SemSorGrid4Env

D5.3v2

Programming patterns and development
guidelines for Semantic Sensor Grids

Kevin R. Page, David C. De Roure, Alex J.
Frazer, Kirk Martinez, Bart J. Nagel

University of Southampton

30/04/2010

Status: Final

Scheduled Delivery Date: 30/04/2010

ol

SemSorGrid4Env FP7-223913

Executive Summary

The web of Linked Data holds great potential for the creation of semantic applications
that can combine self-describing structured data from many sources including sensor
networks. Such applications build upon the success of an earlier generation of ‘rapidly
developed’ applications that utilised RESTful APIs.

This deliverable details experience, best practice, and design patterns for developing
high-level web-based APIs in support of semantic web applications and mashups for
sensor grids.

Its main contributions are a proposal for combining Linked Data with RESTful
application development summarised through a set of design principles; and the
application of these design principles to Semantic Sensor Grids through the
development of a High-Level API for Observations. These are supported by
implementations of the High-Level API for Observations in software, and example
semantic mashups that utilise the API.

Outline of changes since the previous version (v1)

Major changes since the previous version of the deliverable have been driven by the
following developments:

e Consolidation of design principles for combining Linked Data and REST
approaches in the context of sensor network data.

e Realisation of these design principles, and a full implementation of the High-
Level API for Observations, in a redesigned “HLAPI” service (delivered as
[D5.2v2]) and the experience drawn from this design and development process.

Alongside more iterative revisions to the document, these developments have led to
more significant changes in the following sections:

The addition of chapter 4.

The restructuring and updating of chapter 5.

The addition of section 6.3 and updating of prior sections.
The addition of chapter 7.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

ol

SemSorGrid4Env FP7-223913

Note on Sources and Original Contributions

The SemSorGrid4Env consortium is an inter-disciplinary team, and in order to make
deliverables self-contained and comprehensible to all partners, some deliverables thus
necessarily include state-of-the-art surveys and associated critical assessment. Where
there is no advantage to recreating such materials from first principles, partners follow
standard scientific practice and occasionally make use of their own pre-existing
intellectual property in such sections. In the interests of transparency, we here identify
the main sources of such pre-existing materials in this deliverable:

Material previously published as: Page, K. R., De Roure, D.C., Martinez, K., Sadler,
J. and Kit, O. (2009) “Linked Sensor Data: RESTfully serving RDF and GML”. In
proc. 2nd International Workshop on Semantic Sensor Networks, Washington DC,
2009.

Material previously published as: Page, K. R., De Roure, D. C. and Martinez, K.
(2011) “REST and Linked Data: a match made for domain driven development?”. In
proc. 2nd International Workshop on RESTful Design, Hyderabad, India, 2011.

Material to be published as: Kevin R. Page, Alex J. Frazer, David C. De Roure, and
Kirk Martinez (2011) “Semantic access to sensor observations through Web APIs”
(submitted to the 4™ International Conference on GeoSensor Networks; the
conference has since been cancelled and the paper will be resubmitted shortly to an
alternative publication).

Chapter 7 includes an updated mashup example extended from that found in
D5.2v2.

Several sections build upon experience and details (particularly diagrams) from
prior deliverables including D1.3v2, D4.3v2, D5.1, D5.2v1, and D7.4v1.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

ol

SemSorGrid4Env FP7-223913
Document Information
Contract Number FP7-223913 Acronym SemSorGrid4Env

Full title

Project URL

Document URL

EU Project officer

Deliverable

Task

Work package
Date of delivery
Code name
Nature
Distribution Type
Authoring Partner
QA Partner

Contact Person

Abstract
(for dissemination)

Keywords
Version log/Date
1.0/ 15/02/2011
1.1/17/02/2011

1.2/01/03/2011
1.3/15/03/2011

1.4/ 05/04/2011

1.5/14/04/2011
1.6 /23/04/2011
1.7/ 24/04/2011
2.0/03/05/2011

SemSorGrid4Env: Semantic Sensor Grids for Rapid Application Development for
Environmental Management

www.semsorgrid4env.eu

http://www.semsorgrid4env.eu/home.jsp?content=/sew/viewTermé&content=instance.jsp& se
W_var_name=instance& sew_instance=D5.3+v2& sew_instance set=SemSorGrid4Env& o

rigin=%2Fhome.jsp

Antonios Barbas

Number 5.3v2 Name Programming patterns and development guidelines for
Semantic Sensor Grids — Phase 2

Number 5.3 Name Describe programming patterns and development
guidelines

Number 5

Contractual 30/04/2011 Actual 30/04/2011
Status draft O final &4

Prototype O Report M Specification O Tool O Other O
Public M Restricted O Consortium O

University of Southampton

Universidad Politécnica de Madrid

Kevin R. Page

Email krp@ecs.soton.ac.uk Phone +44 23 80594059 Fax

This deliverable details experience, best practice, and design principles for developing high-
level web-based APIs in support of semantic web applications and mashups for sensor grids.
Web Applications, Mashups, High-level API, REST, Linked Data, Sensor Networks

Change Author
Import from D5.3v1 K. R. Page

Restructuring of motivation and existing
technology sections

A. Frazer, K. R. Page

Added design principles section K. R. Page

Added implementation patterns section,
restructured v1 implementations and
added HLAPI engine

K. R. Page

Added Use Cases and example semantic B. Nagel, K. Page

mashups
Re-written HLAPI Design section K. Page
Revised remaining sections K. R. Page

Updated details in domain model section K. R. Page, R. Garcia

Final QA complete K. R. Page, A. Frazer

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

http://www.semsorgrid4env.eu/
http://www.semsorgrid4env.eu/home.jsp?content=/sew/viewTerm&content=instance.jsp&_sew_var_name=instance&_sew_instance=D5.3+v2&_sew_instance_set=SemSorGrid4Env&_origin=%2Fhome.jsp
http://www.semsorgrid4env.eu/home.jsp?content=/sew/viewTerm&content=instance.jsp&_sew_var_name=instance&_sew_instance=D5.3+v2&_sew_instance_set=SemSorGrid4Env&_origin=%2Fhome.jsp
http://www.semsorgrid4env.eu/home.jsp?content=/sew/viewTerm&content=instance.jsp&_sew_var_name=instance&_sew_instance=D5.3+v2&_sew_instance_set=SemSorGrid4Env&_origin=%2Fhome.jsp
mailto:krp@ecs.soton.ac.uk
mailto:krp@ecs.soton.ac.uk

oI

SemSorGrid4Env

FP7-223913

Project Information

This document is part of a research project funded by the IST Programme of the

Commission of the European Communities as project number FP7-223913. The
Beneficiaries in this project are:

Partner

Acronym

Contact

Universidad Politécnica de Madrid

(Coordinator)

UPM

Prof. Dr. Asuncion Gémez-Pérez
Facultad de Informéatica

Departamento de Inteligencia Artificial
Campus de Montegancedo, sn

Boadilla del Monte 28660

Spain

#e asun@fi.upm.es

#t +34-91 336-7439, #f +34-91 352-4819

The University of Manchester

UNIMAN
MANCHESTER
1824

National and Kapodistrian University of

Athens

NKUA

X

s

National and Kapodistrian
University of Athens

Prof. Norman Paton

Department of Computer Science

The University of Manchester

Oxford Road

Manchester, M13 9PL, United Kingdom

#enpaton@cs.man.ac.uk
#t +44-161-275 6910, #f +44-161-275 62 04

Prof. ManolisKoubarakis
University Campus, llissia
Athina

GR-15784 Greece

#@ koubarak@di.uoa.gr
#1+30 210 7275213, #f +30 210 7275214

University of Southampton

SOTON

UNIVERSITY OF

Southampton

Dr. Kirk Martinez

University Road

Southampton

S017 1BJ United Kingdom
#@km@ecs.soton.ac.uk

#t+44 23 80594491, #f +44 23 80595499

Deimos Space, S.L.

Mr. Agustin Izquierdo

Ronda de Poniente 19, Edif. Fiteni VI, P 2, 2°
Tres Cantos, Madrid — 28760 Spain
#@agustin.izquierdo@deimos-space.com
#t+34-91-8063450, #f +34-91-806-34-51

EMU Limited EMU Dr. BruceTomlinson

Mill Court, The Sawmills, Durley number 1

“- Southampton, SO32 2EJ — United Kingdom
#@bruce.tomlinson@emulimited.com
Emu #+44 1489 860050, #f +44 1489 860051

Techldeas Asesores Tecnolégicos, S.L. TI Dr. Jesus E. Gabaldén

C/ Marie Curie 8-14

o 08042 Barcelona, Spain
iDEARS #@ jesus.gabaldon@techideas.es

#t+34.93.291.77.27, #f ++34.93.291.76.00

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

iv

mailto:asun@fi.upm.es
mailto:richard@isoco.com
mailto:dder@ecs.soton.ac.uk
mailto:manolis@intelligence.tuc.gr
mailto:bruce.tomlinson@emulimited.com
mailto:jesus.gabaldon@techideas.es

SemSorGrid4Env FP7-223913

Table of Contents

Lo INEFOTUCTION L.ttt b e e e enens 1
1.1. RS o0 0TSSR 1
1.2. DOCUMENT STIUCLUIE ...t 1

2. Motivation for a High-1eVel AP ..o 2
2.1, Web 2.0 and the Interactive WEeD............ccoviiiiiiiiiii e 2
2.2, WED APIS .. 2
2.3. Supporting agile development MOElS...........ccovvriiiiiiiieic 5

3. Enabling technologies and existing domain approaches..........ccccccveeeeieieciiese e 7
3.1. REST and Resource Orientated ArChiteCtUIES...........ccurveireriiiireisesereeseeeeas 7

311, DeSigN PrINCIPIESoeeieieiciceseee e 7
3.1.2. Architectural EIEBMENTS........coviiiiiiieiece s 8
3.2, The Semantic Web and LinKed Datacccocervririiniiiiisicesiciscescesesceiea 10
3.3. OGC Standards and Sensor Web Enablement............ccccoviiiiiiiiiiniiee 13
3.4. The SemSorGrid4ENV ArChiteCtUNEcoviiiiiici e 15

4. Design Principles for HIgh-LeVel APIS.........ccooiiiiiiiiece ettt 16
4.1. DomMaiN-ariven DESIGN.......cciviieiieiteeie ettt st re e sresbe et sreera et 16
4.2. An Analysis of REST and Linked Data............cccoouririniiienieescsesese e 17
4.3. Similarities between REST and Linked Dataccccoovrviireinicincincsescseeeas 17

4.3.1. The primacy Of FESOUICEScuciveiiiieiiecteeieste et te et sbe et sresre e 17
4.3.2. Linking iS NOt OPtIoNalcciiiiiieie s 18
4.3.3. Segregating SEMANTICScoiiiierieiee ettt 18
434, AdaPLaDility......cocoiiee e 18
4.3.5. Applicability of Domain Driven DeSIgNccocuierireiniinieniiinesese e 19
4.4, Potential differences in the application of REST and Linked Data.............c.cccevnene 19
441, APLVS. MOUEL ... e 19
442, SPARQL ..ot naeas 20

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

SemSorGrid4Env FP7-223913

O T 001 (=Y 1 =T o o] (LA o] SRS 20
4.4.4. RESTful through and through?ccoiiiiin s 21
4.5. Combining REST and Linked Data for Domain Driven Designc.ccoceeevveivninne. 22
4.6. Summary of Design Principles for High-Level APISccccccoo v 23

Applying the Design Principles to Semantic Sensor Grids: Design of a High-level API for
Observations 24

5.1, The Domain MOEL........cccciiiiiiiiiiiicie e 25
5.2. RESOUICES ...ttt 27
5.3. REPIESENTATIONS ...ttt ene s 28
5.4. LAY =] AN PSS 30
5.5. APl walk-through: the Channel Coastal ObServatoryc.ccccccocvrivevcieeiiese s 31
Implementation Patterns for the High-Level API Designccccoviininineneneieeeee 37
6.1. Bespoke Implementation of the API for an GIS web platform.............cccccove v 37
B.1.1. CONEXE....iiiiiiiiie it s 37
6.1.2. IMPIEMENTALIONocveeiiciccice e e 38
6.2. Adaptable Implementation for Specific Service Instances via a Sensor Web
ATCNITECTUTE ..ot b et b et b ettt bt ens 39
B.2.1. CONIEXE....i it s 39
6.2.2. IMPIEMENTALION ..ot 40
6.3. Implementation of a Generic High-Level API for Observations platform................. 41
B.3.1. CONIEXE....iieiriiie it 41
6.3.2. IMPIEMENTALIONoveiiice e e 41
Use Cases and Example Semantic MashUPScccoouiiriririneieieiesese e 44
7.1. Recreational re-use: sea state and linked amenities for surfers.............cccoevviiinnne 44
Scripting language and HFaries.oov oo 44
Displaying a map of all wave height SENSOIS..........coviiiiiiriie e 45
Getting the day's wave height readings and the sensor metadataccccevevivvivereivenienne. 46
ViSUANISING the Tata........coieeiee ettt eeseeenee e 48
Fetching related data from other data SOUICEScccveveieiieieiiie e 49

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids vi

SemSorGrid4Env FP7-223913

FINISNEA MASHUD ...cvviiecce ettt re et sre e e 50
7.2. Flood Gate status for the Coastal Defence Partnership..........ccccoovvvnerenenencininnnnns 51
Mashup IMPIEMENTALIONcciiiiiiec s 52

S 1110110 USSR 55
RETEIEICES ... bbbt 56

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids vii

ol

SemSorGrid4Env FP7-223913
Glossary
API Application Programming Interface
CCO Channel Coastal Observatory
CSS Cascading Style Sheets
Csv Comma-Separated Variables
FDD Feature-driven Development
GIS Geographic Information System
GML Geography Markup Language
HATEOAS Hypertext As The Engine Of Application State
HLAPI High-Level API
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IQS Integration Query Service
JSON JavaScript Object Notation
KML Keyhole Markup Language
O&M Observations and Measurements
OGC Open Geospatial Consortium
OWL Web Ontology Language
PHP Hypertext Preprocessor
REST Representational State Transfer
RDF Resource Description Framework
RDFS RDF Schema
RPC Remote Procedure Call
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SOS Sensor Observation Service

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

viii

ol

SemSorGrid4Env FP7-223913

SPARQL SPARQL Protocol and RDF Query Language

SWE Sensor Web Enablement

UDDI Universal Description, Discovery and Integration
ul User Interface

UML Unified Modelling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

WFS Web Feature Service

WMS Web Map Service

WP Work Package

WSDL Web Services Description Language
WSGI Web Server Gateway Interface
XML Extensible Markup Language

XP Extreme Programming

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids iX

ol

SemSorGrid4Env FP7-223913

1. Introduction

1.1. Scope

This document represents the D5.3v2 of Work Package 5 High-level Application
Programming Interfaces for Semantic Sensor Grids within the EU project “Semantic
Sensor Grid Rapid Application Development for Environmental Management
(SemSorGrid4Env)”.

