

SemSorGrid4Env

FP7-223913

Deliverable

D5.2v2

Implementation and Deployment of a Library of

the High-level Application Programming

Interfaces

Alex J. Frazer (Editor), David De Roure, Kirk

Martinez, and Bart Nagel, Kevin R. Page and

Jason Sadler

University of Southampton

24/02/2011

<Status: Final>

<Scheduled Delivery Date: 28/02/2011>

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces i

Executive Summary
This deliverable presents the completed implementation of the SemsorGrid4Env high-
level Application Programming Interface (HLAPI) to sensor observation data, both
from sensor measurement databases and through the SemsorGrid4Env architecture.

The high-level API service is designed to support rapid development of thin web
applications and mashups beyond the state of the art in GIS, while maintaining
compatibility with existing tools and expectations. It provides a fully configurable API,
while maintaining a separation of concerns between domain experts, service
administrators and mashup developers. It adheres to REST and Linked Data principles,
and provides a novel bridge between standards-based (OGC O&M) and Semantic Web
approaches.

This document discusses the background motivations for the HLAPI (including
experiences gained from any previously implemented versions), before moving onto
specific details of the final implementation, including configuration and deployment
instructions, as well as a full tutorial to assist mashup developers with using the exposed
observation data.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces ii

Note on Sources and Original Contributions

The SemSorGrid4Env consortium is an inter-disciplinary team, and in order to make
deliverables self-contained and comprehensible to all partners, some deliverables thus
necessarily include state-of-the-art surveys and associated critical assessment. Where
there is no advantage to recreating such materials from first principles, partners follow
standard scientific practice and occasionally make use of their own pre-existing
intellectual property in such sections. In the interests of transparency, we here identify
the main sources of such pre-existing materials in this deliverable:

• Several sections build upon experience and details from prior deliverables including
[D5.1], [D5.2v1] and [D7.4v1].

• Additional diagrams are taken from [D1.3v1], [D4.3v2] and [D5.2v1], and are cited
accordingly in the main text.

• We also include material previously published as [Pag2009] in chapter 2.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces iii

Document Information

Contract Number FP7-223913 Acronym SemSorGrid4Env

Full title SemSorGrid4Env: Semantic Sensor Grids for Rapid Application Development for
Environmental Management

Project URL www.semsorgrid4env.eu

Document URL

EU Project officer Antonios Barbas

Deliverable Number D5.2v2 Name Implementation and Deployment of a Library of the High-

level Application Programming Interfaces

Task Number 5.2 Name Implement and deploy a library of the High-level
Application Programming Interfaces

Work package Number WP5

Date of delivery Contractual 28/02/2011 Actual 28/02/2011

Code name D5.2v2 Status draft  final 

Nature Prototype  Report  Specification  Tool  Other 

Distribution Type Public  Restricted  Consortium 

Authoring Partner SOTON

QA Partner UNIMAN

Kirk Martinez Contact Person

Email km@ecs.soton.ac.uk Phone +44 2380 594491 Fax +44 2380 592865

Abstract
(for dissemination)

The high-level API service is designed to support rapid development of thin web applications
and mashups beyond the state of the art in GIS, while maintaining compatibility with existing
tools and expectations. It provides a fully configurable API, while maintaining a separation of
concerns between domain experts, service administrators and mashup developers. It
adheres to REST and Linked Data principles, and provides a novel bridge between
standards-based (OGC O&M) and Semantic Web approaches.
This document discusses the background motivations for the HLAPI (including experiences
gained from any previously implemented versions), before moving onto specific details of the
final implementation, including configuration and deployment instructions, as well as a full
tutorial to assist mashup developers with using the exposed observation data.

Keywords HLAPI, REST, Linked Data, Mashups, Sensor Networks

Version log/Date Change Author

0.1 / 21/01/2011 Initial document planning A. Frazer, R. R. Page

0.2 / 14/02/2011 Import from 5.2v1 A. Frazer, K. R. Page

0.3 / 14/02/2011 Skeleton outline for new sections A. Frazer

0.31 / 14/02/2011 Revised skeleton, added text K. R. Page

0.4 / 16/02/2011 Added text A. Frazer

0.5 / 17/02/2011 Added diagrams A. Frazer

0.6 / 18/02/2011 Revised structure K. R. Page

0.9 / 19/02/2011 Final document for QA submission A. Frazer

1.0 / 24/02/2011 Final document for submission A. Frazer

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces iv

Project Information

This document is part of a research project funded by the IST Programme of the
Commission of the European Communities as project number FP7-223913. The
Beneficiaries in this project are:

Partner Acronym Contact

Universidad Politécnica de Madrid
(Coordinator)

UPM

Prof. Dr. Asunción Gómez-Pérez
Facultad de Informática
Departamento de Inteligencia Artificial
Campus de Montegancedo, sn
Boadilla del Monte 28660
Spain
#e asun@fi.upm.es
#t +34-91 336-7439, #f +34-91 352-4819

The University of Manchester UNIMAN

Prof Norman Paton
Department of Computer Science
The University of Manchester
Oxford Road
Manchester, M13 9PL, United Kingdom
#e npaton@cs.man.ac.uk
#t +44-161-275 69 10, #f +44-161-275 62 04

National and Kapodistrian University of
Athens

NKUA

Prof. Manolis Koubarakis
University Campus, Ilissia
Athina
GR-15784 Greece
#@ koubarak@di.uoa.gr
#t +30 210 7275213, #f +30 210 7275214

University of Southampton SOTON

Prof. David De Roure
University Road
Southampton
SO17 1BJ United Kingdom
#@ dder@ecs.soton.ac.uk
#t +44 23 80592418, #f +44 23 80595499

Deimos Space, S.L. DMS

Mr. Agustín Izquierdo
Ronda de Poniente 19, Edif. Fiteni VI, P 2, 2º
Tres Cantos, Madrid – 28760 Spain
#@agustin.izquierdo@deimos-space.com
#t +34-91-8063450, #f +34-91-806-34-51

EMU Limited EMU

Dr. Bruce Tomlinson
Mill Court, The Sawmills, Durley number 1
Southampton, SO32 2EJ – United Kingdom
#@ bruce.tomlinson@emulimited.com
#t +44 1489 860050, #f +44 1489 860051

TechIdeas Asesores Tecnológicos, S.L. TI

Dr. Jesús E. Gabaldón
C/ Marie Curie 8-14
08042 Barcelona, Spain
#@ jesus.gabaldon@techideas.es
#t +34.93.291.77.27, #f ++34.93.291.76.00

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces v

Table of Contents

1.	
 Introduction...2	

1.1.	
 System objectives ..2	

1.2.	
 Document Outline ...2	

1.2.1.	
 Changes since D5.2v1..3	

2.	
 High-level API background and motivation...4	

2.1.	
 HLAPIs for Observation Data ...4	

2.1.1.	
 REST and Linked Data Principles ...4	

2.2.	
 Requirements...5	

2.2.1.	
 Input requirements ...5	

2.2.2.	
 Output requirements...7	

2.3.	
 Previous Deployments and Prototypes..8	

2.3.1.	
 CCO HLAPI v.1...8	

2.3.2.	
 App Tier v.1 ...9	

2.3.3.	
 Evolution of the HLAPI service...10	

3.	
 HLAPI Service Design and Implementation ..12	

3.1.	
 System Design...12	

3.1.1.	
 Use case diagrams..14	

3.1.2.	
 Interaction diagrams...16	

3.2.	
 System implementation ...18	

3.2.1.	
 HLAPI configuration ...18	

3.3.	
 Configuring the HLAPI Service..21	

3.3.1.	
 MySQL Proxy ..21	

3.3.2.	
 Ontology Mapping ...23	

3.3.3.	
 API Configuration..23	

3.3.4.	
 WFS coordinate mapping...24	

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces vi

3.4.	
 Using the HLAPI...25	

4.	
 Source Code..26	

4.1.	
 Code Structure ...26	

4.2.	
 External application dependencies ..26	

4.3.	
 Configuration files...27	

4.4.	
 Additional Scripts..27	

5.	
 Source Data...28	

5.1.	
 CCO Data ..28	

5.2.	
 SemsorGrid4Env Integration Query Service...28	

6.	
 Installation and Execution ..29	

6.1.	
 Setup..29	

6.1.1.	
 Requirements ...29	

6.1.2.	
 Configuration ...29	

6.2.	
 Compiling and Running ..30	

7.	
 Test Strategy ...31	

7.1.	
 Unit Testing ...31	

7.2.	
 Integration Testing ..31	

Appendix A: Example Mapping Files ...32	

Ontology mapping ...32	

Folkestone air pressure ..32	

Rhyl Flats mean wave height ..32	

API configuration ..33	

WFS coordinate substitutions ..34	

Appendix B: Mashup Development Tutorial...36	

Scripting language and libraries ..36	

Displaying a map of all wave height sensors...37	

Getting the day's wave height readings and the sensor metadata ..37	

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces vii

Visualising the data..39	

Fetching related data from other data sources ...40	

Finished mashup ..42	

References ..43	

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 1

Glossary

API Application Programming Interface

CCO Channel Coastal Observatory

GeoJSON Geographic JavaScript Object Notation

GIS Geographic Information System

GML Geography Markup Language

HTTP Hypertext Transfer Protocol

IQS Integration Query Service

JSON JavaScript Object Notation

O&M Observations and Measurements

OGC Open Geospatial Consortium

OWL Web Ontology Language

REST Representational State Transfer

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

WFS Web Feature Service

XML Extensible Markup Language

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 2

1. Introduction	

The software forming this deliverable is a configurable, reusable service for exposing
observations through a High-level API (HLAPI). This includes a documented worked
example of exposing the CCO sensor data network as a High-level API.

