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Executive Summary 

The web of Linked Data holds great potential for the creation of semantic applications 

that can combine self-describing structured data from many sources including sensor 

networks. Such applications build upon the success of an earlier generation of ‗rapidly 

developed‘ applications that utilised RESTful APIs. 

This deliverable details experience, best practice, and design patterns for developing 

high-level web-based APIs in support of semantic web applications and mashups for 

sensor grids. 

Its main contributions are a proposal for combining Linked Data with RESTful 

application development summarised through a set of design principles; and the 

application of these design principles to Semantic Sensor Grids through the 

development of a High-Level API for Observations. These are supported by 

implementations of the High-Level API for Observations in software, and example 

semantic mashups that utilise the API. 

 

Outline of changes since the previous version (v1) 

Major changes since the previous version of the deliverable have been driven by the 

following developments: 

 Consolidation of design principles for combining Linked Data and REST 

approaches in the context of sensor network data. 

 Realisation of these design principles, and a full implementation of the High-

Level API for Observations, in a redesigned ―HLAPI‖ service (delivered as 

[D5.2v2]) and the experience drawn from this design and development process. 

Alongside more iterative revisions to the document, these developments have led to 

more significant changes in the following sections: 

 The addition of chapter 4. 

 The restructuring and updating of chapter 5. 

 The addition of section 6.3 and updating of prior sections. 

 The addition of chapter 7. 
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Note on Sources and Original Contributions 

The SemSorGrid4Env consortium is an inter-disciplinary team, and in order to make 

deliverables self-contained and comprehensible to all partners, some deliverables thus 

necessarily include state-of-the-art surveys and associated critical assessment.  Where 

there is no advantage to recreating such materials from first principles, partners follow 

standard scientific practice and occasionally make use of their own pre-existing 

intellectual property in such sections. In the interests of transparency, we here identify 

the main sources of such pre-existing materials in this deliverable: 

 Material previously published as: Page, K. R., De Roure, D.C., Martinez, K., Sadler, 

J. and Kit, O. (2009) “Linked Sensor Data: RESTfully serving RDF and GML”. In 

proc. 2nd International Workshop on Semantic Sensor Networks, Washington DC, 

2009. 

 Material previously published as: Page, K. R., De Roure, D. C. and Martinez, K. 

(2011) ―REST and Linked Data: a match made for domain driven development?‖. In 

proc. 2nd International Workshop on RESTful Design, Hyderabad, India, 2011. 

 Material to be published as: Kevin R. Page, Alex J. Frazer, David C. De Roure, and 

Kirk Martinez (2011) ―Semantic access to sensor observations through Web APIs‖ 

(submitted to the 4
th

 International Conference on GeoSensor Networks; the 

conference has since been cancelled and the paper will be resubmitted shortly to an 

alternative publication). 

 Chapter 7 includes an updated mashup example extended from that found in 

D5.2v2. 

 Several sections build upon experience and details (particularly diagrams) from 

prior deliverables including D1.3v2, D4.3v2, D5.1, D5.2v1, and D7.4v1. 



SemSorGrid4Env             FP7-223913 

 

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids iii  

Document Information 

 

Contract  Number FP7-223913 Acronym SemSorGrid4Env 

Full title SemSorGrid4Env: Semantic Sensor Grids for Rapid Application Development for 
Environmental Management 

Project URL www.semsorgrid4env.eu 

Document URL http://www.semsorgrid4env.eu/home.jsp?content=/sew/viewTerm&content=instance.jsp&_se
w_var_name=instance&_sew_instance=D5.3+v2&_sew_instance_set=SemSorGrid4Env&_o
rigin=%2Fhome.jsp  

EU Project officer Antonios Barbas  

 

Deliverable Number 5.3v2 Name Programming patterns and development guidelines for 
Semantic Sensor Grids – Phase 2 

Task Number 5.3 Name Describe programming patterns and development 
guidelines 

Work package Number 5   

Date of delivery Contractual 30/04/2011 Actual 30/04/2011 

Code name  Status draft   final  

Nature Prototype  Report  Specification  Tool  Other  

Distribution Type Public  Restricted  Consortium   

Authoring Partner University of Southampton 

QA Partner Universidad Politécnica de Madrid 

Contact Person Kevin R. Page  

Email krp@ecs.soton.ac.uk Phone +44 23 80594059 Fax  

Abstract 
(for dissemination) 

This deliverable details experience, best practice, and design principles for developing high-
level web-based APIs in support of semantic web applications and mashups for sensor grids. 

Keywords Web Applications, Mashups, High-level API, REST, Linked Data, Sensor Networks 

Version log/Date Change Author 

1.0 / 15/02/2011 Import from D5.3v1 K. R. Page 

1.1 / 17/02/2011 Restructuring of motivation and existing 
technology sections 

A. Frazer, K. R. Page 

1.2 / 01/03/2011 Added design principles section K. R. Page 

1.3 / 15/03/2011 Added implementation patterns section, 
restructured v1 implementations and 

added HLAPI engine 

K. R. Page 

1.4 / 05/04/2011 Added Use Cases and example semantic 
mashups 

B. Nagel, K. Page 

1.5 / 14/04/2011 Re-written HLAPI Design section K. Page 

1.6 / 23/04/2011 Revised remaining sections K. R. Page 

1.7 / 24/04/2011 Updated details in domain model section K. R. Page, R. Garcia 

2.0 / 03/05/2011 Final QA complete K. R. Page, A. Frazer 

 

http://www.semsorgrid4env.eu/
http://www.semsorgrid4env.eu/home.jsp?content=/sew/viewTerm&content=instance.jsp&_sew_var_name=instance&_sew_instance=D5.3+v2&_sew_instance_set=SemSorGrid4Env&_origin=%2Fhome.jsp
http://www.semsorgrid4env.eu/home.jsp?content=/sew/viewTerm&content=instance.jsp&_sew_var_name=instance&_sew_instance=D5.3+v2&_sew_instance_set=SemSorGrid4Env&_origin=%2Fhome.jsp
http://www.semsorgrid4env.eu/home.jsp?content=/sew/viewTerm&content=instance.jsp&_sew_var_name=instance&_sew_instance=D5.3+v2&_sew_instance_set=SemSorGrid4Env&_origin=%2Fhome.jsp
mailto:krp@ecs.soton.ac.uk
mailto:krp@ecs.soton.ac.uk


SemSorGrid4Env             FP7-223913 

 

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids iv  

Project Information 

This document is part of a research project funded by the IST Programme of the 

Commission of the European Communities as project number FP7-223913. The 

Beneficiaries in this project are: 

 

Partner Acronym Contact 

Universidad Politécnica de Madrid 

(Coordinator) 

UPM 

 

Prof. Dr. Asunción Gómez-Pérez 

Facultad de Informática 

Departamento de Inteligencia Artificial 

Campus de Montegancedo, sn  

Boadilla del Monte 28660 

Spain  

#e asun@fi.upm.es 

#t +34-91 336-7439, #f +34-91 352-4819 

The University of Manchester UNIMAN 

 

Prof. Norman Paton 

Department of Computer Science 

The University of Manchester  

Oxford Road 

Manchester, M13 9PL, United Kingdom 

#enpaton@cs.man.ac.uk 

#t +44-161-275 6910, #f +44-161-275 62 04 

National and Kapodistrian University of 
Athens 

 

NKUA 

 

Prof. ManolisKoubarakis 

University Campus, Ilissia 

Athina 

GR-15784 Greece 

#@ koubarak@di.uoa.gr 

#t+30 210 7275213, #f +30 210 7275214 

University of Southampton SOTON 

 

Dr. Kirk Martinez 

University Road 

Southampton 

SO17 1BJ United Kingdom 

#@km@ecs.soton.ac.uk 

#t+44 23 80594491, #f +44 23 80595499 

Deimos Space, S.L. DMS 

 

Mr. Agustín Izquierdo 

Ronda de Poniente 19, Edif. Fiteni VI, P 2, 2º 

Tres Cantos, Madrid – 28760 Spain 

#@agustin.izquierdo@deimos-space.com 

#t+34-91-8063450, #f +34-91-806-34-51 

EMU Limited EMU 

 

Dr. BruceTomlinson 

Mill Court, The Sawmills, Durley number 1 

Southampton, SO32 2EJ – United Kingdom  

#@bruce.tomlinson@emulimited.com 

#t+44 1489 860050, #f +44 1489 860051 

TechIdeas Asesores Tecnológicos, S.L. TI 

 

Dr. Jesús E. Gabaldón 

C/ Marie Curie 8-14 

08042 Barcelona, Spain 

#@ jesus.gabaldon@techideas.es 

#t+34.93.291.77.27, #f ++34.93.291.76.00 

mailto:asun@fi.upm.es
mailto:richard@isoco.com
mailto:dder@ecs.soton.ac.uk
mailto:manolis@intelligence.tuc.gr
mailto:bruce.tomlinson@emulimited.com
mailto:jesus.gabaldon@techideas.es


SemSorGrid4Env             FP7-223913 

 

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids v  

Table of Contents 

1. Introduction .......................................................................................................................... 1 

1.1. Scope ............................................................................................................................ 1 

1.2. Document Structure ..................................................................................................... 1 

2. Motivation for a High-level API .......................................................................................... 2 

2.1. Web 2.0 and the Interactive Web ................................................................................. 2 

2.2. Web APIs ..................................................................................................................... 2 

2.3. Supporting agile development models ......................................................................... 5 

3. Enabling technologies and existing domain approaches ...................................................... 7 

3.1. REST and Resource Orientated Architectures ............................................................. 7 

3.1.1. Design Principles .................................................................................................. 7 

3.1.2. Architectural Elements .......................................................................................... 8 

3.2. The Semantic Web and Linked Data ......................................................................... 10 

3.3. OGC Standards and Sensor Web Enablement ........................................................... 13 

3.4. The SemSorGrid4Env Architecture ........................................................................... 15 

4. Design Principles for High-Level APIs .............................................................................. 16 

4.1. Domain-driven Design ............................................................................................... 16 

4.2. An Analysis of REST and Linked Data ..................................................................... 17 

4.3. Similarities between REST and Linked Data ............................................................ 17 

4.3.1. The primacy of resources .................................................................................... 17 

4.3.2. Linking is not optional ........................................................................................ 18 

4.3.3. Segregating semantics ......................................................................................... 18 

4.3.4. Adaptability ......................................................................................................... 18 

4.3.5. Applicability of Domain Driven Design ............................................................. 19 

4.4. Potential differences in the application of REST and Linked Data ........................... 19 

4.4.1. API vs. Model ..................................................................................................... 19 

4.4.2. SPARQL ............................................................................................................. 20 



SemSorGrid4Env             FP7-223913 

 

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids vi  

4.4.3. Content negotiation ............................................................................................. 20 

4.4.4. RESTful through and through? ........................................................................... 21 

4.5. Combining REST and Linked Data for Domain Driven Design ............................... 22 

4.6. Summary of Design Principles for High-Level APIs ................................................ 23 

5. Applying the Design Principles to Semantic Sensor Grids: Design of a High-level API for 

Observations 24 

5.1. The Domain Model .................................................................................................... 25 

5.2. Resources ................................................................................................................... 27 

5.3. Representations .......................................................................................................... 28 

5.4. Web API .................................................................................................................... 30 

5.5. API walk-through: the Channel Coastal Observatory ............................................... 31 

6. Implementation Patterns for the High-Level API Design .................................................. 37 

6.1. Bespoke Implementation of the API for an GIS web platform .................................. 37 

6.1.1. Context ................................................................................................................ 37 

6.1.2. Implementation ................................................................................................... 38 

6.2. Adaptable Implementation for Specific Service Instances via a Sensor Web 

Architecture ............................................................................................................................ 39 

6.2.1. Context ................................................................................................................ 39 

6.2.2. Implementation ................................................................................................... 40 

6.3. Implementation of a Generic High-Level API for Observations platform ................ 41 

6.3.1. Context ................................................................................................................ 41 

6.3.2. Implementation ................................................................................................... 41 

7. Use Cases and Example Semantic Mashups ...................................................................... 44 

7.1. Recreational re-use: sea state and linked amenities for surfers.................................. 44 

Scripting language and libraries .............................................................................................. 44 

Displaying a map of all wave height sensors .......................................................................... 45 

Getting the day's wave height readings and the sensor metadata ........................................... 46 

Visualising the data ................................................................................................................. 48 

Fetching related data from other data sources ........................................................................ 49 



SemSorGrid4Env             FP7-223913 

 

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids vii  

Finished mashup ..................................................................................................................... 50 

7.2. Flood Gate status for the Coastal Defence Partnership.............................................. 51 

Mashup implementation ......................................................................................................... 52 

8. Summary ............................................................................................................................ 55 

References ................................................................................................................................... 56 

 

  



SemSorGrid4Env             FP7-223913 

 

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids viii  

Glossary 

API Application Programming Interface 

CCO Channel Coastal Observatory 

CSS Cascading Style Sheets 

CSV Comma-Separated Variables 

FDD Feature-driven Development 

GIS Geographic Information System 

GML Geography Markup Language 

HATEOAS Hypertext As The Engine Of Application State 

HLAPI High-Level API 

HTML Hypertext Markup Language 

HTTP Hypertext Transfer Protocol 

IQS Integration Query Service 

JSON JavaScript Object Notation 

KML Keyhole Markup Language 

O&M Observations and Measurements 

OGC Open Geospatial Consortium 

OWL Web Ontology Language 

PHP Hypertext Preprocessor 

REST Representational State Transfer 

RDF Resource Description Framework 

RDFS RDF Schema 

RPC Remote Procedure Call 

SOA Service-Oriented Architecture 

SOAP Simple Object Access Protocol 

SOS Sensor Observation Service 



SemSorGrid4Env             FP7-223913 

 

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids ix  

SPARQL SPARQL Protocol and RDF Query Language 

SWE Sensor Web Enablement 

UDDI Universal Description, Discovery and Integration 

UI User Interface 

UML Unified Modelling Language 

URI Uniform Resource Identifier 

URL Uniform Resource Locator 

WFS Web Feature Service 

WMS Web Map Service 

WP Work Package 

WSDL  Web Services Description Language 

WSGI  Web Server Gateway Interface 

XML  Extensible Markup Language 

XP  Extreme Programming



SemSorGrid4Env             FP7-223913 

 

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 1  

1. Introduction 

1.1. Scope 

This document represents the D5.3v2 of Work Package 5 High-level Application 

Programming Interfaces for Semantic Sensor Grids within the EU project ―Semantic 

Sensor Grid Rapid Application Development for Environmental Management 

(SemSorGrid4Env)‖. 