This final version of the deliverable is the culmination of experience gained over the
course of the project developing semantic APIs for sensor observations. From this
experience we present principles for designing domain driven APIs to support
development of lightweight web applications and mashups, and a design pattern that
applies these principles to a High-Level API for Observations.

1.2. Document Structure
This document contains six main sections plus an introduction and summary.

The first, chapter 2, briefly introduces the motivations for High-Level APIs: Web 2.0,
Web APIs and the agile development methodologies that drive many of these
developments.

Chapter 3 gives more detail on two key technologies we use to realise High-Level APIs,
REST and Linked Data, and existing alternative approaches within the GIS community
and SemSorGrid4Env project.

Chapter 4 introduces Domain Driven Design, and in this context analyses the
similarities and differences between REST and Linked Data. Based on this analysis a
short set of design guidelines is given to improve provision of high-level APIs.

Chapter 5 applies these principles in a novel design for a semantic High-Level API for
Observations from Sensor Grids that support both Linked Data and OGC derived
representations through a RESTful interface. Chapter 6 describes three increasingly
sophisticated and complete implementations of the API design, while chapter 7 details
how application developers can use the API to create mashups.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

ol

SemSorGrid4Env FP7-223913

2. Motivation for a High-level API

In this chapter we introduce the broader practices and technologies that underscore our
motivation for development of a high-level API.

We begin with an overview of light-weight web applications and APIs, the agile
development practices they support, and introduce their underlying principles. We
consider how they might be applicable to users of a Semantic Sensor Grid.

In considering these users of an API, we distinguish between domain users and domain
developers. In the example of the Flood Use case (WP7) the domain users are those
who use the web applications and mashups, such as the emergency planning and
decision support web applications described in [D7.1v2]. Domain developers are users
of the high-level API: those who build the web applications and mashups using the
high-level API, which will then be used by the domain users.

2.1. Web 2.0 and the Interactive Web

The interconnected nature of Web 2.0 means that more and more applications and
services rely on bringing together two or more different services or data sources. But for
this to work efficiently, there need to be standard mechanisms for interoperability.

Various “heavy-weight” technologies exist to enable service description (WSDL),
discovery (UDDI) and communication between services (SOAP). While these
technologies support a wide range of features, the architectural underpinnings needed to
include them in a system are often complex, and are not especially well-suited to the
rapid, iterative update cycle of a typical Web application (see Supporting agile
development models, section 2.3).

In contrast to these more verbose technologies, “light-weight” technologies such as
RESTful resources and Web APIs allow resources and services to be included in a Web
“mashup” with much lower architectural overheads. Because of this, changes can be
incorporated into a Web application much more quickly, making these technologies
more suited to the typical mashup life-cycle. [Ben2008]

Within the SemSorGrid4Env project, the Web Applications (e.g. for the flood use case
[D7.1v2], [D7.4] primarily present a User Interface to domain users, so they can access,
utilise, and manipulate, sensors and associated data provided by systems employing the
SemsorGrid4Env architecture.

Through the high-level AP1 we must also support domain developers such that they can
easily, quickly, and simply, create Web Applications and mashups. In the following
sections we outline the lightweight APIs and agile development methods that support
domain developers.

2.2. Web APIs

An Application Programming Interface (API) is a defined set of functions made
available by one system, to allow other applications to communicate with it. Typical

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

oI

SemSorGrid4Env FP7-223913

examples include operating system APIs to allow desktop applications to interface with
hardware, or scripting language APIs to interface with operating system calls — all
through a standard, well-defined set of functions. [Pro2010]

In a similar way, online systems offer APIs to allow other systems to interact with their
functionality. As these interactions occur most naturally across Web architecture, these
APIs are known as “Web APIs”. ProgrammableWeb.com provides a catalogue of over
two thousand Web APIs, grouped by category, interface style and data format.*

As an example, a simple Web API listed on ProgrammableWeb.com is “Yahoo
Weather”. As a provider of weather data (such as temperature, humidity, wind speed
and direction), Yahoo have exposed this data to developers via an HTTP interface. This
particular API requires the client to make an HTTP “GET” request to a specified URL,
with two additional parameters: a location identifier, and a flag to say which units the
measurements should be returned in. As a response to this request, the service returns
XML content describing the various weather details for the area requested, given in the
units specified. Now that the client has this data, it can be displayed or manipulated in
whatever way the developer chooses.

HTTP “GET” request to the following URI:

http://weather.yahooapis.com/forecastrss? w=2442047 | &u=c

URI of the REST resource endpoint
Parameter describing the
desired location

Parameter describing the desired

its of measurement
HTTP response, sent as RSS XML: S

<?xml version="1.0" encoding="UTF-8" standalone="yes" 7>

<rss version="2.0" xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0"

xmlns:geo="http://www.w3.o0rg/200 gs84 pos#"> <channel>

<title>Yahoo! Weather - Sunnyv CA</title>
<link>http://us.rd.yahoo.com ews/rss/weather/Sunnyvale CA/*http://
weather.yahoo.com/forecast/USCA1116_f.html</link>

<description>Yahoo! Weather for Sunnyvale, CA</description>
<language>en-us</language>
<lastBuildDate>Fri, 18 Dec 2009 %:38 am PST</lastBuildDate>
<ttl>60</ttl>
<yweather:location city="Sunnyvale" region="CA" country="United States"/>
<yweather:units temperature="F" distance="mi" pressure="in" speed="mph"/>
<yweather:wind chill="50" direction="0" speed="0" />
<yweather:atmosphere humidity="94" visibility="3" pressure="30.27" rising="1" />
<yweather:astronomy sunrise="7:17 am" sunset="4:52 pm"/>

Figure 2-1: An example request to/response from the Yahoo! Weather RSS API

1 Web API catalogue, ProgrammableWeb.com — http://www.programmableweb.com/apis

2 Yahoo! Weather, Yahoo Developer Network - http://developer.yahoo.com /weather

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

ol

SemSorGrid4Env FP7-223913

Slightly more complex is the weather API from WorldWeatherOnline.com®. Again,
weather information is requested via an HTTP “GET” request, although this time, there
are a few more options. The client can specify the format in which the data is returned
this time — either XML, CSV or JSON. This allows the provider to cater for a wider
range of developers, all from a single set of data. The developer simply adds the
appropriate flag to their HTTP request, and the provider works out how to return the
data in the correct format. Similarly, the client can specify location using either
latitude/longitude, or various regional postal codes. Again, the client sets the correct
flag, and the API provider works out which data needs to be returned.

Even more complex still, is the NOAA Weather Service’. Unlike the previous
examples, this system implements a SOAP interface, rather than a RESTful HTTP
interface.

To interact with a SOAP interface, the client's code will need to create function calls to
the service's remote functions, as described in the service's WSDL file. This request is
packaged into a SOAP “envelope”, along with the appropriate parameters, and sent to
the service endpoint. Once received, the service unpacks the message, and runs the
appropriate service function, before packing the response in another envelope and
returning it to the client. In this way, SOAP-based APIs work more like traditional
functional programming, with clients passing parameters to functions, and receiving the
corresponding return values.

In the case of the NOAA Weather Service, there are separate functions to return weather
data for a given latitude and longitude, as well as for returning a latitude and longitude
based on other location data. This allows the client to request a latitude and longitude by
passing a postcode, city name or other identifying feature to the appropriate function,
then passing the resulting latitude/longitude to the weather data function, to receive
weather data for that area. The client can also pass additional parameters to the weather
data function, to specify the time period which the data should cover.

As these online systems become more comprehensive in the features they offer, the set
of functions required to interact with them becomes more complex. In this way, the
Web itself can be thought of as a “platform”, much like an operating system [Pro2010].
Where the operating system is a platform on which to build desktop or server-based
applications, the Web becomes a platform for interconnected, online systems. Like the
operating system APIs, Web APIs offer a standard set of functions to interface with this
“platform”, exposing its functionality to developers in a standard, well-defined way.

¥ WorldWeatherOnline - http://www.worldweatheronline.com/free-weather-feed.aspx

* NOAA Weather Service API - http://www.programmableweb.com/api/noaa-weather-service

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

ol

SemSorGrid4Env FP7-223913

2.3. Supporting agile development models

Modern Web applications and mashups are typically built by reusing as much existing
functionality and data as possible, developing new code to tie current systems together
in new and interesting ways. Because of this heavy reliance on re-use, mashups can be
developed much more quickly and easily than traditional software systems.

This kind of quick development cycle lends itself well to Agile software development
practices. The most common of which are “Extreme Programming”, “Scrum” and
“Feature-driven development”.

Extreme Programming (XP) relies on short development cycles and frequent, stable
releases, in order to cater to new user requirements as soon as possible [Bec2000].
Unlike many traditional software models where user requirements are established at the
beginning of the project, XP uses its rapid, short development cycles to introduce new
requirements throughout the project's life. After gathering the first set of requirements, a
combination of paired programming and unit testing will follow, followed by
acceptance testing with the user. Once accepted, the next set of requirements is
discussed, and a new development cycle begins.

This particular style suits Web application development well, as it inherently accounts
for the changing requirements inevitable in the ever-changing Web. These changing
requirements will come not only from users — whose expectations will changed based
on competing products, new technologies or shifts in social dynamics — but also in
changing technologies. As Web apps and mashups rely on supporting frameworks, APIs
and data sources, any change in one of these systems means a corresponding change in
the new system. By embracing this inevitable change, XP ensures that a stable system
will always be released relatively frequently, without becoming mired in platform
migrations and feature requests.

Scrum takes its name from the game of Rugby, where a team of players — each with
their own distinct roles — all work together in pursuit of a common goal, “passing the
ball back and forth” [Sch2004]. Like XP, Scrum aims to complete a “shippable” product
increment at the end of a short development period (known as a “sprint”). However,
unlike XP, these sprints are of a fixed length. Where XP will plan features for a
particular iteration such that the release cycle is still relatively short, it is still primarily
concerned with the implementation of the features as its primary goal. In Scrum, the
time-based deadlines of more traditional software development are used, albeit
estimated based on the features to be implemented.

In addition, the feature requirements for the overall system are determined and
prioritised at the beginning of the project, with one or more selected for implementation
at the beginning of each sprint. As a result, changes can be made to the list of overall
project requirements, but once a sprint has begun, the requirements selected for
implementation during this cycle remain fixed.

By retaining XP's rapid development cycle, Scrum can still react relatively well to the
inevitable changes of Web development. However, its fixed-time sprints have been
criticised, as they are easily disturbed by unexpected programming errors, or by
changing user requirements which directly affect the requirements of the current sprint.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

SemSorGrid4Env FP7-223913

The ability to re-evaluate these issues at regular intervals, however, still makes Scrum
more suited to the changing environment of the Web than most traditional software
development models.

Like XP and Scrum Feature-driven development (FDD) relies on short development
iterations, and uses a list of desired features to determine a given iteration's tasks
[Pal2002]. After an initial planning stage, the required featured are determined, and
assigned to classes. Once this stage is complete, chief programmers begin a series of
two-week iterations by selecting one or more individual features, generating the
appropriate design diagrams and documentation, and finally implementing the features
in code. At the end of each iteration the code is tested, inspected and integrated into the
main build.

Like the previous two methods, this rapid cycle of development ensures that new
features make it into the published build as quickly as possible. However, because FDD
still relies on many of the tenets of traditional software design (verbose UML diagrams,
regular code inspections), a comparable feature would is likely to take longer to develop
from start to finish via FDD, than via XP or Scrum. In addition, because requirements
elicitation is only done at the beginning of the project, FDD is unsuited to situations
where user requirements change throughout development.

Agile Method Release Cycle | Reaction to changes in:
User Requirements | Supporting APIs
Extreme Programming | Frequent, As required Release delayed
varies

Scrum Frequent, fixed | Per iteration Set deadlines

affected
Feature-Driven Frequent, fixed | Per Project Set deadlines
Development affected

Table 1: A comparison of the strengths and weaknesses of different Agile software development models,
with respect to Web application development

Table 1 highlights the relative strengths and weaknesses of the various approaches to
Web application design. While all produce rapid, iterative releases of usable code, they
each handle changes in user requirements and supporting APIs differently.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

ol

SemSorGrid4Env FP7-223913

3. Enabling technologies and existing domain approaches

In capturing programming patterns for high-level APIs for Semantic Sensor Grids we
must also understand the principles that underpin successful Web APIs, and how
technologies already employed in domains associated with sensor grids might be
applicable.

In the first two sections of this chapter we describe two approaches fundamentally built
upon and with the architecture of the Web: Representational State Transfer (REST), and
the Linked Data principles as applied to the Semantic Web.

We then give an overview of the Sensor Web technologies developed by the widely
accepted Open Geospatial Consortium, and position high-level APIs within the
SemSorGrid4Env architecture.

3.1. REST and Resource Orientated Architectures

Representational State Transfer (REST) is a set of design principles which have been
popularly and successfully adopted in many (RESTful) web services, and is typically
framed as an alternative to ‘heavyweight' web services, including as the WS-* family.
The key principle of REST is the use of resources for specific things that we wish to
reference, and the referencing of these resources using URIs. Representations of these
resources — encoded in a particular format — are then accessed through the URI,
usually using HTTP.

3.1.1. Design Principles

REST, as an architectural style, is an effort to bring together the set of design principles
enshrined through implementation in Web Architecture. Primarily, REST aims to
capture the features of the Web which allow it to scale so successfully, that is:

Everything is a resource which is addressable

Resources have multiple representations

Relationships between resources are expressed through hyperlinks

All resources share a common interface with a limited set of operations
Client server communication is stateless

REST is not, however, defined in terms of, nor limited to, the web (though HTTP meets
the REST criteria) and while there have been attempts to clarify the application of
REST to web services through definition of a Resource Oriented Architecture the term
is still often loosely, sometimes incorrectly, applied.

In order to maintain these principles, certain architectural constraints were applied
[Fie2000]. These constraints include the following:

e The client-server constraint is used to separate the concerns of the parties
involved. Typically, this involves separating the user interface and business
logic processes from the data storage concern. This offers two major benefits:

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

ol

SemSorGrid4Env FP7-223913

the user interface can be ported to different platforms while using the same data,
and the data sources can scale more easily by keeping the server architecture
relatively simple. In a Web environment, this also allows both client and server
elements to develop separately, suiting the multiple organisational domains of
the Internet more appropriately.

e A stateless system insists that any request from the client to the server contains

all the necessary information to make the request, without relying on any context
stored on the server. In a REST-based system, the state is made implicit by the
status of any current HTTP requests. If there are no outstanding HTTP requests,
the system is “at rest” in a single “application state”. By initiating an HTTP
request, the system is implicitly changing state — it enters a “transition state”
between application states. Once these requests resolve, the system ‘“at rest”
again, in whatever new application state is associated with the most recent
request.
By making a system stateless, several emergent benefits arise. Visibility is
improved, as a single request can describe that request's entire nature. Because
no state is explicitly stored on the server, calls to a REST service are
idempotent. This allows failed requests to be safely made again and again,
without adversely affecting the server’s internal state, improving user-perceived
reliability and preserving the server’s data integrity. Scalability is also improved,
as the server has no need to manage resources between individual requests.

e One disadvantage is that network performance may drop, as almost identical
request data will be sent with every request. This can be mitigated somewhat by
making the system cacheable, i.e. by explicitly stating whether a returned
resource can be reused for equivalent future requests. In this way, some
interactions will we completely avoided, improving scalability and reducing
latency. However, reliability decreases if the cached data is allowed to become
different from the comparable data stored on the server at the time of request.

e The uniform interface of REST is the feature which distinguishes it most
clearly from other Web services. By making the interface generalised, the
system architecture can be simplified, and its interactions are made more visible.
The main disadvantage is that efficiency is reduced, as information is transferred
in a standardised, generic form, rather than on specific to the application. In this
way, REST is optimised for the generic data transfer of the Web, but is less than
optimal for any other type of interaction.