In this section, we briefly outline the system objectives for the final version of the
HLAPI engine, before providing an overview of the document structure.

1.1. System	
 objectives	

The objectives for the final version of the SemsorGrid4Env High-level API engine are
to:

• Support developers with lightweight, self-descriptive HLAPIs

o Enable them to quickly build bespoke applications using data in new and
previously unforseen ways

• Support data publishers with a configurable API

o Allow data to be capturing and linked to domain models

o Establish a separation of concerns and expertise between the system
administrator, domain expert, and Web application developer

• Integrate with SemsorGrid4Env architecture

1.2. Document	
 Outline	

The document begins with a theoretical background and motivation section, where we
discuss the principles on which the current HLAPI engine is based. This includes a
review of the previous two SemsorGrid4Env HLAPI implementations, and how their
corresponding strengths and weaknesses informed the design of the current HLAPI
engine.

This is followed by a discussion of the specific implementation details of the current
HLAPI engine, including Use Case and Interaction diagrams for both database- and
architecture-driven Use Cases. An overview of the mapping and configuration files used
by the HLAPI engine is presented, along with a per-component breakdown of the
HLAPI engine itself. The section concludes with an example configuration for setting
up and using the HLAPI engine with the CCO sensor network database.

The available source code and dependencies are described next, followed by details of
the sample source data used in the HLAPI engine’s development. Specific compilation,
configuration and installation instructions are given, along with Appendices containing
example mapping and configuration files, as well as a tutorial for including the HLAPI
observation serialisations in a mashup Web application.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 3

1.2.1. Changes	
 since	
 D5.2v1	

The principle change since D5.2v1 is the development of a generalised service to
provide High-Level APIs of Observation data (detailed in Section 3). Changes to the
HLAPI engine since the original CCO HLAPI implementation described in D5.2v1 are
discussed in Section 2.3.1, while changes made since the v.1 application tier libraries
introduced in D7.4v1 are discussed in Section 2.3.2.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 4

2. High-­level	
 API	
 background	
 and	
 motivation	

In this chapter we briefly discuss the underlying principles and practices of our
approach to developing the high-level API (HLAPI).

We begin with an overview of the REST and Linked Data principles on which the
HLAPI is built, followed by discussion of the various serialised file formats produced
by the HLAPI engine and the method of negotiating between them. Previous versions of
SemsorGrid4Env REST interfaces are then considered, highlighting the experiences
gained from their development with respect to the current HLAPI engine.

2.1. HLAPIs	
 for	
 Observation	
 Data	

2.1.1. REST	
 and	
 Linked	
 Data	
 Principles	

In [D5.1] we outlined our motivation in developing a REST interface for
SemSorGrid4Env: principally in support of domain developers1 to provide for rapid
development of thin applications (web applications and mashups) such as those
identified in [D7.1].

To briefly recap, the key principles of REST [Fie2000] are:

• Everything is a resource which is addressable
• Resources have multiple representations
• Relationships between resources are expressed through hyperlinks
• All resources share a common interface with a limited set of operations
• Client server communication is stateless

While a RESTful approach is key to enabling web applications and mashups, we must
also remember that the users of our API are domain developers and that a rich body of
GIS tools and standards (primarily OGC based) are in use that our API must co-exist, if
not integrate, with.

Finally, SemSorGrid4Env seeks a semantic solution, and our approach in this regard is
to provide Linked Data (as previewed in [D5.1]) through the high-level API. In the
same way that REST identifies and emphasises the defining aspects of web architecture
for the document web, so Linked Data prioritises web architecture on the semantic web
through four basic design principles [Ber2006]:

1. Use URIs as names for things
2. Use HTTP URIs so that people can look up those names

1 We distinguish between domain users and domain developers. In the example of the Flood Use case
(WP7) the domain users are those who use the web applications and mashups, such as the emergency
planning and decision support web applications described in [D7.1]. Domain developers are users of the
high-level API: those who build the web applications and mashups using the high-level API which will
then be used by the domain users.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 5

3. When someone looks up a URI, provide useful information, using the standards
(RDF, SPARQL)

4. Include links to other URIs, so that they can discover more things.

While the use of URIs is common throughout the Semantic Web - not least as the basic
element of RDF - the requirement to use HTTP URIs sets Linked Data deployment
apart. It is a departure from the use of URIs purely as unique identifiers within the
graph; in Linked Data they are also a means of retrieving parts of the graph relevant to
that resource - the URIs can be dereferenced. The mechanism by which appropriate
representations are dereferenced from a URI is detailed in [Pag2009], and explained in
the context of the HLAPI in section 2.2.2.

2.2. Requirements	

2.2.1. Input	
 requirements	

With respect to the SemsorGrid4Env project, there are two required inputs that the
HLAPI engine must be able to expose: data stored in sensor measurement databases,
and any data exposed through the SemsorGrid4Env architecture.

2.2.1.1. Sensor measurements databases
The HLAPI engine needs to be able to translate any stored data representation of sensor
readings into the observation model – the ontology developed as part of the
SemsorGrid4Env project to express details of observed measurements, and the devices
used to measure them (presented in [D4.3v2]). The elements that ultimately make up
this observation could be stored in any number of database configurations. Therefore, a
configurable mapping is required in order to deal with the unpredictable nature of these
data structures.

The CCO stored data service is an example of a sensor measurement database. The
CCO stored data service records various observed properties (e.g. wave height, wind
speed, air temperature) from a number of different sensing platforms around the south
coast of England. A separate database table represents each sensing platform, and each
row of a table represents the set of all measurements recorded by the sensing platform at
a given time.

Figure 1 – Structure of the CCO database, highlighting corresponding elements of the observation model

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 6

The “Wunderground” weather database is another example of stored sensor network
data, containing weather data scraped from the “Weather Underground”
(http://www.wunderground.com) website at regular intervals. The HLAPI is also
able to transform readings from these databases (i.e. a given measurement from a given
time instant for a given sensor) into the observation model, before serialising the output
to a configurable location.

2.2.1.2. SemSorGrid4Env architecture streaming data sources

Figure 2 – The SemsorGrid4Env architecture (From [D1.3v1])

The SemsorGrid4Env architecture (represented in Figure 2) allows clients to specify
one or more streaming data sources to be integrated into a single resource, and provides
interfaces for clients to request the data produced by this resource. The interfaces that
can be exposed by a Streaming Data Service are shown in Figure 3. By importing data
from the architecture through these interfaces, the HLAPI engine will effectively be
able to expose the data sources as a configurable high-level API.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 7

Figure 3 – Interfaces to the Streaming Data Service (from [D1.3v1])

2.2.2. Output	
 requirements	

As discussed in Section 2.1, the HLAPI engine should present its output as Linked Data,
following REST principles. To meet this requirement, the HLAPI engine outputs
observation content in two main ways: as RDF triples contained in a 4Store RDF
database, and as serialised RDF/XML, O&M GML, WFS GML and HTML files, made
accessible through a Web server.

RDF/XML is the most common way to represent semantic data on the Web, and as such
is most likely to be useful in creating semantic mashups – joining multiple semantic
datasets together through one or more inferred relationships. Domain developers can
use this RDF/XML content to infer new relationships, joining datasets together in order
to use them in ways not originally foreseen by their creators. O&M GML [OGC-OM]
and WFS GML [OGC-WFS] are typically used in GIS applications. By serialising these
formats, domain developers can expose observations data through the tools most
familiar to domain users. The HTML Representations will typically be used when any
user attempts to access an observation URI through a Web browser, providing a human-
readable version of the content from an observation.

Each of the different serialised observation representations is an information resource,
that is, they each contain information about a particular observation. If more than one of
these information resources contains a representation of exactly the same information,
they can be grouped under a common information resource. This resource implies that
all information resources beneath it represent the same information.

Different information resources and common information resources that represent
different information about the same observation can all be linked through a non-
information resource: a URI representing the observation itself. In this way, if the non-
information resource for a particular observation is known, any of the information
resources associated with it can be negotiated, as in Figure 4.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 8

Figure 4 – Content Negotiation between different Information Resources, through a Non-Information
Resource and a Common Information Resource (from [D5.2v1])

The main benefit of the 4Store implementation over, for example, the serialised
RDF/XML content, is its provision of a searchable data endpoint. When incorporating
RDF/XML file content into a Webapp, the user must know the location of the required
file (and, indeed, that it even exists at all) before the file content can be used. When
using the 4Store endpoint, the user can construct a query using the SPARQL query
language in order to retrieve RDF data based on its content, rather than its location on
the Web.

