

SemSorGrid4Env

FP7-223913

Deliverable

D5.3v2

Programming patterns and development

guidelines for Semantic Sensor Grids

Kevin R. Page, David C. De Roure, Alex J.

Frazer, Kirk Martinez, Bart J. Nagel

University of Southampton

30/04/2010

Status: Final

Scheduled Delivery Date: 30/04/2010

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids i

Executive Summary

The web of Linked Data holds great potential for the creation of semantic applications

that can combine self-describing structured data from many sources including sensor

networks. Such applications build upon the success of an earlier generation of ‗rapidly

developed‘ applications that utilised RESTful APIs.

This deliverable details experience, best practice, and design patterns for developing

high-level web-based APIs in support of semantic web applications and mashups for

sensor grids.

Its main contributions are a proposal for combining Linked Data with RESTful

application development summarised through a set of design principles; and the

application of these design principles to Semantic Sensor Grids through the

development of a High-Level API for Observations. These are supported by

implementations of the High-Level API for Observations in software, and example

semantic mashups that utilise the API.

Outline of changes since the previous version (v1)

Major changes since the previous version of the deliverable have been driven by the

following developments:

 Consolidation of design principles for combining Linked Data and REST

approaches in the context of sensor network data.

 Realisation of these design principles, and a full implementation of the High-

Level API for Observations, in a redesigned ―HLAPI‖ service (delivered as

[D5.2v2]) and the experience drawn from this design and development process.

Alongside more iterative revisions to the document, these developments have led to

more significant changes in the following sections:

 The addition of chapter 4.

 The restructuring and updating of chapter 5.

 The addition of section 6.3 and updating of prior sections.

 The addition of chapter 7.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids ii

Note on Sources and Original Contributions

The SemSorGrid4Env consortium is an inter-disciplinary team, and in order to make

deliverables self-contained and comprehensible to all partners, some deliverables thus

necessarily include state-of-the-art surveys and associated critical assessment. Where

there is no advantage to recreating such materials from first principles, partners follow

standard scientific practice and occasionally make use of their own pre-existing

intellectual property in such sections. In the interests of transparency, we here identify

the main sources of such pre-existing materials in this deliverable:

 Material previously published as: Page, K. R., De Roure, D.C., Martinez, K., Sadler,

J. and Kit, O. (2009) “Linked Sensor Data: RESTfully serving RDF and GML”. In

proc. 2nd International Workshop on Semantic Sensor Networks, Washington DC,

2009.

 Material previously published as: Page, K. R., De Roure, D. C. and Martinez, K.

(2011) ―REST and Linked Data: a match made for domain driven development?‖. In

proc. 2nd International Workshop on RESTful Design, Hyderabad, India, 2011.

 Material to be published as: Kevin R. Page, Alex J. Frazer, David C. De Roure, and

Kirk Martinez (2011) ―Semantic access to sensor observations through Web APIs‖

(submitted to the 4
th

 International Conference on GeoSensor Networks; the

conference has since been cancelled and the paper will be resubmitted shortly to an

alternative publication).

 Chapter 7 includes an updated mashup example extended from that found in

D5.2v2.

 Several sections build upon experience and details (particularly diagrams) from

prior deliverables including D1.3v2, D4.3v2, D5.1, D5.2v1, and D7.4v1.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids iii

Document Information

Contract Number FP7-223913 Acronym SemSorGrid4Env

Full title SemSorGrid4Env: Semantic Sensor Grids for Rapid Application Development for
Environmental Management

Project URL www.semsorgrid4env.eu

Document URL http://www.semsorgrid4env.eu/home.jsp?content=/sew/viewTerm&content=instance.jsp&_se
w_var_name=instance&_sew_instance=D5.3+v2&_sew_instance_set=SemSorGrid4Env&_o
rigin=%2Fhome.jsp

EU Project officer Antonios Barbas

Deliverable Number 5.3v2 Name Programming patterns and development guidelines for
Semantic Sensor Grids – Phase 2

Task Number 5.3 Name Describe programming patterns and development
guidelines

Work package Number 5

Date of delivery Contractual 30/04/2011 Actual 30/04/2011

Code name Status draft  final 

Nature Prototype  Report  Specification  Tool  Other 

Distribution Type Public  Restricted  Consortium 

Authoring Partner University of Southampton

QA Partner Universidad Politécnica de Madrid

Contact Person Kevin R. Page

Email krp@ecs.soton.ac.uk Phone +44 23 80594059 Fax

Abstract
(for dissemination)

This deliverable details experience, best practice, and design principles for developing high-
level web-based APIs in support of semantic web applications and mashups for sensor grids.

Keywords Web Applications, Mashups, High-level API, REST, Linked Data, Sensor Networks

Version log/Date Change Author

1.0 / 15/02/2011 Import from D5.3v1 K. R. Page

1.1 / 17/02/2011 Restructuring of motivation and existing
technology sections

A. Frazer, K. R. Page

1.2 / 01/03/2011 Added design principles section K. R. Page

1.3 / 15/03/2011 Added implementation patterns section,
restructured v1 implementations and

added HLAPI engine

K. R. Page

1.4 / 05/04/2011 Added Use Cases and example semantic
mashups

B. Nagel, K. Page

1.5 / 14/04/2011 Re-written HLAPI Design section K. Page

1.6 / 23/04/2011 Revised remaining sections K. R. Page

1.7 / 24/04/2011 Updated details in domain model section K. R. Page, R. Garcia

2.0 / 03/05/2011 Final QA complete K. R. Page, A. Frazer

http://www.semsorgrid4env.eu/
http://www.semsorgrid4env.eu/home.jsp?content=/sew/viewTerm&content=instance.jsp&_sew_var_name=instance&_sew_instance=D5.3+v2&_sew_instance_set=SemSorGrid4Env&_origin=%2Fhome.jsp
http://www.semsorgrid4env.eu/home.jsp?content=/sew/viewTerm&content=instance.jsp&_sew_var_name=instance&_sew_instance=D5.3+v2&_sew_instance_set=SemSorGrid4Env&_origin=%2Fhome.jsp
http://www.semsorgrid4env.eu/home.jsp?content=/sew/viewTerm&content=instance.jsp&_sew_var_name=instance&_sew_instance=D5.3+v2&_sew_instance_set=SemSorGrid4Env&_origin=%2Fhome.jsp
mailto:krp@ecs.soton.ac.uk
mailto:krp@ecs.soton.ac.uk

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids iv

Project Information

This document is part of a research project funded by the IST Programme of the

Commission of the European Communities as project number FP7-223913. The

Beneficiaries in this project are:

Partner Acronym Contact

Universidad Politécnica de Madrid

(Coordinator)

UPM

Prof. Dr. Asunción Gómez-Pérez

Facultad de Informática

Departamento de Inteligencia Artificial

Campus de Montegancedo, sn

Boadilla del Monte 28660

Spain

#e asun@fi.upm.es

#t +34-91 336-7439, #f +34-91 352-4819

The University of Manchester UNIMAN

Prof. Norman Paton

Department of Computer Science

The University of Manchester

Oxford Road

Manchester, M13 9PL, United Kingdom

#enpaton@cs.man.ac.uk

#t +44-161-275 6910, #f +44-161-275 62 04

National and Kapodistrian University of
Athens

NKUA

Prof. ManolisKoubarakis

University Campus, Ilissia

Athina

GR-15784 Greece

#@ koubarak@di.uoa.gr

#t+30 210 7275213, #f +30 210 7275214

University of Southampton SOTON

Dr. Kirk Martinez

University Road

Southampton

SO17 1BJ United Kingdom

#@km@ecs.soton.ac.uk

#t+44 23 80594491, #f +44 23 80595499

Deimos Space, S.L. DMS

Mr. Agustín Izquierdo

Ronda de Poniente 19, Edif. Fiteni VI, P 2, 2º

Tres Cantos, Madrid – 28760 Spain

#@agustin.izquierdo@deimos-space.com

#t+34-91-8063450, #f +34-91-806-34-51

EMU Limited EMU

Dr. BruceTomlinson

Mill Court, The Sawmills, Durley number 1

Southampton, SO32 2EJ – United Kingdom

#@bruce.tomlinson@emulimited.com

#t+44 1489 860050, #f +44 1489 860051

TechIdeas Asesores Tecnológicos, S.L. TI

Dr. Jesús E. Gabaldón

C/ Marie Curie 8-14

08042 Barcelona, Spain

#@ jesus.gabaldon@techideas.es

#t+34.93.291.77.27, #f ++34.93.291.76.00

mailto:asun@fi.upm.es
mailto:richard@isoco.com
mailto:dder@ecs.soton.ac.uk
mailto:manolis@intelligence.tuc.gr
mailto:bruce.tomlinson@emulimited.com
mailto:jesus.gabaldon@techideas.es

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids v

Table of Contents

1. Introduction .. 1

1.1. Scope .. 1

1.2. Document Structure ... 1

2. Motivation for a High-level API .. 2

2.1. Web 2.0 and the Interactive Web ... 2

2.2. Web APIs ... 2

2.3. Supporting agile development models ... 5

3. Enabling technologies and existing domain approaches .. 7

3.1. REST and Resource Orientated Architectures ... 7

3.1.1. Design Principles .. 7

3.1.2. Architectural Elements .. 8

3.2. The Semantic Web and Linked Data ... 10

3.3. OGC Standards and Sensor Web Enablement ... 13

3.4. The SemSorGrid4Env Architecture ... 15

4. Design Principles for High-Level APIs .. 16

4.1. Domain-driven Design ... 16

4.2. An Analysis of REST and Linked Data ... 17

4.3. Similarities between REST and Linked Data .. 17

4.3.1. The primacy of resources .. 17

4.3.2. Linking is not optional .. 18

4.3.3. Segregating semantics ... 18

4.3.4. Adaptability ... 18

4.3.5. Applicability of Domain Driven Design ... 19

4.4. Potential differences in the application of REST and Linked Data 19

4.4.1. API vs. Model ... 19

4.4.2. SPARQL ... 20

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids vi

4.4.3. Content negotiation ... 20

4.4.4. RESTful through and through? ... 21

4.5. Combining REST and Linked Data for Domain Driven Design 22

4.6. Summary of Design Principles for High-Level APIs .. 23

5. Applying the Design Principles to Semantic Sensor Grids: Design of a High-level API for

Observations 24

5.1. The Domain Model .. 25

5.2. Resources ... 27

5.3. Representations .. 28

5.4. Web API .. 30

5.5. API walk-through: the Channel Coastal Observatory ... 31

6. Implementation Patterns for the High-Level API Design .. 37

6.1. Bespoke Implementation of the API for an GIS web platform 37

6.1.1. Context .. 37

6.1.2. Implementation ... 38

6.2. Adaptable Implementation for Specific Service Instances via a Sensor Web

Architecture .. 39

6.2.1. Context .. 39

6.2.2. Implementation ... 40

6.3. Implementation of a Generic High-Level API for Observations platform 41

6.3.1. Context .. 41

6.3.2. Implementation ... 41

7. Use Cases and Example Semantic Mashups .. 44

7.1. Recreational re-use: sea state and linked amenities for surfers.................................. 44

Scripting language and libraries .. 44

Displaying a map of all wave height sensors .. 45

Getting the day's wave height readings and the sensor metadata ... 46

Visualising the data ... 48

Fetching related data from other data sources .. 49

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids vii

Finished mashup ... 50

7.2. Flood Gate status for the Coastal Defence Partnership.. 51

Mashup implementation ... 52

8. Summary .. 55

References ... 56

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids viii

Glossary

API Application Programming Interface

CCO Channel Coastal Observatory

CSS Cascading Style Sheets

CSV Comma-Separated Variables

FDD Feature-driven Development

GIS Geographic Information System

GML Geography Markup Language

HATEOAS Hypertext As The Engine Of Application State

HLAPI High-Level API

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IQS Integration Query Service

JSON JavaScript Object Notation

KML Keyhole Markup Language

O&M Observations and Measurements

OGC Open Geospatial Consortium

OWL Web Ontology Language

PHP Hypertext Preprocessor

REST Representational State Transfer

RDF Resource Description Framework

RDFS RDF Schema

RPC Remote Procedure Call

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SOS Sensor Observation Service

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids ix

SPARQL SPARQL Protocol and RDF Query Language

SWE Sensor Web Enablement

UDDI Universal Description, Discovery and Integration

UI User Interface

UML Unified Modelling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

WFS Web Feature Service

WMS Web Map Service

WP Work Package

WSDL Web Services Description Language

WSGI Web Server Gateway Interface

XML Extensible Markup Language

XP Extreme Programming

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 1

1. Introduction

1.1. Scope

This document represents the D5.3v2 of Work Package 5 High-level Application

Programming Interfaces for Semantic Sensor Grids within the EU project ―Semantic

Sensor Grid Rapid Application Development for Environmental Management

(SemSorGrid4Env)‖.

This final version of the deliverable is the culmination of experience gained over the

course of the project developing semantic APIs for sensor observations. From this

experience we present principles for designing domain driven APIs to support

development of lightweight web applications and mashups, and a design pattern that

applies these principles to a High-Level API for Observations.