 

This final version of the deliverable is the culmination of experience gained over the 

course of the project developing semantic APIs for sensor observations. From this 

experience we present principles for designing domain driven APIs to support 

development of lightweight web applications and mashups, and a design pattern that 

applies these principles to a High-Level API for Observations. 

 

1.2. Document Structure 

This document contains six main sections plus an introduction and summary.  

The first, chapter 2, briefly introduces the motivations for High-Level APIs: Web 2.0, 

Web APIs and the agile development methodologies that drive many of these 

developments. 

Chapter 3 gives more detail on two key technologies we use to realise High-Level APIs, 

REST and Linked Data, and existing alternative approaches within the GIS community 

and SemSorGrid4Env project. 

Chapter 4 introduces Domain Driven Design, and in this context analyses the 

similarities and differences between REST and Linked Data. Based on this analysis a 

short set of design guidelines is given to improve provision of high-level APIs. 

Chapter 5 applies these principles in a novel design for a semantic High-Level API for 

Observations from Sensor Grids that support both Linked Data and OGC derived 

representations through a RESTful interface. Chapter 6 describes three increasingly 

sophisticated and complete implementations of the API design, while chapter 7 details 

how application developers can use the API to create mashups. 
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2. Motivation for a High-level API 

In this chapter we introduce the broader practices and technologies that underscore our 

motivation for development of a high-level API. 

We begin with an overview of light-weight web applications and APIs, the agile 

development practices they support, and introduce their underlying principles. We 

consider how they might be applicable to users of a Semantic Sensor Grid. 

In considering these users of an API, we distinguish between domain users and domain 

developers. In the example of the Flood Use case (WP7) the domain users are those 

who use the web applications and mashups, such as the emergency planning and 

decision support web applications described in [D7.1v2]. Domain developers are users 

of the high-level API: those who build the web applications and mashups using the 

high-level API, which will then be used by the domain users. 

 

2.1. Web 2.0 and the Interactive Web 

The interconnected nature of Web 2.0 means that more and more applications and 

services rely on bringing together two or more different services or data sources. But for 

this to work efficiently, there need to be standard mechanisms for interoperability. 

Various ―heavy-weight‖ technologies exist to enable service description (WSDL), 

discovery (UDDI) and communication between services (SOAP). While these 

technologies support a wide range of features, the architectural underpinnings needed to 

include them in a system are often complex, and are not especially well-suited to the 

rapid, iterative update cycle of a typical Web application (see Supporting agile 

development models, section 2.3). 

In contrast to these more verbose technologies, ―light-weight‖ technologies such as 

RESTful resources and Web APIs allow resources and services to be included in a Web 

―mashup‖ with much lower architectural overheads. Because of this, changes can be 

incorporated into a Web application much more quickly, making these technologies 

more suited to the typical mashup life-cycle. [Ben2008] 

Within the SemSorGrid4Env project, the Web Applications (e.g. for the flood use case 

[D7.1v2], [D7.4] primarily present a User Interface to domain users, so they can access, 

utilise, and manipulate, sensors and associated data provided by systems employing the 

SemsorGrid4Env architecture. 

Through the high-level API we must also support domain developers such that they can 

easily, quickly, and simply, create Web Applications and mashups. In the following 

sections we outline the lightweight APIs and agile development methods that support 

domain developers. 

2.2. Web APIs 

An Application Programming Interface (API) is a defined set of functions made 

available by one system, to allow other applications to communicate with it. Typical 
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examples include operating system APIs to allow desktop applications to interface with 

hardware, or scripting language APIs to interface with operating system calls — all 

through a standard, well-defined set of functions. [Pro2010] 

In a similar way, online systems offer APIs to allow other systems to interact with their 

functionality. As these interactions occur most naturally across Web architecture, these 

APIs are known as ―Web APIs‖. ProgrammableWeb.com provides a catalogue of over 

two thousand Web APIs, grouped by category, interface style and data format.
1
 

As an example, a simple Web API listed on ProgrammableWeb.com is ―Yahoo 

Weather‖
2
. As a provider of weather data (such as temperature, humidity, wind speed 

and direction), Yahoo have exposed this data to developers via an HTTP interface. This 

particular API requires the client to make an HTTP ―GET‖ request to a specified URL, 

with two additional parameters: a location identifier, and a flag to say which units the 

measurements should be returned in. As a response to this request, the service returns 

XML content describing the various weather details for the area requested, given in the 

units specified. Now that the client has this data, it can be displayed or manipulated in 

whatever way the developer chooses. 

 

 
Figure 2-1: An example request to/response from the Yahoo! Weather RSS API 

                                                 
1
 Web API catalogue, ProgrammableWeb.com – http://www.programmableweb.com/apis 

2
 Yahoo! Weather, Yahoo Developer Network – http://developer.yahoo.com/weather 
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Slightly more complex is the weather API from WorldWeatherOnline.com
3
. Again, 

weather information is requested via an HTTP ―GET‖ request, although this time, there 

are a few more options. The client can specify the format in which the data is returned 

this time – either XML, CSV or JSON. This allows the provider to cater for a wider 

range of developers, all from a single set of data. The developer simply adds the 

appropriate flag to their HTTP request, and the provider works out how to return the 

data in the correct format. Similarly, the client can specify location using either 

latitude/longitude, or various regional postal codes. Again, the client sets the correct 

flag, and the API provider works out which data needs to be returned. 

Even more complex still, is the NOAA Weather Service
4
. Unlike the previous 

examples, this system implements a SOAP interface, rather than a RESTful HTTP 

interface. 

To interact with a SOAP interface, the client's code will need to create function calls to 

the service's remote functions, as described in the service's WSDL file. This request is 

packaged into a SOAP ―envelope‖, along with the appropriate parameters, and sent to 

the service endpoint. Once received, the service unpacks the message, and runs the 

appropriate service function, before packing the response in another envelope and 

returning it to the client. In this way, SOAP-based APIs work more like traditional 

functional programming, with clients passing parameters to functions, and receiving the 

corresponding return values. 

In the case of the NOAA Weather Service, there are separate functions to return weather 

data for a given latitude and longitude, as well as for returning a latitude and longitude 

based on other location data. This allows the client to request a latitude and longitude by 

passing a postcode, city name or other identifying feature to the appropriate function, 

then passing the resulting latitude/longitude to the weather data function, to receive 

weather data for that area. The client can also pass additional parameters to the weather 

data function, to specify the time period which the data should cover. 

As these online systems become more comprehensive in the features they offer, the set 

of functions required to interact with them becomes more complex. In this way, the 

Web itself can be thought of as a ―platform‖, much like an operating system [Pro2010]. 

Where the operating system is a platform on which to build desktop or server-based 

applications, the Web becomes a platform for interconnected, online systems. Like the 

operating system APIs, Web APIs offer a standard set of functions to interface with this 

―platform‖, exposing its functionality to developers in a standard, well-defined way. 

                                                 
3
 WorldWeatherOnline - http://www.worldweatheronline.com/free-weather-feed.aspx 

4
 NOAA Weather Service API - http://www.programmableweb.com/api/noaa-weather-service 
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2.3. Supporting agile development models 

Modern Web applications and mashups are typically built by reusing as much existing 

functionality and data as possible, developing new code to tie current systems together 

in new and interesting ways. Because of this heavy reliance on re-use, mashups can be 

developed much more quickly and easily than traditional software systems. 

This kind of quick development cycle lends itself well to Agile software development 

practices. The most common of which are ―Extreme Programming‖, ―Scrum‖ and 

―Feature-driven development‖. 

Extreme Programming (XP) relies on short development cycles and frequent, stable 

releases, in order to cater to new user requirements as soon as possible [Bec2000]. 

Unlike many traditional software models where user requirements are established at the 

beginning of the project, XP uses its rapid, short development cycles to introduce new 

requirements throughout the project's life. After gathering the first set of requirements, a 

combination of paired programming and unit testing will follow, followed by 

acceptance testing with the user. Once accepted, the next set of requirements is 

discussed, and a new development cycle begins. 

This particular style suits Web application development well, as it inherently accounts 

for the changing requirements inevitable in the ever-changing Web. These changing 

requirements will come not only from users — whose expectations will changed based 

on competing products, new technologies or shifts in social dynamics — but also in 

changing technologies. As Web apps and mashups rely on supporting frameworks, APIs 

and data sources, any change in one of these systems means a corresponding change in 

the new system. By embracing this inevitable change, XP ensures that a stable system 

will always be released relatively frequently, without becoming mired in platform 

migrations and feature requests. 

Scrum takes its name from the game of Rugby, where a team of players — each with 

their own distinct roles — all work together in pursuit of a common goal, ―passing the 

ball back and forth‖ [Sch2004]. Like XP, Scrum aims to complete a ―shippable‖ product 

increment at the end of a short development period (known as a ―sprint‖). However, 

unlike XP, these sprints are of a fixed length. Where XP will plan features for a 

particular iteration such that the release cycle is still relatively short, it is still primarily 

concerned with the implementation of the features as its primary goal. In Scrum, the 

time-based deadlines of more traditional software development are used, albeit 

estimated based on the features to be implemented. 

In addition, the feature requirements for the overall system are determined and 

prioritised at the beginning of the project, with one or more selected for implementation 

at the beginning of each sprint. As a result, changes can be made to the list of overall 

project requirements, but once a sprint has begun, the requirements selected for 

implementation during this cycle remain fixed. 

By retaining XP's rapid development cycle, Scrum can still react relatively well to the 

inevitable changes of Web development. However, its fixed-time sprints have been 

criticised, as they are easily disturbed by unexpected programming errors, or by 

changing user requirements which directly affect the requirements of the current sprint. 
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The ability to re-evaluate these issues at regular intervals, however, still makes Scrum 

more suited to the changing environment of the Web than most traditional software 

development models. 

Like XP and Scrum Feature-driven development (FDD) relies on short development 

iterations, and uses a list of desired features to determine a given iteration's tasks 

[Pal2002]. After an initial planning stage, the required featured are determined, and 

assigned to classes. Once this stage is complete, chief programmers begin a series of 

two-week iterations by selecting one or more individual features, generating the 

appropriate design diagrams and documentation, and finally implementing the features 

in code. At the end of each iteration the code is tested, inspected and integrated into the 

main build. 

Like the previous two methods, this rapid cycle of development ensures that new 

features make it into the published build as quickly as possible. However, because FDD 

still relies on many of the tenets of traditional software design (verbose UML diagrams, 

regular code inspections), a comparable feature would is likely to take longer to develop 

from start to finish via FDD, than via XP or Scrum. In addition, because requirements 

elicitation is only done at the beginning of the project, FDD is unsuited to situations 

where user requirements change throughout development. 

 

 

 

Agile Method Release Cycle Reaction to changes in: 

User Requirements Supporting APIs 

Extreme Programming Frequent, 

varies 

As required Release delayed 

Scrum Frequent, fixed Per iteration Set deadlines 

affected 

Feature-Driven 

Development 

Frequent, fixed Per Project Set deadlines 

affected 

Table 1: A comparison of the strengths and weaknesses of different Agile software development models, 

with respect to Web application development 

 

Table 1 highlights the relative strengths and weaknesses of the various approaches to 

Web application design. While all produce rapid, iterative releases of usable code, they 

each handle changes in user requirements and supporting APIs differently. 
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3. Enabling technologies and existing domain approaches 

In capturing programming patterns for high-level APIs for Semantic Sensor Grids we 

must also understand the principles that underpin successful Web APIs, and how 

technologies already employed in domains associated with sensor grids might be 

applicable. 

