Abstract Submitted to the International Conference on Quantum Information Processing and Communication (QIPC) 2011

Design and fabrication of single electron spin qubits in lithographically defined silicon quantum dots

Y. P. Lin¹, M. K. Husain¹, F. M. Alkhalil¹, H. M. H. Chong¹, A. J. Ferguson², H. Mizuta¹³

¹School of Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ U.K.

²Microelectronics Research Centre, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE U.K.

³School of Material Science, JAIST, Nomi, Ishikawa, 923-1292, Japan

Electron spins in Si quantum dots (QDs) provide an attractive alternative to their GaAs conterparts due to their much longer spin relaxation times[1]. We realise a pair of SOI-based double quantum dot (DQD) transistors facing each other with only a 50nm separation via E-Beam lithography and high resolution HSQ resist. A VLSI compatible fabrication process is implemented allowing for future scalability in quantum systems. We propose a new method of single electron detection verified by Monte-Carlo based simulations making use of the periodicity in the charge stability diagram of a DQD.

[1] C. B. Simmions et al., Phys. Rev. Lett. 106, 156804 (2011).

	Invited Talk	Yun Peng Lin
	Prefer Contributed Oral Presentation	ypl1g10@ecs.soton.ac.uk
X	Prefer Poster Presentation	

Topic: Charges and spins