1.2. Document Structure

This document contains six main sections plus an introduction and summary.

The first, chapter 2, briefly introduces the motivations for High-Level APIs: Web 2.0,

Web APIs and the agile development methodologies that drive many of these

developments.

Chapter 3 gives more detail on two key technologies we use to realise High-Level APIs,

REST and Linked Data, and existing alternative approaches within the GIS community

and SemSorGrid4Env project.

Chapter 4 introduces Domain Driven Design, and in this context analyses the

similarities and differences between REST and Linked Data. Based on this analysis a

short set of design guidelines is given to improve provision of high-level APIs.

Chapter 5 applies these principles in a novel design for a semantic High-Level API for

Observations from Sensor Grids that support both Linked Data and OGC derived

representations through a RESTful interface. Chapter 6 describes three increasingly

sophisticated and complete implementations of the API design, while chapter 7 details

how application developers can use the API to create mashups.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 2

2. Motivation for a High-level API

In this chapter we introduce the broader practices and technologies that underscore our

motivation for development of a high-level API.

We begin with an overview of light-weight web applications and APIs, the agile

development practices they support, and introduce their underlying principles. We

consider how they might be applicable to users of a Semantic Sensor Grid.

In considering these users of an API, we distinguish between domain users and domain

developers. In the example of the Flood Use case (WP7) the domain users are those

who use the web applications and mashups, such as the emergency planning and

decision support web applications described in [D7.1v2]. Domain developers are users

of the high-level API: those who build the web applications and mashups using the

high-level API, which will then be used by the domain users.

2.1. Web 2.0 and the Interactive Web

The interconnected nature of Web 2.0 means that more and more applications and

services rely on bringing together two or more different services or data sources. But for

this to work efficiently, there need to be standard mechanisms for interoperability.

Various ―heavy-weight‖ technologies exist to enable service description (WSDL),

discovery (UDDI) and communication between services (SOAP). While these

technologies support a wide range of features, the architectural underpinnings needed to

include them in a system are often complex, and are not especially well-suited to the

rapid, iterative update cycle of a typical Web application (see Supporting agile

development models, section 2.3).

In contrast to these more verbose technologies, ―light-weight‖ technologies such as

RESTful resources and Web APIs allow resources and services to be included in a Web

―mashup‖ with much lower architectural overheads. Because of this, changes can be

incorporated into a Web application much more quickly, making these technologies

more suited to the typical mashup life-cycle. [Ben2008]

Within the SemSorGrid4Env project, the Web Applications (e.g. for the flood use case

[D7.1v2], [D7.4] primarily present a User Interface to domain users, so they can access,

utilise, and manipulate, sensors and associated data provided by systems employing the

SemsorGrid4Env architecture.

Through the high-level API we must also support domain developers such that they can

easily, quickly, and simply, create Web Applications and mashups. In the following

sections we outline the lightweight APIs and agile development methods that support

domain developers.

2.2. Web APIs

An Application Programming Interface (API) is a defined set of functions made

available by one system, to allow other applications to communicate with it. Typical

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 3

examples include operating system APIs to allow desktop applications to interface with

hardware, or scripting language APIs to interface with operating system calls — all

through a standard, well-defined set of functions. [Pro2010]

In a similar way, online systems offer APIs to allow other systems to interact with their

functionality. As these interactions occur most naturally across Web architecture, these

APIs are known as ―Web APIs‖. ProgrammableWeb.com provides a catalogue of over

two thousand Web APIs, grouped by category, interface style and data format.
1

As an example, a simple Web API listed on ProgrammableWeb.com is ―Yahoo

Weather‖
2
. As a provider of weather data (such as temperature, humidity, wind speed

and direction), Yahoo have exposed this data to developers via an HTTP interface. This

particular API requires the client to make an HTTP ―GET‖ request to a specified URL,

with two additional parameters: a location identifier, and a flag to say which units the

measurements should be returned in. As a response to this request, the service returns

XML content describing the various weather details for the area requested, given in the

units specified. Now that the client has this data, it can be displayed or manipulated in

whatever way the developer chooses.

Figure 2-1: An example request to/response from the Yahoo! Weather RSS API

1
 Web API catalogue, ProgrammableWeb.com – http://www.programmableweb.com/apis

2
 Yahoo! Weather, Yahoo Developer Network – http://developer.yahoo.com/weather

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 4

Slightly more complex is the weather API from WorldWeatherOnline.com
3
. Again,

weather information is requested via an HTTP ―GET‖ request, although this time, there

are a few more options. The client can specify the format in which the data is returned

this time – either XML, CSV or JSON. This allows the provider to cater for a wider

range of developers, all from a single set of data. The developer simply adds the

appropriate flag to their HTTP request, and the provider works out how to return the

data in the correct format. Similarly, the client can specify location using either

latitude/longitude, or various regional postal codes. Again, the client sets the correct

flag, and the API provider works out which data needs to be returned.

Even more complex still, is the NOAA Weather Service
4
. Unlike the previous

examples, this system implements a SOAP interface, rather than a RESTful HTTP

interface.

To interact with a SOAP interface, the client's code will need to create function calls to

the service's remote functions, as described in the service's WSDL file. This request is

packaged into a SOAP ―envelope‖, along with the appropriate parameters, and sent to

the service endpoint. Once received, the service unpacks the message, and runs the

appropriate service function, before packing the response in another envelope and

returning it to the client. In this way, SOAP-based APIs work more like traditional

functional programming, with clients passing parameters to functions, and receiving the

corresponding return values.

In the case of the NOAA Weather Service, there are separate functions to return weather

data for a given latitude and longitude, as well as for returning a latitude and longitude

based on other location data. This allows the client to request a latitude and longitude by

passing a postcode, city name or other identifying feature to the appropriate function,

then passing the resulting latitude/longitude to the weather data function, to receive

weather data for that area. The client can also pass additional parameters to the weather

data function, to specify the time period which the data should cover.

As these online systems become more comprehensive in the features they offer, the set

of functions required to interact with them becomes more complex. In this way, the

Web itself can be thought of as a ―platform‖, much like an operating system [Pro2010].

Where the operating system is a platform on which to build desktop or server-based

applications, the Web becomes a platform for interconnected, online systems. Like the

operating system APIs, Web APIs offer a standard set of functions to interface with this

―platform‖, exposing its functionality to developers in a standard, well-defined way.

3
 WorldWeatherOnline - http://www.worldweatheronline.com/free-weather-feed.aspx

4
 NOAA Weather Service API - http://www.programmableweb.com/api/noaa-weather-service

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 5

2.3. Supporting agile development models

Modern Web applications and mashups are typically built by reusing as much existing

functionality and data as possible, developing new code to tie current systems together

in new and interesting ways. Because of this heavy reliance on re-use, mashups can be

developed much more quickly and easily than traditional software systems.

This kind of quick development cycle lends itself well to Agile software development

practices. The most common of which are ―Extreme Programming‖, ―Scrum‖ and

―Feature-driven development‖.

Extreme Programming (XP) relies on short development cycles and frequent, stable

releases, in order to cater to new user requirements as soon as possible [Bec2000].

Unlike many traditional software models where user requirements are established at the

beginning of the project, XP uses its rapid, short development cycles to introduce new

requirements throughout the project's life. After gathering the first set of requirements, a

combination of paired programming and unit testing will follow, followed by

acceptance testing with the user. Once accepted, the next set of requirements is

discussed, and a new development cycle begins.

This particular style suits Web application development well, as it inherently accounts

for the changing requirements inevitable in the ever-changing Web. These changing

requirements will come not only from users — whose expectations will changed based

on competing products, new technologies or shifts in social dynamics — but also in

changing technologies. As Web apps and mashups rely on supporting frameworks, APIs

and data sources, any change in one of these systems means a corresponding change in

the new system. By embracing this inevitable change, XP ensures that a stable system

will always be released relatively frequently, without becoming mired in platform

migrations and feature requests.

Scrum takes its name from the game of Rugby, where a team of players — each with

their own distinct roles — all work together in pursuit of a common goal, ―passing the

ball back and forth‖ [Sch2004]. Like XP, Scrum aims to complete a ―shippable‖ product

increment at the end of a short development period (known as a ―sprint‖). However,

unlike XP, these sprints are of a fixed length. Where XP will plan features for a

particular iteration such that the release cycle is still relatively short, it is still primarily

concerned with the implementation of the features as its primary goal. In Scrum, the

time-based deadlines of more traditional software development are used, albeit

estimated based on the features to be implemented.

In addition, the feature requirements for the overall system are determined and

prioritised at the beginning of the project, with one or more selected for implementation

at the beginning of each sprint. As a result, changes can be made to the list of overall

project requirements, but once a sprint has begun, the requirements selected for

implementation during this cycle remain fixed.

By retaining XP's rapid development cycle, Scrum can still react relatively well to the

inevitable changes of Web development. However, its fixed-time sprints have been

criticised, as they are easily disturbed by unexpected programming errors, or by

changing user requirements which directly affect the requirements of the current sprint.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 6

The ability to re-evaluate these issues at regular intervals, however, still makes Scrum

more suited to the changing environment of the Web than most traditional software

development models.

Like XP and Scrum Feature-driven development (FDD) relies on short development

iterations, and uses a list of desired features to determine a given iteration's tasks

[Pal2002]. After an initial planning stage, the required featured are determined, and

assigned to classes. Once this stage is complete, chief programmers begin a series of

two-week iterations by selecting one or more individual features, generating the

appropriate design diagrams and documentation, and finally implementing the features

in code. At the end of each iteration the code is tested, inspected and integrated into the

main build.

Like the previous two methods, this rapid cycle of development ensures that new

features make it into the published build as quickly as possible. However, because FDD

still relies on many of the tenets of traditional software design (verbose UML diagrams,

regular code inspections), a comparable feature would is likely to take longer to develop

from start to finish via FDD, than via XP or Scrum. In addition, because requirements

elicitation is only done at the beginning of the project, FDD is unsuited to situations

where user requirements change throughout development.

Agile Method Release Cycle Reaction to changes in:

User Requirements Supporting APIs

Extreme Programming Frequent,

varies

As required Release delayed

Scrum Frequent, fixed Per iteration Set deadlines

affected

Feature-Driven

Development

Frequent, fixed Per Project Set deadlines

affected

Table 1: A comparison of the strengths and weaknesses of different Agile software development models,

with respect to Web application development

Table 1 highlights the relative strengths and weaknesses of the various approaches to

Web application design. While all produce rapid, iterative releases of usable code, they

each handle changes in user requirements and supporting APIs differently.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 7

3. Enabling technologies and existing domain approaches

In capturing programming patterns for high-level APIs for Semantic Sensor Grids we

must also understand the principles that underpin successful Web APIs, and how

technologies already employed in domains associated with sensor grids might be

applicable.

In the first two sections of this chapter we describe two approaches fundamentally built

upon and with the architecture of the Web: Representational State Transfer (REST), and

the Linked Data principles as applied to the Semantic Web.

We then give an overview of the Sensor Web technologies developed by the widely

accepted Open Geospatial Consortium, and position high-level APIs within the

SemSorGrid4Env architecture.

3.1. REST and Resource Orientated Architectures

Representational State Transfer (REST) is a set of design principles which have been

popularly and successfully adopted in many (RESTful) web services, and is typically

framed as an alternative to ‗heavyweight' web services, including as the WS-* family.

The key principle of REST is the use of resources for specific things that we wish to

reference, and the referencing of these resources using URIs. Representations of these

resources — encoded in a particular format — are then accessed through the URI,

usually using HTTP.

3.1.1. Design Principles

REST, as an architectural style, is an effort to bring together the set of design principles

enshrined through implementation in Web Architecture. Primarily, REST aims to

capture the features of the Web which allow it to scale so successfully, that is:

 Everything is a resource which is addressable

 Resources have multiple representations

 Relationships between resources are expressed through hyperlinks

 All resources share a common interface with a limited set of operations

 Client server communication is stateless

REST is not, however, defined in terms of, nor limited to, the web (though HTTP meets

the REST criteria) and while there have been attempts to clarify the application of

REST to web services through definition of a Resource Oriented Architecture the term

is still often loosely, sometimes incorrectly, applied.

In order to maintain these principles, certain architectural constraints were applied

[Fie2000]. These constraints include the following:

 The client-server constraint is used to separate the concerns of the parties

involved. Typically, this involves separating the user interface and business

logic processes from the data storage concern. This offers two major benefits:

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 8

the user interface can be ported to different platforms while using the same data,

and the data sources can scale more easily by keeping the server architecture

relatively simple. In a Web environment, this also allows both client and server

elements to develop separately, suiting the multiple organisational domains of

the Internet more appropriately.

 A stateless system insists that any request from the client to the server contains

all the necessary information to make the request, without relying on any context

stored on the server. In a REST-based system, the state is made implicit by the

status of any current HTTP requests. If there are no outstanding HTTP requests,

the system is ―at rest‖ in a single ―application state‖. By initiating an HTTP

request, the system is implicitly changing state – it enters a ―transition state‖

between application states. Once these requests resolve, the system ―at rest‖

again, in whatever new application state is associated with the most recent

request.