3.1.2. Architectural Elements

As REST is an abstraction of the Web, it ignores details such as component
implementation and protocol syntax. Instead, it focuses on the roles of its components,
how they interact with other components, and the identification of significant data
elements [Fie2000].

REST components communicate by transmitting a representation of a resource in a
format specified by the requesting system. The representation can be the same as the

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

ol

SemSorGrid4Env FP7-223913

original resource, or could be derived from it — whichever the case, the client receives
only the representation, and its construction remains hidden.

The resource is REST's key abstraction of information, and can include any concept
that could be the target of a hypertext reference. A resource is a temporally varying,
conceptual mapping to a set of entities. This set could be empty — identifying an as yet
unrealised concept — or could contain resource representations or identifiers. While
two different resources could reference the same entity at one point in time, there is no
requirement for them to always do so. For example, a code tarball release with version
number “1.6” could be represented by a resource “tarball release 1.6” and another called
“latest”. However, when version number “1.7” is released, the “latest” resource would
most likely now point to this entity instead.

This method has several advantages. It allows the representation of a resource to be
bound at the last minute, enabling content negotiation based on the request. It also
allows the client to reference a concept instead of a specific representation, so that no
links need to be changed whenever the underlying resource itself changes.

One of the main tenets of REST is the primacy of resources that are uniquely identified
by opaque URIs — in order to avoid coupling between clients and servers, no
assumptions must be made about the structure of the URI [Ala2010]. REST limits the
operations exposed by a web service to a small, well-defined, standard, set [Ric2007].
For HTTP, these are:

e GET —to return a list of URIs representing a collection’s members, or to retrieve
a representation of a member resource itself

e POST - to add a new member URI to an existing collection, or to turn an
existing member resource into a collection by inserting a new member URI into
it

e PUT - to update, replace, or create a new collection or collection member,
depending on whether it exists already or not

e DELETE — delete a collection or member of a collection completely

This contrasts with a potentially expansive set of operators (for RPC style web services)
or message contracts (for SOA style web services). It also means HTTP is retained as an
application layer protocol as per its originally design, rather than being re-purposed as a
transport layer, e.g. for SOAP; this brings both benefits (e.g. compatibility and
scalability with standard web infrastructure) and further constraints (e.g. idempotence
becomes desirable across operations to cope with network unreliability).

This constrained set of operations leads to a design process focused on correctly
identifying the resources that should be exposed for a service and their representations;
while the interface to the resources is simple, the number of resources — every piece of
information that could be served - is likely to be many, with a URI for each. Since an
application client cannot possibly know of every URI in existence it is important that
resources hyperlink to other resources so a client application can navigate around them.

A Resource Oriented Architecture also requires statelessness — that each HTTP
operation is totally separate from any other. As such, any state the service has must also

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

ol

SemSorGrid4Env FP7-223913

be exposed as a resource; an application client enters that state by accessing the URI for
that resource; to enter another state a will use another URI.

Any application state a service requires to provide a representation of a resource must
be completely contained within the request to the server (where the application is the
client software processing and modifying the resource representations returned by the
service). Transitions in application state are made by moving - “navigating” in a web
sense — to alternate resources provided as URI links in the representation of a resource
provided returned by the server.

3.2. The Semantic Web and Linked Data

The term “Semantic Web” describes methods and technologies to allow machines to
understand the meaning of data on the Web. The addition of machine-readable metadata
to existing content would allow automated agents to access the Web more intelligently,
performing relevant tasks and locating related information without explicit user input.
While not formally defined, the term is generally used to describe the technologies used
to implement it [Ger2006], including:

e Resource Description Framework (RDF) [RDF1999] - a language for
expressing data models, referring to objects and their relationships. This is
typically expressed as a subject-predicate-object “triple”, e.g. “wave height”,
“is-a-type-of”, “metocean measurement”

e RDF Schema [RDFS2004] — extends RDF, allowing the properties and classes
of RDF-based resources to be described, with semantics of generalised
hierarchies.

e Web Ontology Language (OWL) [Lac2005] — adds additional vocabulary for
describing these properties and classes, including the relationship between
classes, cardinality, equality, characteristics of properties and enumerated
classes.

e SPARQL [Cox2007] — a query language for Semantic Web data sources

The concept of Linked Data centres on using the Web to create typed links between
different data sources. Technically, the term refers to data published on the Web in a
machine-readable way, with explicitly defined meaning, that is linked to other external
data sets and has the potential to be linked to itself from other data sets. Where the Web
is based around HTML documents linked by untyped hyperlinks, Linked Data is based
on Resource Description Framework (RDF) documents. These documents described the
typed links which link the document to other arbitrary data sources. Initially, Linked
Data was only concerned with data itself, with URIs being used primarily as unique
identifiers. However, when combined with the hypertext Web, these URIs become
equally important in retrieving the data across the network.

Berners-Lee outlined a set of “rules” for publishing data on the Web, such that it meets
the goals of Linked Data:

e Use URIs as names for things
e Use HTTP URIs, so people can look up these names

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 10

ol

SemSorGrid4Env FP7-223913

e When someone looks up a URI, provide useful information using the standards
e Include links to other URIs, so they can discover more things

These “rules” have become known as the “Linked Data Principles” [Biz2009], and
provide simple guidelines for publishing connected data on the Web, in accordance with
its architecture and standards.

Linked Data relies on two fundamental Web technologies: URIs and HTTP. Entities
identified by URIs can be located by simply dereferencing the URI over HTTP. Thus,
HTTP provides a simple mechanism for retrieving the resources themselves, or
descriptions of resources which cannot be sent. RDF provides a generic, graph-based
data model with which to structure and link the data which describes things. RDF
encodes data in the form subject-predicate-object. These “triples” take a URI as the
subject and object, with a predicate used to describe how one relates to the other. In this
way, RDF links can be created, with the subject and object each referencing the
namespace of a different data set. Dereferencing these namespaces will result in the
graph described by that namespace, i.e. the graph describing the entity represented by
the URI, or the relationship represented by the predicate.

By combining the features of HTTP URIs, HTTP as a retrieval mechanism and RDF as
a data model, Linked Data builds directly on the Web's generalised architecture. As
such, the Linked Data web can be seen as an additional Web layer, with many similar
properties:

Generic, and can contain any type of data

Anyone can publish to the Web of Data

There is no constraint on data publishers to choose a specific vocabulary

Entities are connected by links, creating a graph of linked data sources, and
enabling the discovery of new data sources

From an application development perspective, this means:

e Data is separated from formatting and presentation

e Data is self-describing, as the describing vocabulary can be dereferenced via its
URI

e HTTP as a transport mechanism and RDF as a data model are much simpler than
WS-*-based APIs, with heterogenous data models and interfaces

e The Web of Data is open, so data sources can be discovered at run-time via RDF
links, rather than being hard coded from the start

While the use of URIs is common throughout the Semantic Web - not least as the basic
element of RDF - the requirement to use HTTP URIs sets Linked Data deployment
apart. It is a departure from the use of URIs purely as unique identifiers within the
graph; in Linked Data they are also a means of retrieving parts of the graph relevant to
that resource - the URIs can be dereferenced.

This dual use of HTTP URIs does not, however, remove the need to distinguish
between the two uses: a web client must be able to tell the difference between a URI
representing the person Tim Berners-Lee (a non-information resource) and a URI

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 11

oI

SemSorGrid4Env

FP7-223913

providing information about Tim Berners-Lee (an information resource); even if, in the
linked data web, we dereference the former to retrieve the latter.

A web server communicates this distinction to the client through a combination of the
HTTP “303 See Other redirection code (referred to as the httpRange-14 solution) and
content negotiation, i.e. returning different representations according to the HTTP
Accept header set by the client [Sau2008].

This non-information resource
represents a person

This information resource is an HTML
representation of information about
the non-information resource (person)

This information resource is also about
the non-information resource (person);
it contains different information to the
HTML resource above, but in turn has
two represenataions of the same new
information...

...in RDF...

...and XML. Because these two
representations are of the same
information, they share a common
information resource from which the
content is negotiated.

Figure 3-1: An example of content negotiation, based on the MIME type specified by the client (from

[http://id.example.com/person/7113

303 redirect and
content negotiation
text/html

303 redirect

HTML
Content-Location
http://www.example.com/people/timbl

V
http://data.example.com/person/7113

Content Negotiation application/xml

application/rdf+xml

RDF
Content-Location
http://data.example.com/person/7113.rdf

XML
Content-Location
http://data.example.com/person/7113 .xml

[Pag2009])

There are two general cases for this solution:

1. If an information resource describing the non-information resource has multiple
representations (e.g. in RDF and HTML) of the same information then the web
server should first redirect the client (via a 303 response) to the intermediate
information resource URI (indicating the move from a non-information resource
to an information resource), and then use content negotiation to return the
appropriate representation. The Content-Location header should be used to
confirm the URI of this representation.

2. If the information resources describing the non-information resource contain
different information depending on which representation is requested (e.g. the

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

12

ol

SemSorGrid4Env FP7-223913

RDF representation contains different information to the HTML, not just a
different representation), then the web server should redirect the client (via a 303
response) directly to the information resource appropriate to the requested
content type, without an intermediate common information resource. The
Content-Location header should be used to confirm the URI of the returned
representation.

Finally, it is noted that the use of resolvable (HTTP) URIs does not imply the encoding
of semantics within a URI, and that the syntax used by a web server when returning a
resource should not be interpreted as having such meaning. Apparent abstractions of the
URI API (e.g. http://example.com/<element>/<type>/<time>) cannot,
and should not, be provided - certainly when describing the interaction with a client
application. Use and manipulation of such an abstraction might provide a useful
shortcut for developers looking to manually locate and trial resources; the use of such
‘friendly” URIs that may encourage this misuse are not without merit when providing
manageable endpoints for developers and end-users; but a linked data client should
primarily access new resources via the links asserted within the (RDF) graph.

3.3. OGC Standards and Sensor Web Enablement

Standardised data encodings and service definitions from the Open Geospatial
Consortium (OGC) are widely adopted across industry. Earlier standards introduced
services to directly support Geospatial Information Systems (GIS), while more recent
efforts have resulted in services defined as part of Sensor Web Enablement (SWE).

The core Open Geospatial Consortium (OGC) encoding is GML, which is an XML
schema derived language in which several GML Application Schema are defined. In
order to expose an application’s data using GML, an XML schema must be created
specific to the application domain. This schema describes the relevant data objects,
which applications that implement the schema must expose. For example, an application
for flood defence monitoring may define wave heights, coastal defence types and
heights, tide heights and population densities in its schema. These data objects will in
turn reference the primitive data objects defined by GML. These primitive types include
geometries, coordinates, units of measurement and directions, as well as concepts such
as “features” and “observations”.

GML is a particularly interesting XML representation since it has several RDF-like
features: an object-property-value model similar to the RDF model, and extensive (if
perhaps under-utilised) support for remote properties using xlink:href. This
probably shouldn’t come as a surprise: early versions of GML included an RDFS
profile.

Earlier OGC standards used in GIS applications include “Web Map Service” (WMS)
and “Web Feature Service” (WFS). WMS offers an interface to get information about a
map layer, and to return that map layer for use in mapping software such as OpenLayers
[WMS2010]. While straightforward, this method restricts the ways in which the data
can be used — a map layer is, in essence, an image, and as such it is impractical to
extract information from a layer to further manipulate it. WFS goes beyond this by

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 13

ol

SemSorGrid4Env FP7-223913

returning map data for a single feature in the OGC GML format [WFS2010]. However,
this data is retrieved through a more complicated, non-RESTful RPC type service.

OGC SWE is a framework of open standards, designed to exploit Web-connected
sensor systems via a Service Oriented Architecture [Bot2007]. It incorporates the
Observations and Measurements (O&M) GML [Cox2007] and SensorML [SML2010]
schema languages, to enable richly defined models for both sensor characteristics and
observations. In addition, the framework includes additional services for discovering
sensors (Sensor Registries), accessing sensor information (Sensor Observation Service),
and receiving asynchronous sensor notifications (Web Alert Service).

Although Sensor Web Enablement is designed to provide for “Web-connected sensors”,
the approach taken in the design of the included services is to run over Web protocols,
but not to adopt a Web Architecture through Resource Oriented services. While this is a
valid and useful technique to extend GIS services into a more web-like platform, this
specialisation of interfaces according to task (Sensor Observation, Alert, etc.) does not
provide the kind of RESTful High-Level API required to support lightweight mashup
development.

The data models and schemas (used to transfer information between server and client
through the interface calls) are of more interest since they are based on a thorough and
comprehensive domain analysis. Within SWE this is manifest in two perspectives over
the data:

A provider-centric approach orientated around and primarily describing the
processes undertaken by sensors, structured networks of sensors, and constituent
elements of sensors. Data is a product of the described sensor network. From the
OGC standards this approach is adopted by the SensorML GML application
schema and the SWE Sensor Planning Service.

A consumer-centric approach orientated around and primarily describing the
observations and measurements — i.e. the data, the results — captured by sensors
rather than the sensors themselves (although the provenance of observations is
modelled through an associated process). The OGC Observations and
Measurements (O&M) model and GML application schema apply this approach,
as used by the SWE Sensor Observation Service (SOS).

While the former might be applicable to provisioning, deploying, and managing sensor
network themselves, our domain users (and the domain developers supporting them) are
engaged in activities — such as emergency response planning and management — which
instead are more aligned with manipulation of the data once it has been collected by the
sensor network.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 14

SemSorGrid4Env FP7-223913

3.4. The SemSorGrid4Env Architecture

The SemSorGrid4Env architecture ([D1.3v2], figure 3-2) takes a Service Oriented
approach to integrating data sources, middleware, and applications. While this contrasts
with the Resource Oriented approach taken by REST APIs and generally followed in
development of the High-Level API, the two approaches are also complementary.

Applications using the Architecture service APIs are more likely to be tightly integrated
and dependent on the services discovered (and previously registered); an example of
such a “full” application can be found in the SemSorGrid4Env Flood Planning and
Response Application [D7.1v2].