In the first two sections of this chapter we describe two approaches fundamentally built 

upon and with the architecture of the Web: Representational State Transfer (REST), and 

the Linked Data principles as applied to the Semantic Web. 

We then give an overview of the Sensor Web technologies developed by the widely 

accepted Open Geospatial Consortium, and position high-level APIs within the 

SemSorGrid4Env architecture. 

 

3.1. REST and Resource Orientated Architectures 

Representational State Transfer (REST) is a set of design principles which have been 

popularly and successfully adopted in many (RESTful) web services, and is typically 

framed as an alternative to ‗heavyweight' web services, including as the WS-* family. 

The key principle of REST is the use of resources for specific things that we wish to 

reference, and the referencing of these resources using URIs. Representations of these 

resources — encoded in a particular format — are then accessed through the URI, 

usually using HTTP. 

3.1.1. Design Principles 

REST, as an architectural style, is an effort to bring together the set of design principles 

enshrined through implementation in Web Architecture. Primarily, REST aims to 

capture the features of the Web which allow it to scale so successfully, that is: 

 Everything is a resource which is addressable 

 Resources have multiple representations 

 Relationships between resources are expressed through hyperlinks 

 All resources share a common interface with a limited set of operations 

 Client server communication is stateless 

REST is not, however, defined in terms of, nor limited to, the web (though HTTP meets 

the REST criteria) and while there have been attempts to clarify the application of 

REST to web services through definition of a Resource Oriented Architecture the term 

is still often loosely, sometimes incorrectly, applied. 

In order to maintain these principles, certain architectural constraints were applied 

[Fie2000]. These constraints include the following: 

 The client-server constraint is used to separate the concerns of the parties 

involved. Typically, this involves separating the user interface and business 

logic processes from the data storage concern. This offers two major benefits: 
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the user interface can be ported to different platforms while using the same data, 

and the data sources can scale more easily by keeping the server architecture 

relatively simple. In a Web environment, this also allows both client and server 

elements to develop separately, suiting the multiple organisational domains of 

the Internet more appropriately. 

 

 A stateless system insists that any request from the client to the server contains 

all the necessary information to make the request, without relying on any context 

stored on the server. In a REST-based system, the state is made implicit by the 

status of any current HTTP requests. If there are no outstanding HTTP requests, 

the system is ―at rest‖ in a single ―application state‖. By initiating an HTTP 

request, the system is implicitly changing state – it enters a ―transition state‖ 

between application states. Once these requests resolve, the system ―at rest‖ 

again, in whatever new application state is associated with the most recent 

request. 

By making a system stateless, several emergent benefits arise. Visibility is 

improved, as a single request can describe that request's entire nature. Because 

no state is explicitly stored on the server, calls to a REST service are 

idempotent. This allows failed requests to be safely made again and again, 

without adversely affecting the server‘s internal state, improving user-perceived 

reliability and preserving the server‘s data integrity. Scalability is also improved, 

as the server has no need to manage resources between individual requests. 

 

 One disadvantage is that network performance may drop, as almost identical 

request data will be sent with every request. This can be mitigated somewhat by 

making the system cacheable, i.e. by explicitly stating whether a returned 

resource can be reused for equivalent future requests. In this way, some 

interactions will we completely avoided, improving scalability and reducing 

latency. However, reliability decreases if the cached data is allowed to become 

different from the comparable data stored on the server at the time of request. 

 

 The uniform interface of REST is the feature which distinguishes it most 

clearly from other Web services. By making the interface generalised, the 

system architecture can be simplified, and its interactions are made more visible. 

The main disadvantage is that efficiency is reduced, as information is transferred 

in a standardised, generic form, rather than on specific to the application. In this 

way, REST is optimised for the generic data transfer of the Web, but is less than 

optimal for any other type of interaction. 

3.1.2. Architectural Elements 

As REST is an abstraction of the Web, it ignores details such as component 

implementation and protocol syntax. Instead, it focuses on the roles of its components, 

how they interact with other components, and the identification of significant data 

elements [Fie2000]. 

REST components communicate by transmitting a representation of a resource in a 

format specified by the requesting system. The representation can be the same as the 
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original resource, or could be derived from it — whichever the case, the client receives 

only the representation, and its construction remains hidden. 

The resource is REST's key abstraction of information, and can include any concept 

that could be the target of a hypertext reference. A resource is a temporally varying, 

conceptual mapping to a set of entities. This set could be empty — identifying an as yet 

unrealised concept — or could contain resource representations or identifiers. While 

two different resources could reference the same entity at one point in time, there is no 

requirement for them to always do so. For example, a code tarball release with version 

number ―1.6‖ could be represented by a resource ―tarball release 1.6‖ and another called 

―latest‖. However, when version number ―1.7‖ is released, the ―latest‖ resource would 

most likely now point to this entity instead. 

This method has several advantages. It allows the representation of a resource to be 

bound at the last minute, enabling content negotiation based on the request. It also 

allows the client to reference a concept instead of a specific representation, so that no 

links need to be changed whenever the underlying resource itself changes. 

One of the main tenets of REST is the primacy of resources that are uniquely identified 

by opaque URIs – in order to avoid coupling between clients and servers, no 

assumptions must be made about the structure of the URI [Ala2010]. REST limits the 

operations exposed by a web service to a small, well-defined, standard, set [Ric2007]. 

For HTTP, these are: 

 GET – to return a list of URIs representing a collection‘s members, or to retrieve 

a representation of a member resource itself  

 POST – to add a new member URI to an existing collection, or to turn an 

existing member resource into a collection by inserting a new member URI into 

it 

 PUT – to update, replace, or create a new collection or collection member, 

depending on whether it exists already or not 

 DELETE – delete a collection or member of a collection completely 

This contrasts with a potentially expansive set of operators (for RPC style web services) 

or message contracts (for SOA style web services). It also means HTTP is retained as an 

application layer protocol as per its originally design, rather than being re-purposed as a 

transport layer, e.g. for SOAP; this brings both benefits (e.g. compatibility and 

scalability with standard web infrastructure) and further constraints (e.g. idempotence 

becomes desirable across operations to cope with network unreliability). 

This constrained set of operations leads to a design process focused on correctly 

identifying the resources that should be exposed for a service and their representations; 

while the interface to the resources is simple, the number of resources – every piece of 

information that could be served - is likely to be many, with a URI for each. Since an 

application client cannot possibly know of every URI in existence it is important that 

resources hyperlink to other resources so a client application can navigate around them. 

A Resource Oriented Architecture also requires statelessness – that each HTTP 

operation is totally separate from any other. As such, any state the service has must also 
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be exposed as a resource; an application client enters that state by accessing the URI for 

that resource; to enter another state a will use another URI.  

Any application state a service requires to provide a representation of a resource must 

be completely contained within the request to the server (where the application is the 

client software processing and modifying the resource representations returned by the 

service). Transitions in application state are made by moving - ―navigating‖ in a web 

sense – to alternate resources provided as URI links in the representation of a resource 

provided returned by the server. 

 

3.2. The Semantic Web and Linked Data 

The term ―Semantic Web‖ describes methods and technologies to allow machines to 

understand the meaning of data on the Web. The addition of machine-readable metadata 

to existing content would allow automated agents to access the Web more intelligently, 

performing relevant tasks and locating related information without explicit user input. 

While not formally defined, the term is generally used to describe the technologies used 

to implement it [Ger2006], including: 

 Resource Description Framework (RDF) [RDF1999] – a language for 

expressing data models, referring to objects and their relationships. This is 

typically expressed as a subject-predicate-object ―triple‖, e.g. ―wave height‖, 

―is-a-type-of‖, ―metocean measurement‖ 

 RDF Schema [RDFS2004] – extends RDF, allowing the properties and classes 

of RDF-based resources to be described, with semantics of generalised 

hierarchies. 

 Web Ontology Language (OWL) [Lac2005] – adds additional vocabulary for 

describing these properties and classes, including the relationship between 

classes, cardinality, equality, characteristics of properties and enumerated 

classes. 

 SPARQL [Cox2007] – a query language for Semantic Web data sources 

The concept of Linked Data centres on using the Web to create typed links between 

different data sources. Technically, the term refers to data published on the Web in a 

machine-readable way, with explicitly defined meaning, that is linked to other external 

data sets and has the potential to be linked to itself from other data sets. Where the Web 

is based around HTML documents linked by untyped hyperlinks, Linked Data is based 

on Resource Description Framework (RDF) documents. These documents described the 

typed links which link the document to other arbitrary data sources. Initially, Linked 

Data was only concerned with data itself, with URIs being used primarily as unique 

identifiers. However, when combined with the hypertext Web, these URIs become 

equally important in retrieving the data across the network. 

Berners-Lee outlined a set of ―rules‖ for publishing data on the Web, such that it meets 

the goals of Linked Data: 

 Use URIs as names for things 

 Use HTTP URIs, so people can look up these names 
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 When someone looks up a URI, provide useful information using the standards 

 Include links to other URIs, so they can discover more things 

These ―rules‖ have become known as the ―Linked Data Principles‖ [Biz2009], and 

provide simple guidelines for publishing connected data on the Web, in accordance with 

its architecture and standards. 

Linked Data relies on two fundamental Web technologies: URIs and HTTP. Entities 

identified by URIs can be located by simply dereferencing the URI over HTTP. Thus, 

HTTP provides a simple mechanism for retrieving the resources themselves, or 

descriptions of resources which cannot be sent. RDF provides a generic, graph-based 

data model with which to structure and link the data which describes things. RDF 

encodes data in the form subject-predicate-object. These ―triples‖ take a URI as the 

subject and object, with a predicate used to describe how one relates to the other. In this 

way, RDF links can be created, with the subject and object each referencing the 

namespace of a different data set. Dereferencing these namespaces will result in the 

graph described by that namespace, i.e. the graph describing the entity represented by 

the URI, or the relationship represented by the predicate. 

By combining the features of HTTP URIs, HTTP as a retrieval mechanism and RDF as 

a data model, Linked Data builds directly on the Web's generalised architecture. As 

such, the Linked Data web can be seen as an additional Web layer, with many similar 

properties: 

 Generic, and can contain any type of data 

 Anyone can publish to the Web of Data 

 There is no constraint on data publishers to choose a specific vocabulary 

 Entities are connected by links, creating a graph of linked data sources, and 

enabling the discovery of new data sources 

From an application development perspective, this means: 

 Data is separated from formatting and presentation 

 Data is self-describing, as the describing vocabulary can be dereferenced via its 

URI 

 HTTP as a transport mechanism and RDF as a data model are much simpler than 

WS-*-based APIs, with heterogenous data models and interfaces 

 The Web of Data is open, so data sources can be discovered at run-time via RDF 

links, rather than being hard coded from the start 
 

While the use of URIs is common throughout the Semantic Web - not least as the basic 

element of RDF - the requirement to use HTTP URIs sets Linked Data deployment 

apart. It is a departure from the use of URIs purely as unique identifiers within the 

graph; in Linked Data they are also a means of retrieving parts of the graph relevant to 

that resource - the URIs can be dereferenced. 

 

This dual use of HTTP URIs does not, however, remove the need to distinguish 

between the two uses: a web client must be able to tell the difference between a URI 

representing the person Tim Berners-Lee (a non-information resource) and a URI 



SemSorGrid4Env             FP7-223913 

 

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 12  

providing information about Tim Berners-Lee (an information resource); even if, in the 

linked data web, we dereference the former to retrieve the latter. 

A web server communicates this distinction to the client through a combination of the 

HTTP ―303 See Other redirection code (referred to as the httpRange-14 solution) and 

content negotiation, i.e. returning different representations according to the HTTP 

Accept header set by the client [Sau2008]. 

 

 

 
Figure 3-1: An example of content negotiation, based on the MIME type specified by the client (from 

[Pag2009]) 

 

There are two general cases for this solution:  

 

1.  If an information resource describing the non-information resource has multiple 

representations (e.g. in RDF and HTML) of the same information then the web 

server should first redirect the client (via a 303 response) to the intermediate 

information resource URI (indicating the move from a non-information resource 

to an information resource), and then use content negotiation to return the 

appropriate representation. The Content-Location header should be used to 

confirm the URI of this representation. 

2.  If the information resources describing the non-information resource contain 

different information depending on which representation is requested (e.g. the 
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RDF representation contains different information to the HTML, not just a 

different representation), then the web server should redirect the client (via a 303 

response) directly to the information resource appropriate to the requested 

content type, without an intermediate common information resource. The 

Content-Location header should be used to confirm the URI of the returned 

representation. 

 

Finally, it is noted that the use of resolvable (HTTP) URIs does not imply the encoding 

of semantics within a URI, and that the syntax used by a web server when returning a 

resource should not be interpreted as having such meaning. Apparent abstractions of the 

URI API (e.g. http://example.com/<element>/<type>/<time>) cannot, 

and should not, be provided - certainly when describing the interaction with a client 

application. Use and manipulation of such an abstraction might provide a useful 

shortcut for developers looking to manually locate and trial resources; the use of such 

‗friendly‘ URIs that may encourage this misuse are not without merit when providing 

manageable endpoints for developers and end-users; but a linked data client should 

primarily access new resources via the links asserted within the (RDF) graph. 