By making a system stateless, several emergent benefits arise. Visibility is

improved, as a single request can describe that request's entire nature. Because

no state is explicitly stored on the server, calls to a REST service are

idempotent. This allows failed requests to be safely made again and again,

without adversely affecting the server‘s internal state, improving user-perceived

reliability and preserving the server‘s data integrity. Scalability is also improved,

as the server has no need to manage resources between individual requests.

 One disadvantage is that network performance may drop, as almost identical

request data will be sent with every request. This can be mitigated somewhat by

making the system cacheable, i.e. by explicitly stating whether a returned

resource can be reused for equivalent future requests. In this way, some

interactions will we completely avoided, improving scalability and reducing

latency. However, reliability decreases if the cached data is allowed to become

different from the comparable data stored on the server at the time of request.

 The uniform interface of REST is the feature which distinguishes it most

clearly from other Web services. By making the interface generalised, the

system architecture can be simplified, and its interactions are made more visible.

The main disadvantage is that efficiency is reduced, as information is transferred

in a standardised, generic form, rather than on specific to the application. In this

way, REST is optimised for the generic data transfer of the Web, but is less than

optimal for any other type of interaction.

3.1.2. Architectural Elements

As REST is an abstraction of the Web, it ignores details such as component

implementation and protocol syntax. Instead, it focuses on the roles of its components,

how they interact with other components, and the identification of significant data

elements [Fie2000].

REST components communicate by transmitting a representation of a resource in a

format specified by the requesting system. The representation can be the same as the

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 9

original resource, or could be derived from it — whichever the case, the client receives

only the representation, and its construction remains hidden.

The resource is REST's key abstraction of information, and can include any concept

that could be the target of a hypertext reference. A resource is a temporally varying,

conceptual mapping to a set of entities. This set could be empty — identifying an as yet

unrealised concept — or could contain resource representations or identifiers. While

two different resources could reference the same entity at one point in time, there is no

requirement for them to always do so. For example, a code tarball release with version

number ―1.6‖ could be represented by a resource ―tarball release 1.6‖ and another called

―latest‖. However, when version number ―1.7‖ is released, the ―latest‖ resource would

most likely now point to this entity instead.

This method has several advantages. It allows the representation of a resource to be

bound at the last minute, enabling content negotiation based on the request. It also

allows the client to reference a concept instead of a specific representation, so that no

links need to be changed whenever the underlying resource itself changes.

One of the main tenets of REST is the primacy of resources that are uniquely identified

by opaque URIs – in order to avoid coupling between clients and servers, no

assumptions must be made about the structure of the URI [Ala2010]. REST limits the

operations exposed by a web service to a small, well-defined, standard, set [Ric2007].

For HTTP, these are:

 GET – to return a list of URIs representing a collection‘s members, or to retrieve

a representation of a member resource itself

 POST – to add a new member URI to an existing collection, or to turn an

existing member resource into a collection by inserting a new member URI into

it

 PUT – to update, replace, or create a new collection or collection member,

depending on whether it exists already or not

 DELETE – delete a collection or member of a collection completely

This contrasts with a potentially expansive set of operators (for RPC style web services)

or message contracts (for SOA style web services). It also means HTTP is retained as an

application layer protocol as per its originally design, rather than being re-purposed as a

transport layer, e.g. for SOAP; this brings both benefits (e.g. compatibility and

scalability with standard web infrastructure) and further constraints (e.g. idempotence

becomes desirable across operations to cope with network unreliability).

This constrained set of operations leads to a design process focused on correctly

identifying the resources that should be exposed for a service and their representations;

while the interface to the resources is simple, the number of resources – every piece of

information that could be served - is likely to be many, with a URI for each. Since an

application client cannot possibly know of every URI in existence it is important that

resources hyperlink to other resources so a client application can navigate around them.

A Resource Oriented Architecture also requires statelessness – that each HTTP

operation is totally separate from any other. As such, any state the service has must also

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 10

be exposed as a resource; an application client enters that state by accessing the URI for

that resource; to enter another state a will use another URI.

Any application state a service requires to provide a representation of a resource must

be completely contained within the request to the server (where the application is the

client software processing and modifying the resource representations returned by the

service). Transitions in application state are made by moving - ―navigating‖ in a web

sense – to alternate resources provided as URI links in the representation of a resource

provided returned by the server.

3.2. The Semantic Web and Linked Data

The term ―Semantic Web‖ describes methods and technologies to allow machines to

understand the meaning of data on the Web. The addition of machine-readable metadata

to existing content would allow automated agents to access the Web more intelligently,

performing relevant tasks and locating related information without explicit user input.

While not formally defined, the term is generally used to describe the technologies used

to implement it [Ger2006], including:

 Resource Description Framework (RDF) [RDF1999] – a language for

expressing data models, referring to objects and their relationships. This is

typically expressed as a subject-predicate-object ―triple‖, e.g. ―wave height‖,

―is-a-type-of‖, ―metocean measurement‖

 RDF Schema [RDFS2004] – extends RDF, allowing the properties and classes

of RDF-based resources to be described, with semantics of generalised

hierarchies.

 Web Ontology Language (OWL) [Lac2005] – adds additional vocabulary for

describing these properties and classes, including the relationship between

classes, cardinality, equality, characteristics of properties and enumerated

classes.

 SPARQL [Cox2007] – a query language for Semantic Web data sources

The concept of Linked Data centres on using the Web to create typed links between

different data sources. Technically, the term refers to data published on the Web in a

machine-readable way, with explicitly defined meaning, that is linked to other external

data sets and has the potential to be linked to itself from other data sets. Where the Web

is based around HTML documents linked by untyped hyperlinks, Linked Data is based

on Resource Description Framework (RDF) documents. These documents described the

typed links which link the document to other arbitrary data sources. Initially, Linked

Data was only concerned with data itself, with URIs being used primarily as unique

identifiers. However, when combined with the hypertext Web, these URIs become

equally important in retrieving the data across the network.

Berners-Lee outlined a set of ―rules‖ for publishing data on the Web, such that it meets

the goals of Linked Data:

 Use URIs as names for things

 Use HTTP URIs, so people can look up these names

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 11

 When someone looks up a URI, provide useful information using the standards

 Include links to other URIs, so they can discover more things

These ―rules‖ have become known as the ―Linked Data Principles‖ [Biz2009], and

provide simple guidelines for publishing connected data on the Web, in accordance with

its architecture and standards.

Linked Data relies on two fundamental Web technologies: URIs and HTTP. Entities

identified by URIs can be located by simply dereferencing the URI over HTTP. Thus,

HTTP provides a simple mechanism for retrieving the resources themselves, or

descriptions of resources which cannot be sent. RDF provides a generic, graph-based

data model with which to structure and link the data which describes things. RDF

encodes data in the form subject-predicate-object. These ―triples‖ take a URI as the

subject and object, with a predicate used to describe how one relates to the other. In this

way, RDF links can be created, with the subject and object each referencing the

namespace of a different data set. Dereferencing these namespaces will result in the

graph described by that namespace, i.e. the graph describing the entity represented by

the URI, or the relationship represented by the predicate.

By combining the features of HTTP URIs, HTTP as a retrieval mechanism and RDF as

a data model, Linked Data builds directly on the Web's generalised architecture. As

such, the Linked Data web can be seen as an additional Web layer, with many similar

properties:

 Generic, and can contain any type of data

 Anyone can publish to the Web of Data

 There is no constraint on data publishers to choose a specific vocabulary

 Entities are connected by links, creating a graph of linked data sources, and

enabling the discovery of new data sources

From an application development perspective, this means:

 Data is separated from formatting and presentation

 Data is self-describing, as the describing vocabulary can be dereferenced via its

URI

 HTTP as a transport mechanism and RDF as a data model are much simpler than

WS-*-based APIs, with heterogenous data models and interfaces

 The Web of Data is open, so data sources can be discovered at run-time via RDF

links, rather than being hard coded from the start

While the use of URIs is common throughout the Semantic Web - not least as the basic

element of RDF - the requirement to use HTTP URIs sets Linked Data deployment

apart. It is a departure from the use of URIs purely as unique identifiers within the

graph; in Linked Data they are also a means of retrieving parts of the graph relevant to

that resource - the URIs can be dereferenced.

This dual use of HTTP URIs does not, however, remove the need to distinguish

between the two uses: a web client must be able to tell the difference between a URI

representing the person Tim Berners-Lee (a non-information resource) and a URI

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 12

providing information about Tim Berners-Lee (an information resource); even if, in the

linked data web, we dereference the former to retrieve the latter.

A web server communicates this distinction to the client through a combination of the

HTTP ―303 See Other redirection code (referred to as the httpRange-14 solution) and

content negotiation, i.e. returning different representations according to the HTTP

Accept header set by the client [Sau2008].

Figure 3-1: An example of content negotiation, based on the MIME type specified by the client (from

[Pag2009])

There are two general cases for this solution:

1. If an information resource describing the non-information resource has multiple

representations (e.g. in RDF and HTML) of the same information then the web

server should first redirect the client (via a 303 response) to the intermediate

information resource URI (indicating the move from a non-information resource

to an information resource), and then use content negotiation to return the

appropriate representation. The Content-Location header should be used to

confirm the URI of this representation.

2. If the information resources describing the non-information resource contain

different information depending on which representation is requested (e.g. the

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 13

RDF representation contains different information to the HTML, not just a

different representation), then the web server should redirect the client (via a 303

response) directly to the information resource appropriate to the requested

content type, without an intermediate common information resource. The

Content-Location header should be used to confirm the URI of the returned

representation.

Finally, it is noted that the use of resolvable (HTTP) URIs does not imply the encoding

of semantics within a URI, and that the syntax used by a web server when returning a

resource should not be interpreted as having such meaning. Apparent abstractions of the

URI API (e.g. http://example.com/<element>/<type>/<time>) cannot,

and should not, be provided - certainly when describing the interaction with a client

application. Use and manipulation of such an abstraction might provide a useful

shortcut for developers looking to manually locate and trial resources; the use of such

‗friendly‘ URIs that may encourage this misuse are not without merit when providing

manageable endpoints for developers and end-users; but a linked data client should

primarily access new resources via the links asserted within the (RDF) graph.

3.3. OGC Standards and Sensor Web Enablement

Standardised data encodings and service definitions from the Open Geospatial

Consortium (OGC) are widely adopted across industry. Earlier standards introduced

services to directly support Geospatial Information Systems (GIS), while more recent

efforts have resulted in services defined as part of Sensor Web Enablement (SWE).

The core Open Geospatial Consortium (OGC) encoding is GML, which is an XML

schema derived language in which several GML Application Schema are defined. In

order to expose an application‘s data using GML, an XML schema must be created

specific to the application domain. This schema describes the relevant data objects,

which applications that implement the schema must expose. For example, an application

for flood defence monitoring may define wave heights, coastal defence types and

heights, tide heights and population densities in its schema. These data objects will in

turn reference the primitive data objects defined by GML. These primitive types include

geometries, coordinates, units of measurement and directions, as well as concepts such

as ―features‖ and ―observations‖.

GML is a particularly interesting XML representation since it has several RDF-like

features: an object-property-value model similar to the RDF model, and extensive (if

perhaps under-utilised) support for remote properties using xlink:href. This

probably shouldn‘t come as a surprise: early versions of GML included an RDFS

profile.

Earlier OGC standards used in GIS applications include ―Web Map Service‖ (WMS)

and ―Web Feature Service‖ (WFS). WMS offers an interface to get information about a

map layer, and to return that map layer for use in mapping software such as OpenLayers

[WMS2010]. While straightforward, this method restricts the ways in which the data

can be used – a map layer is, in essence, an image, and as such it is impractical to

extract information from a layer to further manipulate it. WFS goes beyond this by

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 14

returning map data for a single feature in the OGC GML format [WFS2010]. However,

this data is retrieved through a more complicated, non-RESTful RPC type service.

OGC SWE is a framework of open standards, designed to exploit Web-connected

sensor systems via a Service Oriented Architecture [Bot2007]. It incorporates the

Observations and Measurements (O&M) GML [Cox2007] and SensorML [SML2010]

schema languages, to enable richly defined models for both sensor characteristics and

observations. In addition, the framework includes additional services for discovering

sensors (Sensor Registries), accessing sensor information (Sensor Observation Service),

and receiving asynchronous sensor notifications (Web Alert Service).

Although Sensor Web Enablement is designed to provide for ―Web-connected sensors‖,

the approach taken in the design of the included services is to run over Web protocols,

but not to adopt a Web Architecture through Resource Oriented services. While this is a

valid and useful technique to extend GIS services into a more web-like platform, this

specialisation of interfaces according to task (Sensor Observation, Alert, etc.) does not

provide the kind of RESTful High-Level API required to support lightweight mashup

development.