Lightweight mashups are more likely to be developed quickly, potentially on an ad-hoc
basis, and to take advantage of unintended re-use of sensor data. Semantic mashups
benefit from the common self-descriptive models and linking provided by a REST API.

Bemumtie . . Sernuntic . .
T!I:EE"\-GII'_‘.' N T|1Irt'_|:||-:'-| Middlaware Tier
................... Ry ol e RLLLLLLELTEREE
Lhaizy Source
Data Tier
Caannrciivimy
Dridge

P
S Conerele

[Regourcs
T A

Figure 3-2: The SemSorGrid4Env architecture: the services, their relationships, and the classes that they
belong to (from [D1.3v2])

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 15

ol

SemSorGrid4Env FP7-223913

4. Design Principles for High-Level APIs

In the previous chapter an overview of REST and Linked Data was presented, within
the context of their suitability for supporting the developments models introduced in
Chapter 2 through provision of a High-Level API which embraces Web Architecture.

At a first glance there might appear to be an obvious alignment and overlap between the
approaches prescribed by REST and Linked Data; but despite their development on and
around the architecture and technologies of the Web, they were developed in relative
isolation. On more detailed inspection of the two, divergences in scope and applicability
present themselves, and for some aspects, incompatibility. In this chapter we investigate
these similarities and differences and suggest the coupling is worthy of a third look: in
combination as a flexible environment in which the developer can focus on domain
driven applications.

4.1. Domain-driven Design

As introduced in the previous chapter, the resource is the first-class citizen of both
RESTful Web APIs and Linked Data exposed data sources; identifying resources and
the representations that allow retrieval of them is key to writing the API.

This approach has echoes from existing software design practices and methodology
when considering the object model derived Domain-driven Design philosophy
[Eva2003].

Domain-driven design espouses that:
e The primary focus should be on the domain
e Complex domain designs should be based on a model

These principles are well aligned with the identification of resources (for the former)
and the encapsulation of the domain by an ontology through Linked Data (the latter).

This process of “knowledge crunching” with domain experts and domain developers
ensures an APl exposes a model that is both pragmatic programmatically and
representative of the domain:

“Good programmers will naturally start to abstract and develop a model that can do
more work. But when that happens only in a technical setting, without collaboration
from domain experts, the concepts are naive. That shallowness of knowledge produces
software that does a basic job but lacks a deep connection to the domain expert’s way
of thinking. ” [Eva2003]

This is essential if the API is to be successfully used by domain developers, and in turn
domain users: the power of a successful API is in encapsulating the complexity of a
domain in a manner that allows its use to scale through simple usage. This simplicity
must be deeply tied to the domain to allow natural and intuitive use by the domain

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 16

ol

SemSorGrid4Env FP7-223913

developers and users; an abstraction unfamiliar or unsuitable to them will have an effect
opposite to that desired.

4.2. An Analysis of REST and Linked Data

The Linked Data movement has achieved considerable success constructing a semantic
Web of Data [Biz2009]. While much initial semantic web research focussed on building
a stack to enable reasoning and logic, the more recent Linked Data programme has
attempted to reconnect the semantic web to its roots in the most successful distributed
system ever constructed (or at the very least the latter half of its moniker!).

Moving on from an earlier assumption that URIs would do nothing more than uniquely
identify Things, the key thrust of Linked Data has been the re-adoption of HTTP URIs
for retrieval of resource representations. The approach can be summarised by the four
Linked Data ‘rules’ [Ber2006]: use URIs as names for things; use HTTP URIs so that
people can look up those names; when someone looks up a URI, provide useful
information, using the standards (RDF*, SPARQL); and include links to other URISs, so
that they can discover more things.

A shallow keyword match over these principles would suggest a strong correlation with
those underpinning REST [Fie2000], and yet rarely are the two mentioned together as
complementary styles. Are they at cross-purposes, completely orthogonal, or can
experience from both approaches inform a more coherent framework for building
distributed web services and applications?

4.3. Similarities between REST and Linked Data

In this section we evaluate the commonalities between REST and Linked Data that
support a new approach to High-Level APl development encompassing both
methodologies.

4.3.1. The primacy of resources

The key abstraction of information in REST is a resource [Fie2000]; similarly the URI
is both the identifier for, and means by which relationships are expressed between,
things in the Resource Description Framework (RDF) [RDF1999], which is the
foundation of the Semantic Web stack. In both cases, the notion of an identifiable
resource is fundamental to implementation; design and development of a system cannot
progress without the assignment and association of resources.

Since Resource Oriented Architectures [Ric2007] and Linked Data are the most
commonly encountered realisations of REST and the Semantic Web respectively, and
since both are built upon HTTP and HTTP URISs, it is easy to recognise this as a
common shared building block. It is therefore also relevant to note that neither REST as

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 17

ol

SemSorGrid4Env FP7-223913

an architectural style nor RDF as originally conceived are monogamously wedded to
HTTP.

4.3.2. Linking is not optional

The fourth Linked Data principle is to “Include links to other URIS” in the
representation provided when a URI is dereferenced “so that they can discover more
things” [Ber2006]. It is this inclusion of links to other HTTP URIs which, when
dereferenced, provide further links to more HTTP URIs that sets Linked Data apart
from earlier Semantic Web activity in its explicit encouragement of a dereferencable
Web (and the trails of links through it).

“Hypermedia as the engine of application state” (HATEOAS) is a defining
characteristic of the REST architectural style [Fie2000]. State transitions in an
application occur when moving from one resource to another (by retrieving or
modifying) using the links provided in a representation.

A representation that supports linking is therefore a requirement for both approaches;
neither would function as intended without the hyperstructures described above. While
there is no specific mandated linked representation for REST implementations, Linked
Data advocates “using the standards” which, in the case of RDF and SPARQL, both
guarantee support for links to other resources.

4.3.3. Segregating semantics

Semantics about relationships between resources can be expressed by both approaches:
in the Semantic Web they are described by ontologies written in RDFS and OWL, while
RESTful implementations can encode semantics in link relations.

A common misapplication of both approaches is to assume semantics (or abuse implied
semantics) encoded in a URI, when both REST and Linked Data explicitly expect
clients to regard URIs as opaque strings when used for identification. In this way both
follow the principle of separating identification from the semantics of interaction,
description, and structure.

4.3.4. Adaptability

Both REST and the Semantic Web include facets in their design which allow the
relationships between resources to be modified, should revision be required, without
necessitating interface changes to the client.

Since state in a RESTful application is defined by navigation of the hyperstructure, if a
server changes the links that are transferred to a client (via a representation) it also
changes the possible state transitions the application can make. It does this without

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 18

ol

SemSorGrid4Env FP7-223913

changing the mechanism by which the client performs the transition (the combination of
HTTP and the representations for the specified media type).

As befits a distributed web system (where it is perhaps unlikely — and probably
undesirable — for there to be ‘one true ontology’), there is no constraint on the
application of a single ontology to each resource on the Semantic Web. Assertions can
be made using different ontologies, in different places, and at different times; ontologies
(themselves expressed in RDF) can be extended and subsumed by other ontologies.

In both cases this adaptability can be seen as a benefit of self-description — a client has
prior knowledge of the framework within which relationships are expressed, but there is
no requirement of prior knowledge of the relationships themselves.

4.3.5. Applicability of Domain Driven Design

The Domain Driven Design methodology introduced at the beginning of this chapter
[Eva2003] espouses a focus on domain modelling throughout an iterative development
process. This has particular resonance with the principles and practices outlined above
in respect to both REST and Linked Data: the identification of resources and the links
between them should naturally map to the domain (and business process) at hand
[Rai2010], and the ability to iteratively modify the hyperstructure lends itself well to
agile development.

This methodology is key in developing a service that can be successfully used by
domain application developers, and in turn domain users: the power of a successful data
service is in encapsulating the complexity of a domain in a manner that allows its use to
scale through simple usage. This simplicity must be deeply tied to the domain to allow
natural and intuitive use by domain developers and users; an abstraction unfamiliar or
unsuitable to them will have an effect opposite to that desired.

4.4. Potential differences in the application of REST and Linked
Data

In this section we outline those areas where one might perceive differences between
REST and Linked Data — although, as we summarise in the next section, we counter that
these are rather vestiges of different demands and current practice rather than
fundamental incompatibilities.

4.4.1. API vs. Model

In the previous section we explored the similarities between REST and Linked Data,
principally centred on the notion of resources and the relationships between them. There
i, however, a key difference in the motivation for resource identification:

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 19

ol

SemSorGrid4Env FP7-223913

e in RESTful systems, resources and their relationships are identified and exposed to
enable a client to retrieve data and transition to other resources; in effect, they
define an API to enable application operation and state transition. Linking is the
mechanism to navigate the API; link relations encode semantics to enable this.

¢ in RDF and ontologies, resources are identified to encapsulate an underlying data
model. While Linked Data extends this idea so that sections of the model can be
retrieved by dereferencing resources, linking in the returned representation is used
to bind sections of the model rather than transition state.

By extension the adaptability and self-documentation described in section 4.3 applies to
API interactions for REST, and the data model for the Semantic Web.

This distinction between model and API, principally in the identification of resources, is
a key finding that informs our development of High-Level APIs.

4.4.2. SPARQL

The third Linked Data rule cites not only RDF, but a sister standard which from a
RESTful point of view is a troublesome relative: SPARQL.

SPARQL is the standard query interface for RDF; it is widely deployed as an interface
to Linked Data services, and widely used by Linked Data applications. However most
SPARQL endpoints are implemented — and used — in the RPC style. RESTful interfaces
to SPARQL have been proposed [Wil2009] which expose resources that, when a
representation is requested, trigger SPARQL queries. Consistent with the previous
section, identification of these query resources is a matter of identifying the
“information units” which comprise the service APL

Perhaps a more concerning implication is the relative popularity of SPARQL for
application development, and particularly for combining Linked Data through SPARQL
endpoints. In this scenario, whilst the data model benefits from the distributed nature of
resources and linking, the application interaction does not: it eschews the benefits of
RESTful operation.

4.4.3. Content negotiation

RESTful services use content negotiation to select a shared envelope that both the client
and server can encode and decode the representation through (and the interface to the
service is then dynamically carried via the representation as links). Typically a REST
service will assume the resource being transferred in these representations can be
considered a document; in the terminology of the following section, an ‘information
resource’.

Linked Data services, in implementing the “HTTP range issue 14” solution [Sau2008],
add semantics to the content negotiation to distinguish between URIs that are non-

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 20

ol

SemSorGrid4Env FP7-223913

information resources (identifiers for conceptual or real-world objects) and URIs that
are information resources (documents) that describe the non-information resources. This
Is because assertions in the RDF graph are usually relationships that apply to the non-
information resource, but Linked Data overloads URI usage so that it is also a
mechanism for retrieving triples describing that resource (in a document, i.e. an
information resource)®.

One widely deployed technical solution is to issue a 303 redirect from the non-
information resource URI to a content-negotiated information resource (which will have
representations containing descriptive information about the non-information resource;
at least one representation will be an RDF serialization; see section 3.2). The HTTP
redirect signals the transition from non-information resource to the client. The practical
consequence of the redirect is, in our experience, a (variable but) measurable additional
delay for each complete transfer of information between server and client [Rou2010];
there is added complexity when compared to a REST API in which everything is simply
an information resource.

4.4.4. RESTful through and through?

While there is clearly alignment in approach, and overlap in parts of implementation,
are deployed best practice Linked Data services RESTful? On two further counts, we
believe they could be considered to fall short.

Firstly, because resources are identified primarily for the purposes of correctly
modelling the data (section 4.4.1), less thought is applied to the Linked Data URIs that
can be dereferenced and how an application might use them — and the links between
them — for RESTful state transition. If an API has not been designed for HATEOAS,
then perhaps it is understandable that Linked Data developers appear to prefer
SPARQL; or that adoption of SPARQL reduces motivation to design an API with
HATEOAS in mind.

Secondly, the majority of Linked Data sites are read-only: they publish data but few
have the ability to modify it (i.e. PUT, POST or DELETE). This may, in part, be due to
the political Open Data movement which is frequently hard to distinguish from the
technical push for Linked Data. Proposals for a SPARQL Update are well progressed,
but carry the expected RPC issues; and while a Uniform HTTP Protocol for Managing
RDF Graphs has been proposed, it remains a mechanism to encode SPARQL
commands that are applied to a whole graph store, rather than manipulation of specific
resources exposed through a RESTful API.

> This is a change in behaviour from earlier use of HTTP URIs in RDF, when they were not expected to
be dereferenced.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 21

ol

SemSorGrid4Env FP7-223913

4.5. Combining REST and Linked Data for Domain Driven Design

In the previous sections we outlined where RESTful and Linked Data approaches share
a common method and where they diverge. We do not, however, believe the differences
are irreconcilable: while worthy of note, issues surrounding SPARQL, 303 redirects,
content negotiation and writeable resources could all be mitigated or indeed solved
though modifications to implementation and convention.

On the point of API vs. Model, we regard this as a complementarity rather than a
“difference”, particularly when considered in the context of domain driven design.

It is important for a domain expert (or developer) to be able to use clear domain models
that separate concerns to enable the manipulation of the domain data: this is a task RDF
has proven adept at. It is equally important for a domain developer to be able to quickly
and simply access, modify, and publish domain data through a lightweight API for
scalable and distributed services: which REST enables.

If common models can be used for both the API design (the RESTful interactions with
resources) and the modelling of resource relationships (the RDF and ontologies) then
the focus of complexity in any application can be where it really matters: the domain
driven design.

From a RESTful service design perspective, providing Linked Data representations
offers an opportunity to use a common domain model for expressing, and identifying,
the resources exposed by the API as well as the data model and for linking resources
(within a particular service, and between services); Linked Data (RDF) uses a self-
describing semantic model beyond the relatively simple link semantics in most REST
deployments.

From a Linked Data perspective, this presents an opportunity for more sophisticated
description and navigation of links in representations, and through this the application
of stronger semantics (with a common underlying model) for application state
transitions and the development of true RESTful application development using Linked
Data, beyond the current polarisation around SPARQL endpoints.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 22

ol

SemSorGrid4Env FP7-223913

4.6.

Summary of Design Principles for High-Level APIs

Based on our evaluation of suitable architectures to support mashup development and
comparison REST and Linked Data, we propose the following design principles for
High-Level API development:

1.

Agile development of lightweight mashups is best supported by Resource
Oriented service architectures. Reduce complexity for mashup developers
through the simplification of access methods espoused by REST. To develop a
good API of this type requires careful and successful identification and design of
resources by the service provider.

Identification of resources must be undertaken within the context of the domain
of the data. Use Domain Driven Design as a flexible and suitable methodology
to ensure that the knowledge of domain experts is drawn upon during the
iterative design and development process that is identifying service resources.

Use Semantic Web data structures and ontologies (RDF, RDFS, and OWL) for
canonical representations of resources; they share a common architectural
heritage that makes them particularly suitable for use with REST. This enables
development of a common domain model with self-describing link semantics
beyond the relatively simple structures found in traditional REST deployments.