 

3.3. OGC Standards and Sensor Web Enablement 

Standardised data encodings and service definitions from the Open Geospatial 

Consortium (OGC) are widely adopted across industry. Earlier standards introduced 

services to directly support Geospatial Information Systems (GIS), while more recent 

efforts have resulted in services defined as part of Sensor Web Enablement (SWE). 

The core Open Geospatial Consortium (OGC) encoding is GML, which is an XML 

schema derived language in which several GML Application Schema are defined. In 

order to expose an application‘s data using GML, an XML schema must be created 

specific to the application domain. This schema describes the relevant data objects, 

which applications that implement the schema must expose. For example, an application 

for flood defence monitoring may define wave heights, coastal defence types and 

heights, tide heights and population densities in its schema. These data objects will in 

turn reference the primitive data objects defined by GML. These primitive types include 

geometries, coordinates, units of measurement and directions, as well as concepts such 

as ―features‖ and ―observations‖. 

GML is a particularly interesting XML representation since it has several RDF-like 

features: an object-property-value model similar to the RDF model, and extensive (if 

perhaps under-utilised) support for remote properties using xlink:href. This 

probably shouldn‘t come as a surprise: early versions of GML included an RDFS 

profile.  

Earlier OGC standards used in GIS applications include ―Web Map Service‖ (WMS) 

and ―Web Feature Service‖ (WFS). WMS offers an interface to get information about a 

map layer, and to return that map layer for use in mapping software such as OpenLayers 

[WMS2010]. While straightforward, this method restricts the ways in which the data 

can be used – a map layer is, in essence, an image, and as such it is impractical to 

extract information from a layer to further manipulate it. WFS goes beyond this by 
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returning map data for a single feature in the OGC GML format [WFS2010]. However, 

this data is retrieved through a more complicated, non-RESTful RPC type service. 

OGC SWE is a framework of open standards, designed to exploit Web-connected 

sensor systems via a Service Oriented Architecture [Bot2007]. It incorporates the 

Observations and Measurements (O&M) GML [Cox2007] and SensorML [SML2010] 

schema languages, to enable richly defined models for both sensor characteristics and 

observations. In addition, the framework includes additional services for discovering 

sensors (Sensor Registries), accessing sensor information (Sensor Observation Service), 

and receiving asynchronous sensor notifications (Web Alert Service). 

Although Sensor Web Enablement is designed to provide for ―Web-connected sensors‖, 

the approach taken in the design of the included services is to run over Web protocols, 

but not to adopt a Web Architecture through Resource Oriented services. While this is a 

valid and useful technique to extend GIS services into a more web-like platform, this 

specialisation of interfaces according to task (Sensor Observation, Alert, etc.) does not 

provide the kind of RESTful High-Level API required to support lightweight mashup 

development. 

The data models and schemas (used to transfer information between server and client 

through the interface calls) are of more interest since they are based on a thorough and 

comprehensive domain analysis. Within SWE this is manifest in two perspectives over 

the data: 

A provider-centric approach orientated around and primarily describing the 

processes undertaken by sensors, structured networks of sensors, and constituent 

elements of sensors. Data is a product of the described sensor network. From the 

OGC standards this approach is adopted by the SensorML GML application 

schema and the SWE Sensor Planning Service. 

A consumer-centric approach orientated around and primarily describing the 

observations and measurements – i.e. the data, the results – captured by sensors 

rather than the sensors themselves (although the provenance of observations is 

modelled through an associated process). The OGC Observations and 

Measurements (O&M) model and GML application schema apply this approach, 

as used by the SWE Sensor Observation Service (SOS). 

While the former might be applicable to provisioning, deploying, and managing sensor 

network themselves, our domain users (and the domain developers supporting them) are 

engaged in activities – such as emergency response planning and management – which 

instead are more aligned with manipulation of the data once it has been collected by the 

sensor network. 
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3.4. The SemSorGrid4Env Architecture 
 

The SemSorGrid4Env architecture ([D1.3v2], figure 3-2) takes a Service Oriented 

approach to integrating data sources, middleware, and applications. While this contrasts 

with the Resource Oriented approach taken by REST APIs and generally followed in 

development of the High-Level API, the two approaches are also complementary. 

Applications using the Architecture service APIs are more likely to be tightly integrated 

and dependent on the services discovered (and previously registered); an example of 

such a ―full‖ application can be found in the SemSorGrid4Env Flood Planning and 

Response Application [D7.1v2]. 

Lightweight mashups are more likely to be developed quickly, potentially on an ad-hoc 

basis, and to take advantage of unintended re-use of sensor data. Semantic mashups 

benefit from the common self-descriptive models and linking provided by a REST API. 

 

 
Figure 3-2: The SemSorGrid4Env architecture: the services, their relationships, and the classes that they 

belong to (from [D1.3v2]) 
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4. Design Principles for High-Level APIs 
 

In the previous chapter an overview of REST and Linked Data was presented, within 

the context of their suitability for supporting the developments models introduced in 

Chapter 2 through provision of a High-Level API which embraces Web Architecture. 

 

At a first glance there might appear to be an obvious alignment and overlap between the 

approaches prescribed by REST and Linked Data; but despite their development on and 

around the architecture and technologies of the Web, they were developed in relative 

isolation. On more detailed inspection of the two, divergences in scope and applicability 

present themselves, and for some aspects, incompatibility. In this chapter we investigate 

these similarities and differences and suggest the coupling is worthy of a third look: in 

combination as a flexible environment in which the developer can focus on domain 

driven applications. 

 

4.1. Domain-driven Design 

As introduced in the previous chapter, the resource is the first-class citizen of both 

RESTful Web APIs and Linked Data exposed data sources; identifying resources and 

the representations that allow retrieval of them is key to writing the API. 

This approach has echoes from existing software design practices and methodology 

when considering the object model derived Domain-driven Design philosophy 

[Eva2003]. 

Domain-driven design espouses that: 

 The primary focus should be on the domain 

 Complex domain designs should be based on a model 

These principles are well aligned with the identification of resources (for the former) 

and the encapsulation of the domain by an ontology through Linked Data (the latter). 

This process of ―knowledge crunching‖ with domain experts and domain developers 

ensures an API exposes a model that is both pragmatic programmatically and 

representative of the domain: 

“Good programmers will naturally start to abstract and develop a model that can do 

more work. But when that happens only in a technical setting, without collaboration 

from domain experts, the concepts are naive. That shallowness of knowledge produces 

software that does a basic job but lacks a deep connection to the domain expert’s way 

of thinking.” [Eva2003] 

This is essential if the API is to be successfully used by domain developers, and in turn 

domain users: the power of a successful API is in encapsulating the complexity of a 

domain in a manner that allows its use to scale through simple usage. This simplicity 

must be deeply tied to the domain to allow natural and intuitive use by the domain 
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developers and users; an abstraction unfamiliar or unsuitable to them will have an effect 

opposite to that desired. 

 

4.2. An Analysis of REST and Linked Data 
 

The Linked Data movement has achieved considerable success constructing a semantic 

Web of Data [Biz2009]. While much initial semantic web research focussed on building 

a stack to enable reasoning and logic, the more recent Linked Data programme has 

attempted to reconnect the semantic web to its roots in the most successful distributed 

system ever constructed (or at the very least the latter half of its moniker!).  

 

Moving on from an earlier assumption that URIs would do nothing more than uniquely 

identify Things, the key thrust of Linked Data has been the re-adoption of HTTP URIs 

for retrieval of resource representations. The approach can be summarised by the four 

Linked Data ‗rules‘ [Ber2006]: use URIs as names for things; use HTTP URIs so that 

people can look up those names; when someone looks up a URI, provide useful 

information, using the standards (RDF*, SPARQL); and include links to other URIs, so 

that they can discover more things.  

 

A shallow keyword match over these principles would suggest a strong correlation with 

those underpinning REST [Fie2000], and yet rarely are the two mentioned together as 

complementary styles. Are they at cross-purposes, completely orthogonal, or can 

experience from both approaches inform a more coherent framework for building 

distributed web services and applications?  

 

4.3. Similarities between REST and Linked Data 
 

In this section we evaluate the commonalities between REST and Linked Data that 

support a new approach to High-Level API development encompassing both 

methodologies. 

 

4.3.1. The primacy of resources 

 

The key abstraction of information in REST is a resource [Fie2000]; similarly the URI 

is both the identifier for, and means by which relationships are expressed between, 

things in the Resource Description Framework (RDF) [RDF1999], which is the 

foundation of the Semantic Web stack. In both cases, the notion of an identifiable 

resource is fundamental to implementation; design and development of a system cannot 

progress without the assignment and association of resources.  

 

Since Resource Oriented Architectures [Ric2007] and Linked Data are the most 

commonly encountered realisations of REST and the Semantic Web respectively, and 

since both are built upon HTTP and HTTP URIs, it is easy to recognise this as a 

common shared building block. It is therefore also relevant to note that neither REST as 
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an architectural style nor RDF as originally conceived are monogamously wedded to 

HTTP.  

 

4.3.2. Linking is not optional 

 

The fourth Linked Data principle is to ―Include links to other URIs‖ in the 

representation provided when a URI is dereferenced ―so that they can discover more 

things‖ [Ber2006]. It is this inclusion of links to other HTTP URIs which, when 

dereferenced, provide further links to more HTTP URIs that sets Linked Data apart 

from earlier Semantic Web activity in its explicit encouragement of a dereferencable 

Web (and the trails of links through it).  

 

―Hypermedia as the engine of application state‖ (HATEOAS) is a defining 

characteristic of the REST architectural style [Fie2000]. State transitions in an 

application occur when moving from one resource to another (by retrieving or 

modifying) using the links provided in a representation.  

 

A representation that supports linking is therefore a requirement for both approaches; 

neither would function as intended without the hyperstructures described above. While 

there is no specific mandated linked representation for REST implementations, Linked 

Data advocates ―using the standards‖ which, in the case of RDF and SPARQL, both 

guarantee support for links to other resources.  

 

4.3.3. Segregating semantics 

 

Semantics about relationships between resources can be expressed by both approaches: 

in the Semantic Web they are described by ontologies written in RDFS and OWL, while 

RESTful implementations can encode semantics in link relations.  

 

A common misapplication of both approaches is to assume semantics (or abuse implied 

semantics) encoded in a URI, when both REST and Linked Data explicitly expect 

clients to regard URIs as opaque strings when used for identification. In this way both 

follow the principle of separating identification from the semantics of interaction, 

description, and structure.  

 

4.3.4. Adaptability 

 

Both REST and the Semantic Web include facets in their design which allow the 

relationships between resources to be modified, should revision be required, without 

necessitating interface changes to the client.  

 

Since state in a RESTful application is defined by navigation of the hyperstructure, if a 

server changes the links that are transferred to a client (via a representation) it also 

changes the possible state transitions the application can make. It does this without 
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changing the mechanism by which the client performs the transition (the combination of 

HTTP and the representations for the specified media type).  

 

As befits a distributed web system (where it is perhaps unlikely – and probably 

undesirable – for there to be ‗one true ontology‘), there is no constraint on the 

application of a single ontology to each resource on the Semantic Web. Assertions can 

be made using different ontologies, in different places, and at different times; ontologies 

(themselves expressed in RDF) can be extended and subsumed by other ontologies.  

In both cases this adaptability can be seen as a benefit of self-description – a client has 

prior knowledge of the framework within which relationships are expressed, but there is 

no requirement of prior knowledge of the relationships themselves.  

 

4.3.5. Applicability of Domain Driven Design 

 

The Domain Driven Design methodology introduced at the beginning of this chapter 

[Eva2003] espouses a focus on domain modelling throughout an iterative development 

process. This has particular resonance with the principles and practices outlined above 

in respect to both REST and Linked Data: the identification of resources and the links 

between them should naturally map to the domain (and business process) at hand 

[Rai2010], and the ability to iteratively modify the hyperstructure lends itself well to 

agile development. 

 

This methodology is key in developing a service that can be successfully used by 

domain application developers, and in turn domain users: the power of a successful data 

service is in encapsulating the complexity of a domain in a manner that allows its use to 

scale through simple usage. This simplicity must be deeply tied to the domain to allow 

natural and intuitive use by domain developers and users; an abstraction unfamiliar or 

unsuitable to them will have an effect opposite to that desired.  

 

4.4. Potential differences in the application of REST and Linked 
Data 

 

In this section we outline those areas where one might perceive differences between 

REST and Linked Data – although, as we summarise in the next section, we counter that 

these are rather vestiges of different demands and current practice rather than 

fundamental incompatibilities.  