The data models and schemas (used to transfer information between server and client

through the interface calls) are of more interest since they are based on a thorough and

comprehensive domain analysis. Within SWE this is manifest in two perspectives over

the data:

A provider-centric approach orientated around and primarily describing the

processes undertaken by sensors, structured networks of sensors, and constituent

elements of sensors. Data is a product of the described sensor network. From the

OGC standards this approach is adopted by the SensorML GML application

schema and the SWE Sensor Planning Service.

A consumer-centric approach orientated around and primarily describing the

observations and measurements – i.e. the data, the results – captured by sensors

rather than the sensors themselves (although the provenance of observations is

modelled through an associated process). The OGC Observations and

Measurements (O&M) model and GML application schema apply this approach,

as used by the SWE Sensor Observation Service (SOS).

While the former might be applicable to provisioning, deploying, and managing sensor

network themselves, our domain users (and the domain developers supporting them) are

engaged in activities – such as emergency response planning and management – which

instead are more aligned with manipulation of the data once it has been collected by the

sensor network.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 15

3.4. The SemSorGrid4Env Architecture

The SemSorGrid4Env architecture ([D1.3v2], figure 3-2) takes a Service Oriented

approach to integrating data sources, middleware, and applications. While this contrasts

with the Resource Oriented approach taken by REST APIs and generally followed in

development of the High-Level API, the two approaches are also complementary.

Applications using the Architecture service APIs are more likely to be tightly integrated

and dependent on the services discovered (and previously registered); an example of

such a ―full‖ application can be found in the SemSorGrid4Env Flood Planning and

Response Application [D7.1v2].

Lightweight mashups are more likely to be developed quickly, potentially on an ad-hoc

basis, and to take advantage of unintended re-use of sensor data. Semantic mashups

benefit from the common self-descriptive models and linking provided by a REST API.

Figure 3-2: The SemSorGrid4Env architecture: the services, their relationships, and the classes that they

belong to (from [D1.3v2])

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 16

4. Design Principles for High-Level APIs

In the previous chapter an overview of REST and Linked Data was presented, within

the context of their suitability for supporting the developments models introduced in

Chapter 2 through provision of a High-Level API which embraces Web Architecture.

At a first glance there might appear to be an obvious alignment and overlap between the

approaches prescribed by REST and Linked Data; but despite their development on and

around the architecture and technologies of the Web, they were developed in relative

isolation. On more detailed inspection of the two, divergences in scope and applicability

present themselves, and for some aspects, incompatibility. In this chapter we investigate

these similarities and differences and suggest the coupling is worthy of a third look: in

combination as a flexible environment in which the developer can focus on domain

driven applications.

4.1. Domain-driven Design

As introduced in the previous chapter, the resource is the first-class citizen of both

RESTful Web APIs and Linked Data exposed data sources; identifying resources and

the representations that allow retrieval of them is key to writing the API.

This approach has echoes from existing software design practices and methodology

when considering the object model derived Domain-driven Design philosophy

[Eva2003].

Domain-driven design espouses that:

 The primary focus should be on the domain

 Complex domain designs should be based on a model

These principles are well aligned with the identification of resources (for the former)

and the encapsulation of the domain by an ontology through Linked Data (the latter).

This process of ―knowledge crunching‖ with domain experts and domain developers

ensures an API exposes a model that is both pragmatic programmatically and

representative of the domain:

“Good programmers will naturally start to abstract and develop a model that can do

more work. But when that happens only in a technical setting, without collaboration

from domain experts, the concepts are naive. That shallowness of knowledge produces

software that does a basic job but lacks a deep connection to the domain expert’s way

of thinking.” [Eva2003]

This is essential if the API is to be successfully used by domain developers, and in turn

domain users: the power of a successful API is in encapsulating the complexity of a

domain in a manner that allows its use to scale through simple usage. This simplicity

must be deeply tied to the domain to allow natural and intuitive use by the domain

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 17

developers and users; an abstraction unfamiliar or unsuitable to them will have an effect

opposite to that desired.

4.2. An Analysis of REST and Linked Data

The Linked Data movement has achieved considerable success constructing a semantic

Web of Data [Biz2009]. While much initial semantic web research focussed on building

a stack to enable reasoning and logic, the more recent Linked Data programme has

attempted to reconnect the semantic web to its roots in the most successful distributed

system ever constructed (or at the very least the latter half of its moniker!).

Moving on from an earlier assumption that URIs would do nothing more than uniquely

identify Things, the key thrust of Linked Data has been the re-adoption of HTTP URIs

for retrieval of resource representations. The approach can be summarised by the four

Linked Data ‗rules‘ [Ber2006]: use URIs as names for things; use HTTP URIs so that

people can look up those names; when someone looks up a URI, provide useful

information, using the standards (RDF*, SPARQL); and include links to other URIs, so

that they can discover more things.

A shallow keyword match over these principles would suggest a strong correlation with

those underpinning REST [Fie2000], and yet rarely are the two mentioned together as

complementary styles. Are they at cross-purposes, completely orthogonal, or can

experience from both approaches inform a more coherent framework for building

distributed web services and applications?

4.3. Similarities between REST and Linked Data

In this section we evaluate the commonalities between REST and Linked Data that

support a new approach to High-Level API development encompassing both

methodologies.

4.3.1. The primacy of resources

The key abstraction of information in REST is a resource [Fie2000]; similarly the URI

is both the identifier for, and means by which relationships are expressed between,

things in the Resource Description Framework (RDF) [RDF1999], which is the

foundation of the Semantic Web stack. In both cases, the notion of an identifiable

resource is fundamental to implementation; design and development of a system cannot

progress without the assignment and association of resources.

Since Resource Oriented Architectures [Ric2007] and Linked Data are the most

commonly encountered realisations of REST and the Semantic Web respectively, and

since both are built upon HTTP and HTTP URIs, it is easy to recognise this as a

common shared building block. It is therefore also relevant to note that neither REST as

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 18

an architectural style nor RDF as originally conceived are monogamously wedded to

HTTP.

4.3.2. Linking is not optional

The fourth Linked Data principle is to ―Include links to other URIs‖ in the

representation provided when a URI is dereferenced ―so that they can discover more

things‖ [Ber2006]. It is this inclusion of links to other HTTP URIs which, when

dereferenced, provide further links to more HTTP URIs that sets Linked Data apart

from earlier Semantic Web activity in its explicit encouragement of a dereferencable

Web (and the trails of links through it).

―Hypermedia as the engine of application state‖ (HATEOAS) is a defining

characteristic of the REST architectural style [Fie2000]. State transitions in an

application occur when moving from one resource to another (by retrieving or

modifying) using the links provided in a representation.

A representation that supports linking is therefore a requirement for both approaches;

neither would function as intended without the hyperstructures described above. While

there is no specific mandated linked representation for REST implementations, Linked

Data advocates ―using the standards‖ which, in the case of RDF and SPARQL, both

guarantee support for links to other resources.

4.3.3. Segregating semantics

Semantics about relationships between resources can be expressed by both approaches:

in the Semantic Web they are described by ontologies written in RDFS and OWL, while

RESTful implementations can encode semantics in link relations.

A common misapplication of both approaches is to assume semantics (or abuse implied

semantics) encoded in a URI, when both REST and Linked Data explicitly expect

clients to regard URIs as opaque strings when used for identification. In this way both

follow the principle of separating identification from the semantics of interaction,

description, and structure.

4.3.4. Adaptability

Both REST and the Semantic Web include facets in their design which allow the

relationships between resources to be modified, should revision be required, without

necessitating interface changes to the client.

Since state in a RESTful application is defined by navigation of the hyperstructure, if a

server changes the links that are transferred to a client (via a representation) it also

changes the possible state transitions the application can make. It does this without

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 19

changing the mechanism by which the client performs the transition (the combination of

HTTP and the representations for the specified media type).

As befits a distributed web system (where it is perhaps unlikely – and probably

undesirable – for there to be ‗one true ontology‘), there is no constraint on the

application of a single ontology to each resource on the Semantic Web. Assertions can

be made using different ontologies, in different places, and at different times; ontologies

(themselves expressed in RDF) can be extended and subsumed by other ontologies.

In both cases this adaptability can be seen as a benefit of self-description – a client has

prior knowledge of the framework within which relationships are expressed, but there is

no requirement of prior knowledge of the relationships themselves.

4.3.5. Applicability of Domain Driven Design

The Domain Driven Design methodology introduced at the beginning of this chapter

[Eva2003] espouses a focus on domain modelling throughout an iterative development

process. This has particular resonance with the principles and practices outlined above

in respect to both REST and Linked Data: the identification of resources and the links

between them should naturally map to the domain (and business process) at hand

[Rai2010], and the ability to iteratively modify the hyperstructure lends itself well to

agile development.

This methodology is key in developing a service that can be successfully used by

domain application developers, and in turn domain users: the power of a successful data

service is in encapsulating the complexity of a domain in a manner that allows its use to

scale through simple usage. This simplicity must be deeply tied to the domain to allow

natural and intuitive use by domain developers and users; an abstraction unfamiliar or

unsuitable to them will have an effect opposite to that desired.

4.4. Potential differences in the application of REST and Linked
Data

In this section we outline those areas where one might perceive differences between

REST and Linked Data – although, as we summarise in the next section, we counter that

these are rather vestiges of different demands and current practice rather than

fundamental incompatibilities.

4.4.1. API vs. Model

In the previous section we explored the similarities between REST and Linked Data,

principally centred on the notion of resources and the relationships between them. There

is, however, a key difference in the motivation for resource identification:

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 20

 in RESTful systems, resources and their relationships are identified and exposed to

enable a client to retrieve data and transition to other resources; in effect, they

define an API to enable application operation and state transition. Linking is the

mechanism to navigate the API; link relations encode semantics to enable this.

 in RDF and ontologies, resources are identified to encapsulate an underlying data

model. While Linked Data extends this idea so that sections of the model can be

retrieved by dereferencing resources, linking in the returned representation is used

to bind sections of the model rather than transition state.

By extension the adaptability and self-documentation described in section 4.3 applies to

API interactions for REST, and the data model for the Semantic Web.

This distinction between model and API, principally in the identification of resources, is

a key finding that informs our development of High-Level APIs.

4.4.2. SPARQL

The third Linked Data rule cites not only RDF, but a sister standard which from a

RESTful point of view is a troublesome relative: SPARQL.

SPARQL is the standard query interface for RDF; it is widely deployed as an interface

to Linked Data services, and widely used by Linked Data applications. However most

SPARQL endpoints are implemented – and used – in the RPC style. RESTful interfaces

to SPARQL have been proposed [Wil2009] which expose resources that, when a

representation is requested, trigger SPARQL queries. Consistent with the previous

section, identification of these query resources is a matter of identifying the

―information units‖ which comprise the service API.

Perhaps a more concerning implication is the relative popularity of SPARQL for

application development, and particularly for combining Linked Data through SPARQL

endpoints. In this scenario, whilst the data model benefits from the distributed nature of

resources and linking, the application interaction does not: it eschews the benefits of

RESTful operation.

4.4.3. Content negotiation

RESTful services use content negotiation to select a shared envelope that both the client

and server can encode and decode the representation through (and the interface to the

service is then dynamically carried via the representation as links). Typically a REST

service will assume the resource being transferred in these representations can be

considered a document; in the terminology of the following section, an ‗information

resource‘.

Linked Data services, in implementing the ―HTTP range issue 14‖ solution [Sau2008],

add semantics to the content negotiation to distinguish between URIs that are non-

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 21

information resources (identifiers for conceptual or real-world objects) and URIs that

are information resources (documents) that describe the non-information resources. This

is because assertions in the RDF graph are usually relationships that apply to the non-

information resource, but Linked Data overloads URI usage so that it is also a

mechanism for retrieving triples describing that resource (in a document, i.e. an

information resource)
5
.

One widely deployed technical solution is to issue a 303 redirect from the non-

information resource URI to a content-negotiated information resource (which will have

representations containing descriptive information about the non-information resource;

at least one representation will be an RDF serialization; see section 3.2). The HTTP

redirect signals the transition from non-information resource to the client. The practical

consequence of the redirect is, in our experience, a (variable but) measurable additional

delay for each complete transfer of information between server and client [Rou2010];

there is added complexity when compared to a REST API in which everything is simply

an information resource.

4.4.4. RESTful through and through?

While there is clearly alignment in approach, and overlap in parts of implementation,

are deployed best practice Linked Data services RESTful? On two further counts, we

believe they could be considered to fall short.

Firstly, because resources are identified primarily for the purposes of correctly

modelling the data (section 4.4.1), less thought is applied to the Linked Data URIs that

can be dereferenced and how an application might use them – and the links between

them – for RESTful state transition. If an API has not been designed for HATEOAS,

then perhaps it is understandable that Linked Data developers appear to prefer

SPARQL; or that adoption of SPARQL reduces motivation to design an API with

HATEOAS in mind.