Identify resources to support both the domain model and the API. Provide
Linked Data through content negotiation and a SPARQL endpoint, but also
identify resources to enable RESTful application where hypertext is the engine
of application state.

RESTfully provide other representations, derived from the domain model, to
enrich the service for easy application development, as identified through the
Domain Driven Design process.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 23

ol

SemSorGrid4Env FP7-223913

5. Applying the Design Principles to Semantic Sensor Grids:
Design of a High-level API for Observations

In chapter 4 we described the similarities and differences between the REST and Linked
Data service architectural styles. Based upon this analysis we identified a ‘best fit’
approach that draws upon the strengths of each, and proposed a way forward to better
serve the development of domain driven applications through a set design principles.

The overarching theme across the principles is the application of domain driven design
to the High-Level API; for Semantic Sensor Grids this means the domain of sensor
network data, and the domains relevant to the measurements sensed.

In this chapter we apply the principles in the design of a High-Level API for
Observations, suitable for adoption by any Semantic Sensor Grid. To demonstrate its
use by example, and to provide the domain driven basis required to apply the principles,
we refine and specialise this API for a specific use-case and associated domain: the
Channel Coastal Observatory sensor network.

The Channel Coastal Observatory (CCO) is the data management centre for the
Regional Coastal Monitoring Programmes of England. Over a period of more than 5
years, the GeoData Institute has designed, built from the top down, and operated the
data management infrastructure to run this programme. This includes software to
manage and transmit real-time data from the largest network of coastal sensors in the
UK; a data management infrastructure to manage data and metadata for over 65,000
environmental surveys of different types amounting to terabytes of storage; and a
website to deliver real time and surveyed data to a public audience though highly
complex dynamic map and data visualisation interfaces, serving over a million hits per
month.

In each describing the design of a High-Level API for the CCO, we focus on four
aspects through which the principles are applied:

1. the Domain Model (application of principles 1, 2 and 3)
2. identification of Resources (principles 1, 2, 3 and 4)
3. suitable Representations (principles 1, 3 and 5)

4. the Web API (principles 1, 2, 3, 4 and 5)

Beyond the principles, it is also worth recalling that any API is provided to support a
domain developer, and the motivation for doing so is to enable semantic mashup
applications that combine observation data from the API with other domain information
retrieved from the linked data and RESTful web services (e.g. land use, transport).

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 24

ol

SemSorGrid4Env FP7-223913

5.1. The Domain Model

The Domain Driven Design “knowledge crunching” process was adopted both within
the SemSorGrid4Env project (with domain experts in GeoData) and with local potential
users and collaborators (see [D7.1v2]) to ensure the API exposes a model that is both
pragmatic programmatically and representative of the domain.

Having surveyed existing data models, and in consultation with domain experts, it
became clear that two different, but complementary, high-level approaches can be
applied to sensor networks and their associated data (introduced in chapter 3):

A provider-centric approach orientated around and primarily describing the
processes undertaken by sensors, structured networks of sensors, and constituent
elements of sensors. Data is a product of the described sensor network. From the
OGC standards this approach is adopted by the SensorML GML application
schema and the SWE Sensor Planning Service.

A consumer-centric approach orientated around and primarily describing the
observations and measurements — i.e. the data, the results — captured by sensors
rather than the sensors themselves (although the provenance of observations is
modelled through an associated process). The OGC Observations and
Measurements (O&M) model and GML application schema apply this approach,
as used by the SWE Sensor Observation Service (SOS).

While the former might be applicable to provisioning, deploying, and managing sensor
network themselves, our domain users (and the domain developers supporting them) are
engaged in activities — such as emergency response planning and management — which
instead require manipulation of the data collected by the sensor network.
We therefore take a data-(consumer-)centric approach to the sensor data and adopt the
Observations and Measurements (O&M) model [Cox2007] through both its GML
Application Schema and, by including some key concepts (figure 5-1) in an ontology:

e The measured value/result

e The observed property (e.g. wave height)

e The process that made the observation (e.g. a sensor)

e The time at which the observation was asserted

e The time over which the sampling leading to the observation was taken

e The (domain specific) feature of interest that is being observed (e.g. the ocean)

¢ A mechanism for grouping observations (an observation collection).

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 25

" SemSorGrid4Env

FP7-223913

Observation
Collection

Property

Figure 5-1: The basic concepts in an Observation model (from [Pag2009])

(While ontological evaluation has identified weaknesses in the O&M model [Pro2006],
our primary focus is in its application for linking data and representations through a

High-Level API, for which it is enti

rely sufficient.)

The ontology encapsulating O&M was then further developed as part of the SSN
Ontology (figure 5-2) by the W3C Semantic Sensor Networks Incubator Group®, which
includes several members of the SemSorGrid4Env consortium amongst its membership

(through Work Packages 4 and 5).

It is also included in the SemSorGrid4Env Ontology Suite [D4.3v2] where — through
the observedProperty and featureOflInterest — it provides the crucial link between the
measurements and the domain concepts the observations are capturing (specific
examples of which are part of the domain model for the CCO API).

 Deple praed

Di=pl cymeniAed sindFrocess ‘}"'-

Dhaperprrianl

+ ko oy e Pl e ondp

T Dl v

depieiniSaniam ooy

= %= . _ dagkyresriProcsalP an onby 5wl

iy .

henSubayuiem caky, Boree RS RAR g Bk

ST - ..---II‘;---"'l SuraraFings |'--
i -"." |
cssmmBzEllT i

: :' T e er——

:mjlplﬁmnm, :
e N - ~taPigioaTa v =t '-'l Prircus P
- ! I — - - !
e 1| Suput pa--=" H
afachadSywiem only : I_.F.p Pas LBl Ondp ST
F ke T
1 —_ implamash saTE
._-F."EE'E.!’-,WE---_-.:'H me==l Bargei FEiCs----mmeao L
T Saning

e ST

I |
i oteereabonvalus | |
i |

Y. | Sensodneu]'
E " .‘ﬁ_
e
stearerianfeack o'y
i ctaw

1
1 o
e 1 " dalscdn only
¥ H s - ¥

T
Chserapiion [--==90r
4

aProcPar oty E

] 1o ".hlhl:f":pﬂrl‘f:fl‘f__-.

renclly onty =" 5T
=

v
== ET T T

e "\.-l--\..ll.ﬂ_'l"-q,l'l_",q_ﬂ oy

sensingDewce | o7 X

I:b“r\ll anly

rerz Progesy
o PPTODEETY O S0Vl
1

e T

oraltissn et Cspobility onby g

I i i b sl iy

| Lrampetilicon
Pty ol |, -

armBTEcmd

Figure 5-2: Overview of the SSG4Env ontologies (from [D4.3v2])

¢ http://www.w3.0rg/2005/Incubator/ssn/

'
i

'

i

hasPropasy asly, soew :

|
BT]
P

i

'

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

26

ol

SemSorGrid4Env FP7-223913

5.2. Resources

Our approach so far has identified the generic model suitable for representing sensor
data, and having adopted the O&M model it is clear that many of our resources will be
Observations. But to construct a high-level API for particular sensors grids and the data
they provide we must continue our domain-driven design — combining the principles
and practice of REST APIs and Linked Data — and assess more detailed aspects of the
specific domain for which we are constructing the API.

In this example implementation of a High-Level API for Observations, we focus on
publishing data from the CCO network of marine and coastal sensors monitoring:
e wave height
e sea surface temperature
wave period
wave spread
wave direction
tide height.

As a RESTful Linked Data system, the high-level API is defined by its resources and
the representations of those resources — in this case by the observations of the
phenomena measured by the CCO above. In defining a resource we must necessarily
create a globally unique identifier for it — a URI — the creation of which is frequently
referred to as “minting” a URI. As noted in earlier sections, the URI for the resource
should be treated as an opaque string when it is accessed through the API; while the
implied structure within the URI is helpful when designing and maintaining the web
service (and perhaps for developers when writing clients), client applications must
navigate to and between resources using links between those resources. Use of the API
must not rely on encoding of semantics within the URI — this clearly violates REST
principles.

Identification and structuring of resources can be very dependent on the data (the
resources) being exposed. For example, our primary observation resources are of the
form:

http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500

where the individual observation is dereferenced by retrieving the resource (which is an
observation collection):

http://id.channelcoast.org/observations/boscombe/Hs/20090801

In this case, the observation of wave height (Hs) made by the Boscombe sensor on
01/08/2009 at 2.05pm is asserted within an observation collection of all wave height
measurements taken by the Boscombe sensor on 01/08/2009.

This strikes a balance between the size of the retrieved resource representation and the
number of links the client must retrieve for this particular data set. In this case the
observations of Hs at the Boscombe sensor are taken half-hourly, so the resource that
must be retrieved to dereference any one observation will contain 48 observations (all

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 27

o

SemSorGrid4Env FP7-223913

the observations for the day). This grouping of resources (and the associated
dereferencing) would not make sense if there were many observations per second.

Once more, note that the semantics that have clearly been used to structure the minting
of the URIs — by our design — are not exposed through, or necessary for the operation
of, the API. Relationships between resources must be expressed in the representations
returned by the API, not within the syntax of the URI.

Nor does this primary statement of an observation constrain its use in other observation
collections - an RDF model can be declared and reused across several resources by
linking between statements. Using the example above, a collection of all measurements
of wave height across the sensor network on 01/08/2009 would be identified by:

http://id.channelcoast.org/observations/Hs/20090801
and the primary statement of the observation above would be linked in by reference.

Figure 5-3 shows a number of relationships between key URIs, again focusing on the
interface for retrieving significant wave height. Resources for other observed properties
follow a similar structure, and examples of how these relationships are encoded in
specific representations follows in a later section.

AA
/observations/Hs /20090801 f H /sensors/boscombe

Observations of Hs on 2009-08-01 Y Sensor station at Boscombe (GML)
Example link to: L~ *~.] Example link:
/observations/boscombe/Hs/200908014140500 external ontology of observed property

/osbservations/boscombe/Hs /20090801
Observations of Hs at Boscombe on 2009-08-01
Example element:

#140500

Observation at 14:05:00

Example link to: :
/sensors/Boscombe - /sensors

' Sensors in the CCO network
Example link to:

/sensors/Boscombe

/observations/boscombe/20090801
Observations of all observable properties at
Boscombe on 2009-08-01

Example link to:
/observations/boscombe/Hs/20090801#140500

Figure 5-3: Relationships between some key URIs in the CCO system (from [Pag2009])

5.3. Representations

For each non-information observation resource (such as the wave height observation
introduced above), the API provides several representations through a common

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 28

ol

SemSorGrid4Env FP7-223913

information resource and a further representation for backwards compatibility (with
existing GIS systems) through a separate information resource.

The first representation is in RDF XML, and using the observations ontology
introduced earlier. Here links are also made to domain ontologies for features of interest
and observed properties.

The second representation conforms to the O&M GML schema. While the XML
returned is very similar to that provided by the SOS GetObservation function, here we
support a RESTful interaction by navigation between resources. This is made possible
by the extensive support for XLink in GML and an underlying object-property-value
model which closely resembles RDF.

We also note that the O&M GML representation of resources (and SensorML for
appropriate resources) is compatible with the O&M GML and SensorML returned by
the Sensor Observation Service (SOS)[SOS] (particularly the GetObservation and
DescribeSensor functions). The design described herein can also be considered a partial
implementation of a RESTful SOS; we hope that this will allow adaption of SOS clients
to work with our API.

The third representation is in HTML and is a human browsable hyperlinked interface to
the observation resources.

The fourth representation conforms to the WFS GML schema (XML). This
representation provides compatibility with existing web GIS mapping tools (e.g.
OpenLayers). The nature of these tools requires all the required data points
(observations) to be provided in a single “layer” which can be overlaid onto a map; this
flattened data structure is incompatible with a the other representations so must be
provided through a separate information resource.

Further representations should be provided as appropriate to the domain and
application, e.g. GeoJSON, KML.

When moving between representations it is important to note that the resources — the
URIs — remain constant. As such, using this APl a client application can move
seamlessly between RDF and GML representations, taking advantage of the semantic
linking provided in linked data, while being able to retrieve established encodings for
Web GIS applications when required. Conversely an application can use a GML
identifier as a jumping off point into the linked data web.

While there are clear benefits to alternately returning GML and Linked Data
representations of a resource, each of these representations has particular constraints —
be that conceptual model, design principle, or XML serialisation — and though they are
in general complementary, a specific interactions can bring up incompatibilities
between representations: we illustrate this with the following example to demonstrate
that, with representation as well as resources, there are some design decisions which
must be made for a particular domain and use case.

With regard to aggregation and nesting of observation collections, the O&M GML
Application Schema is relatively constrained: more specialised observation collections

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 29

ol

SemSorGrid4Env FP7-223913

have typed constituents that are too specific to be transcluded in more general,
otherwise specialised, or multiply nested, collections. While this is not an issue in
existing O&M applications (e.g. using an SOS), the Linked Data principles lead us to
both uniquely identify individual observations (i.e. avoiding duplication of a single
observation at several URIs and creating duplication in the graph) and the identification
and publication of aggregate resources that by their nature include observations that
have already been ‘used’/published as, or as a part of, another resource (i.e. we must use
linking rather than duplication).

For example, it would be desirable to have the URI:
http://id.channelcoast.org/observations/boscombe/Hs

represent all the observations of Hs at Boscombe, and this to be an aggregation in the
form of an ObservationCollection, where each member is in turn an
ObservationCollection such as:

http://id.channelcoast.org/observations/boscombe/Hs/20090801

(there would be as many references to other ObservationCollections as there are days on
which observations have been made).

While this is relatively simple to implement in RDF - ObservationCollection as a
subClass of Observation, and member a TransitiveProperty with rdfs:range Observation
- this is not possible using the O&M GML Schema. This leaves two possibilities for the
O&M GML representation:

e Do not return a GML representation and return a 406 Not Acceptable code.

e 303 redirect straight to an information resource content negotiated for
application/xml, without a common information resource shared with the RDF
representation. The body returned contains a ‘flattened’ ObservationCollection
with xlinks directly to the Observations required; this is the similar to the approach
taken for WFS compatibility.

While the current CCO design takes the latter approach, without nested aggregations the
number of Observations returned is potentially very high, and as such a compromise is
made to redefine the resource as e.g. Observations of Hs at Boscombe over the last
week (rather than all time). A hybrid approach might combine the original resource
definition with a 406 for GML with a second resource limited to collections that are
reasonable to return in GML (e.g. the observations from the last week).

5.4. Web API

In the previous sections we have outlined the domain model (in RDF) and identified key
resources and representations. In combination, these form the core of the High-Level
API for Observation applied to the CCO, but exposing the observation resources
RESTfully as Linked Data with alternative representations for data formats useful to the
domain developer.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 30

ol

SemSorGrid4Env FP7-223913

To finish the API, and to satisfy the 4™ Design Principle (section 4.6), we must consider
any other functionality and identify any other resources to support the domain
developer.

The first task, to complete Linked Data provision, is the implementation of a SPARQL
query endpoint. This will, of course, utilise the same information encoded in the RDF
representation for identified resources, structured according to the domain ontology
already outlined.

