

**Abstract Submitted to the International Conference on
Quantum Information Processing and Communication (QIPC) 2011**

**Realization of an integrated double spin qubit device on
ultra-thin Silicon-on-insulator**

F. Alkhail¹, M. K. Husain¹, H. M. H. Chong¹, Y. Tsuchiya¹, A. Ferguson²,
H. Mizuta¹

¹School of Electronics and Computer Science, University of Southampton, SO17
1BJ, Southampton, United Kingdom.

²Microelectronics Group, Cavendish Laboratory, University of Cambridge, CB3
0HE, Cambridge, United Kingdom.

This work presents a Si-based double spin qubit device integrated with a single electron electrometer and a u-ESR. Structural design and analysis was performed using 3D FEM simulations, dynamical analysis of single electron turnstile operation is demonstrated using Monte Carlo single electron simulations [1]. The spin qubits and the electrometer are realized as SOI nanowires (NWs) with an upper metal gate, which induces an inversion layer in the NW channels, and multiple lower Poly-Si control gates to enable single electron turnstile operations. The device was successfully fabricated using e-beam lithography with subsequent pattern transfer by deposition and dry etching.

[1] F. Alkhail *et al.*, *ESSDERC/ESSCIRC Fringe*, Seville, (2010).

Invited Talk

Prefer Contributed Oral Presentation

Prefer Poster Presentation

Feras Alkhail

fma1g08@ecs.soton.ac.uk

Topic: Charges and spins