Secondly, the majority of Linked Data sites are read-only: they publish data but few

have the ability to modify it (i.e. PUT, POST or DELETE). This may, in part, be due to

the political Open Data movement which is frequently hard to distinguish from the

technical push for Linked Data. Proposals for a SPARQL Update are well progressed,

but carry the expected RPC issues; and while a Uniform HTTP Protocol for Managing

RDF Graphs has been proposed, it remains a mechanism to encode SPARQL

commands that are applied to a whole graph store, rather than manipulation of specific

resources exposed through a RESTful API.

5
 This is a change in behaviour from earlier use of HTTP URIs in RDF, when they were not expected to

be dereferenced.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 22

4.5. Combining REST and Linked Data for Domain Driven Design

In the previous sections we outlined where RESTful and Linked Data approaches share

a common method and where they diverge. We do not, however, believe the differences

are irreconcilable: while worthy of note, issues surrounding SPARQL, 303 redirects,

content negotiation and writeable resources could all be mitigated or indeed solved

though modifications to implementation and convention.

On the point of API vs. Model, we regard this as a complementarity rather than a

“difference”, particularly when considered in the context of domain driven design.

It is important for a domain expert (or developer) to be able to use clear domain models

that separate concerns to enable the manipulation of the domain data: this is a task RDF

has proven adept at. It is equally important for a domain developer to be able to quickly

and simply access, modify, and publish domain data through a lightweight API for

scalable and distributed services: which REST enables.

If common models can be used for both the API design (the RESTful interactions with

resources) and the modelling of resource relationships (the RDF and ontologies) then

the focus of complexity in any application can be where it really matters: the domain

driven design.

From a RESTful service design perspective, providing Linked Data representations

offers an opportunity to use a common domain model for expressing, and identifying,

the resources exposed by the API as well as the data model and for linking resources

(within a particular service, and between services); Linked Data (RDF) uses a self-

describing semantic model beyond the relatively simple link semantics in most REST

deployments.

From a Linked Data perspective, this presents an opportunity for more sophisticated

description and navigation of links in representations, and through this the application

of stronger semantics (with a common underlying model) for application state

transitions and the development of true RESTful application development using Linked

Data, beyond the current polarisation around SPARQL endpoints.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 23

4.6. Summary of Design Principles for High-Level APIs

Based on our evaluation of suitable architectures to support mashup development and

comparison REST and Linked Data, we propose the following design principles for

High-Level API development:

1. Agile development of lightweight mashups is best supported by Resource

Oriented service architectures. Reduce complexity for mashup developers

through the simplification of access methods espoused by REST. To develop a

good API of this type requires careful and successful identification and design of

resources by the service provider.

2. Identification of resources must be undertaken within the context of the domain

of the data. Use Domain Driven Design as a flexible and suitable methodology

to ensure that the knowledge of domain experts is drawn upon during the

iterative design and development process that is identifying service resources.

3. Use Semantic Web data structures and ontologies (RDF, RDFS, and OWL) for

canonical representations of resources; they share a common architectural

heritage that makes them particularly suitable for use with REST. This enables

development of a common domain model with self-describing link semantics

beyond the relatively simple structures found in traditional REST deployments.

4. Identify resources to support both the domain model and the API. Provide

Linked Data through content negotiation and a SPARQL endpoint, but also

identify resources to enable RESTful application where hypertext is the engine

of application state.

5. RESTfully provide other representations, derived from the domain model, to

enrich the service for easy application development, as identified through the

Domain Driven Design process.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 24

5. Applying the Design Principles to Semantic Sensor Grids:

Design of a High-level API for Observations

In chapter 4 we described the similarities and differences between the REST and Linked

Data service architectural styles. Based upon this analysis we identified a ‗best fit‘

approach that draws upon the strengths of each, and proposed a way forward to better

serve the development of domain driven applications through a set design principles.

The overarching theme across the principles is the application of domain driven design

to the High-Level API; for Semantic Sensor Grids this means the domain of sensor

network data, and the domains relevant to the measurements sensed.

In this chapter we apply the principles in the design of a High-Level API for

Observations, suitable for adoption by any Semantic Sensor Grid. To demonstrate its

use by example, and to provide the domain driven basis required to apply the principles,

we refine and specialise this API for a specific use-case and associated domain: the

Channel Coastal Observatory sensor network.

The Channel Coastal Observatory (CCO) is the data management centre for the

Regional Coastal Monitoring Programmes of England. Over a period of more than 5

years, the GeoData Institute has designed, built from the top down, and operated the

data management infrastructure to run this programme. This includes software to

manage and transmit real-time data from the largest network of coastal sensors in the

UK; a data management infrastructure to manage data and metadata for over 65,000

environmental surveys of different types amounting to terabytes of storage; and a

website to deliver real time and surveyed data to a public audience though highly

complex dynamic map and data visualisation interfaces, serving over a million hits per

month.

In each describing the design of a High-Level API for the CCO, we focus on four

aspects through which the principles are applied:

1. the Domain Model (application of principles 1, 2 and 3)

2. identification of Resources (principles 1, 2, 3 and 4)

3. suitable Representations (principles 1, 3 and 5)

4. the Web API (principles 1, 2, 3, 4 and 5)

Beyond the principles, it is also worth recalling that any API is provided to support a

domain developer, and the motivation for doing so is to enable semantic mashup

applications that combine observation data from the API with other domain information

retrieved from the linked data and RESTful web services (e.g. land use, transport).

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 25

5.1. The Domain Model

The Domain Driven Design ―knowledge crunching‖ process was adopted both within

the SemSorGrid4Env project (with domain experts in GeoData) and with local potential

users and collaborators (see [D7.1v2]) to ensure the API exposes a model that is both

pragmatic programmatically and representative of the domain.

Having surveyed existing data models, and in consultation with domain experts, it

became clear that two different, but complementary, high-level approaches can be

applied to sensor networks and their associated data (introduced in chapter 3):

A provider-centric approach orientated around and primarily describing the

processes undertaken by sensors, structured networks of sensors, and constituent

elements of sensors. Data is a product of the described sensor network. From the

OGC standards this approach is adopted by the SensorML GML application

schema and the SWE Sensor Planning Service.

A consumer-centric approach orientated around and primarily describing the

observations and measurements – i.e. the data, the results – captured by sensors

rather than the sensors themselves (although the provenance of observations is

modelled through an associated process). The OGC Observations and

Measurements (O&M) model and GML application schema apply this approach,

as used by the SWE Sensor Observation Service (SOS).

While the former might be applicable to provisioning, deploying, and managing sensor

network themselves, our domain users (and the domain developers supporting them) are

engaged in activities – such as emergency response planning and management – which

instead require manipulation of the data collected by the sensor network.

We therefore take a data-(consumer-)centric approach to the sensor data and adopt the

Observations and Measurements (O&M) model [Cox2007] through both its GML

Application Schema and, by including some key concepts (figure 5-1) in an ontology:

 The measured value/result

 The observed property (e.g. wave height)

 The process that made the observation (e.g. a sensor)

 The time at which the observation was asserted

 The time over which the sampling leading to the observation was taken

 The (domain specific) feature of interest that is being observed (e.g. the ocean)

 A mechanism for grouping observations (an observation collection).

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 26

Figure 5-1: The basic concepts in an Observation model (from [Pag2009])

(While ontological evaluation has identified weaknesses in the O&M model [Pro2006],

our primary focus is in its application for linking data and representations through a

High-Level API, for which it is entirely sufficient.)

The ontology encapsulating O&M was then further developed as part of the SSN

Ontology (figure 5-2) by the W3C Semantic Sensor Networks Incubator Group
6
, which

includes several members of the SemSorGrid4Env consortium amongst its membership

(through Work Packages 4 and 5).

It is also included in the SemSorGrid4Env Ontology Suite [D4.3v2] where – through

the observedProperty and featureOfInterest – it provides the crucial link between the

measurements and the domain concepts the observations are capturing (specific

examples of which are part of the domain model for the CCO API).

Figure 5-2: Overview of the SSG4Env ontologies (from [D4.3v2])

6
 http://www.w3.org/2005/Incubator/ssn/

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 27

5.2. Resources

Our approach so far has identified the generic model suitable for representing sensor

data, and having adopted the O&M model it is clear that many of our resources will be

Observations. But to construct a high-level API for particular sensors grids and the data

they provide we must continue our domain-driven design – combining the principles

and practice of REST APIs and Linked Data – and assess more detailed aspects of the

specific domain for which we are constructing the API.

In this example implementation of a High-Level API for Observations, we focus on

publishing data from the CCO network of marine and coastal sensors monitoring:

 wave height

 sea surface temperature

 wave period

 wave spread

 wave direction

 tide height.

As a RESTful Linked Data system, the high-level API is defined by its resources and

the representations of those resources – in this case by the observations of the

phenomena measured by the CCO above. In defining a resource we must necessarily

create a globally unique identifier for it – a URI – the creation of which is frequently

referred to as ―minting” a URI. As noted in earlier sections, the URI for the resource

should be treated as an opaque string when it is accessed through the API; while the

implied structure within the URI is helpful when designing and maintaining the web

service (and perhaps for developers when writing clients), client applications must

navigate to and between resources using links between those resources. Use of the API

must not rely on encoding of semantics within the URI – this clearly violates REST

principles.

Identification and structuring of resources can be very dependent on the data (the

resources) being exposed. For example, our primary observation resources are of the

form:

http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500

where the individual observation is dereferenced by retrieving the resource (which is an

observation collection):

http://id.channelcoast.org/observations/boscombe/Hs/20090801

In this case, the observation of wave height (Hs) made by the Boscombe sensor on

01/08/2009 at 2.05pm is asserted within an observation collection of all wave height

measurements taken by the Boscombe sensor on 01/08/2009.

This strikes a balance between the size of the retrieved resource representation and the

number of links the client must retrieve for this particular data set. In this case the

observations of Hs at the Boscombe sensor are taken half-hourly, so the resource that

must be retrieved to dereference any one observation will contain 48 observations (all

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 28

the observations for the day). This grouping of resources (and the associated

dereferencing) would not make sense if there were many observations per second.

Once more, note that the semantics that have clearly been used to structure the minting

of the URIs – by our design – are not exposed through, or necessary for the operation

of, the API. Relationships between resources must be expressed in the representations

returned by the API, not within the syntax of the URI.

Nor does this primary statement of an observation constrain its use in other observation

collections - an RDF model can be declared and reused across several resources by

linking between statements. Using the example above, a collection of all measurements

of wave height across the sensor network on 01/08/2009 would be identified by:

http://id.channelcoast.org/observations/Hs/20090801

and the primary statement of the observation above would be linked in by reference.

Figure 5-3 shows a number of relationships between key URIs, again focusing on the

interface for retrieving significant wave height. Resources for other observed properties

follow a similar structure, and examples of how these relationships are encoded in

specific representations follows in a later section.

Figure 5-3: Relationships between some key URIs in the CCO system (from [Pag2009])

5.3. Representations

For each non-information observation resource (such as the wave height observation

introduced above), the API provides several representations through a common

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 29

information resource and a further representation for backwards compatibility (with

existing GIS systems) through a separate information resource.

The first representation is in RDF XML, and using the observations ontology

introduced earlier. Here links are also made to domain ontologies for features of interest

and observed properties.

The second representation conforms to the O&M GML schema. While the XML

returned is very similar to that provided by the SOS GetObservation function, here we

support a RESTful interaction by navigation between resources. This is made possible

by the extensive support for XLink in GML and an underlying object-property-value

model which closely resembles RDF.

We also note that the O&M GML representation of resources (and SensorML for

appropriate resources) is compatible with the O&M GML and SensorML returned by

the Sensor Observation Service (SOS)[SOS] (particularly the GetObservation and

DescribeSensor functions). The design described herein can also be considered a partial

implementation of a RESTful SOS; we hope that this will allow adaption of SOS clients

to work with our API.

The third representation is in HTML and is a human browsable hyperlinked interface to

the observation resources.

The fourth representation conforms to the WFS GML schema (XML). This

representation provides compatibility with existing web GIS mapping tools (e.g.

OpenLayers). The nature of these tools requires all the required data points

(observations) to be provided in a single ―layer‖ which can be overlaid onto a map; this

flattened data structure is incompatible with a the other representations so must be

provided through a separate information resource.

Further representations should be provided as appropriate to the domain and

application, e.g. GeoJSON, KML.

When moving between representations it is important to note that the resources – the

URIs – remain constant. As such, using this API a client application can move

seamlessly between RDF and GML representations, taking advantage of the semantic

linking provided in linked data, while being able to retrieve established encodings for

Web GIS applications when required. Conversely an application can use a GML

identifier as a jumping off point into the linked data web.

While there are clear benefits to alternately returning GML and Linked Data

representations of a resource, each of these representations has particular constraints –

be that conceptual model, design principle, or XML serialisation – and though they are

in general complementary, a specific interactions can bring up incompatibilities

between representations: we illustrate this with the following example to demonstrate

that, with representation as well as resources, there are some design decisions which

must be made for a particular domain and use case.