The second task is to provide resources specifically in support of the API, that is, such
that RESTful applications and mashups (driven by HATEOAS) can be written. Here we
list some examples provided for the CCO implementation of the High-Level API, which
were used to create the mashup examples described in chapter 7:

o /latest — relative within each observation collection, a resource that is always the
most recent observation.

e ‘“next” and “previous” — for each observation, a reference to the prior and next
observations of that class.

e /summary — for each observation collection, a summary resource containing
information about that collection, e.g. maximum/minimum values, frequency,
averages, units of measurements, and descriptive metadata (this can be used by
clients to calibrate visualisations and provide annotations).

e broader temporal collections appropriate to the data set (e.g. month) containing
links to the constituent (e.g. daily) observation collections.

e links from constituent collections to the broader collections (“up”) to enable
better navigation through the data.

e /sensors — a collection of links to all procedures that generate observations (i.e.
sensor platforms).

e For each sensor, a list to the “top-level” (temporally broadest) observation
collections generated by that sensor platform.

5.5. API walk-through: the Channel Coastal Observatory

Exposing sensor data according to linked data principles and practice is a first and
necessary step to enabling linked data sensor grid applications. In the sections prior to
this we have introduced the building blocks of a dual purpose API design that combines
the provision of linked sensor data with a RESTful interface to existing standardised
data encodings such as OGC O&M and WFS, and in doing so have applied the design
principles introduced in chapter 4.

In this final section describing design of the High-Level API for Observations we return
to the example observation collection previously introduced and examine how a client
using the API accesses a resource and negotiated for its representations (illustrated in
figure 5-4).

The (non-information) resource:

http://id.channelcoast.org/observations/boscombe/Hs/20090801

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 31

ol

SemSorGrid4Env FP7-223913

is the set of all observations of Hs (significant wave height) from the Boscombe sensor
on August 1st 2009.

As noted in earlier sections, the URI for the resource should be treated as an opaque
string; while the implied structure within the URI is helpful when designing and
maintaining the web service (and perhaps for developers when writing clients), client
applications must navigate to and between resources using links between those
resources.

When a client attempts to dereference this resource (e.g. through an HTTP GET), the
web server responds with HTTP code “303 See Other” and the information resource:

http://data.channelcoast.org/observations/boscombe/Hs/20090801
Content negotiation is then used by the client to retrieve a suitable representation:

- application/rdf+xml returns an RDF representation.
- application/xml returns a GML representation.
- text/html returns an HTML rendering for viewing in a traditional web browser.

In each case the web server responds with code “200 OK” and sets the Content-
Location header to the resource of the negotiated representation, e.g.

http://rdf.channelcoast.org/observations/boscombe/Hs/20090801
http://om.channelcoast.org/observations/boscombe/Hs/20090801
http://pages.channelcoast.org/observations/boscombe/Hs/20090801
followed by the appropriate representation in the HTTP body.

The intermediate stage of redirecting to a common information resource URI indicates
to the client that the following content negotiation is for different representations of the
same information. For example, this means that if the client has reached the resource
through RDF representations, but needs to plot the data using an OGC compliant tool
(e.g. within a mapping layer) it can request the GML representation knowing it is
plotting the same information.

Other representations might, by necessity of the encoding, be of closely related but
different information. An earlier incarnation of the CCO server implementation returned
a GML representation using the WFS schema to create a MapServer compliant layer,
and while we wish to preserve this functionality, the ‘flattened’ nature of the data in the
WES layer means this representation contains different information to those based on
O&M (described below).

In this situation we use the content type application/vnd.ogc.wfs to enable a client to
retrieve a backwards-compatible representation; when the client requests the non-
information resource:

http://id.channelcoast.org/observations/boscombe/Hs/20090801

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 32

SemSorGrid4Env FP7-223913

with content type application/vnd.ogc.wfs, the server performs a 303 redirect directly to
the WFS GML (setting the Content-Location header accordingly):

http://wfs.channelcoast.org/observations/boscombe/Hs/20090801

In redirecting directly to the WFS information resource through content negotiation
(rather than through the common information resource and then performing content
negotiation), the web server has indicated that this is a different (but related)
information resource, not a different representation of the same information resource.

http://id.channelcoast.org/observations/Hs/20090801

303 redirect and
content negotiation

application/vnd.ogc.wfs
303 redirect

WFS GML
Content-Location
http://wfs.channelcoast.org/observations/Hs/20090801

http://data.channelcoast.org/observations /Hs/20090801

Content Negotiation

application/rdf+xml text/html

application/xml

RDF
Content-Location
http://rdf.channelcoast.org/observations/Hs/20090801

O&M GML
Content-Location
http://om.channelcoast.org/observations/Hs/20090801

HTML
Content-Location
http: //pages.channelcoast.org/cbservations/Hs/20090801

Figure 5-4: Resource representations in the high-level API (from [Pag2009])

As noted in earlier sections, the URI for the resource should be treated as an opaque
string; while the implied structure within the URI is helpful when designing and
maintaining the web service (and perhaps for developers when writing clients), client
applications must navigate to and between resources using links between those
resources.

The following XML fragments demonstrate the content (and similar structure) of the
O&M GML and RDF representations of:

http://id.channelcoast.org/observations/boscombe/Hs/20090801

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 33

.

SemSorGrid4Env FP7-223913

The O&M GML encoding is returned for application/xml :

<?xml version="1.0" encoding="UTF-8"?>
<om:ObservationCollection gml:id="this"
xmlns:om="http://www.opengis.net/om/1.0"
xmlns:gml="http://www.opengis.net/gml"
[...] >
<gml:description>Wave height observations at Boscombe on 2009-08-01
</gml:description>
<om:member>
<om:Observation gml:id="140500">
<om:resultTime>
<gml:TimeInstant gml:id="T140500">
<gml:timePosition>2009-08-01T14:05:00</gml:timePosition>
</gml:TimeInstant>
</om:samplingTime>
<om:samplingTime>

</om:samplingTime>

<om:procedure xlink:href=
"http://id.channelcoast.org/sensors/boscombe" />
<om:observedProperty xlink:href=

"http://marinemetadata.org/2005/08/ndbc_waves#Wind Wave Height"/>
<om:featureOfInterest xlink:href=
"http://www.eionet.europa.eu/gemet/concept?cp=7495"/>
<om:result
xsi:type="gml:MeasureType" uom="urn:ogc:def:uom:0GC:m">
0.28
</om:result>
</om:Observation>
</om:member>
<om:member>
<om:Observation gml:id="143500">
[...]
</om:Observation>
</om:member>
</om:0ObservationCollection>

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

34

oI

SemSorGrid4Env FP7-223913

The RDF representation is returned for application/rdf+xml :

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:om2="http://rdf.channelcoast.org/ontology/om tmp.owl#"
[...]
>
<rdf:Description rdf:about=
"http://rdf.channelcoast.org/observations/boscombe/Hs/20090801">
<rdfs:label>
An RDF representation of wave height observations at Boscombe on 2009-08-01
</rdfs:label>
</rdf:Description>
<om2:0ObservationCollection
rdf:about="http://id.channelcoast.org/observations/boscombe/Hs/20090801">
<om2 :member>
<om2:0Observation rdf:about=
"http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500">
<om2:resultTime>
<om2:TimeInstant rdf:about=
"http://id.channelcoast.org/observations/boscombe/Hs/20090801#T140500">

</om2:TimeInstant>
</om2:resultTime>

<om2:procedure rdf:resource="http://id.channelcoast.org/sensors/boscombe"/>
<om2:observedProperty rdf:resource=
"http://marinemetadata.org/2005/08/ndbc_waves#Wind Wave Height"/>
<om2:featureOflInterest rdf:resource=
"http://www.eionet.europa.eu/gemet/concept?cp=7495"/>
<om2:result [...]
[...]
</om2:0Observation>
</om2 :member>
</om2:0bservationCollection
</rdf :RDF>

Consistent use of URIs is maintained in other observation collections. For example:
http://id.channelcoast.org/observations/Hs/20090801

contains parallel fragments in GML.:

<om:ObservationCollection gml:id="this" [...]>

[...]

<om:member>

<om:Observation xlink:href=

"http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500" />

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids

35

SemSorGrid4Env FP7-223913

and in RDF:

<o02:0bservationCollection rdf:about=

"http://id.channelcoast.org/observations/Hs/20090801">

[...]

<om2:member rdf:resource=

"http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500" />

[...]

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 36

ol

SemSorGrid4Env FP7-223913

6. Implementation Patterns for the High-Level API Design

The previous chapters have presented the programming patterns and principles
applicable to a high-level API for sensor grids, and the design for a specific API to
publish sensor data from the Channel Coastal Observatory.

Taking the design in the previous section as an example, we present three
implementation experiences realising this design in software for different scenarios:

1. exposing data using the API via a bespoke implementation based upon an
existing web portal.

2. exposing data using the API by interfacing with the SemSorGrid4Env
architecture and accessing sensor data through the architecture.

3. exposing data using the API provided by generic observation data sources
(both via the SemsorGrid4Env architecture and from existing databases)
using a semantic configuration utility and platform to automate API
structuring and URI minting.

6.1. Bespoke Implementation of the API for an GIS web platform

6.1.1. Context

The Channel Coastal Observatory web portal (figure 6-1) is an established resource for
users, exposing data through a web application with two major elements of functionality
presented as separate options from the front page: “Realtime Data” and “Map Viewer
and Data Catalogue”. As shown in figure 6-2 these are implemented independently,
principally due to historical development and design decisions.

The map-viewing component is implemented using OpenLayers’, a Javascript library
for building web based geospatial applications. OpenLayers can present and integrate
map data provided through several services and formats, including KML, Google Maps,
Yahoo! Maps, and — as used by the CCO site — the WFS and WMS.

Session information — including data selection, preferences, and the “shopping basket”
(which collates user selected sets data for ultimate download) — is handled by bespoke
Ajax and server-side elements; the overall page is composed using the elements by PHP
on the server.

! http://www.openlayers.org/

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 37

G- | Soomtat.)
N 4 Q Vs
@
A

SemSorGrid4Env FP7-223913
Channel gy [Help] [Reset] [Feedback] [Full screen map][~]
Coastal @ Search by geographic area @ Refine your search @ View your results
‘6 Observatory
6 ©
Total 0 0
[View your results]
[Add all results to basket | @ Map search You can now refine your search or view your results.
[Remove results from basket]
[\ Vview your basket]

j Map controls

7
, Yommmd iy 7

2 v
Haluh @ Zoom in to an area () Zoom right
ﬁ} & oy
”‘l‘cm%,;;;“‘%th . ! Select areas of interest
I1FFT
e ar‘rumgmf

urned “ Delete selected areas of interest

Query peints

Zoom to a region v

N
Holuhead ~ freston
[lvErgool

Bangor

@)

= Ortho-rectified photography Bostarf | Cromer
O ¥ 2007 Aberystuyth Great Tarmauth
O ¥ 2006 Saufhuold
4 2009 Sianses &
¥ 2003 N . Southengai-5ea
O & 2002 § CarHitE - e izate

4 2001 11§rTEombe Southampton Hast ing®

- o
@ False colour infrared photography ,e) M"O ‘e
& Non-rectified photography i Heupart

@ Lidar data 5

@ Topographic data

@ Hydrographic data

@ Photogrammetric data

@ Topographic ground model data

& Hydrographic ground model data KILOMET RES

A 0 100 200
@ Sediment distribution data 12925058002, 213725.36253

@ Beach profile cross section changes
I Real time data - ¥

Figure 6-1: CCO Map Viewer and Data Catalogue

MapServer® is used to feed map data to the OpenLayers component using exposed
WMS and WFS services. The MapServer instance is backed by a PostGIS® database
storing the map and feature data (PostGIS spatially enables PostgreSQL through
additional support of geographic objects).

Implementation of the high-level APl must not cause regressions in the services already
provided to users, and where possible is desirable (for maintenance reasons) to refactor
and reuse code provided for existing interfaces (e.g. WFS).

6.1.2. Implementation

- The bespoke WSGI (Python) and PHP implementations for WFS and WMS are
modified and extended to expose the new resources and their representations
where possible (figure 4-2).

- A new map viewing component — the CCO API Explorer — is developed to
showcase the APl and demonstrate how its backwards compatibility
representation allows it to be a drop in replacement for CCO WFS services
where appropriate.

8 http://www.mapserver.org/

’ http://postgis.refractions.net/

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 38

o

SemSorGrid4Env FP7-223913

- A partial implementation of the High-Level API for Observations is provided,
limited by the canonical data representation being WMS/WFS — more
sophisticated representations (such as Observation RDF) must be synthesised
from this.

- Modifications to the wunderlying WMS/WFS data provision require
corresponding updates to the implementation of other representations (e.g.
RDF).

CCO API Explorer user interface
____________ e
I Realtime Data 1 , Map Viewer and Data Catalogue!
1 , . |
: High- Mapping element Session :
1 level API OpenLayers & prefs 1
: output Ajax :
1 1 3 1
High-level API Web Services (WMS, WFS)
Data
PHP WSGI TileCache
(Python)
1
A 3
MapServer
3
Realtime data Data Catalogue
MySQL .--»| PostGIS

Figure 6-2: CCO components with elements altered by implementation of the API shaded grey

6.2. Adaptable Implementation for Specific Service Instances via a
Sensor Web Architecture

6.2.1. Context

The phase | implementation of the SemSorGrid4Env architecture (figure 3-2) was an
integration exercise to test the project architecture with instances of each of the different
services: a data service, a semantic integration service, and a registry.

The scope of the demonstrator was again the Flood Use Case, and to support this CCO
observations were exposed as a data source directly to the architecture. The web
application constructed supports discovering and browsing data sources in support of
coastal emergency response planning (e.g. flooding extend, asset inundation).

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 39

ol

SemSorGrid4Env FP7-223913

Application Tier development was required to enable the web application to access the
CCO data now flowing through the architecture (through the Semantic Integration
Service), principally by exposing a high-level API to the web application.

The Flood demonstrator application, though produced by developers involved as project
partners in other aspects of the SemSorGrid4Env architecture, was designed and built as
a standalone web application operating much like a “mash-up” could be constructed by
a developer external to the project.

6.2.2. Implementation

The application tier libraries provide data to the web application via two interactions
with the SemSorGrid4Env architecture (illustrated in Figure 6-3):

1. Semantic queries to the Registry. This library takes a SPARQL query from
the web application, passes it to the semantic registry and, once the registry
has located matching services, passes the endpoints back to the web
application as a JSON array

2. Data queries to the Integration Query Service. The Integration Query
Service (1QS) exposes data sources from the SemSorGrid4Env architecture
through a SPARQL-STR interface. The application tier library makes the
appropriate query to the IQS and as the resulting data is streamed back,
converts it to GeoJSON files that can be loaded as a layer within the
mapping component of the web application Ul.