 

4.4.1. API vs. Model 

 

In the previous section we explored the similarities between REST and Linked Data, 

principally centred on the notion of resources and the relationships between them. There 

is, however, a key difference in the motivation for resource identification:  
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 in RESTful systems, resources and their relationships are identified and exposed to 

enable a client to retrieve data and transition to other resources; in effect, they 

define an API to enable application operation and state transition. Linking is the 

mechanism to navigate the API; link relations encode semantics to enable this.  

 

 in RDF and ontologies, resources are identified to encapsulate an underlying data 

model. While Linked Data extends this idea so that sections of the model can be 

retrieved by dereferencing resources, linking in the returned representation is used 

to bind sections of the model rather than transition state. 

 

By extension the adaptability and self-documentation described in section 4.3 applies to 

API interactions for REST, and the data model for the Semantic Web.  

 

This distinction between model and API, principally in the identification of resources, is 

a key finding that informs our development of High-Level APIs. 

 

4.4.2. SPARQL 

 

The third Linked Data rule cites not only RDF, but a sister standard which from a 

RESTful point of view is a troublesome relative: SPARQL.  

 

SPARQL is the standard query interface for RDF; it is widely deployed as an interface 

to Linked Data services, and widely used by Linked Data applications. However most 

SPARQL endpoints are implemented – and used – in the RPC style. RESTful interfaces 

to SPARQL have been proposed [Wil2009] which expose resources that, when a 

representation is requested, trigger SPARQL queries. Consistent with the previous 

section, identification of these query resources is a matter of identifying the 

―information units‖ which comprise the service API.  

 

Perhaps a more concerning implication is the relative popularity of SPARQL for 

application development, and particularly for combining Linked Data through SPARQL 

endpoints. In this scenario, whilst the data model benefits from the distributed nature of 

resources and linking, the application interaction does not: it eschews the benefits of 

RESTful operation.  

 

4.4.3. Content negotiation 

 

RESTful services use content negotiation to select a shared envelope that both the client 

and server can encode and decode the representation through (and the interface to the 

service is then dynamically carried via the representation as links). Typically a REST 

service will assume the resource being transferred in these representations can be 

considered a document; in the terminology of the following section, an ‗information 

resource‘.  

 

Linked Data services, in implementing the ―HTTP range issue 14‖ solution [Sau2008], 

add semantics to the content negotiation to distinguish between URIs that are non-
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information resources (identifiers for conceptual or real-world objects) and URIs that 

are information resources (documents) that describe the non-information resources. This 

is because assertions in the RDF graph are usually relationships that apply to the non-

information resource, but Linked Data overloads URI usage so that it is also a 

mechanism for retrieving triples describing that resource (in a document, i.e. an 

information resource)
5
. 

 

One widely deployed technical solution is to issue a 303 redirect from the non-

information resource URI to a content-negotiated information resource (which will have 

representations containing descriptive information about the non-information resource; 

at least one representation will be an RDF serialization; see section 3.2). The HTTP 

redirect signals the transition from non-information resource to the client. The practical 

consequence of the redirect is, in our experience, a (variable but) measurable additional 

delay for each complete transfer of information between server and client [Rou2010]; 

there is added complexity when compared to a REST API in which everything is simply 

an information resource.  

 

4.4.4. RESTful through and through? 

 

While there is clearly alignment in approach, and overlap in parts of implementation, 

are deployed best practice Linked Data services RESTful? On two further counts, we 

believe they could be considered to fall short.  

 

Firstly, because resources are identified primarily for the purposes of correctly 

modelling the data (section 4.4.1), less thought is applied to the Linked Data URIs that 

can be dereferenced and how an application might use them – and the links between 

them – for RESTful state transition. If an API has not been designed for HATEOAS, 

then perhaps it is understandable that Linked Data developers appear to prefer 

SPARQL; or that adoption of SPARQL reduces motivation to design an API with 

HATEOAS in mind.  

 

Secondly, the majority of Linked Data sites are read-only: they publish data but few 

have the ability to modify it (i.e. PUT, POST or DELETE). This may, in part, be due to 

the political Open Data movement which is frequently hard to distinguish from the 

technical push for Linked Data. Proposals for a SPARQL Update are well progressed, 

but carry the expected RPC issues; and while a Uniform HTTP Protocol for Managing 

RDF Graphs has been proposed, it remains a mechanism to encode SPARQL 

commands that are applied to a whole graph store, rather than manipulation of specific 

resources exposed through a RESTful API.  

 

                                                 
5
 This is a change in behaviour from earlier use of HTTP URIs in RDF, when they were not expected to 

be dereferenced. 
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4.5. Combining REST and Linked Data for Domain Driven Design 

 

In the previous sections we outlined where RESTful and Linked Data approaches share 

a common method and where they diverge. We do not, however, believe the differences 

are irreconcilable: while worthy of note, issues surrounding SPARQL, 303 redirects, 

content negotiation and writeable resources could all be mitigated or indeed solved 

though modifications to implementation and convention.  

 

On the point of API vs. Model, we regard this as a complementarity rather than a 

“difference”, particularly when considered in the context of domain driven design.  

 

It is important for a domain expert (or developer) to be able to use clear domain models 

that separate concerns to enable the manipulation of the domain data: this is a task RDF 

has proven adept at. It is equally important for a domain developer to be able to quickly 

and simply access, modify, and publish domain data through a lightweight API for 

scalable and distributed services: which REST enables. 

 

If common models can be used for both the API design (the RESTful interactions with 

resources) and the modelling of resource relationships (the RDF and ontologies) then 

the focus of complexity in any application can be where it really matters: the domain 

driven design.  

 

From a RESTful service design perspective, providing Linked Data representations 

offers an opportunity to use a common domain model for expressing, and identifying, 

the resources exposed by the API as well as the data model and for linking resources 

(within a particular service, and between services); Linked Data (RDF) uses a self-

describing semantic model beyond the relatively simple link semantics in most REST 

deployments. 

 

From a Linked Data perspective, this presents an opportunity for more sophisticated 

description and navigation of links in representations, and through this the application 

of stronger semantics (with a common underlying model) for application state 

transitions and the development of true RESTful application development using Linked 

Data, beyond the current polarisation around SPARQL endpoints.  

 

  



SemSorGrid4Env             FP7-223913 

 

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 23  

4.6. Summary of Design Principles for High-Level APIs 
 

Based on our evaluation of suitable architectures to support mashup development and 

comparison REST and Linked Data, we propose the following design principles for 

High-Level API development: 

 

1. Agile development of lightweight mashups is best supported by Resource 

Oriented service architectures. Reduce complexity for mashup developers  

through the simplification of access methods espoused by REST. To develop a 

good API of this type requires careful and successful identification and design of 

resources by the service provider. 

 

2. Identification of resources must be undertaken within the context of the domain 

of the data. Use Domain Driven Design as a flexible and suitable methodology 

to ensure that the knowledge of domain experts is drawn upon during the 

iterative design and development process that is identifying service resources. 

 

3. Use Semantic Web data structures and ontologies (RDF, RDFS, and OWL) for 

canonical representations of resources; they share a common architectural 

heritage that makes them particularly suitable for use with REST. This enables 

development of a common domain model with self-describing link semantics 

beyond the relatively simple structures found in traditional REST deployments. 

 

4. Identify resources to support both the domain model and the API. Provide 

Linked Data through content negotiation and a SPARQL endpoint, but also 

identify resources to enable RESTful application where hypertext is the engine 

of application state. 

 

5. RESTfully provide other representations, derived from the domain model, to 

enrich the service for easy application development, as identified through the 

Domain Driven Design process. 
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5. Applying the Design Principles to Semantic Sensor Grids: 

Design of a High-level API for Observations 

 

In chapter 4 we described the similarities and differences between the REST and Linked 

Data service architectural styles. Based upon this analysis we identified a ‗best fit‘ 

approach that draws upon the strengths of each, and proposed a way forward to better 

serve the development of domain driven applications through a set design principles. 

 

The overarching theme across the principles is the application of domain driven design 

to the High-Level API; for Semantic Sensor Grids this means the domain of sensor 

network data, and the domains relevant to the measurements sensed. 

 

In this chapter we apply the principles in the design of a High-Level API for 

Observations, suitable for adoption by any Semantic Sensor Grid. To demonstrate its 

use by example, and to provide the domain driven basis required to apply the principles, 

we refine and specialise this API for a specific use-case and associated domain: the 

Channel Coastal Observatory sensor network. 

The Channel Coastal Observatory (CCO) is the data management centre for the 

Regional Coastal Monitoring Programmes of England. Over a period of more than 5 

years, the GeoData Institute has designed, built from the top down, and operated the 

data management infrastructure to run this programme. This includes software to 

manage and transmit real-time data from the largest network of coastal sensors in the 

UK; a data management infrastructure to manage data and metadata for over 65,000 

environmental surveys of different types amounting to terabytes of storage; and a 

website to deliver real time and surveyed data to a public audience though highly 

complex dynamic map and data visualisation interfaces, serving over a million hits per 

month.  

 

In each describing the design of a High-Level API for the CCO, we focus on four 

aspects through which the principles are applied: 

 

1. the Domain Model (application of principles 1, 2 and 3) 

 

2. identification of Resources (principles 1, 2, 3 and 4) 

 

3. suitable Representations (principles 1, 3 and 5) 

 

4. the Web API (principles 1, 2, 3, 4 and 5) 

 

Beyond the principles, it is also worth recalling that any API is provided to support a 

domain developer, and the motivation for doing so is to enable semantic mashup 

applications that combine observation data from the API with other domain information 

retrieved from the linked data and RESTful web services (e.g. land use, transport).  
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5.1. The Domain Model 

The Domain Driven Design ―knowledge crunching‖ process was adopted both within 

the SemSorGrid4Env project (with domain experts in GeoData) and with local potential 

users and collaborators (see [D7.1v2]) to ensure the API exposes a model that is both 

pragmatic programmatically and representative of the domain. 

Having surveyed existing data models, and in consultation with domain experts, it 

became clear that two different, but complementary, high-level approaches can be 

applied to sensor networks and their associated data (introduced in chapter 3): 

A provider-centric approach orientated around and primarily describing the 

processes undertaken by sensors, structured networks of sensors, and constituent 

elements of sensors. Data is a product of the described sensor network. From the 

OGC standards this approach is adopted by the SensorML GML application 

schema and the SWE Sensor Planning Service. 

A consumer-centric approach orientated around and primarily describing the 

observations and measurements – i.e. the data, the results – captured by sensors 

rather than the sensors themselves (although the provenance of observations is 

modelled through an associated process). The OGC Observations and 

Measurements (O&M) model and GML application schema apply this approach, 

as used by the SWE Sensor Observation Service (SOS). 

While the former might be applicable to provisioning, deploying, and managing sensor 

network themselves, our domain users (and the domain developers supporting them) are 

engaged in activities – such as emergency response planning and management – which 

instead require manipulation of the data collected by the sensor network. 

We therefore take a data-(consumer-)centric approach to the sensor data and adopt the 

Observations and Measurements (O&M) model [Cox2007] through both its GML 

Application Schema and, by including some key concepts (figure 5-1) in an ontology: 

 The measured value/result 

 The observed property (e.g. wave height) 

 The process that made the observation (e.g. a sensor) 

 The time at which the observation was asserted 

 The time over which the sampling leading to the observation was taken 

 The (domain specific) feature of interest that is being observed (e.g. the ocean) 

 A mechanism for grouping observations (an observation collection). 
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Figure 5-1: The basic concepts in an Observation model (from [Pag2009]) 

(While ontological evaluation has identified weaknesses in the O&M model [Pro2006], 

our primary focus is in its application for linking data and representations through a 

High-Level API, for which it is entirely sufficient.) 

The ontology encapsulating O&M was then further developed as part of the SSN 

Ontology (figure 5-2) by the W3C Semantic Sensor Networks Incubator Group
6
, which 

includes several members of the SemSorGrid4Env consortium amongst its membership 

(through Work Packages 4 and 5). 

It is also included in the SemSorGrid4Env Ontology Suite [D4.3v2] where – through 

the observedProperty and featureOfInterest – it provides the crucial link between the 

measurements and the domain concepts the observations are capturing (specific 

examples of which are part of the domain model for the CCO API). 

 

 
Figure 5-2: Overview of the SSG4Env ontologies (from [D4.3v2]) 

 

                                                 
6
 http://www.w3.org/2005/Incubator/ssn/ 
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5.2. Resources 

Our approach so far has identified the generic model suitable for representing sensor 

data, and having adopted the O&M model it is clear that many of our resources will be 

Observations. But to construct a high-level API for particular sensors grids and the data 

they provide we must continue our domain-driven design – combining the principles 

and practice of REST APIs and Linked Data – and assess more detailed aspects of the 

specific domain for which we are constructing the API. 

In this example implementation of a High-Level API for Observations, we focus on 

publishing data from the CCO network of marine and coastal sensors monitoring: 

 wave height 

 sea surface temperature 

 wave period 

 wave spread 

 wave direction 

 tide height. 