With regard to aggregation and nesting of observation collections, the O&M GML

Application Schema is relatively constrained: more specialised observation collections

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 30

have typed constituents that are too specific to be transcluded in more general,

otherwise specialised, or multiply nested, collections. While this is not an issue in

existing O&M applications (e.g. using an SOS), the Linked Data principles lead us to

both uniquely identify individual observations (i.e. avoiding duplication of a single

observation at several URIs and creating duplication in the graph) and the identification

and publication of aggregate resources that by their nature include observations that

have already been ‗used‘/published as, or as a part of, another resource (i.e. we must use

linking rather than duplication).

For example, it would be desirable to have the URI:

http://id.channelcoast.org/observations/boscombe/Hs

represent all the observations of Hs at Boscombe, and this to be an aggregation in the

form of an ObservationCollection, where each member is in turn an

ObservationCollection such as:

http://id.channelcoast.org/observations/boscombe/Hs/20090801

(there would be as many references to other ObservationCollections as there are days on

which observations have been made).

While this is relatively simple to implement in RDF - ObservationCollection as a

subClass of Observation, and member a TransitiveProperty with rdfs:range Observation

- this is not possible using the O&M GML Schema. This leaves two possibilities for the

O&M GML representation:

 Do not return a GML representation and return a 406 Not Acceptable code.

 303 redirect straight to an information resource content negotiated for

application/xml, without a common information resource shared with the RDF

representation. The body returned contains a ‗flattened‘ ObservationCollection

with xlinks directly to the Observations required; this is the similar to the approach

taken for WFS compatibility.

While the current CCO design takes the latter approach, without nested aggregations the

number of Observations returned is potentially very high, and as such a compromise is

made to redefine the resource as e.g. Observations of Hs at Boscombe over the last

week (rather than all time). A hybrid approach might combine the original resource

definition with a 406 for GML with a second resource limited to collections that are

reasonable to return in GML (e.g. the observations from the last week).

5.4. Web API

In the previous sections we have outlined the domain model (in RDF) and identified key

resources and representations. In combination, these form the core of the High-Level

API for Observation applied to the CCO, but exposing the observation resources

RESTfully as Linked Data with alternative representations for data formats useful to the

domain developer.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 31

To finish the API, and to satisfy the 4
th

 Design Principle (section 4.6), we must consider

any other functionality and identify any other resources to support the domain

developer.

The first task, to complete Linked Data provision, is the implementation of a SPARQL

query endpoint. This will, of course, utilise the same information encoded in the RDF

representation for identified resources, structured according to the domain ontology

already outlined.

 The second task is to provide resources specifically in support of the API, that is, such

that RESTful applications and mashups (driven by HATEOAS) can be written. Here we

list some examples provided for the CCO implementation of the High-Level API, which

were used to create the mashup examples described in chapter 7:

 /latest – relative within each observation collection, a resource that is always the

most recent observation.

 ―next‖ and ―previous‖ – for each observation, a reference to the prior and next

observations of that class.

 /summary – for each observation collection, a summary resource containing

information about that collection, e.g. maximum/minimum values, frequency,

averages, units of measurements, and descriptive metadata (this can be used by

clients to calibrate visualisations and provide annotations).

 broader temporal collections appropriate to the data set (e.g. month) containing

links to the constituent (e.g. daily) observation collections.

 links from constituent collections to the broader collections (―up‖) to enable

better navigation through the data.

 /sensors – a collection of links to all procedures that generate observations (i.e.

sensor platforms).

 For each sensor, a list to the ―top-level‖ (temporally broadest) observation

collections generated by that sensor platform.

5.5. API walk-through: the Channel Coastal Observatory

Exposing sensor data according to linked data principles and practice is a first and

necessary step to enabling linked data sensor grid applications. In the sections prior to

this we have introduced the building blocks of a dual purpose API design that combines

the provision of linked sensor data with a RESTful interface to existing standardised

data encodings such as OGC O&M and WFS, and in doing so have applied the design

principles introduced in chapter 4.

In this final section describing design of the High-Level API for Observations we return

to the example observation collection previously introduced and examine how a client

using the API accesses a resource and negotiated for its representations (illustrated in

figure 5-4).

The (non-information) resource:

http://id.channelcoast.org/observations/boscombe/Hs/20090801

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 32

is the set of all observations of Hs (significant wave height) from the Boscombe sensor

on August 1st 2009.

As noted in earlier sections, the URI for the resource should be treated as an opaque

string; while the implied structure within the URI is helpful when designing and

maintaining the web service (and perhaps for developers when writing clients), client

applications must navigate to and between resources using links between those

resources.

When a client attempts to dereference this resource (e.g. through an HTTP GET), the

web server responds with HTTP code ―303 See Other‖ and the information resource:

http://data.channelcoast.org/observations/boscombe/Hs/20090801

Content negotiation is then used by the client to retrieve a suitable representation:

- application/rdf+xml returns an RDF representation.

- application/xml returns a GML representation.

- text/html returns an HTML rendering for viewing in a traditional web browser.

In each case the web server responds with code ―200 OK‖ and sets the Content-

Location header to the resource of the negotiated representation, e.g.

http://rdf.channelcoast.org/observations/boscombe/Hs/20090801

http://om.channelcoast.org/observations/boscombe/Hs/20090801

http://pages.channelcoast.org/observations/boscombe/Hs/20090801

followed by the appropriate representation in the HTTP body.

The intermediate stage of redirecting to a common information resource URI indicates

to the client that the following content negotiation is for different representations of the

same information. For example, this means that if the client has reached the resource

through RDF representations, but needs to plot the data using an OGC compliant tool

(e.g. within a mapping layer) it can request the GML representation knowing it is

plotting the same information.

Other representations might, by necessity of the encoding, be of closely related but

different information. An earlier incarnation of the CCO server implementation returned

a GML representation using the WFS schema to create a MapServer compliant layer,

and while we wish to preserve this functionality, the ‗flattened‘ nature of the data in the

WFS layer means this representation contains different information to those based on

O&M (described below).

In this situation we use the content type application/vnd.ogc.wfs to enable a client to

retrieve a backwards-compatible representation; when the client requests the non-

information resource:

http://id.channelcoast.org/observations/boscombe/Hs/20090801

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 33

with content type application/vnd.ogc.wfs, the server performs a 303 redirect directly to

the WFS GML (setting the Content-Location header accordingly):

http://wfs.channelcoast.org/observations/boscombe/Hs/20090801

In redirecting directly to the WFS information resource through content negotiation

(rather than through the common information resource and then performing content

negotiation), the web server has indicated that this is a different (but related)

information resource, not a different representation of the same information resource.

Figure 5-4: Resource representations in the high-level API (from [Pag2009])

As noted in earlier sections, the URI for the resource should be treated as an opaque

string; while the implied structure within the URI is helpful when designing and

maintaining the web service (and perhaps for developers when writing clients), client

applications must navigate to and between resources using links between those

resources.

The following XML fragments demonstrate the content (and similar structure) of the

O&M GML and RDF representations of:

http://id.channelcoast.org/observations/boscombe/Hs/20090801

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 34

The O&M GML encoding is returned for application/xml :

<?xml version="1.0" encoding="UTF-8"?>

<om:ObservationCollection gml:id="this"

 xmlns:om="http://www.opengis.net/om/1.0"

 xmlns:gml="http://www.opengis.net/gml"

[...] >

 <gml:description>Wave height observations at Boscombe on 2009-08-01

 </gml:description>

 <om:member>

 <om:Observation gml:id="140500">

 <om:resultTime>

 <gml:TimeInstant gml:id="T140500">

 <gml:timePosition>2009-08-01T14:05:00</gml:timePosition>

 </gml:TimeInstant>

 </om:samplingTime>

 <om:samplingTime>

[...]

 </om:samplingTime>

 <om:procedure xlink:href=

 "http://id.channelcoast.org/sensors/boscombe"/>

 <om:observedProperty xlink:href=

"http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height"/>

 <om:featureOfInterest xlink:href=

 "http://www.eionet.europa.eu/gemet/concept?cp=7495"/>

 <om:result

xsi:type="gml:MeasureType" uom="urn:ogc:def:uom:OGC:m">

 0.28

 </om:result>

 </om:Observation>

 </om:member>

 <om:member>

 <om:Observation gml:id="143500">

[...]

 </om:Observation>

 </om:member>

</om:ObservationCollection>

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 35

The RDF representation is returned for application/rdf+xml :

Consistent use of URIs is maintained in other observation collections. For example:

http://id.channelcoast.org/observations/Hs/20090801

contains parallel fragments in GML:

<om:ObservationCollection gml:id="this" [...]>

[...]

<om:member>

 <om:Observation xlink:href=

 "http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500"/>

[...]

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

 xmlns:om2="http://rdf.channelcoast.org/ontology/om_tmp.owl#"

[...]

>

 <rdf:Description rdf:about=

 "http://rdf.channelcoast.org/observations/boscombe/Hs/20090801">

 <rdfs:label>

 An RDF representation of wave height observations at Boscombe on 2009-08-01

 </rdfs:label>

 </rdf:Description>

 <om2:ObservationCollection

 rdf:about="http://id.channelcoast.org/observations/boscombe/Hs/20090801">

 <om2:member>

 <om2:Observation rdf:about=

 "http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500">

 <om2:resultTime>

 <om2:TimeInstant rdf:about=

 "http://id.channelcoast.org/observations/boscombe/Hs/20090801#T140500">

[...]

 </om2:TimeInstant>

 </om2:resultTime>

[...]

 <om2:procedure rdf:resource="http://id.channelcoast.org/sensors/boscombe"/>

 <om2:observedProperty rdf:resource=

 "http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height"/>

 <om2:featureOfInterest rdf:resource=

 "http://www.eionet.europa.eu/gemet/concept?cp=7495"/>

 <om2:result [...]

[...]

 </om2:Observation>

 </om2:member>

 </om2:ObservationCollection

</rdf:RDF>

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 36

and in RDF:

<o2:ObservationCollection rdf:about=

 "http://id.channelcoast.org/observations/Hs/20090801">

[...]

<om2:member rdf:resource=

 "http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500"/>

[...]

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 37

6. Implementation Patterns for the High-Level API Design

The previous chapters have presented the programming patterns and principles

applicable to a high-level API for sensor grids, and the design for a specific API to

publish sensor data from the Channel Coastal Observatory.

Taking the design in the previous section as an example, we present three

implementation experiences realising this design in software for different scenarios:

1. exposing data using the API via a bespoke implementation based upon an

existing web portal.

2. exposing data using the API by interfacing with the SemSorGrid4Env

architecture and accessing sensor data through the architecture.

3. exposing data using the API provided by generic observation data sources

(both via the SemsorGrid4Env architecture and from existing databases)

using a semantic configuration utility and platform to automate API

structuring and URI minting.

6.1. Bespoke Implementation of the API for an GIS web platform

6.1.1. Context

The Channel Coastal Observatory web portal (figure 6-1) is an established resource for

users, exposing data through a web application with two major elements of functionality

presented as separate options from the front page: ―Realtime Data‖ and ―Map Viewer

and Data Catalogue‖. As shown in figure 6-2 these are implemented independently,

principally due to historical development and design decisions.

The map-viewing component is implemented using OpenLayers
7
, a Javascript library

for building web based geospatial applications. OpenLayers can present and integrate

map data provided through several services and formats, including KML, Google Maps,

Yahoo! Maps, and – as used by the CCO site – the WFS and WMS.

Session information – including data selection, preferences, and the ―shopping basket‖

(which collates user selected sets data for ultimate download) – is handled by bespoke

Ajax and server-side elements; the overall page is composed using the elements by PHP

on the server.

7
 http://www.openlayers.org/

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 38

Figure 6-1: CCO Map Viewer and Data Catalogue

MapServer
8
 is used to feed map data to the OpenLayers component using exposed

WMS and WFS services. The MapServer instance is backed by a PostGIS
9
 database

storing the map and feature data (PostGIS spatially enables PostgreSQL through

additional support of geographic objects).

Implementation of the high-level API must not cause regressions in the services already

provided to users, and where possible is desirable (for maintenance reasons) to refactor

and reuse code provided for existing interfaces (e.g. WFS).

6.1.2. Implementation

- The bespoke WSGI (Python) and PHP implementations for WFS and WMS are

modified and extended to expose the new resources and their representations

where possible (figure 4-2).

- A new map viewing component – the CCO API Explorer – is developed to

showcase the API and demonstrate how its backwards compatibility

representation allows it to be a drop in replacement for CCO WFS services

where appropriate.

8
 http://www.mapserver.org/

9
 http://postgis.refractions.net/

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 39

- A partial implementation of the High-Level API for Observations is provided,

limited by the canonical data representation being WMS/WFS – more

sophisticated representations (such as Observation RDF) must be synthesised

from this.

- Modifications to the underlying WMS/WFS data provision require

corresponding updates to the implementation of other representations (e.g.

RDF).

Figure 6-2: CCO components with elements altered by implementation of the API shaded grey

6.2. Adaptable Implementation for Specific Service Instances via a

Sensor Web Architecture

6.2.1. Context

The phase I implementation of the SemSorGrid4Env architecture (figure 3-2) was an

integration exercise to test the project architecture with instances of each of the different

services: a data service, a semantic integration service, and a registry.