The second of these provided a limited implementation of the High-Level API for
Observations. The primary representation in RESTful use of the APl was GeoJSON,
and a key difference from the previous bespoke implementation was the introduction of
an internal data model for the observations, which was populated with the data returned
from the 1QS, and from which the GeoJSON used by the web application was
generated. This alleviated much of the fragility associated with the bespoke
implementation.

However, the Application Tier Libraries took the form of a component which, while
adaptable, needed to be re-coded to work with different input interfaces and to serialise
to different representations — it could not simply be reconfigured without rebuilding the
software.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 40

ol

SemSorGrid4Env FP7-223913

SemsorGrid4Env
Application Tier Libraries

Web Application Ul Registry library Registry
request for layers StSPARQL query
create query
Generate
layer endpoints JSON service results
Mapping
Element E
.
i 1QS library QS
4 SPARQL-STR query
] Data create data query >
Element
Generate .
data layer GeoJSON Ha data stream

Figure 6-3: Application tier libraries (from [D7.4v1])

6.3. Implementation of a Generic High-Level API for Observations
platform

6.3.1. Context

While the previous two implementations proved the utility of the High-Level API
design, and that it could be used by application developers as intended, they did not
prove the practicality of deploying the API: in both cases, aspects of the API service
had to be modified at the code level specifically for the implementation at hand.

To allow the High-Level API to be deployed over a greater range of data sources
without the need to re-code the software each time, a new service was developed to take
advantage of the semantics encoded in the domain models so as to move all of the
deployment specific detail into configuration files which can be setup by the domain
expert and system administrator as appropriate.

6.3.2. Implementation

The HLAPI system has been designed to expose the general HLAPI design for generic
data sources, as described in chapter 5. An overview of the system is shown in Figure 6-
5. To achieve this, and achieve tractable configurability, incoming data is transformed
into the known observation model. When data arrives in the system — either through a
database insert, or through the SemsorGrid4Env architecture — the corresponding event
trigger is activated, and determines what to do with the data. If the data represents an
observation that we wish to serialise, the event trigger sends the data to the Processor to
be turned into an RDF representation of an observation. If the data does not represent an
observation, it is ignored. The generated RDF observation forms the canonical
representation of the observation, as it is the most flexible and fully featured
representation. All other serialised outputs are lower-information representations, and
are therefore derived from the RDF.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 41

oI

SemSorGrid4Env FP7-223913

Configurator
DBConnector OntologyMapLoader
: Ontology API
proxy.lua DB Config Mapping Config

Figure 6-4: System overview of the HLAPI for Observations engine

The outputs to be serialised are determined using the API configuration file. This file
defines the observation collections that the current observation should appear in, the
formats in which to serialise them, and what the corresponding URIs should be. This
configuration file is kept separate from the ontology mapping file, in order to separate
the administrative concerns of different users; a domain expert is able to configure the
mapping of the data source into the observation model, while the system administrator
is able to handle to configuration of the exposed APIs.

Full details of the HLAPI engine implementation can be found in [D5.2v2]; they can be
summarised as:

e Adopts the Observation Model as the core (and assumed) data structure
o Further domain specific mappings (e.g. for Features of Interest and
Observed Properties) can be configured in RDF by a domain expert (and
separately from the systems administration).
e Event-driven, and can be triggered by streaming data sources (e.g. a
SemSorGrid4Env architecture service) or live database inserts
o A system administrator can configure how data sources are mapped to
the Observation model and domain model. Standard triggers are
provided for SemSorGrid4Env architecture services and MySQL
databases.
e A number of standard representations are supported “off the shelf” by the
engine: RDF, WFS, O&M GML, GeoJSON, HTML.
e The API is realised independently through a configuration file which lists
resources: these are the canonical observations, different observation collections,
and sensors.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 42

ol

SemSorGrid4Env FP7-223913

o Using this API configuration, the domain ontology mapping, and trigger
configuration, the HLAPI engine automatically generates the resources
required and applicable representation.

e RDF resources are automatically populated in a SPARQL endpoint.

e REST API extensions are automatically populated when data is available and
relationships between resources exist.

e Provides a full implementation of the High-Level API for Observations.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 43

ol

SemSorGrid4Env FP7-223913

7. Use Cases and Example Semantic Mashups

Having introduced a High-Level API for Observations and implemented services to
expose datasets using the HLAPI, in this chapter we briefly outline how a domain
developer might use the HLAPI to develop semantic web applications and mashups.

It is worth noting that:

e These semantic mashups demonstrate the potential for positive unintended re-
use of sensor data. While they do not make full use of all of the features of all of
the data (this is better demonstrated in the full SemSorGrid4Env Flood
Application), they show that a little amount of semantically annotated sensor
information can prove useful to many different use cases.

e By their nature of being a mashup, these web applications make use of other
(often Linked Data) information sources in addition to those exposed by the
HLAPI. Linking from and in the HLAPI is crucial in this regard, via domain
ontologies and instances.

e The mashups were each coded by a single web developer, unfamiliar with the
CCO data sources (but with some general semantic web familiarity) in a short
period of time.

7.1. Recreational re-use: sea state and linked amenities for surfers

One of the CCO sensors is based near Boscombe, where the UK’s first artificial surf
reef has been constructed. This mashup shows the surfer the size of swell, received from
the sensor network, and should the surfer then decide to visit, details of local amenities
(pubs, car parks) and relevant information (road safety) all generated from Linked Data.

Scripting language and libraries

This example uses the PHP!® scripting language. For Spargl queries and RDF
manipulation it uses the Arc2!’ library and, for ease of coding and readability,
Graphite'?. The Google Chart API* is used for charts, and the Google Static Maps
API' and Openlayers'® for mapping.

19 http://php.net

" http://arc.semsol.org/

12 http://graphite.ecs.soton.ac.uk/

13 http://code.google.com/apis/chart/

¥ http://code.google.com/apis/maps/documentation/staticmaps/

13 http://openlayers.org/

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 44

SemSorGrid4Env FP7-223913

Another useful tool is an RDF browser such as the Q&D RDF Browser™®.

First we load in the Arc2 and Graphite libraries and set up Graphite with a list of
namespaces for coding simplicity.

require once "arc/ARC2.php";

require once "Graphite.php";

$Sgraph = new Graphite();

Sgraph->ns ("id-semsorgrid", "http://id.semsorgrid.ecs.soton.ac.uk/");
Sgraph->ns ("ssn", "http://purl.oclc.org/NET/ssnx/ssn#") ;

Sgraph->ns ("DUL", "http://www.loa-cnr.it/ontologies/DUL.owl#");
Sgraph->ns ("time", "http://www.w3.0rg/2006/time#") ;

This continues for other useful namespace prefixes. The id-semsorgria prefix is added
for further code brevity.

Displaying a map of all wave height sensors

One of the observation serialisations available from the CCO deployment of the HLAPI
is a GeoJSON format. This serialisation, which shows the locations of all wave height
readings made in a particular time frame, can be rendered by various mapping engines
including Openlayers.

The markup to display the map, given the path to a GeoJSON file, is very simple and
fully documented by Openlayers.

Depending on how the HLAPI is configured, the resource for of wave height readings
for a particular hour may be at:

http://id.semsorgrid.ecs.soton.ac.uk/observations/cco/Hs/20110215#01

which would then be content-negotiated to the OpenJSON representation:

http://geojson.semsorgrid.ecs.soton.ac.uk/observations/cco/Hs/20110215/00

18 http://graphite.ecs.soton.ac.uk/browser/

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 45

| oot
/'A >

Given this URL a map such as the following may be generated:

SemSorGrid4Env FP7-223913

CCO wave height sensors

:,‘3.

Figure 7-1 — Example of sensor and wave heights retrieved from the HLAPI via an OpenLayers map
interface

Getting the day's wave height readings and the sensor metadata

In the case of the CCO deployment, the current day's wave height readings for the
Boscombe sensor are identified by

id-semsorgrid.ecs.soton.ac.uk:observations/cco/boscombe/Hs/latest

We can direct Graphite to load the resources into a graph — Graphite and the HLAPI
will automatically negotiate a content type that can be used. We're using the namespace
we defined above for brevity.

Sgraph->load ("id-semsorgrid:observations/cco/boscombe/Hs/latest") ;

Graphite allows the graph to be rendered directly as HTML to quickly visualise what is
available. The same can be achieved by using a dedicated RDF browser.

echo $graph->dump () ;

The beginning of the output is something like the following:

id-semsorgrid:observations/cco/boscombe/Hs/20110215 -> rdf:type ->
DUL:Collection -> DUL:hasPart ->
id-semsorgrid:observations/cco/boscombe/Hs/20110215#000000,
id-semsorgrid:observations/cco/boscombe/Hs/20110215#003000,
id-semsorgrid:observations/cco/boscombe/Hs/20110215#010000

id-semsorgrid:observations/cco/boscombe/Hs/20110215#000000 ->
rdf:type -> ssn:Observation -> ssn:observedBy ->
id-semsorgrid:sensors/cco/boscombe -> ssn:featureOfInterest ->

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 46

ol

SemSorGrid4Env FP7-223913

http://www.eionet.europa.eu/gemet/concept?cp=7495 ->
ssn:observedProperty ->

http://marinemetadata.org/2005/08/ndbc waves#Wind Wave Height ->
ssn:observationResult -> :arce2d5bl ->
ssn:observationResultTime -> arce2dbb3 <- is DUL:hasPart of

<- id-semsorgrid:observations/cco/boscombe/Hs/20110215

The bnodes are also shown, and their IDs can be traced to see which properties are
available on each node.

A lot of useful information such as the sensor's coordinates is attached to the sensor's
URI, which is linked from each ssn:observation node. It's easy to get the URI, simply
by getting ssn:observation nodes, and then collecting the first found
ssn:observedBy property of any of them. It's important to handle the case where there
are not yet any results.

Ssensor = $graph->allOfType ("ssn:0bservation") -
get ("ssn:observedBy")-> distinct () ->current (
if ($sensor->isNull ())
die ("No results yet today"):;
$sensorURI = $sensor->uri;

’

>
)

To get the sensor's coordinates we ask Graphite to dereference the sensor's URI and
load its triples, then traverse the expanded graph to fetch the required values. The
traversals here can once again be visualised by first dumping the graph or exploring the
graph in any RDF browser.

Sgraph->1load ($sensorURI) ;
Slocation = $graph->resource ($sensorURI)->get ("ssn:hasDeployment") ->
get ("ssn:deployedOnPlatform")->get ("sw:hasLocation") ;
Scoords = array(floatVal ((string) S$location-> get ("sw:coordinate2")->
get ("sw:hasNumericValue")), floatVal((string) S$location->
get ("sw:coordinatel")-> get ("sw:hasNumericValue")),):

To collect all wave height observations we query the graph for all nodes of type
ssn:Observation and skip over those whose ssn:observedProperty property is not
that which we are looking for (just in case we have other observation types in our
graph).

Each observation corresponds to a particular time interval so we need to collect the time
(in this example we'll associate the end of the time interval — time:hasEnd — with the
reading) as well as the wave height observation itself. The code snippet below also skips
any observations whose ssn:observationResultTime property doesn't point to a node
of type time:Interval, but it would be trivial to also parse nodes of different time
classes.

Finally in this snippet the array of observations is sorted by time.

Again, to see how the traversal is built up it is easiest to inspect the graph visually.

Sobservations = array();
foreach ($graph->allOfType ("ssn:0bservation") as SobservationNode) ({
if (SobservationNode->get ("ssn:observedProperty") !=
"http://marinemetadata.org/2005/08/ndbc waves#Wind Wave Height")

continue;
StimeNode = SobservationNode->get ("ssn:observationResultTime") ;
if (!StimeNode->isType ("time:Interval"))

continue;

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 47

o

SemSorGrid4Env FP7-223913
Stime = strtotime ($timeNode->get ("time:haskEnd")) ;
Sobservations[$time] = floatVal ((string) SobservationNode->
get ("ssn:observationResult")->get ("ssn:hasValue")->
get ("DUL:hasDataValue")); }

ksort (Sobservations, SORT_ NUMERIC) ;

Visualising the data

The array resulting from the code above can be used to produce a chart of the wave
heights. Explaining the snippet below is beyond the scope of this document, but it uses
the Google Chart API to produce a line graph of wave height against time.

// organise data

Skeys = array keys ($observations) ;
Sstart = array shift ($keys);

Send = array pop ($keys) ;

Speriod = $end - S$start;

Sdatax = S$Sdatay = array():;

Smaxheight = ceil (max (Sobservations) * 10 * 1.2) / 10;
foreach (Sobservations as $time => Sheight) {
Sdatax[] = ($time - S$start) * 100 / S$Speriod;
Sdatay[] = $height * 100 / Smaxheight;

}

// x axis labels

Saxisx = array();
for (Stime = $start; S$time <= S$Send; Stime += Speriod / 6)
Saxisx[] = date("H:1i", S$time) ;

// parameters for Google Chart API
Schartparams = array (

"cht=1xy", //line x-y

"chs=340x200", //size

"chco=0066cc"™, //data colours

"chm=B, 99ccff,0,0,0", //fill under the line

"chd=t:" . implode(",", S$datax) . "|" . implode(",", S$datay), //data
"chxt=x,y,x", //visible axes

"chxr=0,0,100]1,0," . Smaxheight, //x and y axis ranges

"chx1=0:|" . implode("|", Saxisx) . "|2:|Time", //custom labels for

axes, evenly spread, also axis titles
"chxp=2,5013,50", //positions of axis titles
"chf=bg,s, fff£f£f£f00", //transparent background) ;

// output chart
echo '<img src="http://chart.apis.google.com/chart?' . implode ("&",
Schartparams) . '">';

It's easy to show a map with the sensor's position highlighted, too: the following uses
the Google Static Maps API to do this.

echo '<img
src="http://maps.google.com/maps/api/staticmap?size=300x200¢er="
Scoords[0] . ',' . S$Scoords[1l]
'&szoom=8&maptype=hybrid&sensor=false&markers=' . S$coords[0] . ','
Scoords[1l] . "">';

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 48

SemSorGrid4Env FP7-223913

Fetching related data from other data sources

We can get the name of a nearby place and the nearest post code from the web services
provided by Geonames'’. Geonames returns XML that is easy to parse with PHP.
Again, explaining how the external API call works is beyond the scope of this

document.

// get nearby place name $placenameXML =

simplexml load file ("http://ws.geonames.org/findNearbyPlaceName?lat={$
coords[0] }&lng={Scoords[1]}"); S$placename = array shift ($placenameXML-
>xpath ('/geonames/geoname[1] /name[1]"')); // get nearby postcode
SpostcodeXML =

simplexml load file ("http://ws.geonames.org/findNearbyPostalCodes?lat=
" . S$coords[0] . "&lng=" . S$coords[l]); S$postcode =

array shift (SpostcodeXML->xpath ('/geonames/code[l]/postalcode[l]"'));

The postcode is used in the surf status mashup to fetch the British region name from
Ordnance Survey, which in turn is used to fetch population and traffic accident data
from Eurostat.