As a RESTful Linked Data system, the high-level API is defined by its resources and 

the representations of those resources – in this case by the observations of the 

phenomena measured by the CCO above. In defining a resource we must necessarily 

create a globally unique identifier for it – a URI – the creation of which is frequently 

referred to as ―minting” a URI. As noted in earlier sections, the URI for the resource 

should be treated as an opaque string when it is accessed through the API; while the 

implied structure within the URI is helpful when designing and maintaining the web 

service (and perhaps for developers when writing clients), client applications must 

navigate to and between resources using links between those resources. Use of the API 

must not rely on encoding of semantics within the URI – this clearly violates REST 

principles. 

Identification and structuring of resources can be very dependent on the data (the 

resources) being exposed. For example, our primary observation resources are of the 

form: 

http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500 

where the individual observation is dereferenced by retrieving the resource (which is an 

observation collection): 

http://id.channelcoast.org/observations/boscombe/Hs/20090801 

In this case, the observation of wave height (Hs) made by the Boscombe sensor on 

01/08/2009 at 2.05pm is asserted within an observation collection of all wave height 

measurements taken by the Boscombe sensor on 01/08/2009. 

This strikes a balance between the size of the retrieved resource representation and the 

number of links the client must retrieve for this particular data set. In this case the 

observations of Hs at the Boscombe sensor are taken half-hourly, so the resource that 

must be retrieved to dereference any one observation will contain 48 observations (all 
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the observations for the day). This grouping of resources (and the associated 

dereferencing) would not make sense if there were many observations per second. 

Once more, note that the semantics that have clearly been used to structure the minting 

of the URIs – by our design – are not exposed through, or necessary for the operation 

of, the API. Relationships between resources must be expressed in the representations 

returned by the API, not within the syntax of the URI. 

Nor does this primary statement of an observation constrain its use in other observation 

collections - an RDF model can be declared and reused across several resources by 

linking between statements. Using the example above, a collection of all measurements 

of wave height across the sensor network on 01/08/2009 would be identified by: 

http://id.channelcoast.org/observations/Hs/20090801 

and the primary statement of the observation above would be linked in by reference. 

Figure 5-3 shows a number of relationships between key URIs, again focusing on the 

interface for retrieving significant wave height. Resources for other observed properties 

follow a similar structure, and examples of how these relationships are encoded in 

specific representations follows in a later section. 

 

 
Figure 5-3: Relationships between some key URIs in the CCO system (from [Pag2009]) 

 

5.3. Representations 

For each non-information observation resource (such as the wave height observation 

introduced above), the API provides several representations through a common 
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information resource and a further representation for backwards compatibility (with 

existing GIS systems) through a separate information resource. 

The first representation is in RDF XML, and using the observations ontology 

introduced earlier. Here links are also made to domain ontologies for features of interest 

and observed properties.  

The second representation conforms to the O&M GML schema. While the XML 

returned is very similar to that provided by the SOS GetObservation function, here we 

support a RESTful interaction by navigation between resources. This is made possible 

by the extensive support for XLink in GML and an underlying object-property-value 

model which closely resembles RDF. 

We also note that the O&M GML representation of resources (and SensorML for 

appropriate resources) is compatible with the O&M GML and SensorML returned by 

the Sensor Observation Service (SOS)[SOS] (particularly the GetObservation and 

DescribeSensor functions). The design described herein can also be considered a partial 

implementation of a RESTful SOS; we hope that this will allow adaption of SOS clients 

to work with our API. 

The third representation is in HTML and is a human browsable hyperlinked interface to 

the observation resources. 

The fourth representation conforms to the WFS GML schema (XML). This 

representation provides compatibility with existing web GIS mapping tools (e.g. 

OpenLayers). The nature of these tools requires all the required data points 

(observations) to be provided in a single ―layer‖ which can be overlaid onto a map; this 

flattened data structure is incompatible with a the other representations so must be 

provided through a separate information resource. 

Further representations should be provided as appropriate to the domain and 

application, e.g. GeoJSON, KML. 

When moving between representations it is important to note that the resources – the 

URIs – remain constant. As such, using this API a client application can move 

seamlessly between RDF and GML representations, taking advantage of the semantic 

linking provided in linked data, while being able to retrieve established encodings for 

Web GIS applications when required. Conversely an application can use a GML 

identifier as a jumping off point into the linked data web. 

While there are clear benefits to alternately returning GML and Linked Data 

representations of a resource, each of these representations has particular constraints – 

be that conceptual model, design principle, or XML serialisation – and though they are 

in general complementary, a specific interactions can bring up incompatibilities 

between representations: we illustrate this with the following example to demonstrate 

that, with representation as well as resources, there are some design decisions which 

must be made for a particular domain and use case. 

With regard to aggregation and nesting of observation collections, the O&M GML 

Application Schema is relatively constrained: more specialised observation collections 



SemSorGrid4Env             FP7-223913 

 

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 30  

have typed constituents that are too specific to be transcluded in more general, 

otherwise specialised, or multiply nested, collections. While this is not an issue in 

existing O&M applications (e.g. using an SOS), the Linked Data principles lead us to 

both uniquely identify individual observations (i.e. avoiding duplication of a single 

observation at several URIs and creating duplication in the graph) and the identification 

and publication of aggregate resources that by their nature include observations that 

have already been ‗used‘/published as, or as a part of, another resource (i.e. we must use 

linking rather than duplication).  

For example, it would be desirable to have the URI:  

http://id.channelcoast.org/observations/boscombe/Hs 

represent all the observations of Hs at Boscombe, and this to be an aggregation in the 

form of an ObservationCollection, where each member is in turn an 

ObservationCollection such as:  

http://id.channelcoast.org/observations/boscombe/Hs/20090801 

(there would be as many references to other ObservationCollections as there are days on 

which observations have been made).  

While this is relatively simple to implement in RDF - ObservationCollection as a 

subClass of Observation, and member a TransitiveProperty with rdfs:range Observation 

- this is not possible using the O&M GML Schema. This leaves two possibilities for the 

O&M GML representation:  

 Do not return a GML representation and return a 406 Not Acceptable code.  

 303 redirect straight to an information resource content negotiated for 

application/xml, without a common information resource shared with the RDF 

representation. The body returned contains a ‗flattened‘ ObservationCollection 

with xlinks directly to the Observations required; this is the similar to the approach 

taken for WFS compatibility. 

While the current CCO design takes the latter approach, without nested aggregations the 

number of Observations returned is potentially very high, and as such a compromise is 

made to redefine the resource as e.g. Observations of Hs at Boscombe over the last 

week (rather than all time). A hybrid approach might combine the original resource 

definition with a 406 for GML with a second resource limited to collections that are 

reasonable to return in GML (e.g. the observations from the last week).  

 

5.4. Web API 

In the previous sections we have outlined the domain model (in RDF) and identified key 

resources and representations. In combination, these form the core of the High-Level 

API for Observation applied to the CCO, but exposing the observation resources 

RESTfully as Linked Data with alternative representations for data formats useful to the 

domain developer. 
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To finish the API, and to satisfy the 4
th

 Design Principle (section 4.6), we must consider 

any other functionality and identify any other resources to support the domain 

developer. 

The first task, to complete Linked Data provision, is the implementation of a SPARQL 

query endpoint. This will, of course, utilise the same information encoded in the RDF 

representation for identified resources, structured according to the domain ontology 

already outlined. 

 The second task is to provide resources specifically in support of the API, that is, such 

that RESTful applications and mashups (driven by HATEOAS) can be written. Here we 

list some examples provided for the CCO implementation of the High-Level API, which 

were used to create the mashup examples described in chapter 7: 

 /latest – relative within each observation collection, a resource that is always the 

most recent observation. 

 ―next‖ and ―previous‖ – for each observation, a reference to the prior and next 

observations of that class. 

 /summary – for each observation collection, a summary resource containing 

information about that collection, e.g. maximum/minimum values, frequency, 

averages, units of measurements, and descriptive metadata (this can be used by 

clients to calibrate visualisations and provide annotations). 

 broader temporal collections appropriate to the data set (e.g. month) containing 

links to the constituent (e.g. daily) observation collections. 

 links from constituent collections to the broader collections (―up‖) to enable 

better navigation through the data. 

 /sensors – a collection of links to all procedures that generate observations (i.e. 

sensor platforms). 

 For each sensor, a list to the ―top-level‖ (temporally broadest) observation 

collections generated by that sensor platform. 

 

5.5. API walk-through: the Channel Coastal Observatory 

Exposing sensor data according to linked data principles and practice is a first and 

necessary step to enabling linked data sensor grid applications. In the sections prior to 

this we have introduced the building blocks of a dual purpose API design that combines 

the provision of linked sensor data with a RESTful interface to existing standardised 

data encodings such as OGC O&M and WFS, and in doing so have applied the design 

principles introduced in chapter 4. 

In this final section describing design of the High-Level API for Observations we return 

to the example observation collection previously introduced and examine how a client 

using the API accesses a resource and negotiated for its representations (illustrated in 

figure 5-4). 

The (non-information) resource: 

http://id.channelcoast.org/observations/boscombe/Hs/20090801 
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is the set of all observations of Hs (significant wave height) from the Boscombe sensor 

on August 1st 2009. 

As noted in earlier sections, the URI for the resource should be treated as an opaque 

string; while the implied structure within the URI is helpful when designing and 

maintaining the web service (and perhaps for developers when writing clients), client 

applications must navigate to and between resources using links between those 

resources. 

When a client attempts to dereference this resource (e.g. through an HTTP GET), the 

web server responds with HTTP code ―303 See Other‖ and the information resource: 

http://data.channelcoast.org/observations/boscombe/Hs/20090801 

Content negotiation is then used by the client to retrieve a suitable representation: 

- application/rdf+xml returns an RDF representation. 

- application/xml returns a GML representation. 

- text/html returns an HTML rendering for viewing in a traditional web browser. 

In each case the web server responds with code ―200 OK‖ and sets the Content-

Location header to the resource of the negotiated representation, e.g. 

http://rdf.channelcoast.org/observations/boscombe/Hs/20090801 

http://om.channelcoast.org/observations/boscombe/Hs/20090801 

http://pages.channelcoast.org/observations/boscombe/Hs/20090801 

followed by the appropriate representation in the HTTP body. 

The intermediate stage of redirecting to a common information resource URI indicates 

to the client that the following content negotiation is for different representations of the 

same information. For example, this means that if the client has reached the resource 

through RDF representations, but needs to plot the data using an OGC compliant tool 

(e.g. within a mapping layer) it can request the GML representation knowing it is 

plotting the same information. 

Other representations might, by necessity of the encoding, be of closely related but 

different information. An earlier incarnation of the CCO server implementation returned 

a GML representation using the WFS schema to create a MapServer compliant layer, 

and while we wish to preserve this functionality, the ‗flattened‘ nature of the data in the 

WFS layer means this representation contains different information to those based on 

O&M (described below). 

In this situation we use the content type application/vnd.ogc.wfs to enable a client to 

retrieve a backwards-compatible representation; when the client requests the non-

information resource: 

http://id.channelcoast.org/observations/boscombe/Hs/20090801 
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with content type application/vnd.ogc.wfs, the server performs a 303 redirect directly to 

the WFS GML (setting the Content-Location header accordingly): 

http://wfs.channelcoast.org/observations/boscombe/Hs/20090801 

In redirecting directly to the WFS information resource through content negotiation 

(rather than through the common information resource and then performing content 

negotiation), the web server has indicated that this is a different (but related) 

information resource, not a different representation of the same information resource. 

 

 
Figure 5-4: Resource representations in the high-level API (from [Pag2009]) 

 

As noted in earlier sections, the URI for the resource should be treated as an opaque 

string; while the implied structure within the URI is helpful when designing and 

maintaining the web service (and perhaps for developers when writing clients), client 

applications must navigate to and between resources using links between those 

resources. 

The following XML fragments demonstrate the content (and similar structure) of the 

O&M GML and RDF representations of:  

http://id.channelcoast.org/observations/boscombe/Hs/20090801 
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The O&M GML encoding is returned for application/xml : 

 
  

<?xml version="1.0" encoding="UTF-8"?> 

<om:ObservationCollection gml:id="this" 

  xmlns:om="http://www.opengis.net/om/1.0" 

  xmlns:gml="http://www.opengis.net/gml" 

[...] > 

  <gml:description>Wave height observations at Boscombe on 2009-08-01 

      </gml:description> 

  <om:member> 

    <om:Observation gml:id="140500"> 

      <om:resultTime> 

        <gml:TimeInstant gml:id="T140500"> 

          <gml:timePosition>2009-08-01T14:05:00</gml:timePosition>   

        </gml:TimeInstant> 

      </om:samplingTime> 

      <om:samplingTime> 

[...] 

      </om:samplingTime> 

 

      <om:procedure xlink:href= 

          "http://id.channelcoast.org/sensors/boscombe"/> 

      <om:observedProperty xlink:href=   

 

"http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height"/> 

      <om:featureOfInterest xlink:href= 

          "http://www.eionet.europa.eu/gemet/concept?cp=7495"/> 

      <om:result 

xsi:type="gml:MeasureType" uom="urn:ogc:def:uom:OGC:m"> 

        0.28 

      </om:result> 

    </om:Observation> 

  </om:member> 

  <om:member> 

    <om:Observation gml:id="143500"> 

[...] 