The scope of the demonstrator was again the Flood Use Case, and to support this CCO

observations were exposed as a data source directly to the architecture. The web

application constructed supports discovering and browsing data sources in support of

coastal emergency response planning (e.g. flooding extend, asset inundation).

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 40

Application Tier development was required to enable the web application to access the

CCO data now flowing through the architecture (through the Semantic Integration

Service), principally by exposing a high-level API to the web application.

The Flood demonstrator application, though produced by developers involved as project

partners in other aspects of the SemSorGrid4Env architecture, was designed and built as

a standalone web application operating much like a ―mash-up‖ could be constructed by

a developer external to the project.

6.2.2. Implementation

The application tier libraries provide data to the web application via two interactions

with the SemSorGrid4Env architecture (illustrated in Figure 6-3):

1. Semantic queries to the Registry. This library takes a SPARQL query from

the web application, passes it to the semantic registry and, once the registry

has located matching services, passes the endpoints back to the web

application as a JSON array

2. Data queries to the Integration Query Service. The Integration Query

Service (IQS) exposes data sources from the SemSorGrid4Env architecture

through a SPARQL-STR interface. The application tier library makes the

appropriate query to the IQS and as the resulting data is streamed back,

converts it to GeoJSON files that can be loaded as a layer within the

mapping component of the web application UI.

The second of these provided a limited implementation of the High-Level API for

Observations. The primary representation in RESTful use of the API was GeoJSON,

and a key difference from the previous bespoke implementation was the introduction of

an internal data model for the observations, which was populated with the data returned

from the IQS, and from which the GeoJSON used by the web application was

generated. This alleviated much of the fragility associated with the bespoke

implementation.

However, the Application Tier Libraries took the form of a component which, while

adaptable, needed to be re-coded to work with different input interfaces and to serialise

to different representations – it could not simply be reconfigured without rebuilding the

software.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 41

Figure 6-3: Application tier libraries (from [D7.4v1])

6.3. Implementation of a Generic High-Level API for Observations
platform

6.3.1. Context

While the previous two implementations proved the utility of the High-Level API

design, and that it could be used by application developers as intended, they did not

prove the practicality of deploying the API: in both cases, aspects of the API service

had to be modified at the code level specifically for the implementation at hand.

To allow the High-Level API to be deployed over a greater range of data sources

without the need to re-code the software each time, a new service was developed to take

advantage of the semantics encoded in the domain models so as to move all of the

deployment specific detail into configuration files which can be setup by the domain

expert and system administrator as appropriate.

6.3.2. Implementation

The HLAPI system has been designed to expose the general HLAPI design for generic

data sources, as described in chapter 5. An overview of the system is shown in Figure 6-

5. To achieve this, and achieve tractable configurability, incoming data is transformed

into the known observation model. When data arrives in the system – either through a

database insert, or through the SemsorGrid4Env architecture – the corresponding event

trigger is activated, and determines what to do with the data. If the data represents an

observation that we wish to serialise, the event trigger sends the data to the Processor to

be turned into an RDF representation of an observation. If the data does not represent an

observation, it is ignored. The generated RDF observation forms the canonical

representation of the observation, as it is the most flexible and fully featured

representation. All other serialised outputs are lower-information representations, and

are therefore derived from the RDF.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 42

Figure 6-4: System overview of the HLAPI for Observations engine

The outputs to be serialised are determined using the API configuration file. This file

defines the observation collections that the current observation should appear in, the

formats in which to serialise them, and what the corresponding URIs should be. This

configuration file is kept separate from the ontology mapping file, in order to separate

the administrative concerns of different users; a domain expert is able to configure the

mapping of the data source into the observation model, while the system administrator

is able to handle to configuration of the exposed APIs.

Full details of the HLAPI engine implementation can be found in [D5.2v2]; they can be

summarised as:

 Adopts the Observation Model as the core (and assumed) data structure

o Further domain specific mappings (e.g. for Features of Interest and

Observed Properties) can be configured in RDF by a domain expert (and

separately from the systems administration).

 Event-driven, and can be triggered by streaming data sources (e.g. a

SemSorGrid4Env architecture service) or live database inserts

o A system administrator can configure how data sources are mapped to

the Observation model and domain model. Standard triggers are

provided for SemSorGrid4Env architecture services and MySQL

databases.

 A number of standard representations are supported ―off the shelf‖ by the

engine: RDF, WFS, O&M GML, GeoJSON, HTML.

 The API is realised independently through a configuration file which lists

resources: these are the canonical observations, different observation collections,

and sensors.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 43

o Using this API configuration, the domain ontology mapping, and trigger

configuration, the HLAPI engine automatically generates the resources

required and applicable representation.

 RDF resources are automatically populated in a SPARQL endpoint.

 REST API extensions are automatically populated when data is available and

relationships between resources exist.

 Provides a full implementation of the High-Level API for Observations.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 44

7. Use Cases and Example Semantic Mashups

Having introduced a High-Level API for Observations and implemented services to

expose datasets using the HLAPI, in this chapter we briefly outline how a domain

developer might use the HLAPI to develop semantic web applications and mashups.

It is worth noting that:

 These semantic mashups demonstrate the potential for positive unintended re-

use of sensor data. While they do not make full use of all of the features of all of

the data (this is better demonstrated in the full SemSorGrid4Env Flood

Application), they show that a little amount of semantically annotated sensor

information can prove useful to many different use cases.

 By their nature of being a mashup, these web applications make use of other

(often Linked Data) information sources in addition to those exposed by the

HLAPI. Linking from and in the HLAPI is crucial in this regard, via domain

ontologies and instances.

 The mashups were each coded by a single web developer, unfamiliar with the

CCO data sources (but with some general semantic web familiarity) in a short

period of time.

7.1. Recreational re-use: sea state and linked amenities for surfers

One of the CCO sensors is based near Boscombe, where the UK‘s first artificial surf

reef has been constructed. This mashup shows the surfer the size of swell, received from

the sensor network, and should the surfer then decide to visit, details of local amenities

(pubs, car parks) and relevant information (road safety) all generated from Linked Data.

Scripting language and libraries

This example uses the PHP
10

 scripting language. For Sparql queries and RDF

manipulation it uses the Arc2
11

 library and, for ease of coding and readability,

Graphite
12

. The Google Chart API
13

 is used for charts, and the Google Static Maps

API
14

 and Openlayers
15

 for mapping.

10

 http://php.net

11
 http://arc.semsol.org/

12
 http://graphite.ecs.soton.ac.uk/

13
 http://code.google.com/apis/chart/

14
 http://code.google.com/apis/maps/documentation/staticmaps/

15
 http://openlayers.org/

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 45

Another useful tool is an RDF browser such as the Q&D RDF Browser
16

.

First we load in the Arc2 and Graphite libraries and set up Graphite with a list of

namespaces for coding simplicity.

require_once "arc/ARC2.php";

require_once "Graphite.php";

$graph = new Graphite();

$graph->ns("id-semsorgrid", "http://id.semsorgrid.ecs.soton.ac.uk/");

$graph->ns("ssn", "http://purl.oclc.org/NET/ssnx/ssn#");

$graph->ns("DUL", "http://www.loa-cnr.it/ontologies/DUL.owl#");

$graph->ns("time", "http://www.w3.org/2006/time#");

This continues for other useful namespace prefixes. The id-semsorgrid prefix is added

for further code brevity.

Displaying a map of all wave height sensors

One of the observation serialisations available from the CCO deployment of the HLAPI

is a GeoJSON format. This serialisation, which shows the locations of all wave height

readings made in a particular time frame, can be rendered by various mapping engines

including Openlayers.

The markup to display the map, given the path to a GeoJSON file, is very simple and

fully documented by Openlayers.

Depending on how the HLAPI is configured, the resource for of wave height readings

for a particular hour may be at:

http://id.semsorgrid.ecs.soton.ac.uk/observations/cco/Hs/20110215#01

which would then be content-negotiated to the OpenJSON representation:

http://geojson.semsorgrid.ecs.soton.ac.uk/observations/cco/Hs/20110215/00

16

 http://graphite.ecs.soton.ac.uk/browser/

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 46

Given this URL a map such as the following may be generated:

Figure 7-1 – Example of sensor and wave heights retrieved from the HLAPI via an OpenLayers map

interface

Getting the day's wave height readings and the sensor metadata

In the case of the CCO deployment, the current day's wave height readings for the

Boscombe sensor are identified by

id-semsorgrid.ecs.soton.ac.uk:observations/cco/boscombe/Hs/latest

We can direct Graphite to load the resources into a graph – Graphite and the HLAPI

will automatically negotiate a content type that can be used. We're using the namespace

we defined above for brevity.

$graph->load("id-semsorgrid:observations/cco/boscombe/Hs/latest");

Graphite allows the graph to be rendered directly as HTML to quickly visualise what is

available. The same can be achieved by using a dedicated RDF browser.

echo $graph->dump();

The beginning of the output is something like the following:

id-semsorgrid:observations/cco/boscombe/Hs/20110215 -> rdf:type ->

 DUL:Collection -> DUL:hasPart ->

 id-semsorgrid:observations/cco/boscombe/Hs/20110215#000000,

 id-semsorgrid:observations/cco/boscombe/Hs/20110215#003000,

 id-semsorgrid:observations/cco/boscombe/Hs/20110215#010000

id-semsorgrid:observations/cco/boscombe/Hs/20110215#000000 ->

 rdf:type -> ssn:Observation -> ssn:observedBy ->

 id-semsorgrid:sensors/cco/boscombe -> ssn:featureOfInterest ->

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 47

 http://www.eionet.europa.eu/gemet/concept?cp=7495 ->

 ssn:observedProperty ->

 http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height ->

 ssn:observationResult -> _:arce2d5b1 ->

 ssn:observationResultTime -> _arce2d5b3 <- is DUL:hasPart of

 <- id-semsorgrid:observations/cco/boscombe/Hs/20110215

The bnodes are also shown, and their IDs can be traced to see which properties are

available on each node.

A lot of useful information such as the sensor's coordinates is attached to the sensor's

URI, which is linked from each ssn:Observation node. It's easy to get the URI, simply

by getting ssn:Observation nodes, and then collecting the first found

ssn:observedBy property of any of them. It's important to handle the case where there

are not yet any results.

$sensor = $graph->allOfType("ssn:Observation")->

 get("ssn:observedBy")-> distinct()->current();

if ($sensor->isNull())

 die("No results yet today");

$sensorURI = $sensor->uri;

To get the sensor's coordinates we ask Graphite to dereference the sensor's URI and

load its triples, then traverse the expanded graph to fetch the required values. The

traversals here can once again be visualised by first dumping the graph or exploring the

graph in any RDF browser.

$graph->load($sensorURI);

$location = $graph->resource($sensorURI)->get("ssn:hasDeployment")->

 get("ssn:deployedOnPlatform")->get("sw:hasLocation");

$coords = array(floatVal((string) $location-> get("sw:coordinate2")->

 get("sw:hasNumericValue")), floatVal((string) $location->

 get("sw:coordinate1")-> get("sw:hasNumericValue")),);

To collect all wave height observations we query the graph for all nodes of type

ssn:Observation and skip over those whose ssn:observedProperty property is not

that which we are looking for (just in case we have other observation types in our

graph).

Each observation corresponds to a particular time interval so we need to collect the time

(in this example we'll associate the end of the time interval – time:hasEnd – with the

reading) as well as the wave height observation itself. The code snippet below also skips

any observations whose ssn:observationResultTime property doesn't point to a node

of type time:Interval, but it would be trivial to also parse nodes of different time

classes.

Finally in this snippet the array of observations is sorted by time.

Again, to see how the traversal is built up it is easiest to inspect the graph visually.

$observations = array();

foreach ($graph->allOfType("ssn:Observation") as $observationNode) {

 if ($observationNode->get("ssn:observedProperty") !=

 "http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height")

 continue;

$timeNode = $observationNode->get("ssn:observationResultTime");

if (!$timeNode->isType("time:Interval"))

 continue;

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 48

$time = strtotime($timeNode->get("time:hasEnd"));

$observations[$time] = floatVal((string) $observationNode->

 get("ssn:observationResult")->get("ssn:hasValue")->

 get("DUL:hasDataValue")); }

ksort($observations, SORT_NUMERIC);

Visualising the data

The array resulting from the code above can be used to produce a chart of the wave

heights. Explaining the snippet below is beyond the scope of this document, but it uses

the Google Chart API to produce a line graph of wave height against time.