2.3. Previous	
 Deployments	
 and	
 Prototypes	

2.3.1. CCO	
 HLAPI	
 v.1	

The CCO Linked Data REST API takes observations from the CCO database, and
exposes them over the Web as RESTful resources. While superficially similar to the
outputs of the current HLAPI engine, there are some important differences.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 9

Figure 5 – The CCO HLAPI architecture (from [D5.2v1])

In the current HLAPI engine, a canonical RDF representation is created first, and used
to generate the other output formats appropriately. As such, all serialised representations
are semantically consistent, and any changes to the underlying RDF will continue to
generate valid serialised outputs. In the CCO REST API, an existing GML
representation was taken as the canonical representation from which all other
serialisations were derived. Because this implementation effectively templated higher-
information level resources from an initial lower-information level resource, changes to
the GML representation could cause the other representations to change without
considering the specifics of each particular format. This could result in different
information resource representations for a particular observation no longer being
semantically consistent.

In addition, the current HLAPI provides a search interface in the form of a 4Store
SPARQL endpoint. The CCO API had no comparable search interface, preventing
domain developers from discovering observations based on their semantic content,
forcing them instead to rely on the implied semantics of the resource URIs to discover
content.

2.3.2. App	
 Tier	
 v.1	

The SemsorGrid4Env Application Tier (App Tier) libraries allowed domain developers
to interact with the SemsorGrid4Env architecture and registry services, in order to
produce RESTful resources for inclusion in Web applications. The libraries were
exposed via two Java Web servlets: one to query the registry, the other to query the
architecture.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 10

Figure 6 – The App-tier libraries interaction with the SSG4E Registry and IQS components

Domain developers first send a SPARQL query through the registry servlet to discover
an architecture source offering the required data. A second query is then sent to an
application to poll the discovered architecture service and write the data into a
GeoJSON file on the Web server. The URL of this file is returned to the domain
developer, to allow the file content to be included in a Webapp. The polling application
continues to update the content of the file as long as the architecture continues to
produce new data.

Unlike the CCO REST API, this implementation allows domain developers to search
for data based on its content, using a SPARQL query interface. However, while the
domain developer who constructed the initial request is able to make semantic
inferences before initialising the serialised output, this is not true for future developers
wishing to use any existing serialised output in novel ways. Because the output is only
represented in the GeoJSON format, no further semantic reasoning can be performed on
content within these outputs. This point is exacerbated by the lack of API
configurability, as this prevents the encoding of any semantics in the representation
URIs.

2.3.3. Evolution	
 of	
 the	
 HLAPI	
 service	

In moving towards a final design for version 2 of the HLAPI engine, the previous
implementations’ strengths were combined with further measures to overcome their
weaknesses. The previous CCO HLAPI implemented several of the version 2 design
requirements, outputting observation measurements as Linked Data, in the form of
RESTful resources. In addition, its output was driven by the CCO dataset – a useful
example of the kind of generic sensor measurement database that the version 2 HLAPI
engine must expose.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 11

Figure 7 – Pros and cons of previous HLAPI versions, combining to inform the current version

The Application Tier libraries fulfilled the requirement to interface with the
SemsorGrid4Env architecture, and to support streaming data sources through this
architecture. All of these strengths were combined with support for generic observation
data sources, and the separation of user concerns when configuring the engine’s input
data and output APIs, to arrive at the final design for the version 2 HLAPI engine (see
Figure 7).

In the next section, we describe how the requirements and experiences examined in this
section have informed the design of the HLAPI service.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 12

3. HLAPI	
 Service	
 Design	
 and	
 Implementation	

In this section, we present a broad overview of the HLAPI system, before providing a
breakdown of the individual HLAPI engine components. This is followed by an
example configuration of the HLAPI engine to expose data from the CCO sensor
network, and a tutorial for domain developers to use the serialised outputs in mashup
development.

3.1. System	
 Design	

Figure 8 – System overview of the new HLAPI engine

The HLAPI system has been designed to expose the general HLAPI design for generic
data sources, as described in Section 2 of this document, as well as [Pag2009]. To
achieve this, and achieve tractable configurability, incoming data is transformed into a
known observation model (see Figure 9). When data arrives in the system – either
through a database insert, or through the SemsorGrid4Env architecture – the
corresponding event trigger is activated, and determines what to do with the data. If the
data represents an observation that we wish to serialise, the event trigger sends the data
to the Processor to be turned into an RDF representation of an observation. If the data
does not represent an observation, it is ignored. The generated RDF observation forms
the canonical representation of the observation, as it is the most flexible and fully
featured representation. All other serialised outputs are lower-information
representations, and are therefore derived from the RDF.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 13

Figure 9 – The SemsorGrid4Env Observation model (from [D4.3v2])

The outputs to be serialised are determined using the API configuration file. This file
defines the observation collections that the current observation should appear in, the
formats in which to serialise them, and what the corresponding URIs should be. This
configuration file is kept separate from the ontology mapping file, in order to separate
the administrative concerns of different users; a domain expert is able to configure the
mapping of the data source into the observation model, while the system administrator
is able to handle to configuration of the exposed APIs.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 14

3.1.1. Use	
 case	
 diagrams	

3.1.1.1. Sensor measurement databases

Figure 10 – Use Case diagram for HLAPI based on sensor measurement databases

When using the HLAPI engine to serialise data from a sensor measurement database,
configuration concerns can be split between the domain expert and the service
administrator. The domain expert is responsible for defining the mapping between the
database structure and the observation model. Separately, the service administrator is
responsible for defining the API configuration, to determine the format of the exposed
APIs. The APIs exposed by this configuration are then used by mashup developers to
populate Web applications for end users to interact with.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 15

3.1.1.2. SemSorGrid4Env architecture streaming data sources

Figure 11 – Use Case diagram for HLAPI based on SSG4E architecture trigger

When serialising data from the SemsorGrid4Env architecture through the HLAPI
engine, configuration concerns are once again separated between the service
administrator and the domain expert. Here, the domain expert writes two different
ontology mappings: one for the HLAPI engine, and one for the architecture streaming
data source. In this case, the streaming data source is accessed via the Integration Query
Service (IQS) component. The IQS allows a client to pose a semantic query, before
returning an integrated data source from which the client can request results. The IQS is
discussed further in Section 5.2. The service administrator is able to send the
appropriate semantic query to the architecture, which generates a property document
describing the service. This document is used to generate a stub configuration file,
which the administrator can use to generate an API configuration file similar to the one

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 16

used in the sensor database implementation. Once more, the mashup developer is only
concerned with the serialised outputs generated by the HLAPI engine, accessing these
APIs to populate Web applications.

3.1.2. Interaction	
 diagrams	

3.1.2.1. Sensor measurement databases

Figure 12 – Interaction diagram for HLAPI based on sensor measurement database

As an INSERT statement in sent to the database and caught by MySQL Proxy, it is sent
to the TriggerHandler, which splits any multiple inserts into individual queries before
sending each one to the DBInsertTrigger. Here, the data is checked against the ontology
mapping file, to determine whether it is an observation we want to expose. If so, the
query is sent to the Processor to be turned into an observation RDF graph. The
observation is sent to the URIMinter where the API configuration document is used to
generate the URIs used to output the intended APIs. Finally, the observation and the
corresponding list of URIs are sent to the Serialiser (see section 3.1.2.3 below).

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 17

3.1.2.2. SemSorGrid4Env architecture streaming data sources

Figure 13 – Interaction diagram for HLAPI based on SSG4E architecture trigger

Interactions with the SSG4E architecture begin by sending a SPARQL query to the IQS,
through a setup tool. The IQS returns a property document and an integrated resource
ID to this setup tool, which in turn generates a skeleton API configuration file for the
service administrator. This skeleton is completed and sent to the URIMinter for later
use. Next, the IQSPoller is started, polling the IQS periodically for new observation
data. When observation data is returned, it is sent to the URIMinter (as in the case of
sensor measurement database data), before being sent to the Serialiser where the output
files are serialised.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 18

3.1.2.3. Observation serialisation

Figure 14 – Interaction diagram for showing HLAPI output serialisation

Once an observation and its corresponding set up URIs is received by the Serialiser, if
first checks whether the observation exists in the 4Store database. If it does, serialisation
is halted to prevent duplications. If the observation does not exist in the 4Store, it is
inserted, and the output formats specified by the API configuration file are written to the
appropriate place on disk.

3.2. System	
 implementation	

3.2.1. HLAPI	
 configuration	

The HLAPI engine requires two main configuration files: the ontology mapping file and
the API configuration file.

3.2.1.1. Ontology mapping

The ontology mapping file is used to translate between database sources and the
observation model, in accordance with the observation ontology. It does so by mapping
database features (row data, table names, column headings) onto classes that form part
of an observation. The domain mapping file is written in the “Turtle” RDF syntax, itself
a subset of the “Notation 3” syntax. In the these files, ClassMap objects are used to
represent classes from the target ontology:

map:Folkestone_met_Air_pressure a d2rq:ClassMap;
 d2rq:dataStorage map:database;
 d2rq:class obs:observation;
 d2rq:classDefinitionLabel "observation";
.

For each ClassMap, a number of PropertyBridges are used to express ontology
properties of the classes the ClassMap represents. In this example, the d2rq:property
predicate shows that the PropertyBridge represents the time:hasBeginning
property of its parent ClassMap, while the d2rq:timestamp variable informs the
HLAPI engine how to construct the value of this property:

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 19

map:Folkestone_met_Air_pressure_dateTimeBeginning a
d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:Folkestone_met_Air_pressure;
 d2rq:property time:hasBeginning;
 d2rq:belongsToPropertyBridge

 map:Folkestone_met_Air_pressure_timeInterval;
 d2rq:timestamp "envdata_Folkestone_met.0";
 .

