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Abstract: A new wavelet based feature parameter have been developed to represent the 
characteristics of PD activities, i.e. the wavelet decomposition energy of PD pulses 
measured from non-conventional ultra wide bandwidth PD sensors such as capacitive 
couplers (CC) or high frequency current transformers (HFCT). The generated feature 
vectors can contain different dimensions depending on the length of recorded pulses. 
These high dimensional feature vectors can then be processed using Principal 
Component Analysis (PCA) to map the data into a three dimensional space whilst the first 
three most significant components representing the feature vector are preserved. In the 
three dimensional mapped space, an automatic Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) algorithm is then applied to classify the data cluster(s) 
produced by the PCA. As the procedure is undertaken in a three dimensional space, the 
obtained clustering results can be easily assessed. The classified PD sub-data sets are 
then reconstructed in the time domain as phase-resolved patterns to facilitate PD source 
type identification. The proposed approach has been successfully applied to PD data 
measured from electrical machines and power cables where measurements were 
undertaken in different laboratories. 
 

 
1 INTRODUCTION 

Partial discharge (PD) classification and 
identification have been attracting a substantial 
amount of interest from researchers, utilities and 
manufacturers over the last few decades. Different 
PD classification features, rules, methods and 
knowledge bases have been developed based on 
different PD measurement systems. With the 
development of non-conventional wide bandwidth 
and ultra bandwidth PD sensors and high speed 
signal acquisition equipment, PD analysis tends to 
analyse the details of the PD pulse rather than the 
traditional time domain phase occurrence and 
amplitude based information only. 

A large number of publications have reported 
promising results on PD classification or 
identification, however in most cases, the proposed 
approach only has been tested on a single PD 
source using particular equipment or laboratory 
experiment. In the case of multiple PD sources 
being activated simultaneously within power plant, 
the performance of the published methods are 
generally compromised or fail completely. To 
overcome such issues in PD source identification, 
different PD source classification/separation 
algorithms have been designed based on the 
analysis of PD pulses in time and frequency 
domain [1-3]. Phase resolved PD patterns and/or 
their statistical operators have been used as 
characteristics to classify different PD source types 

using machine learning techniques or fuzzy logic 
algorithms [3, 4].  

In this paper, a new feature parameter i.e. the 
wavelet decomposition energy has been 
developed to represent the characteristics of PD 
activities.  The wavelet decomposition energy is 
calculated using PD pulses measured from non-
conventional ultra wide bandwidth PD sensors 
such as capacitive couplers (CC) or high frequency 
current transformers (HFCT). The generated 
feature vectors can contain different dimensions 
depending on the length of recorded pulses and 
decomposition level. The generated high 
dimensional feature vectors can then be processed 
using Principal Component Analysis (PCA) to map 
the data into a three dimensional space whilst the 
first three most significant components 
representing the feature vector are preserved. In 
the three dimensional mapped space, an 
automatic Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) algorithm is 
then applied to classify the data cluster(s) 
produced by the PCA. As the procedure is 
undertaken in three dimensional space, the 
obtained clustering results can be easily assessed. 
The classified PD data sets are then reconstructed 
in the time domain as phase-resolved patterns to 
facilitate PD source type identification. The 
proposed approach has been successfully applied 
to PD data measured from both electrical 
machines and power cables.  
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2 PD DATA ACQUISITION 

PD data investigated in this paper were measured 
from HV cables and HV generators using different 
commercially available PD measurement 
equipment. 

2.1 HV Cable PD data 

The PD signal was measured using a split ferrite 
core High Frequency Current Transformer (HFCT) 
placed around the earth connection of HV cable, 
which has a bandwidth of 50 kHz – 20 MHz. The 
measured PD data were recorded using an 
Advanced Substation Monitor (ASM) which has 
been widely installed within the distribution network 
of UK Power Networks (UKPN). 