    </om:Observation> 

  </om:member> 

</om:ObservationCollection> 
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The RDF representation is returned for application/rdf+xml : 

 

 

Consistent use of URIs is maintained in other observation collections. For example: 

http://id.channelcoast.org/observations/Hs/20090801 

contains parallel fragments in GML: 

 
  

<om:ObservationCollection gml:id="this" [...]> 

[...] 

<om:member> 

  <om:Observation xlink:href= 

      "http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500"/> 

[...] 

<?xml version="1.0" encoding="UTF-8"?> 

<rdf:RDF 

  xmlns:om2="http://rdf.channelcoast.org/ontology/om_tmp.owl#" 

[...] 

> 

  <rdf:Description rdf:about= 

      "http://rdf.channelcoast.org/observations/boscombe/Hs/20090801"> 

    <rdfs:label> 

      An RDF representation of wave height observations at Boscombe on 2009-08-01 

    </rdfs:label> 

  </rdf:Description> 

  <om2:ObservationCollection  

      rdf:about="http://id.channelcoast.org/observations/boscombe/Hs/20090801"> 

    <om2:member> 

      <om2:Observation rdf:about= 

          "http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500"> 

        <om2:resultTime> 

          <om2:TimeInstant rdf:about= 

            "http://id.channelcoast.org/observations/boscombe/Hs/20090801#T140500"> 

[...] 

          </om2:TimeInstant> 

        </om2:resultTime> 

[...] 

        <om2:procedure rdf:resource="http://id.channelcoast.org/sensors/boscombe"/> 

        <om2:observedProperty rdf:resource= 

            "http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height"/> 

        <om2:featureOfInterest rdf:resource= 

            "http://www.eionet.europa.eu/gemet/concept?cp=7495"/> 

        <om2:result [...] 

[...] 

      </om2:Observation> 

    </om2:member> 

  </om2:ObservationCollection 

</rdf:RDF> 
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and in RDF: 

 

 

  

<o2:ObservationCollection rdf:about= 

    "http://id.channelcoast.org/observations/Hs/20090801"> 

[...] 

<om2:member rdf:resource= 

    "http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500"/> 

[...] 
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6. Implementation Patterns for the High-Level API Design 

The previous chapters have presented the programming patterns and principles 

applicable to a high-level API for sensor grids, and the design for a specific API to 

publish sensor data from the Channel Coastal Observatory. 

Taking the design in the previous section as an example, we present three 

implementation experiences realising this design in software for different scenarios: 

1. exposing data using the API via a bespoke implementation based upon an 

existing web portal. 

2. exposing data using the API by interfacing with the SemSorGrid4Env 

architecture and accessing sensor data through the architecture. 

3. exposing data using the API provided by generic observation data sources 

(both via the SemsorGrid4Env architecture and from existing databases) 

using a semantic configuration utility and platform to automate API 

structuring and URI minting. 

 

6.1. Bespoke Implementation of the API for an GIS web platform 

6.1.1. Context 

The Channel Coastal Observatory web portal (figure 6-1) is an established resource for 

users, exposing data through a web application with two major elements of functionality 

presented as separate options from the front page: ―Realtime Data‖ and ―Map Viewer 

and Data Catalogue‖. As shown in figure 6-2 these are implemented independently, 

principally due to historical development and design decisions. 

The map-viewing component is implemented using OpenLayers
7
, a Javascript library 

for building web based geospatial applications. OpenLayers can present and integrate 

map data provided through several services and formats, including KML, Google Maps, 

Yahoo! Maps, and – as used by the CCO site – the WFS and WMS. 

Session information – including data selection, preferences, and the ―shopping basket‖  

(which collates user selected sets data for ultimate download) – is handled by bespoke 

Ajax and server-side elements; the overall page is composed using the elements by PHP 

on the server. 

 

                                                 
7
  http://www.openlayers.org/ 
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Figure 6-1: CCO Map Viewer and Data Catalogue 

 

MapServer
8
 is used to feed map data to the OpenLayers component using exposed 

WMS and WFS services. The MapServer instance is backed by a PostGIS
9
 database 

storing the map and feature data (PostGIS spatially enables PostgreSQL through 

additional support of geographic objects). 

Implementation of the high-level API must not cause regressions in the services already 

provided to users, and where possible is desirable (for maintenance reasons) to refactor 

and reuse code provided for existing interfaces (e.g. WFS). 

6.1.2. Implementation 

- The bespoke WSGI (Python) and PHP implementations for WFS and WMS are 

modified and extended to expose the new resources and their representations 

where possible (figure 4-2). 

- A new map viewing component – the CCO API Explorer – is developed to 

showcase the API and demonstrate how its backwards compatibility 

representation allows it to be a drop in replacement for CCO WFS services 

where appropriate. 

                                                 
8
  http://www.mapserver.org/ 

9
  http://postgis.refractions.net/ 
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- A partial implementation of the High-Level API for Observations is provided, 

limited by the canonical data representation being WMS/WFS – more 

sophisticated representations (such as Observation RDF) must be synthesised 

from this. 

- Modifications to the underlying WMS/WFS data provision require 

corresponding updates to the implementation of other representations (e.g. 

RDF). 

 

 
 

Figure 6-2: CCO components with elements altered by implementation of the API shaded grey 

 

 

6.2. Adaptable Implementation for Specific Service Instances via a 

Sensor Web Architecture 

 

6.2.1. Context 

The phase I implementation of the SemSorGrid4Env architecture (figure 3-2) was an 

integration exercise to test the project architecture with instances of each of the different 

services: a data service, a semantic integration service, and a registry. 

The scope of the demonstrator was again the Flood Use Case, and to support this CCO 

observations were exposed as a data source directly to the architecture. The web 

application constructed supports discovering and browsing data sources in support of 

coastal emergency response planning (e.g. flooding extend, asset inundation). 
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Application Tier development was required to enable the web application to access the 

CCO data now flowing through the architecture (through the Semantic Integration 

Service), principally by exposing a high-level API to the web application. 

The Flood demonstrator application, though produced by developers involved as project 

partners in other aspects of the SemSorGrid4Env architecture, was designed and built as 

a standalone web application operating much like a ―mash-up‖ could be constructed by 

a developer external to the project. 

6.2.2. Implementation 

The application tier libraries provide data to the web application via two interactions 

with the SemSorGrid4Env architecture (illustrated in Figure 6-3): 

1. Semantic queries to the Registry. This library takes a SPARQL query from 

the web application, passes it to the semantic registry and, once the registry 

has located matching services, passes the endpoints back to the web 

application as a JSON array 

2. Data queries to the Integration Query Service. The Integration Query 

Service (IQS) exposes data sources from the SemSorGrid4Env architecture 

through a SPARQL-STR interface. The application tier library makes the 

appropriate query to the IQS and as the resulting data is streamed back, 

converts it to GeoJSON files that can be loaded as a layer within the 

mapping component of the web application UI. 

The second of these provided a limited implementation of the High-Level API for 

Observations. The primary representation in RESTful use of the API was GeoJSON, 

and a key difference from the previous bespoke implementation was the introduction of 

an internal data model for the observations, which was populated with the data returned 

from the IQS, and from which the GeoJSON used by the web application was 

generated. This alleviated much of the fragility associated with the bespoke 

implementation. 

However, the Application Tier Libraries took the form of a component which, while 

adaptable, needed to be re-coded to work with different input interfaces and to serialise 

to different representations – it could not simply be reconfigured without rebuilding the 

software. 
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Figure 6-3: Application tier libraries (from [D7.4v1]) 

 

6.3. Implementation of a Generic High-Level API for Observations 
platform 

6.3.1. Context 

While the previous two implementations proved the utility of the High-Level API 

design, and that it could be used by application developers as intended, they did not 

prove the practicality of deploying the API: in both cases, aspects of the API service 

had to be modified at the code level specifically for the implementation at hand. 

To allow the High-Level API to be deployed over a greater range of data sources 

without the need to re-code the software each time, a new service was developed to take 

advantage of the semantics encoded in the domain models so as to move all of the 

deployment specific detail into configuration files which can be setup by the domain 

expert and system administrator as appropriate. 

6.3.2.  Implementation 

The HLAPI system has been designed to expose the general HLAPI design for generic 

data sources, as described in chapter 5. An overview of the system is shown in Figure 6-

5. To achieve this, and achieve tractable configurability, incoming data is transformed 

into the known observation model. When data arrives in the system – either through a 

database insert, or through the SemsorGrid4Env architecture – the corresponding event 

trigger is activated, and determines what to do with the data. If the data represents an 

observation that we wish to serialise, the event trigger sends the data to the Processor to 

be turned into an RDF representation of an observation. If the data does not represent an 

observation, it is ignored. The generated RDF observation forms the canonical 

representation of the observation, as it is the most flexible and fully featured 

representation. All other serialised outputs are lower-information representations, and 

are therefore derived from the RDF. 
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Figure  6-4: System overview of the HLAPI for Observations engine 

The outputs to be serialised are determined using the API configuration file. This file 

defines the observation collections that the current observation should appear in, the 

formats in which to serialise them, and what the corresponding URIs should be. This 

configuration file is kept separate from the ontology mapping file, in order to separate 

the administrative concerns of different users; a domain expert is able to configure the 

mapping of the data source into the observation model, while the system administrator 

is able to handle to configuration of the exposed APIs. 

Full details of the HLAPI engine implementation can be found in [D5.2v2]; they can be 

summarised as: 

 Adopts the Observation Model as the core (and assumed) data structure 

o Further domain specific mappings (e.g. for Features of Interest and 

Observed Properties) can be configured in RDF by a domain expert (and 

separately from the systems administration).  

 Event-driven, and can be triggered by streaming data sources (e.g. a 

SemSorGrid4Env architecture service) or live database inserts 

o A system administrator can configure how data sources are mapped to 

the Observation model and domain model. Standard triggers are 

provided for SemSorGrid4Env architecture services and MySQL 

databases. 

 A number of standard representations are supported ―off the shelf‖ by the 

engine: RDF, WFS, O&M GML, GeoJSON, HTML. 

 The API is realised independently through a configuration file which lists 

resources: these are the canonical observations, different observation collections, 

and sensors. 
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o Using this API configuration, the domain ontology mapping, and trigger 

configuration, the HLAPI engine automatically generates the resources 

required and applicable representation. 

 RDF resources are automatically populated in a SPARQL endpoint. 

 REST API extensions are automatically populated when data is available and 

relationships between resources exist. 

 Provides a full implementation of the High-Level API for Observations.   
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7. Use Cases and Example Semantic Mashups 

Having introduced a High-Level API for Observations and implemented services to 

expose datasets using the HLAPI, in this chapter we briefly outline how a domain 

developer might use the HLAPI to develop semantic web applications and mashups. 

It is worth noting that: 

 These semantic mashups demonstrate the potential for positive unintended re-

use of sensor data. While they do not make full use of all of the features of all of 

the data (this is better demonstrated in the full SemSorGrid4Env Flood 

Application), they show that a little amount of semantically annotated sensor 

information can prove useful to many different use cases. 

 By their nature of being a mashup, these web applications make use of other 

(often Linked Data) information sources in addition to those exposed by the 

HLAPI. Linking from and in the HLAPI is crucial in this regard, via domain 

ontologies and instances. 

 The mashups were each coded by a single web developer, unfamiliar with the 

CCO data sources (but with some general semantic web familiarity) in a short 

period of time. 

 

7.1. Recreational re-use: sea state and linked amenities for surfers 

One of the CCO sensors is based near Boscombe, where the UK‘s first artificial surf 

reef has been constructed. This mashup shows the surfer the size of swell, received from 

the sensor network, and should the surfer then decide to visit, details of local amenities 

(pubs, car parks) and relevant information (road safety) all generated from Linked Data. 

Scripting language and libraries 

This example uses the PHP
10

 scripting language. For Sparql queries and RDF 

manipulation it uses the Arc2
11

 library and, for ease of coding and readability, 

Graphite
12

. The Google Chart API
13

 is used for charts, and the Google Static Maps 

API
14

 and Openlayers
15

 for mapping. 

                                                 
10

 http://php.net 

11
 http://arc.semsol.org/ 

12
 http://graphite.ecs.soton.ac.uk/ 

13
 http://code.google.com/apis/chart/ 

14
 http://code.google.com/apis/maps/documentation/staticmaps/ 

15
 http://openlayers.org/ 
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Another useful tool is an RDF browser such as the Q&D RDF Browser
16

. 

First we load in the Arc2 and Graphite libraries and set up Graphite with a list of 

namespaces for coding simplicity. 
 

require_once "arc/ARC2.php"; 

require_once "Graphite.php"; 

$graph = new Graphite(); 

$graph->ns("id-semsorgrid", "http://id.semsorgrid.ecs.soton.ac.uk/"); 

$graph->ns("ssn", "http://purl.oclc.org/NET/ssnx/ssn#"); 

$graph->ns("DUL", "http://www.loa-cnr.it/ontologies/DUL.owl#"); 

$graph->ns("time", "http://www.w3.org/2006/time#");  

This continues for other useful namespace prefixes. The id-semsorgrid prefix is added 

for further code brevity. 