While the mapping file format is based on the D2RQ mapping file format, several
important changes have been made. D2RQ offered no provision for converting a single
database row into multiple instances of the same RDF class. For example, if a database
row contains readings for several different observed properties, it would not be possible
to convert this data into several different corresponding observations using D2RQ. This
is partially overcome by allowing the HLAPI engine to process different ClassMaps
that map to the same ontology class gracefully. To fully overcome this problem, the
d2rq:belongsToPropertyBridge property was added, to allow assertion of relational
semantics that are not necessarily expressed by the database structure:

d2rq:belongsToPropertyBridge
 map:Folkestone_met_Air_pressure_timeInterval;

In addition, the event-driven nature of the HLAPI engine required further modification
of the mapping language. Features of the database structure, such as column headings
and database table names are sometimes useful in determining whether the data being
inserted is of interest when deciding whether to serialise an observation. Furthermore,
while these values are useful for triggering events, they are not necessarily complete
enough for inclusion in the final RDF observation. To overcome the first issue,
d2rq:columnHeading and d2rq:tableName were created, allowing the HLAPI
engine to match these features of an INSERT statement against the values provided in
the mapping file:

d2rq:columnHeading "envdata_Folkestone_met.5";

d2rq:tableName "envdata_Folkestone_met";

The second problem is overcome via the d2rq:substitute variable, which allows a
second value (typically a full URI) to be inserted into the observation model when a
first value (such as a table name or column heading) is matched:

d2rq:substitute
"http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/folkestone_met";

The problem is further overcome with the d2rq:timestamp and
d2rq:alteredtimestamp variables, which instruct the HLAPI Processor component
to translate the corresponding values from Unix timestamps (typically used in database
records) into XML dateFormat values, in accordance with the observation ontology:

d2rq:timestamp "envdata_Folkestone_met.0";

d2rq:alteredtimestamp "envdata_Folkestone_met.0+1800";

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 20

3.2.1.2. API Configuration

The API configuration file is used to determine which observations and collections
should be serialised, in which file formats, and with which URIs. This is implemented
using template URI strings, with various different values to be substituted into them. A
configuration for a single serialised collection might look like this: e.g. everything with
a place, a property and a time The following example configuration represents a
collection containing every observation, with each observation’s URI determined by its
observed property, the procedure used to measure the property, and the time the
observation was made:

[serialisation1]
type=canonical
baseuri="http://@@FORMAT.semsorgrid.ecs.soton.ac.uk/"
tail="observations/cco/[obs:procedure]/[obs:observedProperty]/
 [obs:observationResultTime{yMd#Hms}]"
NIR="{FORMAT=id}"
application/rdf+xml="{FORMAT=rdf}"
application/xml="{FORMAT=om}"
application/vnd.ogc.wfs="{FORMAT=wfs}"
text/html="{FORMAT=pages}"

The baseuri variable represents the URI hostname for the current collection, while the
tail variable represents the rest of the URI string. Observation properties in square
brackets, e.g. [obs:observedProperty], are substituted with the corresponding
property value from the observation model to be serialised. Furthermore, if that property
value matches one of the print substitution values defined earlier in the configuration
file, this value will be substituted instead. Print substitution values are defined as
follows:

[printsubs]
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/boscombe=boscombe

Values beginning with @@ are substituted on a per-format basis with any corresponding
values from a given format’s list of properties. For example, in the above collection, the
value @@FORMAT would be replaced with om for the format application/xml. As such,
different URIs can be constructed for each different serialised format, with the NIR
format representing the canonical URI of the collection’s non-information resource.

3.2.1.3. System Components

DBInsertTrigger

Once a database insert statment is received, the DBInsertTrigger first separates out the
table name and the individual column values. For each extracted column value, the
DBInsertTrigger checks the ontology mapping file to determine whether that value is
found in any of the observations we are trying to build. If a match is found, the
observation’s ClassMap is added to the list of observations to be built. Once the table
name and all column values have been checked, the list of applicable ClassMaps is sent
to the Processor.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 21

Processor

On receiving an observation ClassMap ID and the components of a database insert
statement, the Processor first extracts all of the PropertyBridges that match the required
ClassMap. For each PropertyBridge that matches the current ClassMap, the
corresponding property is inserted into the appropriate place in the RDF observation
graph. The Processor extracts the appropriate property value from the database, and in
the case of a timestamp or alteredtimestamp value, manipulates it into the XML
dateTime format, in accordance with the observation model. Once we have the
constructed observation graph (constructed with a temporary “TEMP_ROOT” root node),
we send it to the URIMinter to get an ArrayList of URIs. Finally, the resulting list of
URIs, along with the observation graph itself, is sent to the Serialiser.

URIMinter

First, the URIMinter extracts any print substitution values from the API configuration
file and WFS coordinate mappings from the coordinate mapping file. Then, for each
subsequent section in the configuration file, the URIMinter extracts the appropriate
values from the observation – swapping in any available print substitutions – and inserts
them into the template URI string. If the observation property is in the XML
dateTimeFormat format, the result is transposed into YYYYMMDD#hhmmss notation, as
defined by the corresponding pattern in the configuration file. Any format-specific
substitutions are then passed into the URI tail or hostname. At this stage, any available
WFS coordinates from the current sensor are added to the URI tail. Finally, all of the
generated URIs are added to the ArrayList/HashMap container, and returned to the
Processor.

Serialiser
First, the current observation’s non-information resource URI is substituted into the
observation graph’s temporary root node. Next, a check is performed to determine
whether this observation has already been added to the 4Store: if it has already been
added, serialisation is stopped to prevent duplicate entries; otherwise, the observation is
assumed to represent new data, and the graph is added to the 4Store. Then, for each
format specified in the API mapping file, we serialise the observation to disc, in the
location specified at startup, combined with the URI tail in the current format’s
HashMap entry

3.3. Configuring	
 the	
 HLAPI	
 Service	

In this section, we provide a worked example of how to configure the HLAPI, using the
CCO database as a data source. This process involves three separate phases:
configuration of the MySQL Proxy layer, mapping between the data source and the
observation model, and configuration of the generated APIs.

3.3.1. MySQL	
 Proxy	

In order to intercept the INSERT statements being sent to the CCO database, an instance
of MySQL Proxy is needed. As the name implies, this application runs as a proxy
between a database and anyone wishing to interact with the database. As statements are

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 22

sent to the database, MySQL Proxy – configured using a script written in the “Lua”
scripting language – can alter, reject, or divert the statements to other applications. In
this case, we require MySQL Proxy to divert any statements to the HLAPI engine,
where they will be processed as explained above.

The example Lua script for the CCO database is generic enough that it will work for
any database into which data rows are inserted. It simply removes any backtick symbols
from the query (to prevent their contents from being executed as shell commands), and
sends the resulting string to a shell script, “hlapi.sh”:

function read_query(packet)
if packet:byte() ~= proxy.COM_QUERY then return end
local query = packet:sub(2)

query=string.gsub(query, "`", "")
os.execute('/usr/local/src/hlapi.sh "' .. query .. '" &')

end

The shell script itself is used to build the Java classpath for the HLAPI engine, before
passing this classpath, the MySQL statement, and the locations of any configuration
files to the HLAPI Java process:

#!/bin/sh
cd /usr/local/src/HLAPI

THE_CLASSPATH=

for i in `ls ../HLAPI_libs/*.jar`
do
 THE_CLASSPATH=${THE_CLASSPATH}:${i}
done

java -cp ".:${THE_CLASSPATH}"
 eu/semsorgrid4env/service/hl_api/triggers/TriggerHandler "$1"

"doc/onto_map.n3" "doc/api_map.ini" "doc/database.n3"

The HLAPI engine itself also requires a short database configuration file, to enable
connections to the database through the JDBC connection libraries:

@prefix map:<file:/Users/user/Desktop/cco.n3#>.
@prefix d2rq:<http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#>.
@prefix jdbc:<http://d2rq.org/terms/jdbc/>.

map:database a d2rq:Database;
 d2rq:jdbcDriver "com.mysql.jdbc.Driver";
 d2rq:jdbcDSN "jdbc:mysql://127.0.0.1/CCO";
 d2rq:username "cco";
 d2rq:password "**********";
 jdbc:autoReconnect "true";
 jdbc:zeroDateTimeBehavior "convertToNull";
 .

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 23

3.3.2. Ontology	
 Mapping	

When exposing a database through the HLAPI engine, a mapping file is required in
order to map between the items in the database and the classes and properties in the
observation ontology. As explained above, this file is written in an extended version of
the D2RQ mapping language, with one “ClassMap” required for each mapping between
a single observed property in the database and an observation RDF model.

The following example shows the ClassMap and a selection of corresponding
PropertyBridges for the property “Hs” (representing wave height) from the
envdata_Boscombe database table:

map:Boscombe_Hs a d2rq:ClassMap;
 d2rq:dataStorage map:database;
 d2rq:class obs:observation;
 d2rq:classDefinitionLabel "observation";
 .

[...]

map:Boscombe_Hs_dateTimeBeginning a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:Boscombe_Hs;
 d2rq:property time:hasBeginning;
 d2rq:belongsToPropertyBridge map:Boscombe_Hs_timeInterval;
 d2rq:timestamp "envdata_Boscombe.0";
 .