// organise data

$keys = array_keys($observations);

$start = array_shift($keys);

$end = array_pop($keys);

$period = $end - $start;

$datax = $datay = array();

$maxheight = ceil(max($observations) * 10 * 1.2) / 10;

foreach ($observations as $time => $height) {

 $datax[] = ($time - $start) * 100 / $period;

 $datay[] = $height * 100 / $maxheight;

}

// x axis labels

$axisx = array();

for ($time = $start; $time <= $end; $time += $period / 6)

 $axisx[] = date("H:i", $time);

// parameters for Google Chart API

$chartparams = array(

"cht=lxy", //line x-y

"chs=340x200", //size

"chco=0066cc", //data colours

"chm=B,99ccff,0,0,0", //fill under the line

"chd=t:" . implode(",", $datax) . "|" . implode(",", $datay), //data

"chxt=x,y,x", //visible axes

"chxr=0,0,100|1,0," . $maxheight, //x and y axis ranges

"chxl=0:|" . implode("|", $axisx) . "|2:|Time", //custom labels for

axes, evenly spread, also axis titles

"chxp=2,50|3,50", //positions of axis titles

"chf=bg,s,ffffff00", //transparent background);

// output chart

echo '<img src="http://chart.apis.google.com/chart?' . implode("&",

$chartparams) . '">';

It's easy to show a map with the sensor's position highlighted, too: the following uses

the Google Static Maps API to do this.

echo '<img

src="http://maps.google.com/maps/api/staticmap?size=300x200¢er=' .

$coords[0] . ',' . $coords[1] .

'&zoom=8&maptype=hybrid&sensor=false&markers=' . $coords[0] . ',' .

$coords[1] . '">';

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 49

Fetching related data from other data sources

We can get the name of a nearby place and the nearest post code from the web services

provided by Geonames
17

. Geonames returns XML that is easy to parse with PHP.

Again, explaining how the external API call works is beyond the scope of this

document.
// get nearby place name $placenameXML =

simplexml_load_file("http://ws.geonames.org/findNearbyPlaceName?lat={$

coords[0]}&lng={$coords[1]}"); $placename = array_shift($placenameXML-

>xpath('/geonames/geoname[1]/name[1]')); // get nearby postcode

$postcodeXML =

simplexml_load_file("http://ws.geonames.org/findNearbyPostalCodes?lat=

" . $coords[0] . "&lng=" . $coords[1]); $postcode =

array_shift($postcodeXML->xpath('/geonames/code[1]/postalcode[1]'));

The postcode is used in the surf status mashup to fetch the British region name from

Ordnance Survey, which in turn is used to fetch population and traffic accident data

from Eurostat.

Data is also collected from Linked Geodata
18

 to get the whereabouts of nearby facilities.

For instance, to get parking facilities within five kilometres of the sensor, its SPARQL

endpoint is queried as follows:

$store = ARC2::getRemoteStore(array("remote_store_endpoint" =>

 "http://linkedgeodata.org/sparql/"));

$rows = $store->query("

 PREFIX lgdo: <http://linkedgeodata.org/ontology/>

 PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

 SELECT * WHERE {{ ?place a lgdo:Parking . } UNION

 { ?place a lgdo:MotorcycleParking . } UNION

 { ?place a lgdo:BicycleParking . }

 ?place a ?type ;

 geo:geometry ?placegeo ;

 rdfs:label ?placename .

 FILTER(<bif:st_intersects>

 (?placegeo, <bif:st_point> ($coords[1], $coords[0]), 5)). }",

 "rows");

The returned results include the coordinates of each parking facility (placegeo), from

which the distance to the sensor can be calculated.

Similar queries can be used to get data on other types of nearby amenities – the surf

status mashup also locates nearby pubs, cafés and shops.

17

 http://www.geonames.org/

18
 http://linkedgeodata.org/

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 50

Finished mashup

The finished mashup, once styled, looks something like the screenshot shown in Figure

7-2 (with only three readings so far that day).

Figure 7-2 – Example mashup using HLAPI serialised data sources

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 51

7.2. Flood Gate status for the Coastal Defence Partnership

The Coastal Defence Partnership (CDP) is an alliance of three local governments along

the Solent on the South Coast of the UK (Portsmouth City Council, Gosport Borough

Council, and Havant Borough Council).

One of the responsibilities of the CDP Coastal Team is the co-ordination of flood

protection barrier erection in the old town of Portsmouth should a flood event occur.

Installation of flood barriers is dependent on tide and wave levels, and is sequenced.

Figure 7-3 Locations of floodgates in Portsmouth, shown with the sequence in which they are closed

during a flood (photograph courtesy CDP)

Flood barriers as well as flood water can block access to roads and facilities, so it can be

useful to have an overview of which barriers are in place, which need to be erected next,

and any relevant utilities that might be affected. The co-ordination is undertaken by

team members on site, and it is plausible that, in the future, they may be equipped with

internet enabled tablet devices – this is the scenario the prototype mashup looks to

address.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 52

Figure 7-4 A flood waters surround Portsmouth old town (photograph courtesy CDP)

Figure 7-5 A flood barrier deployed in Portsmouth (photograph courtesy CDP)

Mashup implementation

Development of the mashup follows the same basic pattern as the first example, starting

with tide height measurements from the CCO sensor closest to the flood barrier

location:

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 53

http://id.semsorgrid.ecs.soton.ac.uk/observations/cco/portsmouth/TideH

eight/latest

Rather than finding recreational amenities linked to the sensor location, the mashup

finds linked data for critical services (police stations, hospitals, trunk roads), but using

the same techniques.

The completed mashup is shown in figure 7-5.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 54

Figure 7-5: Mashup showing sea levels and flood gate status

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 55

8. Summary

High-Level APIs enable the quick and simple development of lightweight Web

applications and mashups. We have explored the requirements for a high-level API for

semantic sensor grids through domain driven design of a specific API for the Channel

Coastal Observatory sensor data. Our objectives in developing the API can be

summarised as:

1. To publish the sensor data from the CCO as linked data, enabling Semantic Web

client applications that can combine these observations with other domain

information retrieved from the linked data web (e.g. land use, transport)

2. To RESTfully publish sensor data to clients that support existing GML schema

3. To allow the development of hybrid clients which can transpose between linked

data and GML (or other) representations, taking best advantage of both

In doing so we have developed best-practice principles for developing High-Level

APIs, taking a Resource Oriented approach to simplify application development while

semantically structuring domain data that forms the core of useful software. This

combines the best of REST and Linked Data experience to support domain developers

with lightweight, self-descriptive HLAPI, enabling them to quickly build bespoke

applications using data in new and previously unforseen ways.

Our aim throughout is to encourage the use of High-level APIs to generate a new class

of rapidly developed applications in support of sensor grids. Traditional GIS systems

are often large and complex – adding support for a new use case implies enlargement of

the functionality of the application. We believe the lower barrier of entry in developing

simple web applications and mashups, with the associated shorter lead time and lower

costs, will encourage the development of many varied and specialised web based

applications suited to individual tasks that are not practical propositions in a monolithic

GIS environment.

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 56

References

[Ala2010] Alarcon, R., Wilde, E. (2010) “Linking Data from RESTful Services”. In

proc. LDOW 2010, Raleigh, North Carolina

[D1.4v1] Aparicio, J., Gray, A., Kyzirakos, K., Sadler, J., and Page, K. (2010)

―Reference SemsorGrid4Env Implementation - Phase I‖, Deliverable

D1.4v1, SemSorGrid4Env

[Bec2000] Beck, K. (2000) Extreme Programming Explained: Embrace Change

2nd. ed. Addison-Wesley, 2000 pp. 54

[Ben2008] Benslimane, Djamal; Schahram Dustdar, and Amit Sheth (2008).

"Services Mashups: The New Generation of Web Applications". IEEE

Internet Computing, vol. 12, no. 5. Institute of Electrical and Electronics

Engineers. pp. 13–15.

[Ber2006] T. Berners-Lee. Linked Data, Design Issues.

http://www.w3.org/DesignIssues/LinkedData.html, July 2006.

[Biz2009] Bizer, C., Heath, T. and Berners-Lee, T. (2009) “Linked Data - The Story

So Far,” Int. Journal on Semantic Web and Information Systems, Special

Issue on Linked Data

[Bot2007] Botts, M. et al. (2007) “OGC Sensor Web Enablement: Overview and

High Level Architecture”. White Paper, published by Open Geospatial

Consortium Inc.

[D7.1v2] Hutton, C., Sadler, J., Page, K., Clark, M., Newman, R. and Roe, S.

(2010) ―Flood user requirements specification‖, Deliverable D7.1v2,

SemSorGrid4Env

[Cox2007] Cox, S. (2007) “Observations and Measurements - Part 1 - Observation

schema (OpenGIS Implementation Standard OGC 07-022r1)”. Technical

report, Open Geospatial Consortium Inc.

[Eva2003] Evans, E. (2003) ―Domain-driven Design: Tackling Complexity at the

Heart of Software‖, 1
st
 Edition, Addison Wesley, ISBN 978-0321125217

[Fie2000] Fielding, R. T. (2000) Architectural Styles and the Design of Network-

Based Software Architectures, PhD dissertation, Dept. of Computer

Science, Univ. of California, Irvine, California

[Fra2011] Frazer, A. J., De Roure, D., Martinez, K., Nagel, B., Page, K. R., Sadler,

J. (2011) ―Implementation and Deployment of a Library of the High-

level Application Programming Interfaces‖, Deliverable D7.2v2,

SemSorGrid4Env

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 57

[D4.3v2] Garcia-Castro, R., Hill, C., Corcho, O. (2011) ―Sensor network ontology

suite‖, Deliverable D4.3v2, SemSorGrid4Env

[Ger2006] Gerber, AJ, Barnard, A & Van der Merwe, Alta (2006) “A Semantic Web

Status Model”. Integrated Design & Process Technology, Special Issue:

IDPT 2006

[D1.3v2] Gray, A. J. G., Galpin, I.,Fernandes, A. A. A., Paton, N. W., Page, K.,

Sadler, J., Koubarakis, M., Kyzirakos, K., Calbimonte, J., Corcho, O.,

Garcia, R., Diaz, V., Liebana, I. (2010) ―SemSorGrid4Env architecture –

phase I‖, Deliverable D1.3v2, SemSorGrid4Env

[D7.1b] Hutton, C., Sadler, J., and Newman, R. (2010) ―Flood user requirements

specification update‖, Deliverable D7.1b, SemSorGrid4Env

[Lac2005] Lacy, L. W. (2005) ―OWL: Representing Information Using the Web

Ontology Language”. Victoria, BC: Trafford Publishing. ISBN 1-4120-

3448-5.

[SML2010] OpenGIS Sensor Model Language (2010) available online at

http://www.opengeospatial.org/standards/sensorml

[D5.1] Page, K. R., De Roure, D.C., Martinez, K., and Sadler, J. (2009)

―Specification of high-level application programming interfaces‖,

Deliverable D5.1, SemSorGrid4Env

[Pag2009] Page, K. R., De Roure, D.C., Martinez, K., Sadler, J. and Kit, O. (2009)

“Linked Sensor Data: RESTfully serving RDF and GML”. In proc. 2
nd

International Workshop on Semantic Sensor Networks, Washington DC,

2009

[Pal2002] Palmer, S. R., Felsing, J. M. (2002) A Practical Guide to Feature-Driven

Development. Prentice Hall. ISBN 0-13-067615-2

[Pro2006] Probst, F. (2006) “Ontological Analysis of Observations and

Measurements”. In: Geographic Information Science, 4th International

Conference (GIScience 2006).

[Pro2010] programmableweb.com (2010) ―Frequently Asked Questions‖, available

online at http://www.programmableweb.com/faq

[Rai2010] Y. Raimond, T. Scott, S. Oliver, P. Sinclair, and M. Smethurst. Use of

Semantic Web technologies on the BBC Web Sites. In D. Wood, editor,

Linking Enterprise Data, pages 263–283. Springer, 2010.

[RDF1999] Resource Description Framework (RDF) Model and Syntax Specification

(1999) available online at http://www.w3.org/TR/PR-rdf-syntax

[Ric2007] Richardson, L., Ruby, S. (2007) RESTful Web Services. 1
st
 ed. O‘Reilly.

ISBN 0-596-52926-0

http://www.programmableweb.com/faq

SemSorGrid4Env FP7-223913

D5.3v2 Programming Patterns and Development Guidelines for Semantic Sensor Grids 58

[Rou2010] D. De Roure, C. Goble, S. Aleksejevs, S. Bechhofer, J. Bhagat, D.

Cruickshank, et al. The evolution of myexperiment. In IEEE

International Conference on eScience, pages 153–160. IEEE Computer

Society, 2010.

[Sau2008] Sauermann, L., Cyganiak, R. (2008) “Cool URIs for the Semantic Web”.

W3C Semantic Web Education and Outreach Interest Group Note

[Sch2004] Schwaber, Ken (2004) Agile Project Management with Scrum. Microsoft

Press. ISBN 978-0-735-61993-7

[RDFS2004] W3C RDFS Specification (2004) available online at

http://www.w3.org/TR/rdf-schema

[Wil2009] E. Wilde and M. Hausenblas. RESTful SPARQL? You name it!: aligning

SPARQL with REST and resource orientation. In Proceedings of the 4th

Workshop on Emerging Web Services Technology, pages 39–43. ACM,

2009

[WFS2010] WFS Implementation Specification (2010) available online at

http://www.opengeospatial.org/standards/wfs

[WMS2010] WMS Implementation Specification (2010) available online at

http://www.opengeospatial.org/standards/wms

http://www.w3.org/TR/rdf-schema