Data is also collected from Linked Geodata'® to get the whereabouts of nearby facilities.
For instance, to get parking facilities within five kilometres of the sensor, its SPARQL
endpoint is queried as follows:

Sstore = ARC2::getRemoteStore (array ("remote store endpoint" =>
"http://linkedgeodata.org/spargl/")) ;
Srows = S$store->query ("

PREFIX lgdo: <http://linkedgeodata.org/ontology/>
PREFIX geo: <http://www.w3.0rg/2003/01/geo/wgs84 pos#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
SELECT * WHERE {{ ?place a lgdo:Parking . } UNION

{ ?place a lgdo:MotorcycleParking . } UNION

{ ?place a lgdo:BicycleParking . }

?place a ?type ;

geo:geometry ?placegeo ;

rdfs:label ?placename

FILTER (<bif:st intersects>

(?placegeo, <bif:st point> ($coords[l], S$coords[0]), 5)). ",
"I'OWS") ;

The returned results include the coordinates of each parking facility (p1acegeo), from
which the distance to the sensor can be calculated.

Similar queries can be used to get data on other types of nearby amenities — the surf
status mashup also locates nearby pubs, cafés and shops.

7 http://www.geonames.org/

'8 http://linkedgeodata.org/

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 49

= SemSorGrid4Env FP7-223913

Finished mashup

The finished mashup, once styled, looks something like the screenshot shown in Figure
7-2 (with only three readings so far that day).

Boscombe surf status

Sensor data Sensor location map

Sensor
An RDF representation of the sensor ‘'SSG4Env_Boscombe'usi
Location
Co-ordinates
50.71076, -1.83901
District
The Borough of Bournemouth

Wave height data Nearby car parks

Overstrand 1.116km
East Overcliff 1.271km
Southbourne Car Park 2.271km
Berry Court 2.535km
Milburn Road Car Park 4.655km
Car Park 4.795km

00:50 01:00

Road accidents Food and drink

“ 10 pubs/bars
=9 cafés
® The Clock Café (1.53km)

b ® Rosie’s (1.65km)
é’ ‘ & \ Boscanova (1.83km)
Café Riva (1.94km)

.
* Curzon Diner (2.3%m)
S * Norwegian Wood (2.70km)
njuries UGS * Coffee Republic (2.87km)
* Caffe Nero (2.88km)
e Costa (2.89%km)
- 7 restaurants/fast food/barbecues
/bakeries
4 13 food/drink shops

Data sources

o Sensor data: Channel Coast Observatory
* Postcode data: Geonames

e District/region data: Ordnance Survey

* Road accident data: Eurostat

o Local amenity data: LinkedGeoData

Figure 7-2 — Example mashup using HLAPI serialised data sources

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 50

o

SemSorGrid4Env FP7-223913

7.2. Flood Gate status for the Coastal Defence Partnership

The Coastal Defence Partnership (CDP) is an alliance of three local governments along
the Solent on the South Coast of the UK (Portsmouth City Council, Gosport Borough
Council, and Havant Borough Council).

One of the responsibilities of the CDP Coastal Team is the co-ordination of flood
protection barrier erection in the old town of Portsmouth should a flood event occur.
Installation of flood barriers is dependent on tide and wave levels, and is sequenced.

LOCATIONS OF FLOOD
GATES & BOARDS

Figure 7-3 Locations of floodgates in Portsmouth, shown with the sequence in which they are closed
during a flood (photograph courtesy CDP)

Flood barriers as well as flood water can block access to roads and facilities, so it can be
useful to have an overview of which barriers are in place, which need to be erected next,
and any relevant utilities that might be affected. The co-ordination is undertaken by
team members on site, and it is plausible that, in the future, they may be equipped with
internet enabled tablet devices — this is the scenario the prototype mashup looks to
address.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 51

3. | Seonteq. - 5

* SemSorGrid4Env FP7-223913

i e e e o -

Figure 7-5 A flood barrier deployed in Portsmouth (photograp ourtesy CP)

Mashup implementation

Development of the mashup follows the same basic pattern as the first example, starting
with tide height measurements from the CCO sensor closest to the flood barrier
location:

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 52

o

SemSorGrid4Env FP7-223913

http://id.semsorgrid.ecs.soton.ac.uk/observations/cco/portsmouth/TideH
eight/latest

Rather than finding recreational amenities linked to the sensor location, the mashup
finds linked data for critical services (police stations, hospitals, trunk roads), but using
the same techniques.

The completed mashup is shown in figure 7-5.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 53

SemSorGrid4Env

FP7-223913

Flood gates

Current tide height

Last measured 4 minut

0, the

J V

0
0:00 400 8:00 12:00 1600 20:00

B Observed tide height B Observed wave height plus observed tide height

0:00 400 16:00 20100
Predicted tide height

Based on current observations, tide level is falling

The BBC predicts the tide level will fall to a level of 0.944m in 3 hours

All gates

Vortcnester

Port Solent

Fortsmout
Harbour

Usngstone|

Hardway oty

%

Awerstoke.

Gosport

Buckland

(/0

i gﬁ;moum

£ Southsea

Summary

Currently 3 gates should be closed:

ligh Street (threshold: 3.8m)
o Gate 2: Circular Road (threshold: 3.9m)
o Gate 1: Queen Street (threshold: 4m)

If the tide rises as far as 4.2m (not predicted) the next gates to be closed are:

Gate 0: High Street

o

o

S

Cloitisle 3,

% 1 Tele Atias |

Gate 2: Circular Road

asnOUEl

%
e

e

g

Coogle

* Coordinates: 50.7908, -1.1026

* Threshold: 3.8m

® Must be closed

* Notifiable amenities: nothing within 0.5km

Gate 1: Queen Street

n® pen

2

ey &
] Nom st ¥
%, g ; 3
N & 'Queen St

O

L‘
s :
s Y
fis
et &
4

oo
s gl S0
n,
Unitéd S
1 Jéle Affsst

Map data ©2011 Tele Atlas

* Coordinates: 50.8078, -1.0918

* Threshold: 3.9m

* Must be closed

* Notifiable amenities: nothing within 0.5km

Gate 4: Wharf Road

Seagrove Rd.

Bevis Ry

3
2
4

Guoglle

Map dta &011 Tk Ats,

* Coordinates: 50.7997, -1.1046
* Threshold: 4m
* Must be closed
* Notifiable amenities:
© Portsmouth Harbour (0.44km from gate)

Gate 3: Mile End Road

1 Tele Atlas

o Coordinates: 50.8131, -1.0869

o Threshold: 4.2m

o Should be open, but is the r=.zt £ clos= should the
tide level rise (not predicted)

o Notifiable amenities:
o Police Station (0.26km from gate)

Gate 5: Twyford Avenue

B

z

o
Map data 62011 Teletlas

Coordinates: 50.8087, -1.0873

Threshold: 4.2m

Should be open, but is the izt to <

tide level rise (not predicted)

Notifiable amenities: nothing within 0.5km

Figure 7-5: Mashup showing sea levels and flood gate status

* Coordinates: 50.8222, -1.0848

* Threshold: 5m

« Should be open

* Notifiable amenities: nothing within 0.5km

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 54

ol

SemSorGrid4Env FP7-223913

8. Summary

High-Level APIs enable the quick and simple development of lightweight Web
applications and mashups. We have explored the requirements for a high-level API for
semantic sensor grids through domain driven design of a specific API for the Channel
Coastal Observatory sensor data. Our objectives in developing the API can be
summarised as:

1. To publish the sensor data from the CCO as linked data, enabling Semantic Web

client applications that can combine these observations with other domain

information retrieved from the linked data web (e.g. land use, transport)

To RESTfully publish sensor data to clients that support existing GML schema

3. To allow the development of hybrid clients which can transpose between linked
data and GML (or other) representations, taking best advantage of both

no

In doing so we have developed best-practice principles for developing High-Level
APIs, taking a Resource Oriented approach to simplify application development while
semantically structuring domain data that forms the core of useful software. This
combines the best of REST and Linked Data experience to support domain developers
with lightweight, self-descriptive HLAPI, enabling them to quickly build bespoke
applications using data in new and previously unforseen ways.

Our aim throughout is to encourage the use of High-level APIs to generate a new class
of rapidly developed applications in support of sensor grids. Traditional GIS systems
are often large and complex — adding support for a new use case implies enlargement of
the functionality of the application. We believe the lower barrier of entry in developing
simple web applications and mashups, with the associated shorter lead time and lower
costs, will encourage the development of many varied and specialised web based
applications suited to individual tasks that are not practical propositions in a monolithic
GIS environment.

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 55

SemSorGrid4Env FP7-223913

References

[Ala2010] Alarcon, R., Wilde, E. (2010) “Linking Data from RESTful Services”. In
proc. LDOW 2010, Raleigh, North Carolina

[D1.4v1] Aparicio, J., Gray, A., Kyzirakos, K., Sadler, J., and Page, K. (2010)
“Reference SemsorGrid4Env Implementation - Phase I”, Deliverable
D1.4v1, SemSorGrid4Env

[Bec2000] Beck, K. (2000) Extreme Programming Explained: Embrace Change
2nd. ed. Addison-Wesley, 2000 pp. 54

[Ben2008] Benslimane, Djamal; Schahram Dustdar, and Amit Sheth (2008).
"Services Mashups: The New Generation of Web Applications”. IEEE
Internet Computing, vol. 12, no. 5. Institute of Electrical and Electronics
Engineers. pp. 13-15.

[Ber2006] T. Berners-Lee. Linked Data, Design Issues.
http://www.w3.org/Designlssues/LinkedData.html, July 2006.

[Biz2009] Bizer, C., Heath, T. and Berners-Lee, T. (2009) “Linked Data - The Story
So Far,” Int. Journal on Semantic Web and Information Systems, Special
Issue on Linked Data

[Bot2007] Botts, M. et al. (2007) “OGC Sensor Web Enablement: Overview and
High Level Architecture”. \White Paper, published by Open Geospatial
Consortium Inc.

[D7.1v2] Hutton, C., Sadler, J., Page, K., Clark, M., Newman, R. and Roe, S.
(2010) “Flood user requirements specification”, Deliverable D7.1v2,
SemSorGrid4Env

[Cox2007] Cox, S. (2007) “Observations and Measurements - Part 1 - Observation
schema (OpenGIS Implementation Standard OGC 07-022r1) . Technical
report, Open Geospatial Consortium Inc.

[Eva2003] Evans, E. (2003) “Domain-driven Design: Tackling Complexity at the
Heart of Software”, 1* Edition, Addison Wesley, ISBN 978-0321125217

[Fie2000] Fielding, R. T. (2000) Architectural Styles and the Design of Network-
Based Software Architectures, PhD dissertation, Dept. of Computer
Science, Univ. of California, Irvine, California

[Fra2011] Frazer, A. J., De Roure, D., Martinez, K., Nagel, B., Page, K. R., Sadler,
J. (2011) “Implementation and Deployment of a Library of the High-
level Application Programming Interfaces”, Deliverable D7.2v2,
SemSorGrid4Env

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 56

SemSorGrid4Env FP7-223913

[D4.3v2] Garcia-Castro, R., Hill, C., Corcho, O. (2011) “Sensor network ontology
suite”, Deliverable D4.3v2, SemSorGrid4Env

[Ger2006] Gerber, AJ, Barnard, A & Van der Merwe, Alta (2006) “A4 Semantic Web
Status Model”. Integrated Design & Process Technology, Special Issue:
IDPT 2006

[D1.3v2] Gray, A. J. G., Galpin, I.,Fernandes, A. A. A., Paton, N. W., Page, K.,
Sadler, J., Koubarakis, M., Kyzirakos, K., Calbimonte, J., Corcho, O.,
Garcia, R., Diaz, V., Liebana, 1. (2010) “SemSorGrid4Env architecture —
phase I, Deliverable D1.3v2, SemSorGrid4Env

[D7.1b] Hutton, C., Sadler, J., and Newman, R. (2010) “Flood user requirements
specification update”, Deliverable D7.1b, SemSorGrid4Env

[Lac2005] Lacy, L. W. (2005) “OWL: Representing Information Using the Web
Ontology Language”. Victoria, BC: Trafford Publishing. ISBN 1-4120-
3448-5.

[SML2010] OpenGIS Sensor Model Language (2010) available online at
http://www.opengeospatial.org/standards/sensorml

[D5.1] Page, K. R., De Roure, D.C., Martinez, K., and Sadler, J. (2009)
“Specification of high-level application programming interfaces”,
Deliverable D5.1, SemSorGrid4Env

[Pag2009] Page, K. R., De Roure, D.C., Martinez, K., Sadler, J. and Kit, O. (2009)
“Linked Sensor Data: RESTfully serving RDF and GML”. In proc. 2"
International Workshop on Semantic Sensor Networks, Washington DC,
2009

[Pal2002] Palmer, S. R., Felsing, J. M. (2002) A Practical Guide to Feature-Driven
Development. Prentice Hall. ISBN 0-13-067615-2

[Pro2006] Probst, F. (2006) “Ontological Analysis of Observations and
Measurements”. In: Geographic Information Science, 4th International
Conference (GIScience 2006).

[Pro2010] programmableweb.com (2010) “Frequently Asked Questions”, available
online at http://www.programmableweb.com/faq

[Rai2010] Y. Raimond, T. Scott, S. Oliver, P. Sinclair, and M. Smethurst. Use of
Semantic Web technologies on the BBC Web Sites. In D. Wood, editor,
Linking Enterprise Data, pages 263—-283. Springer, 2010.

[RDF1999] Resource Description Framework (RDF) Model and Syntax Specification
(1999) available online at http://www.w3.0rg/TR/PR-rdf-syntax

[Ric2007] Richardson, L., Ruby, S. (2007) RESTful Web Services. 1% ed. O’Reilly.
ISBN 0-596-52926-0

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 57

http://www.programmableweb.com/faq

SemSorGrid4Env FP7-223913

[Rou2010] D. De Roure, C. Goble, S. Aleksejevs, S. Bechhofer, J. Bhagat, D.
Cruickshank, et al. The evolution of myexperiment. In IEEE
International Conference on eScience, pages 153-160. IEEE Computer
Society, 2010.

[Sau2008] Sauermann, L., Cyganiak, R. (2008) “Cool URIs for the Semantic Web .
W3C Semantic Web Education and Outreach Interest Group Note

[Sch2004] Schwaber, Ken (2004) Agile Project Management with Scrum. Microsoft
Press. ISBN 978-0-735-61993-7

[RDFS2004] W3C RDFS Specification (2004) available online at
http://www.w3.org/TR/rdf-schema

[Wil2009] E. Wilde and M. Hausenblas. RESTful SPARQL? You name it!: aligning
SPARQL with REST and resource orientation. In Proceedings of the 4th
Workshop on Emerging Web Services Technology, pages 39-43. ACM,
2009

[WFS2010] WFS Implementation Specification (2010) available online at
http://www.opengeospatial.org/standards/wfs

[WMS2010] WMS Implementation Specification (2010) available online at
http://www.opengeospatial.org/standards/wms

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 58

http://www.w3.org/TR/rdf-schema