[...]

map:Boscombe_Hs_hasValue a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:Boscombe_Hs;
 d2rq:property obs:hasValue;
 d2rq:column "envdata_Boscombe.12";
 d2rq:belongsToPropertyBridge
 map:Boscombe_Hs_observationResult;
 .

For further, complete examples of CCO ontology mapping ClassMaps, see Appendix A.

Note that the values for any d2rq:timestamp, d2rq:alteredtimestamp,
d2rq:column or d2rq:columnHeading property each refer to the corresponding
database table (in this case, “envdata_Boscombe”), followed by the required database
column.

3.3.3. API	
 Configuration	

The remaining configuration file is the API configuration file, used to determine which
collections should be serialised for a given observation, which file formats they should
be serialised in, and what URIs should be used for these serialised collections.

The API configuration file comprises two main sections: print substitution strings, and
URI minting and serialisation details.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 24

Print substitutions are used to replace full URIs from the observation RDF with more
sensible strings for inclusion in a URI. These will typically be used to replace the URIs
of observed properties and sensing devices. The full list of print substitutions required
for the CCO database can be found in Appendix A, with the following excerpt
providing an example of substitutions for both sensors and observed properties:

[printsubs]
sensors
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/hornsea=hornsea
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/looebay=looebay
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/milford=milford
observed properties
http://marinemetadata.org/2005/08/manly#Hmax=Hmax
http://marinemetadata.org/2005/08/ndbc_waves#Swell_Period=Tz
http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height=Hs

The following sections are used to define collections, URI formats and serialised file
formats. The value of the type variable can be either canonical (to represent the
canonical representation of an observation) or collection (to represent a collection of
canonical results). The baseuri variable represents the hostname for this
observation’s URIs, and the tail variable represents the rest of the URI string – both
before any substitution with observation values or file format abbreviations. The
remaining lines define the output formats to be serialised, along with any values to be
substituted into the URI string that are specific to each given output format. The CCO
HLAPI deployment includes two example serialisations. One of these serialisations,
shown below, represents the canonical version of every timestamped observation, for
every observed property, from every location:

[serialisation1]
type=canonical
baseuri="http://@@FORMAT.semsorgrid.ecs.soton.ac.uk/"
tail="observations/cco/[obs:procedure]/[obs:observedProperty]/
 [obs:observationResultTime{yMd#Hms}]"

NIR="{FORMAT=id}"
application/rdf+xml="{FORMAT=rdf}"
application/xml="{FORMAT=om}"
application/vnd.ogc.wfs="{FORMAT=wfs}"
text/html="{FORMAT=pages}"

This collection and a second containing every date-stamped observation for every
different observed property can be found in the example API config file in Appendix A.

Both example serialisations define outputs in all four formats supported by the HLAPI
engine: RDF/XML, O&M GML, WFS GML and HTML. The NIR format is used to
represent the non-information resource, from which the serialised information resources
are negotiated.

3.3.4. WFS	
 coordinate	
 mapping	

An additional mapping file can be used to provide geographical coordinates for a given
sensor URI. This is useful when generating WFS representations (which require

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 25

coordinates) of observations where the corresponding sensor does not supply its own
coordinates. The format of this file is similar to the print substitution section of the API
configuration file. For sensors associated with the CCO data source, an example set of
coordinates could be defined as follows:

[coords]
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/boscombe=

"-1.83888,50.71111"

3.4. Using	
 the	
 HLAPI	

Appendix B contains a tutorial describing how a mashup developer would use the
serialised HLAPI observations to populate a Web application.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 26

4. Source	
 Code	

The source code for the HLAPI engine is available from the SemsorGrid4Env
Subversion repository, at:

https://ssg4env.techideas.net/repos/HLAPI/trunk/hlapi

4.1. Code	
 Structure	

The HLAPI engine uses Maven 2.1 to compile its class files and manage any external
dependencies. The system components are collected under the package
eu.semsorgrid4env.service.hl_api, with the following sub-packages:

• configuration, which contains classes concerned with the loading and
management of mapping files;

• triggers, which contains classes that determine whether incoming data is
relevant to the required API output, and that organise this data into a format that
the Processor can use;

• processing, which contains classes that build observations, mint their URIs,
and generate serialised outputs.

4.2. External	
 application	
 dependencies	

The HLAPI engine has the following external dependencies, all of which are resolved
through the Maven build process:

To fulfill an overall dependency on D2R, in order to read ontology mapping files,
interact with databases, and generate RDF models using the Jena RDF library:

• antlr-2.7.5.jar
• arq.jar
• commons-lang-2.3.jar
• commons-logging-1.1.jar
• concurrent.jar
• d2r-server-0.7.jar
• d2rq-0.7.jar
• icu4j-3.4.jar
• iri.jar
• jakarta-oro-2.0.8.jar
• jena.jar
• jetty-6.1.10.jar
• joseki.jar
• json.jar
• junit-4.5.jar
• log4j-1.2.12.jar
• mysql-connector-java-5.1.7-bin.jar
• postrgresql-8.2dev-503.jdbc3.jar
• servlet-api-2.5-6.1.10.jar
• slf4j-api-1.5.6.jar
• slf4j-log4j12-1.5.6.jar

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 27

• velocity-1.5.jar
• xercesImpl.jar
• xml-apis.jar

To interact with the 4Store RDF database:

• cp-common-fourstore-0.3.1.jar
• cp-common-utils-1.0.1.jar
• cp-common-openrdf-0.2.1.jar
• openrdf-sesame-2.3.0-onejar.jar

To process .ini configuration files:

• commons-configuration-1.6.jar

4.3. Configuration	
 files	

The HLAPI engine is supplied with examples of the following required configuration
files:

• /doc/onto_map.n3 – used to define the mapping between the incoming data
source and the observation model

• /doc/database.n3 – contains access information for connecting to the source
database

• /doc/api_map.ini – defines the API collections to be serialised, and their
associated URI patterns

• /doc/coords.ini – contains any missing sensor coordinates, used to serialise
WFS representations

• /doc/webroot.ini – defines the path on disk to begin writing serialised
outputs

• /conf/resources.ini – describes the relationship between the various
Information, Non-Information and Common-Information Resources in the API

4.4. Additional	
 Scripts	

The following additional scripts are supplied to assist the configuration and running of
the HLAPI engine:

• /scripts/generate-apache-conf.sh – used to generate stub Apache
domain redirect configurations, in order to negotiate content for the various
serialised output formats

• /scripts/batch-import.sh – imports data from an existing database as a
batch import, to bring the serialised outputs into line with the sensor database
content

• /scripts/hlapi.sh – utility script to run the HLAPI engine with its
associated mapping and configuration files

• /scripts/pipe.lua – loaded into MySQL Proxy, in order to intercept
incoming database INSERT/REPLACE statements

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 28

5. Source	
 Data	

The HLAPI engine is designed to be extensible enough to handle any data source that
could be represented through the observation model. Its configurable, event-driven
nature means that provided the correct mappings are in place to convert the source data
into observation RDF, the HLAPI will be able to expose the data as serialised output.

During development of the HLAPI engine, two main data sources have been used,
namely the CCO sensor network database, and the SemsorGrid4Env Integration Query
Service.

5.1. CCO	
 Data	

The Channel Coastal Observatory (CCO) is the data management centre for the
Regional Coastal Monitoring Programmes of England. Over a period of more than 5
years, the GeoData Institute has designed, built from the top-down, and operated the
data management infrastructure to run this programme. This includes software to
manage and transmit real-time data from the largest network of coastal sensors in the
UK; a data management infrastructure to manage data and metadata for over 65,000
environmental surveys of different types amounting to terabytes of storage; and a
website to deliver real time and surveyed data to a public audience through highly
complex dynamic map and data visualisation interfaces, serving over a million hits per
month.

Initial development of the API in [D5.2v1] has focused on publishing data from the
CCO network of marine and coastal sensors monitoring:

• wave height
• sea surface temperature
• wave period
• wave spread
• wave direction
• tide height.

5.2. SemsorGrid4Env	
 Integration	
 Query	
 Service	

The SemsorGrid4Env Integration Query Service (IQS) allows a number of streaming or
stored data services to be exposed as a single integrated resource. A semantic query is
sent to the IQS, along with a list of data sources to integrate. Subsequent requests to the
resulting integrated resource will return the collated set of results from all data sources
that comprise that integrated resource. When creating an integrated resource, a mapping
file is provided to define the output format of any requests made to the resource. In this
way, the IQS can return data in the form of an RDF graph complying with the
observation ontology. This graph can then be passed to the HLAPI Processor
component, ready for its URIs to be minted, and its serialised output formats to be
written.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 29

6. Installation	
 and	
 Execution	

In this chapter, we provide instructions on how to compile, configure and deploy the
HLAPI engine, as well as details of any additional software components required by the
system.

6.1. Setup	

Before compiling and deploying the HLAPI engine, several software dependencies need
to be met. In addition, a degree of configuration needs to be completed before the
HLAPI engine will operate.

6.1.1. Requirements	

The HLAPI engine has the following external software dependencies.