PD phenomena within 11 kV three phase belted 
paper insulated lead cover (PILC) cable has been 
investigated in this paper. Both experimental data 
under controlled laboratory conditions and field on-
line measurement data have been analyzed. The 
experiment for PD measurement is shown in 
Figure 1. 

 
a. 

 
b. 

 
c. 

Figure 1: Arrangement of PD measurement using 
ASM a. Schematic diagram of PD measurement in 
laboratory b. c. Field installations of HFCT [5] 

As shown in Figure 1, the experiment is back-
energized using a three-phase 11000/415 V 
delta/star distribution transformer. Three five-meter 
tails have been constructed using polymeric cables 
and terminals to connect between the HV side of 
the power transformer and the cable sample. The 
power transformer and polymeric cable tails have 
been tested and are PD free under rated 
conditions. In-line filters have been employed on 
the mains power supply in the control room and the 
resulting background noise level is 20 pC which is 
adequate for this investigation. Protection systems 
have been designed to protect the power supply 
under fault conditions and ensure safety of 
operators during operation [6]. The installation of 
PD sensors and ASM monitor in the field uses 
different arrangements as shown in Figure 1b and 
1c [5].  

The data acquisition unit within the ASM monitor 
samples across the power cycle at a sampling rate 
of 100 MS/s (50 MS/s for some old versions) with a 
12bit resolution. The ASM monitor used in the 
laboratory experiment was connected to one HFCT 
and records one power cycle of data every 3 
minutes. In the field, upto 128 PD sensors e.g. 
HFCT can be connected to the ASM monitor using 
multiplexers, therefore the recording interval 
between each acquisition for a particular sensor 
may be extended to 30 minutes. The obtained high 
resolution raw data were pre-processed to extract 
PD pulses and their phase occurrence. 

In the laboratory controlled experiment, known 
defects has been inserted into a cable joint during 
the jointing process and act as an artificial PD 
source. The PD inception voltage was below rated 
voltage and PD measurements were taken under 
rated conditions. 

2.2 Electrical machine PD data 

In this case, the PD signal was generated from 
artificially defective conductor bars of ac rotating 
machines and accelerated aged induction motor 
coils. The signals were produced by known 
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sources under controlled conditions. PD 
measurements were performed using a digital 
waveform analyzer that records the complete time 
signature of signal pulses, using a sequence-mode 
technique. The instrumentation has a bandwidth of 
up to 200 MHz and operates at a suitable sampling 
rate (up to 500 MS/s) to avoid frequency aliasing. 
The measurement system is fully remotely-
controllable by a personal computer. The 

waveform analyzer was connected to a 50  
resistor used as a measuring impedance. Different 
coupling capacitors were adopted in the tests 
using an indirect connection [7]. A low-pass filter 
(100 kHz cut-off frequency) was utilized to reject 
the low-frequency components of the test signal. 
The output of the acquisition process consists of a 
sequence of pulse signals along with their 
associated time pointers on the phase occurrence. 

3 PD PULSE CHARACTERISATION AND 
CLASSIFICATION 

3.1 Wavelet decomposition energy 

The wavelet decomposition process works like a 
pair of complementary high-pass and low-pass 
filters, which decomposes the original signal into a 
series of detail and approximate coefficients 
respectively, as shown in Figure 2a, where S 
represents the original signal, D represents the 
detail decomposition coefficients and A represents 
the approximate decomposition coefficients. As an 
iterative process, the original signal can be 
decomposed into different levels, where each level 
is half the bandwidth (sampling rate in frequency 
domain) and half the length (sample number in 
time domain) than the above level, as shown in 
Figure 2b, where cA and cD represent the 
approximate and detail decomposition coefficients 
respectively and the number after cA or cD 
represents the decomposition level. Figure 3 
shows an example of the decomposition 
coefficients at different levels. 

 

a.    b. 

