AUKF and FAUKF in tracking are compared in Table II.
The next 50 measurements were then forecasted starting at kp =300, 301, and 302, respectively,
and the associated ASE values for the AUKF and FAUKF are also listed in Table II, where it
can be seen that the ASE values produced by the AUKF were larger than those produced by
the FAUKF.

Fault 1 was the catalyst deactivation simulated as a ramp change in the activation energy, with
a ramp rate 3 K/min for E/R. The results obtained under Fault 1 operating condition are shown
in Figure 5. The outputs were tracked during the period of k =101 to 401, and the forecasts of
the next fifty measurements were made starting at kp =401. As the fault grew up, the outputs
increased slowly and then jumped to the neighborhood of a new steady-state point near k =300.
The estimation from the UKF had the overshoot when tracking the large-amplitude change at
k =300 to 320, as can be seen from Figure 5. Although the estimation of the concentration CA
by the UKF at k =401 was accurate, its future predictions had large errors. Moreover, for the
neighborhood of the new steady-state point, the temperature T was tracked by the UKF with large

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2011; 25:813–830
DOI: 10.1002/acs



PROCESS FAULT PROGNOSIS 825

Figure 5. Tracking and forecasting results under Fault 1 operating condition for the CSTR.

Figure 6. Tracking errors under the normal and initial Fault 1 operating conditions for the CSTR.

errors, and the future predictions by the UKF starting at kp =401 were very poor. The AUKF
and FAUKF could track changes more quickly and accurately, as clearly seen in Figure 5. The
tracking errors obtained by the AUKF and FAUKF for the normal-operating stage (k =1 to 100)
and the initial failure stage (k =101 to 200) are depicted in Figure 6. After the fault occurred at
k =101, the squared prediction error increased sharply and then decreased quickly again, which
indicated that both the AUKF and FAUKF could capture the process change from the normal state
to a failure state quickly. The values of ASE [1,100] and ASE [101,200] obtained by the AUKF
and FAUKF are also listed in Table II. It can be seen that the FAUKF produced smaller errors
than the AUKF. Figure 7 depicts the regulating parameters �(k) and �∗(k). It is interesting to see
that, under the normal-operating condition, �∗(k) was smaller than �(k), while at the initial failure
stage, �∗(k) started to catch up �(k) quickly. As the fault grew up, �∗(k) was almost equal to �(k).
This confirms that the FAUKF only softens the regulation under the normal-operating state.

Fault 2 was a 2 K/min ramp change in the feed temperature TF, and the results obtained under
this failure status are shown in Figures 8 and 9. Specifically, the outputs were tracked during the
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Figure 7. Regulation parameters under the normal and Fault 1 operating conditions for the CSTR.

Figure 8. Tracking and future forecasting results under Fault 2 operating condition for the CSTR, where
the period of k =1 to 100 is the normal-operating period.

Figure 9. Regulation parameters under the normal and Fault 2 operating conditions for the CSTR.

period of k =1 to 122, and the forecasts of the next 50 measurements were made starting from
kp =122. Figure 8 shows that the forecasted temperature T values increased continuously and
consequentially violated the control limit. Note that the actually observed process data violated
the control limit at k =151. Since the forecasts generated at kp =122 signaled the violation of
the control limit, the predictor was able to signal this future violation �k =151−122=29 sample-
time ahead. From Figure 9, it is again seen that under the normal-operating condition, �∗(k) was
smaller than �(k), while when the fault occurred at k =101, �∗(k) caught up with �(k) quickly. The
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Figure 10. Tracking and future forecasting results under Fault 3 operating condition for the CSTR, where
the period of k =1 to 100 is the normal-operating period.

Figure 11. Regulation parameters under the normal and Fault 3 operating conditions for the CSTR.

tracking ASE [1,122] and the forecasting ASE [123,172] obtained by the AUKF and FAUKF are
compared in Table II. This was the only case that the forecasting error of the FAUKF was larger
than that of the AUKF.

The results obtained under Fault 3 condition, which was a 0.01 (mol/L)/min ramp change in
the feed concentration CF, are plotted in Figures 10 and 11. In this case, the outputs were tracked
during the k =1 to 122 samples, and the forecasts of the next 50 measurements were made starting
from kp =122. Figure 10 shows that the forecasted temperature T values violated the control
limit. Since the actual process data violated the control limit at k =154, the predictor signaled
the future violation in the �k =32 samples ahead. The same relationship between �(k) and �∗(k)
during the normal- and failure-operating conditions can be observed from Figure 11. The tracking
error ASE [1,122] and the forecasting error ASE [123,172] obtained by the AUKF and FAUKF
are listed in Table II.

Fault 4 was the heat exchanger fouling simulated as a ramp change in the heat transfer coefficient.
The ramp rate for U Aa was −125 (J/(min K))/min. The tracking and future forecasting results are
illustrated in Figures 12 and 13. In this case, the outputs were tracked for the duration of k =201 to
300, and the forecasts of the next 50 measurements were made starting from kp =300. Figure 12
shows that forecasted temperature T values violated the control limit. Since the actual process data
violated this limit at k =325, the predictor signaled the future violation �k =25 samples ahead.
Again the result of Figure 13 confirms that the FAUKF only softens the regulation under the
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Figure 12. Tracking and future forecasting results under Fault 4 operating condition for the CSTR.

Figure 13. Regulation parameters under the normal and Fault 4 operating conditions for the CSTR.

normal-operating state. The tracking error ASE [1,300] and the forecasting error ASE [301,350]
obtained by the AUKF and FAUKF are also compared in Table II.

5. CONCLUSIONS

A fuzzy-adaptive unscented Kalman predictor has been proposed for nonlinear process fault prog-
nosis. Our motivation for this FAUKF is based on the observation that the standard UKF has a
weak tracking ability, which can influence its future forecasting performance, while the adaptive
UKF with the property of STF can capture process changes quickly but may introduce unneces-
sary regulation. It has been shown that the FAUKF guarantees the strong tracking ability, while
softening unnecessary regulation. The FAUKF-based predictor can forecast the future process
output accurately and provides early fault alarm. Two examples have been used to demonstrate
the effectiveness of the proposed FAUKF predictor for process fault prognosis.
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