• Web Server: Apache 2.2 –
http://projects.apache.org/projects/http_server.html

• SQL Database: MySQL 5 –
http://mysql.com/downloads/mysql/#downloads

• MySQL Proxy – http://forge.mysql.com/wiki/MySQL_Proxy

• Java SDK: JDK 1.6 –
http://www.oracle.com/technetwork/java/javase/downloads/
 index.html

• RDF Database: 4Store – http://4store.org/

Installation instructions for each component can be found on the respective
organisation’s website

6.1.2. Configuration	

Having checked the HLAPI code out of SVN (as described in Section 4), the following
configuration should be completed before running the HLAPI engine:

• Edit the example ontology mapping file (onto_map.n3), corresponding
database access file (database.n3), API mapping file (api_map.ini) and
WFS coordinate mapping file (coords.ini), found in the /doc subdirectory of
the main project directory. Details of these files are provided in Section 3.3, with
full examples provided in Appendix A.

• The hlapi.sh file, found in the /scripts subdirectory of the main project
directory, should point to the TriggerHandler class in the
/target/eu/semsorgrid4env/service/hl_api/triggers/ subdirectory,
as well as the mapping files found in /doc. If you need to move the contents of

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 30

the /target or /doc subdirectories for any reason, ensure the paths in
hlapi.sh point to the corresponding new locations.

• The pipe.lua file, found in the /scripts subdirectory of the main project
directory, should point to hlapi.sh in the same directory. Again, if you need to
move the hlapi.sh script for any reason, ensure the path in pipe.lua points to its
new location.

• Create an “observations” graph in 4Store, using the following command:
 4s-backend-setup observations

• Edit the example resources.conf file in the /conf subdirectory of the main
project directory, to describe the Information Resources, Common Information
Resources, and Non-Information Resources for the intended API. Next, run the
generate-apache-conf.sh script from the /scripts subdirectory, to
generate the stub code needed to implement API content negotiation. Check this
stub code is correct, and add it to the appropriate section of your Apache
configuration file.

• Edit the example webroot.ini file in the /doc subdirectory, to point to the
Web server document root into which the API output files should be written.

6.2. Compiling	
 and	
 Running	

First, compile the HLAPI engine Class files by navigating to the base project directory
and running the Maven compile command:

host: repos/HLAPI/trunk> mvn compiler:compile

The compiled Class files can be found in the target subdirectory of the main project
directory.

Next, Run the 4Store http SPARQL interface with the following command:

 4s-backend observations

4s-httpd -p 8000 observations

Start MySQL Proxy as a background process, using the previously configured
pipe.lua as an input parameter. Be sure to run MySQL Proxy as a user who has write-
access to the directory into which the HLAPI engine will output its serialised data (in
this case, the proxy is run using sudo):

 sudo mysql-proxy –proxy-lua-script=/path/to/pipe.lua &

Make sure the data source responsible for inserting readings into the database is now
pointing at the proxy (port 4040 by default), rather than at the MySQL database itself
(typically port 3306). As the data source inserts results into the database, the HLAPI
engine will insert the resulting observations into 4Store, and write the serialised output
formats to disk. The 4Store status page can be checked to confirm the triples are being
stored correctly (default URL: http://hostname:8000/status).

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 31

7. Test	
 Strategy	

The HLAPI testing strategy follows the recommended SemsorGrid4Env testing
strategy, incorporating both individual unit tests and overall system integration tests.

7.1. Unit	
 Testing	

The HLAPI engine Java classes are accompanied by corresponding unit tests, written
using the JUnit testing framework. The unit tests are found in the src/test
subdirectory of the main project directory, further separated according to their
corresponding Java package. The tests can be run as part of the main Maven build
process (using the mvn compile command), or individually (using mvn test).

7.2. Integration	
 Testing	

Integration testing of the HLAPI engine components involves successfully detecting
any appropriate data, converting it to the observation model, minting an appropriate set
of URIs for any configured collections, and serialising these collections to disk.

To implement this workflow with sufficient data to perform reliable tests, the batch-
import.sh script – found in the scripts directory (see Section 4.4) – is used. While
this script is primarily used to bring HLAPI output up-to-date with the corresponding
data stored in the database, it can also be used as a mechanism to test the full HLAPI
engine workflow with a high volume of data. Combined with the appropriate HLAPI
engine configuration files, this script can be used to verify that the correct serialised
outputs are being generated, while any inappropriate data is ignored.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 32

Appendix	
 A:	
 Example	
 Mapping	
 Files	

Ontology	
 mapping	

Folkestone	
 air	
 pressure	

map:Folkestone_met_Air_pressure a d2rq:ClassMap;
 d2rq:dataStorage map:database;
 d2rq:class obs:observation;
 d2rq:classDefinitionLabel "observation";
 .
map:Folkestone_met_Air_pressure_observationResultTime a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:Folkestone_met_Air_pressure;
 d2rq:property obs:observationResultTime;
 .
map:Folkestone_met_Air_pressure_timeInterval a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:Folkestone_met_Air_pressure;
 d2rq:property time:Interval;
 d2rq:belongsToPropertyBridge
map:Folkestone_met_Air_pressure_observationResultTime;
 .
map:Folkestone_met_Air_pressure_dateTimeBeginning a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:Folkestone_met_Air_pressure;
 d2rq:property time:hasBeginning;
 d2rq:belongsToPropertyBridge map:Folkestone_met_Air_pressure_timeInterval;
 d2rq:timestamp "envdata_Folkestone_met.0";
 .
map:Folkestone_met_Air_pressure_dateTimeEnd a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:Folkestone_met_Air_pressure;
 d2rq:property time:hasEnd;
 d2rq:belongsToPropertyBridge map:Folkestone_met_Air_pressure_timeInterval;
 d2rq:alteredtimestamp "envdata_Folkestone_met.0+1800";
 .
map:Folkestone_met_Air_pressure_procedure a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:Folkestone_met_Air_pressure;
 d2rq:property obs:procedure;
 d2rq:tableName "envdata_Folkestone_met";
 d2rq:substitute
"http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/folkestone_met";
 .
map:Folkestone_met_Air_pressure_observedProperty a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:Folkestone_met_Air_pressure;
 d2rq:property obs:observedProperty;
 d2rq:columnHeading "envdata_Folkestone_met.5";
 d2rq:substitute "http://marinemetadata.org/2005/08/cf#air_pressure_at_sea_level";
 .
map:Folkestone_met_Air_pressure_featureOfInterest a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:Folkestone_met_Air_pressure;
 d2rq:property obs:featureOfInterest;
 d2rq:constantValue "http://www.eionet.europa.eu/gemet/concept?cp=7495";
 .
map:Folkestone_met_Air_pressure_observationResult a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:Folkestone_met_Air_pressure;
 d2rq:property obs:observationResult;
 .
map:Folkestone_met_Air_pressure_ValueThing a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:Folkestone_met_Air_pressure;
 d2rq:property obs:ValueThing;
 d2rq:column "envdata_Folkestone_met.5";
 d2rq:belongsToPropertyBridge map:Folkestone_met_Air_pressure_observationResult;
 .

Rhyl	
 Flats	
 mean	
 wave	
 height	

map:RhylFlats_Hs a d2rq:ClassMap;
 d2rq:dataStorage map:database;
 d2rq:class obs:observation;
 d2rq:classDefinitionLabel "observation";
 .
map:RhylFlats_Hs_observationResultTime a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:RhylFlats_Hs;

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 33

 d2rq:property obs:observationResultTime;
 .
map:RhylFlats_Hs_timeInterval a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:RhylFlats_Hs;
 d2rq:property time:Interval;
 d2rq:belongsToPropertyBridge map:RhylFlats_Hs_observationResultTime;
 .
map:RhylFlats_Hs_dateTimeBeginning a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:RhylFlats_Hs;
 d2rq:property time:hasBeginning;
 d2rq:belongsToPropertyBridge map:RhylFlats_Hs_timeInterval;
 d2rq:timestamp "envdata_RhylFlats.0";
 .
map:RhylFlats_Hs_dateTimeEnd a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:RhylFlats_Hs;
 d2rq:property time:hasEnd;
 d2rq:belongsToPropertyBridge map:RhylFlats_Hs_timeInterval;
 d2rq:alteredtimestamp "envdata_RhylFlats.0+1800";
 .
map:RhylFlats_Hs_procedure a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:RhylFlats_Hs;
 d2rq:property obs:procedure;
 d2rq:tableName "envdata_RhylFlats";
 d2rq:substitute "http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/rhylflats";
 .
map:RhylFlats_Hs_observedProperty a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:RhylFlats_Hs;
 d2rq:property obs:observedProperty;
 d2rq:columnHeading "envdata_RhylFlats.12";
 d2rq:substitute "http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height";
 .
map:RhylFlats_Hs_featureOfInterest a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:RhylFlats_Hs;
 d2rq:property obs:featureOfInterest;
 d2rq:constantValue "http://www.eionet.europa.eu/gemet/concept?cp=7495";
 .
map:RhylFlats_Hs_observationResult a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:RhylFlats_Hs;
 d2rq:property obs:observationResult;
 .
map:RhylFlats_Hs_uom a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:RhylFlats_Hs;
 d2rq:property obs:uom;
 d2rq:constantValue "urn:ogc:def:uom:OGC:m";
 d2rq:belongsToPropertyBridge map:RhylFlats_Hs_observationResult;
 .
map:RhylFlats_Hs_ValueThing a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:RhylFlats_Hs;
 d2rq:property obs:ValueThing;
 d2rq:column "envdata_RhylFlats.12";
 d2rq:belongsToPropertyBridge map:RhylFlats_Hs_observationResult;
 .