Figure 2: Wavelet decomposition a. 
Complementary filters decomposition b. Iterative 
decomposition 

 
Figure 3: Wavelet decomposition coefficients 

The energy of the coefficients at different 
decomposition levels can therefore be calculated 
using the following equations: 
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where EDi is the energy of the detail decomposition 
coefficients, EAn is the energy of the approximate 
decomposition coefficients. n is the wavelet 
decomposition level. Nc is the number of 
decomposition coefficients. Cd and Ca are the 
detail and approximate decomposition coefficients 
respectively. The result obtained at each 
decomposition level using equations (5) and (6) is 
the percentage of the total signal energy. 
Therefore the produced feature vector consists of a 
set of values describing the percentage of total 
signal energy contained in each set of 
decomposition coefficients. The feature vector 
produced is then normalized to sum to 1. Figure 4 
shows an example of the wavelet decomposition 
energy, expressed in terms of percentages. 

 
Figure 4: Wavelet decomposition energy 
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3.2 Principal Component Analysis 

The wavelet energy based feature vector 
described above will have more than 3 dimensions, 
as the applied decomposition is more than 2 levels. 
Therefore it is impossible to represent the vector in 
a visible coordinate space, which must consist of 
no more than 3 dimensions. In order to visualise 
the wavelet energy vectors and manually verify the 
clustering and classification results, a dimension 
reduction technique has to be implemented to 
reduce the dimension of the feature vectors whilst 
preserving their characteristics. 

Principal Component Analysis (PCA) is a non-
parametric linear method that is extensively used 
for dimensionality reduction as well as simplifying 
the structure of complex data sets, by means of an 
orthogonal linear transformation in the direction of 
the greatest variance. PCA is applied here to 
reduce the number of energy levels associated to 
each decomposition level to three, thus allowing a 
representation of the PD signals in 3-D space. 

The sample PD data sets (X) considered are 
expressed as N vectors, each comprising of M 
dimension columns (10 energy levels as the 
example shown in Figure 4), where N is the 
number of the pulse-like recorded signals. The 
PCA procedure is produced from solution of an 
eigenvalue problem that consists of: calculation of 
covariance matrix 
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Evaluation of eigenvalues (λ); mapping the input 

data to the new coordinate space using 

 4XP T   

The mapped matrix represents the principal 
components with a decreasing significance. The 
first three components within the matrix are 
therefore plotted in a 3 dimensional space. Using 
this method, the recorded signals can be visually 
presented and the quality of the separation 
algorithm can also be manually verified.  

3.3 Automatic clustering using Density 
Based Spatial Clustering of Applications 
with Noise 

Among the various density-based clustering 
algorithms, DBSCAN has been considered for this 
application due to its ability to discover clusters of 
arbitrary shape as well as to distinguish noise 
(sparse points) in n-dimensional space. DBSCAN 
labels data points that are densely distributed and 
associated by a single cluster [8, 9]. Density 
represents the number of points, n, that fall in a 
small volume V surrounding a given point, P. V can 

be assumed as a hyper-sphere of radius  
centered at P, hence, the threshold density can be 
specified by a parameter nmin that represents the 

minimum number of points to make the volume V, 

significantly dense.  and nmin are the two degrees 
of freedom defined by the method. Point P can 
either be a dense (core point) or non-dense point 
(non-core point). A non-dense point might be a 
border point of a dense region or disconnected 
(noise). In particular, as shown in Figure 5: A 
generic point Q, is a core-point if a number n>nmin 
of points are included in the hyper-sphere V, 

having radius  and centered at P; A point P is 
directly-density reachable (DDR) from Q if P is 
included in V and Q is a core-point; A point P is 
density reachable (DR) from R within V, if there is 
a chain of objects p1, p2…,pn, where p1=R and 

pn=P, such that, for 1≤i≤n, piQ and pi+1 is DDR 
from pi; A point S is density-connected (DC) to P in 

a set of volumes Vj, if there is an object TVj such 
that both S and P are DR from R. 
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Figure 5: Principle of DBSCAN 