Displaying a map of all wave height sensors 

One of the observation serialisations available from the CCO deployment of the HLAPI 

is a GeoJSON format. This serialisation, which shows the locations of all wave height 

readings made in a particular time frame, can be rendered by various mapping engines 

including Openlayers. 

The markup to display the map, given the path to a GeoJSON file, is very simple and 

fully documented by Openlayers. 

Depending on how the HLAPI is configured, the resource for of wave height readings 

for a particular hour may be at: 
 
http://id.semsorgrid.ecs.soton.ac.uk/observations/cco/Hs/20110215#01  

 

which would then be content-negotiated to the OpenJSON representation: 

 
http://geojson.semsorgrid.ecs.soton.ac.uk/observations/cco/Hs/20110215/00  

  

                                                 
16

 http://graphite.ecs.soton.ac.uk/browser/ 
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Given this URL a map such as the following may be generated: 

 

Figure 7-1 – Example of sensor and wave heights retrieved from the HLAPI via an OpenLayers map 

interface 

Getting the day's wave height readings and the sensor metadata 

In the case of the CCO deployment, the current day's wave height readings for the 

Boscombe sensor are identified by 

 

id-semsorgrid.ecs.soton.ac.uk:observations/cco/boscombe/Hs/latest  

We can direct Graphite to load the resources into a graph – Graphite and the HLAPI 

will automatically negotiate a content type that can be used. We're using the namespace 

we defined above for brevity. 

 

$graph->load("id-semsorgrid:observations/cco/boscombe/Hs/latest");  

Graphite allows the graph to be rendered directly as HTML to quickly visualise what is 

available.  The same can be achieved by using a dedicated RDF browser. 
 

echo $graph->dump();  

The beginning of the output is something like the following: 
 

id-semsorgrid:observations/cco/boscombe/Hs/20110215 -> rdf:type ->    

   DUL:Collection -> DUL:hasPart -> 

      id-semsorgrid:observations/cco/boscombe/Hs/20110215#000000, 

      id-semsorgrid:observations/cco/boscombe/Hs/20110215#003000,           

      id-semsorgrid:observations/cco/boscombe/Hs/20110215#010000 

 

id-semsorgrid:observations/cco/boscombe/Hs/20110215#000000 ->  

   rdf:type -> ssn:Observation -> ssn:observedBy -> 

   id-semsorgrid:sensors/cco/boscombe -> ssn:featureOfInterest ->  
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   http://www.eionet.europa.eu/gemet/concept?cp=7495 ->  

   ssn:observedProperty ->    

   http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height ->  

   ssn:observationResult -> _:arce2d5b1 -> 

   ssn:observationResultTime -> _arce2d5b3 <- is DUL:hasPart of 

   <- id-semsorgrid:observations/cco/boscombe/Hs/20110215  

The bnodes are also shown, and their IDs can be traced to see which properties are 

available on each node. 

A lot of useful information such as the sensor's coordinates is attached to the sensor's 

URI, which is linked from each ssn:Observation node. It's easy to get the URI, simply 

by getting ssn:Observation nodes, and then collecting the first found 

ssn:observedBy property of any of them. It's important to handle the case where there 

are not yet any results. 
 

$sensor = $graph->allOfType("ssn:Observation")-> 

   get("ssn:observedBy")-> distinct()->current(); 

if ($sensor->isNull()) 

   die("No results yet today"); 

$sensorURI = $sensor->uri;  

To get the sensor's coordinates we ask Graphite to dereference the sensor's URI and 

load its triples, then traverse the expanded graph to fetch the required values. The 

traversals here can once again be visualised by first dumping the graph or exploring the 

graph in any RDF browser. 
 

$graph->load($sensorURI); 

$location = $graph->resource($sensorURI)->get("ssn:hasDeployment")-> 

   get("ssn:deployedOnPlatform")->get("sw:hasLocation"); 

$coords = array(floatVal((string) $location-> get("sw:coordinate2")-> 

   get("sw:hasNumericValue")), floatVal((string) $location-> 

      get("sw:coordinate1")-> get("sw:hasNumericValue")),);  

To collect all wave height observations we query the graph for all nodes of type 

ssn:Observation and skip over those whose ssn:observedProperty property is not 

that which we are looking for (just in case we have other observation types in our 

graph). 

Each observation corresponds to a particular time interval so we need to collect the time 

(in this example we'll associate the end of the time interval – time:hasEnd – with the 

reading) as well as the wave height observation itself. The code snippet below also skips 

any observations whose ssn:observationResultTime property doesn't point to a node 

of type time:Interval, but it would be trivial to also parse nodes of different time 

classes. 

Finally in this snippet the array of observations is sorted by time. 

Again, to see how the traversal is built up it is easiest to inspect the graph visually. 
 

$observations = array(); 

foreach ($graph->allOfType("ssn:Observation") as $observationNode) {       

   if ($observationNode->get("ssn:observedProperty") !=  

     "http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height")           

   continue; 

$timeNode = $observationNode->get("ssn:observationResultTime"); 

if (!$timeNode->isType("time:Interval")) 

   continue; 
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$time = strtotime($timeNode->get("time:hasEnd"));     

$observations[$time] = floatVal((string) $observationNode-> 

   get("ssn:observationResult")->get("ssn:hasValue")-> 

      get("DUL:hasDataValue")); } 

ksort($observations, SORT_NUMERIC);  

 
Visualising the data 

The array resulting from the code above can be used to produce a chart of the wave 

heights. Explaining the snippet below is beyond the scope of this document, but it uses 

the Google Chart API to produce a line graph of wave height against time. 
 

// organise data 

$keys = array_keys($observations); 

$start = array_shift($keys); 

$end = array_pop($keys); 

$period = $end - $start; 

$datax = $datay = array(); 

$maxheight = ceil(max($observations) * 10 * 1.2) / 10; 

foreach ($observations as $time => $height) { 

   $datax[] = ($time - $start) * 100 / $period; 

   $datay[] = $height * 100 / $maxheight; 

} 

 

// x axis labels 

$axisx = array(); 

for ($time = $start; $time <= $end; $time += $period / 6) 

   $axisx[] = date("H:i", $time); 

 

// parameters for Google Chart API 

$chartparams = array( 

"cht=lxy", //line x-y 

"chs=340x200", //size 

"chco=0066cc", //data colours 

"chm=B,99ccff,0,0,0", //fill under the line 

"chd=t:" . implode(",", $datax) . "|" . implode(",", $datay), //data 

"chxt=x,y,x", //visible axes 

"chxr=0,0,100|1,0," . $maxheight, //x and y axis ranges 

"chxl=0:|" . implode("|", $axisx) . "|2:|Time", //custom labels for 

axes, evenly spread, also axis titles 

"chxp=2,50|3,50", //positions of axis titles 

"chf=bg,s,ffffff00", //transparent background ); 

 

// output chart 

echo '<img src="http://chart.apis.google.com/chart?' . implode("&", 

$chartparams) . '">';  

It's easy to show a map with the sensor's position highlighted, too: the following uses 

the Google Static Maps API to do this. 
 

echo '<img 

src="http://maps.google.com/maps/api/staticmap?size=300x200&center=' . 

$coords[0] . ',' . $coords[1] . 

'&zoom=8&maptype=hybrid&sensor=false&markers=' . $coords[0] . ',' . 

$coords[1] . '">';  
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Fetching related data from other data sources 

We can get the name of a nearby place and the nearest post code from the web services 

provided by Geonames
17

. Geonames returns XML that is easy to parse with PHP. 

Again, explaining how the external API call works is beyond the scope of this 

document. 
// get nearby place name $placenameXML = 

simplexml_load_file("http://ws.geonames.org/findNearbyPlaceName?lat={$

coords[0]}&lng={$coords[1]}"); $placename = array_shift($placenameXML-

>xpath('/geonames/geoname[1]/name[1]'));  // get nearby postcode 

$postcodeXML = 

simplexml_load_file("http://ws.geonames.org/findNearbyPostalCodes?lat=

" . $coords[0] . "&lng=" . $coords[1]); $postcode = 

array_shift($postcodeXML->xpath('/geonames/code[1]/postalcode[1]'));  

The postcode is used in the surf status mashup to fetch the British region name from 

Ordnance Survey, which in turn is used to fetch population and traffic accident data 

from Eurostat. 

Data is also collected from Linked Geodata
18

 to get the whereabouts of nearby facilities. 

For instance, to get parking facilities within five kilometres of the sensor, its SPARQL 

endpoint is queried as follows: 
 

$store = ARC2::getRemoteStore(array("remote_store_endpoint" =>      

   "http://linkedgeodata.org/sparql/")); 

$rows = $store->query(" 

   PREFIX lgdo: <http://linkedgeodata.org/ontology/> 

   PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> 

   PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

   SELECT * WHERE {{ ?place a lgdo:Parking . } UNION 

      { ?place a lgdo:MotorcycleParking . } UNION  

      { ?place a lgdo:BicycleParking . } 

      ?place a ?type ; 

      geo:geometry ?placegeo ; 

      rdfs:label ?placename . 

      FILTER(<bif:st_intersects> 

      (?placegeo, <bif:st_point> ($coords[1], $coords[0]), 5)). }",     

   "rows");  

The returned results include the coordinates of each parking facility (placegeo), from 

which the distance to the sensor can be calculated. 

Similar queries can be used to get data on other types of nearby amenities – the surf 

status mashup also locates nearby pubs, cafés and shops. 

                                                 
17

 http://www.geonames.org/ 

18
 http://linkedgeodata.org/ 
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Finished mashup 

The finished mashup, once styled, looks something like the screenshot shown in Figure 

7-2 (with only three readings so far that day). 

 

Figure 7-2 – Example mashup using HLAPI serialised data sources 
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7.2. Flood Gate status for the Coastal Defence Partnership 

The Coastal Defence Partnership (CDP) is an alliance of three local governments along 

the Solent on the South Coast of the UK (Portsmouth City Council, Gosport Borough 

Council, and Havant Borough Council). 

One of the responsibilities of the CDP Coastal Team is the co-ordination of flood 

protection barrier erection in the old town of Portsmouth should a flood event occur. 

Installation of flood barriers is dependent on tide and wave levels, and is sequenced. 

 

Figure 7-3 Locations of floodgates in Portsmouth, shown with the sequence in which they are closed 

during a flood (photograph courtesy CDP) 

Flood barriers as well as flood water can block access to roads and facilities, so it can be 

useful to have an overview of which barriers are in place, which need to be erected next, 

and any relevant utilities that might be affected. The co-ordination is undertaken by 

team members on site, and it is plausible that, in the future, they may be equipped with 

internet enabled tablet devices – this is the scenario the prototype mashup looks to 

address. 
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Figure 7-4 A flood waters surround Portsmouth old town (photograph courtesy CDP) 

 
Figure 7-5 A flood barrier deployed in Portsmouth (photograph courtesy CDP) 

 

Mashup implementation 

Development of the mashup follows the same basic pattern as the first example, starting 

with tide height measurements from the CCO sensor closest to the flood barrier 

location:  
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http://id.semsorgrid.ecs.soton.ac.uk/observations/cco/portsmouth/TideH

eight/latest 

Rather than finding recreational amenities linked to the sensor location, the mashup 

finds linked data for critical services (police stations, hospitals, trunk roads), but using 

the same techniques. 

The completed mashup is shown in figure 7-5. 
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Figure 7-5: Mashup showing sea levels and flood gate status  
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8. Summary 
 

High-Level APIs enable the quick and simple development of lightweight Web 

applications and mashups.  We have explored the requirements for a high-level API for 

semantic sensor grids through domain driven design of a specific API for the Channel 

Coastal Observatory sensor data. Our objectives in developing the API can be 

summarised as: 

1. To publish the sensor data from the CCO as linked data, enabling Semantic Web 

client applications that can combine these observations with other domain 

information retrieved from the linked data web (e.g. land use, transport) 

2. To RESTfully publish sensor data to clients that support existing GML schema 

3. To allow the development of hybrid clients which can transpose between linked 

data and GML (or other) representations, taking best advantage of both 

 

In doing so we have developed best-practice principles for developing High-Level 

APIs, taking a Resource Oriented approach to simplify application development while 

semantically structuring domain data that forms the core of useful software. This 

combines the best of REST and Linked Data experience to support domain developers 

with lightweight, self-descriptive HLAPI, enabling them to quickly build bespoke 

applications using data in new and previously unforseen ways. 

Our aim throughout is to encourage the use of High-level APIs to generate a new class 

of rapidly developed applications in support of sensor grids. Traditional GIS systems 

are often large and complex – adding support for a new use case implies enlargement of 

the functionality of the application. We believe the lower barrier of entry in developing 

simple web applications and mashups, with the associated shorter lead time and lower 

costs, will encourage the development of many varied and specialised web based 

applications suited to individual tasks that are not practical propositions in a monolithic 

GIS environment. 
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