API	
 configuration	

substitutions for more concise URI content
[printsubs]

procedures
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/folkestone_met=folkestone_met
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/arunplatform_met=arunplatform_met
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/deal_met=deal_met
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/hernebay_met=hernebay_met
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/looebay_met=looebay_met
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/sandownpier_met=sandownpier_met
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/swanagepier_met=swanagepier_met
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/teignmouthpier_met=teignmouthpier_met
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/weymouth_met=weymouth_met
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/worthing_met=worthing_met
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/lymington_met=lymington_met
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/westbaypier_met=westbaypier_met
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/perranporth=perranporth
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/weymouth=weymouth
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/sandownbay=sandownbay
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/bidefordbay=bidefordbay

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 34

http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/boscombe=boscombe
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/bracklesham=bracklesham
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/chesil=chesil
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/folkestone=folkestone
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/goodwin=goodwin
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/haylingisland=haylingisland
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/hornsea=hornsea
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/looebay=looebay
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/milford=milford
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/minehead=minehead
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/penzance=penzance
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/pevenseybay=pevenseybay
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/rustington=rustington
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/rye=rye
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/seaford=seaford
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/startbay=startbay
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/torbay=torbay
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/westonbay=westonbay
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/westbay=westbay
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/rhylflats=rhylflats
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/hernebay_tide=hernebay_tide
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/sandownpier_tide=sandownpier_tide
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/teignmouthpier_tide=teignmouthpier_tide
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/westbaypier_tide=westbaypier_tide
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/swanagepier_tide=swanagepier_tide
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/deal_tide=deal_tide
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/lymington_tide=lymington_tide

observedProperties
http://marinemetadata.org/2005/08/manly#Hmax=Hmax
http://marinemetadata.org/2005/08/ndbc_waves#Dominant_Wave_Period=Tp
http://marinemetadata.org/2005/08/ndbc_waves#Mean_Wave_Direction=Dirp
http://marinemetadata.org/2005/08/noaa-
waves#Directional_Spread_of_the_Dominant_Wave=Sprp
http://marinemetadata.org/2005/08/ndbc_waves#Swell_Period=Tz
http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height=Hs
http://marinemetadata.org/2005/08/cdip#SST=Tsea
http://marinemetadata.org/2005/08/cf#air_pressure_at_sea_level="Air_pressure"
http://marinemetadata.org/2005/08/cf#wind_speed="Wind_speed"
http://marinemetadata.org/2005/08/cf#wind_to_direction="WDir"
http://marinemetadata.org/2005/08/cf#rainfall_amount="rainfall"
http://marinemetadata.org/2005/08/cf#tropopause_air_temperature="TAir"

each of the following sections defines a single canonical resource or collection
[serialisation1]
type=canonical
baseuri="http://@@FORMAT.semsorgrid.ecs.soton.ac.uk/"
tail="observations/cco/[obs:procedure]/[obs:observedProperty]/[obs:observationResultTime
{yMd#Hms}]"
each subsequent line in the section represents a serialisation format, along with its
substitution properties
NIR="{FORMAT=id}"
application/rdf+xml="{FORMAT=rdf}"
application/xml="{FORMAT=om}"
application/vnd.ogc.wfs="{FORMAT=wfs,coords=true}"
text/html="{FORMAT=pages}"

[serialisation2]
type=collection
baseuri="http://@@FORMAT.semsorgrid.ecs.soton.ac.uk/"
tail="observations/cco/[obs:observedProperty]/[obs:observationResultTime{yMd}]"
each subsequent line in the section represents a serialisation format, along with its
substitution properties
NIR="{FORMAT=id}"
application/rdf+xml="{FORMAT=rdf}"
application/xml="{FORMAT=om}"
application/vnd.ogc.wfs="{FORMAT=wfs,coords=true}"
text/html="{FORMAT=pages}"

WFS	
 coordinate	
 substitutions	

[coords]
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/boscombe="-1.83888,50.71111"
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/chesil="-2.52293,50.60370"
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/folkestone="1.12874,51.06258"

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 35

http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/folkestone_met="1.12874,51.06258"
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/goodwin="1.48341,51.25078"
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/haylingisland="-0.95703,50.73244"
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/milford="-1.61445,50.71256"
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/minehead="-3.47365,51.22851"
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/penzance="-5.50325,50.11382"
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/perranporth="-5.17417,50.35265"
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/pevenseybay="0.41662,50.78295"
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/rustington="-0.49456,50.73440"
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/sandownbay="-1.13116,50.65146"
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/seaford="0.07592,50.76631"
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/startbay="-3.61568,50.29228"
http://id.semsorgrid.ecs.soton.ac.uk/sensors/cco/westbay="-2.74929,50.69254"

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 36

Appendix	
 B:	
 Mashup	
 Development	
 Tutorial	

As an example of using the HLAPI, this section describes how a "surf status" mashup
application was built.

The purpose of this mashup is to take wave height data from the HLAPI for one or more
areas, plot this data on a graph, and at the same time pick up related information from
other sources such as a map showing the location and lists of nearby amenities.

Scripting	
 language	
 and	
 libraries	

This example uses the PHP2 scripting language. For Sparql queries and RDF
manipulation it uses the Arc23 library and, for ease of coding and readability, Graphite4.
The Google Chart API5 is used for charts, and the Google Static Maps API6 and
Openlayers7 for mapping.

Another useful tool is an RDF browser such as the Q&D RDF Browser8.

First we load in the Arc2 and Graphite libraries and set up Graphite with a list of
namespaces for coding simplicity.

require_once "arc/ARC2.php";
require_once "Graphite.php";
$graph = new Graphite();
$graph->ns("id-semsorgrid", "http://id.semsorgrid.ecs.soton.ac.uk/");
$graph->ns("ssn", "http://purl.oclc.org/NET/ssnx/ssn#");
$graph->ns("DUL", "http://www.loa-cnr.it/ontologies/DUL.owl#");
$graph->ns("time", "http://www.w3.org/2006/time#");

This continues for other useful namespace prefixes. The id-semsorgrid prefix is added
for further code brevity.

2 http://php.net

3 http://arc.semsol.org/

4 http://graphite.ecs.soton.ac.uk/

5 http://code.google.com/apis/chart/

6 http://code.google.com/apis/maps/documentation/staticmaps/

7 http://openlayers.org/

8 http://graphite.ecs.soton.ac.uk/browser/

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 37

Displaying	
 a	
 map	
 of	
 all	
 wave	
 height	
 sensors	

One of the observation serialisations available from the CCO deployment of the HLAPI
is a GeoJSON format. This serialisation, which shows the locations of all wave height
readings made in a particular time frame, can be rendered by various mapping engines
including Openlayers.

The markup to display the map, given the path to an OpenJSON file, is very simple and
fully documented by Openlayers.

Depending on how the HLAPI is configured, the OpenJSON representation of wave
height readings for a particular hour may be at

http://geojson.semsorgrid.ecs.soton.ac.uk/observations/cco/Hs/20110215/00

Given this URL a map such as the following may be generated:

Figure 15 – Example representation of sensor locations via an OpenLayers map interface

Getting	
 the	
 day's	
 wave	
 height	
 readings	
 and	
 the	
 sensor	
 metadata	

Ideally we would programmatically find our way to the collection of observations we
want to represent, but for brevity we'll assume we already know the URI of the
collection. In the case of the CCO deployment, to get wave height data for the
Boscombe sensor the day's readings are identified by

id-semsorgrid:observations/cco/boscombe/Hs/YYYYMMDD

Using PHP's date function we can complete the URI with today's date and direct
Graphite to load the resources into a graph -- Graphite and the HLAPI will
automatically negotiate a content type which can be used.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 38

$observationsURI = "id-semsorgrid:observations/cco/boscombe/Hs/" .
date("Ymd"); $graph->load($observationsURI);

Graphite allows the graph to be rendered directly as HTML to quickly visualise what is
available. The same can be achieved by using a dedicated RDF browser.

echo $graph->dump();

The beginning of the output is something like the following:

id-semsorgrid:observations/cco/boscombe/Hs/20110215 -> rdf:type ->
 DUL:Collection -> DUL:hasPart ->
 id-semsorgrid:observations/cco/boscombe/Hs/20110215#000000,
 id-semsorgrid:observations/cco/boscombe/Hs/20110215#003000,
 id-semsorgrid:observations/cco/boscombe/Hs/20110215#010000

id-semsorgrid:observations/cco/boscombe/Hs/20110215#000000 ->
 rdf:type -> ssn:Observation -> ssn:observedBy ->
 id-semsorgrid:sensors/cco/boscombe -> ssn:featureOfInterest ->
 http://www.eionet.europa.eu/gemet/concept?cp=7495 ->
 ssn:observedProperty ->
 http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height ->
 ssn:observationResult -> _:arce2d5b1 ->
 ssn:observationResultTime -> _arce2d5b3 <- is DUL:hasPart of
 <- id-semsorgrid:observations/cco/boscombe/Hs/20110215

The bnodes are also shown, and their IDs can be traced to see which properties are
available on each node.