A density-based cluster is defined as a set of 
density-connected points maximized with respect 
to the density-reachability concept. Every point not 
contained by a sufficiently populated cluster is 
classified as noise. Taking this into account, 
DBSCAN is a member of the partial clustering 

algorithm group. For any given , nmin value, by 
selecting an initial point P (randomly or resorting to 
the maximum/minimum weight of a selected 
function, e.g. considering the point that show the 
maximum frequency of occurrence), DBSCAN 
checks if P is a core-point. If this is found to be the 
case, it selects the DR and DDR points and 
expands the cluster by merging neighbouring 
dense regions together. Once the border of the 
first cluster is identified, DBSCAN selects another 
point P’ in space that does not belong to a 
previously formed cluster and the procedure 
mentioned above is repeated [9]. The algorithm 
collects DDR from these core-points iteratively, 
which may involve the merging of a few density-
reachable clusters. The process terminates when 
no new points can be added to any of the clusters. 

4 RESULTS AND DISCUSSION 

The proposed separation algorithm has been 
applied to analyze PD measurement results 
obtained testing a frame representing the complete 
stator coil of an HV induction motor rated at 11 kV. 
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The insulation system is based on mica tape 
impregnated with epoxy resin, completed with 
polyester-graphite tape and uses polyester-
semiconductive tape as an end-winding corona 
suppression system. The stator coil was cured 
using vacuum pressure impregnantation (VPI) 
technology. The frame was subjected to an 
accelerated multi-factor aging procedure 
composed of a series of thermal, electrical and 
mechanical stresses. Each aging cycle had a 
duration of one week. PD patterns have been 
recorded before and after the aging process. A PD 
pattern was then recorded as shown in Figure 6. 

 
Figure 6: Phase resolved PD pattern obtained 
from coil of an induction motor at 6 kV after the 
inception of a new PD phenomenon 

The automatic classification method proposed in 
section 3 has been applied to the obtained data. 
The clustering results are shown in Figure 7. The 
clustered PD pulses were then reconstructed using 
the phase resolved pattern, as shown in Figure 8. 

 
Figure 7: PCA and DBSCAN clustering result 

 
a. 

 
b. 

Figure 8: Phase resolved pattern for each cluster 
a. cluster 1 b. cluster 2 

Figure 8a shows typical pattern generated by 
distributed micro-voids within the coil sample. The 
new PD phenomenon due to tape delamination 
(macro-void) in the aging process has been shown 
in Figure 8b. This defect was confirmed after 
forensic analysis of the coil. 

PD data obtained from the 11 kV PILC 3 phase 
cable utilized in a distribution network using the 
ASM monitor have also been analyzed. Figure 9 
shows the pattern of 10 days of PD data. 

 
Figure 9: Phase resolved pattern of 326 power 
cycles 

The measured PD pulses have been classified in 
to 2 clusters, as shown in Figure 10. 

#2 

#1 
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Figure 10: PCA and DBSCAN clustering result 

 
a. 

 
b. 

Figure 11: Phase resolved pattern for each cluster 
a. cluster 1 b. cluster 2 

Figure 11a represents a typical PD pattern 
produced by distributed voids which commonly 
exist within such mass-impregnated cable. Figure 
11b shows the PD activity generated by a defect 
between the sheath and a phase conductor. 

5 CONCLUSION 

A new PD classification algorithm has been 
detailed in this paper. The method is based on the 
use of wavelet decomposition energy distribution 
as the feature vector; unsupervised learning i.e.  
Principal Component Analysis as the dimension 
reduction and feature extraction technique; and 

Density-Based Spatial Clustering of Applications 
with Noise as the automatic clustering technique. 

The proposed method has been applied to analyze 
PD data measured from high voltage different 
plant. It has robust and effective performance in 
discriminating different PD sources. Moreover, the 
approach has shown an important advantage in 
term of minimizing the requirement from human 
intervention thus constituting a significant step 
forward in the development of automatic PD 
classification system.  
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