A lot of useful information such as the sensor's coordinates is attached to the sensor's
URI, which is linked from each ssn:Observation node. It's easy to get the URI, simply
by getting ssn:Observation nodes, and then collecting the first found
ssn:observedBy property of any of them. It's important to handle the case where there
are not yet any results.

$sensor = $graph->allOfType("ssn:Observation")->
 get("ssn:observedBy")-> distinct()->current();
if ($sensor->isNull())
 die("No results yet today");
$sensorURI = $sensor->uri;

To get the sensor's coordinates we ask Graphite to dereference the sensor's URI and
load its triples, then traverse the expanded graph to fetch the required values. The
traversals here can once again be visualised by first dumping the graph or exploring the
graph in any RDF browser.

$graph->load($sensorURI);
$location = $graph->resource($sensorURI)->get("ssn:hasDeployment")->
 get("ssn:deployedOnPlatform")->get("sw:hasLocation");
$coords = array(floatVal((string) $location-> get("sw:coordinate2")->
 get("sw:hasNumericValue")), floatVal((string) $location->
 get("sw:coordinate1")-> get("sw:hasNumericValue")),);

To collect all wave height observations we query the graph for all nodes of type
ssn:Observation and skip over those whose ssn:observedProperty property is not

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 39

that which we are looking for (just in case we have other observation types in our
graph).

Each observation corresponds to a particular time interval so we need to collect the time
(in this example we'll associate the end of the time interval -- time:hasEnd -- with the
reading) as well as the wave height observation itself. The code snippet below also skips
any observations whose ssn:observationResultTime property doesn't point to a node
of type time:Interval, but it would be trivial to also parse nodes of different time
classes.

Finally in this snippet the array of observations is sorted by time.

Again, to see how the traversal is built up it is easiest to inspect the graph visually.

$observations = array();
foreach ($graph->allOfType("ssn:Observation") as $observationNode) {
 if ($observationNode->get("ssn:observedProperty") !=
 "http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height")
 continue;
$timeNode = $observationNode->get("ssn:observationResultTime");
if (!$timeNode->isType("time:Interval"))
 continue;
$time = strtotime($timeNode->get("time:hasEnd"));
$observations[$time] = floatVal((string) $observationNode->
 get("ssn:observationResult")->get("ssn:hasValue")->
 get("DUL:hasDataValue")); }
ksort($observations, SORT_NUMERIC);

	

Visualising	
 the	
 data	

The array resulting from the code above can be used to produce a chart of the wave
heights. Explaining the snippet below is beyond the scope of this document, but it uses
the Google Chart API to produce a line graph of wave height against time.

// organise data
$keys = array_keys($observations);
$start = array_shift($keys);
$end = array_pop($keys);
$period = $end - $start;
$datax = $datay = array();
$maxheight = ceil(max($observations) * 10 * 1.2) / 10;
foreach ($observations as $time => $height) {
 $datax[] = ($time - $start) * 100 / $period;
 $datay[] = $height * 100 / $maxheight;
}

// x axis labels
$axisx = array();
for ($time = $start; $time <= $end; $time += $period / 6)
 $axisx[] = date("H:i", $time);

// parameters for Google Chart API
$chartparams = array(
"cht=lxy", //line x-y
"chs=340x200", //size
"chco=0066cc", //data colours

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 40

"chm=B,99ccff,0,0,0", //fill under the line
"chd=t:" . implode(",", $datax) . "|" . implode(",", $datay), //data
"chxt=x,y,x", //visible axes
"chxr=0,0,100|1,0," . $maxheight, //x and y axis ranges
"chxl=0:|" . implode("|", $axisx) . "|2:|Time", //custom labels for
axes, evenly spread, also axis titles
"chxp=2,50|3,50", //positions of axis titles
"chf=bg,s,ffffff00", //transparent background);

// output chart
echo '<img src="http://chart.apis.google.com/chart?' . implode("&",
$chartparams) . '">';

It's easy to show a map with the sensor's position highlighted, too: the following uses
the Google Static Maps API to do this.

echo '<img
src="http://maps.google.com/maps/api/staticmap?size=300x200¢er=' .
$coords[0] . ',' . $coords[1] .
'&zoom=8&maptype=hybrid&sensor=false&markers=' . $coords[0] . ',' .
$coords[1] . '">';

	

Fetching	
 related	
 data	
 from	
 other	
 data	
 sources	

We can get the name of a nearby place and the nearest post code from the web services
provided by Geonames9. Geonames returns XML that is easy to parse with PHP. Again,
explaining how the external API call works is beyond the scope of this document.
// get nearby place name $placenameXML =
simplexml_load_file("http://ws.geonames.org/findNearbyPlaceName?lat={$
coords[0]}&lng={$coords[1]}"); $placename = array_shift($placenameXML-
>xpath('/geonames/geoname[1]/name[1]')); // get nearby postcode
$postcodeXML =
simplexml_load_file("http://ws.geonames.org/findNearbyPostalCodes?lat=
" . $coords[0] . "&lng=" . $coords[1]); $postcode =
array_shift($postcodeXML->xpath('/geonames/code[1]/postalcode[1]'));

The postcode is used in the surf status mashup to fetch the British region name from
Ordnance Survey, which in turn is used to fetch population and traffic accident data
from Eurostat.

Data is also collected from Linked Geodata10 to get the whereabouts of nearby facilities.
For instance, to get parking facilities within five kilometres of the sensor, its Sparql
endpoint is queried as follows:

$store = ARC2::getRemoteStore(array("remote_store_endpoint" =>
 "http://linkedgeodata.org/sparql/"));
$rows = $store->query("
 PREFIX lgdo: <http://linkedgeodata.org/ontology/>
 PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

9 http://www.geonames.org/

10 http://linkedgeodata.org/

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 41

 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 SELECT * WHERE {{ ?place a lgdo:Parking . } UNION
 { ?place a lgdo:MotorcycleParking . } UNION
 { ?place a lgdo:BicycleParking . }
 ?place a ?type ;
 geo:geometry ?placegeo ;
 rdfs:label ?placename .
 FILTER(<bif:st_intersects>
 (?placegeo, <bif:st_point> ($coords[1], $coords[0]), 5)). }",
 "rows");

The returned results include the coordinates of each parking facility (placegeo), from
which the distance to the sensor can be calculated.

Similar queries can be used to get data on other types of nearby amenities -- the surf
status mashup also locates nearby pubs, cafés and shops.

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 42

Finished	
 mashup	

The finished mashup, once styled, looks something like the screenshot shown (with
only three readings so far that day).

Figure 16 – Example mashup using HLAPI serialised data sources

SemSorGrid4Env FP7-223913

D5.2v2 Implementation and Deployment of a Library of the High-level Application Programming
Interfaces 43

References	

[Ber2006] Berners-Lee, T. (2006) “Linked Data, Design Issues”,
http://www.w3.org/DesignIssues/LinkedData.html

[D1.3v1] Gray, A. J. G., Galpin, I.,Fernandes, A. A. A., Paton, N. W., Page, K.,
Sadler, J., Koubarakis, M., Kyzirakos, K., Calbimonte, J., Corcho, O.,
Garcia, R., Diaz, V., Liebana, I. (2009) “SemSorGrid4Env architecture
– phase I”, Deliverable D1.3v1, SemSorGrid4Env

[D2.2v1] Gray, A. J. G., Galpin, I., Rajagopalan, V., Fernandes, A. A. A., Paton,
N. W., Kotsifakos, A., Kotsakos, D., and Gunopulos, D. (2010)
“Implementation and Deployment of Data Management and Analysis,
and the Query Processing Components – Phase 1”, Deliverable 2.2v1,
SemSorGrid4Env

[D4.3v2] Castro, R. G., (2011) “Sensor Network Ontology Suite v2”, Deliverable
D4.3v2, SemSorGrid4Env

[D5.1] Page, K. R., De Roure, D.C., Martinez, K., and Sadler, J. (2009)
“Specification of high-level application programming interfaces”,
Deliverable D5.1, SemSorGrid4Env

[D5.2v1] Page, K. R., Sadler, J., Kit, O., De Roure, D. C., and Martinez, K.
(2009) “Implementation and Deployment of a Library of the High-level
Application Programming Interfaces – Phase 1”, Deliverable D5.2v1,
SemSorGrid4Env

[D7.1] Clark, M., Hutton, C., Sadler, J., and Roe, S. (2009) “Flood user
requirements specification”, Deliverable D7.1, SemSorGrid4Env

[Fie2000] Fielding, R. T. (2000). “Architectural Styles and the Design of
Network- based Software Architectures”, PhD thesis, Information and
Computer Science, University of California, California, USA, 2000

[OGC-OM] Cox, S. (2007) “Observations and Measurements – Part 1 – Observation
schema”, OGC 07-022r1

[OGC-SOS] Na, A. and Priest, M. (2007) “OpenGIS Sensor Observation Service
1.0”, OGC 06-009r6

[OGC-WFS] Vretanos, P. A. (ed.) (2005) “OpenGIS Web Feature Service (WFS)
Implementation Specification 1.1.0”, OGC 04-094

[Pag2009] Page, K. R., De Roure, D. C., Martinez, K., Sadler, J. D., and Kit, O. Y.
(2009) “Linked Sensor Data: RESTfully Serving RDF and GML”,
Proceedings of the 2nd International Workshop on Semantic Sensor
Networks

