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Abstract: A new wavelet based feature parameter have been developed to represent the
characteristics of PD activities, i.e. the wavelet decomposition energy of PD pulses
measured from non-conventional ultra wide bandwidth PD sensors such as capacitive
couplers (CC) or high frequency current transformers (HFCT). The generated feature
vectors can contain different dimensions depending on the length of recorded pulses.
These high dimensional feature vectors can then be processed using Principal
Component Analysis (PCA) to map the data into a three dimensional space whilst the first
three most significant components representing the feature vector are preserved. In the
three dimensional mapped space, an automatic Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm is then applied to classify the data cluster(s)
produced by the PCA. As the procedure is undertaken in a three dimensional space, the
obtained clustering results can be easily assessed. The classified PD sub-data sets are
then reconstructed in the time domain as phase-resolved patterns to facilitate PD source
type identification. The proposed approach has been successfully applied to PD data
measured from electrical machines and power cables where measurements were

undertaken in different laboratories.

1 INTRODUCTION

Partial discharge (PD) classification and
identification have been attracting a substantial
amount of interest from researchers, utilities and
manufacturers over the last few decades. Different
PD classification features, rules, methods and
knowledge bases have been developed based on
different PD measurement systems. With the
development of non-conventional wide bandwidth
and ultra bandwidth PD sensors and high speed
signal acquisition equipment, PD analysis tends to
analyse the details of the PD pulse rather than the
traditional time domain phase occurrence and
amplitude based information only.

A large number of publications have reported
promising results on PD classification or
identification, however in most cases, the proposed
approach only has been tested on a single PD
source using particular equipment or laboratory
experiment. In the case of multiple PD sources
being activated simultaneously within power plant,
the performance of the published methods are
generally compromised or fail completely. To
overcome such issues in PD source identification,
different PD source classification/separation
algorithms have been designed based on the
analysis of PD pulses in time and frequency
domain [1-3]. Phase resolved PD patterns and/or
their statistical operators have been used as
characteristics to classify different PD source types

using machine learning techniques or fuzzy logic
algorithms [3, 4].

In this paper, a new feature parameter i.e. the
wavelet decomposition energy has been
developed to represent the characteristics of PD
activities. The wavelet decomposition energy is
calculated using PD pulses measured from non-
conventional ultra wide bandwidth PD sensors
such as capacitive couplers (CC) or high frequency
current transformers (HFCT). The generated
feature vectors can contain different dimensions
depending on the length of recorded pulses and
decomposition level. The generated high
dimensional feature vectors can then be processed
using Principal Component Analysis (PCA) to map
the data into a three dimensional space whilst the
first three most significant  components
representing the feature vector are preserved. In
the three dimensional mapped space, an
automatic Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm is
then applied to classify the data cluster(s)
produced by the PCA. As the procedure is
undertaken in three dimensional space, the
obtained clustering results can be easily assessed.
The classified PD data sets are then reconstructed
in the time domain as phase-resolved patterns to
faciltate PD source type identification. The
proposed approach has been successfully applied
to PD data measured from both electrical
machines and power cables.
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2 PDDATA ACQUISITION

PD data investigated in this paper were measured
from HV cables and HV generators using different

commercially  available PD measurement
equipment.
2.1 HV Cable PD data

The PD signal was measured using a split ferrite
core High Frequency Current Transformer (HFCT)
placed around the earth connection of HV cable,
which has a bandwidth of 50 kHz — 20 MHz. The
measured PD data were recorded using an
Advanced Substation Monitor (ASM) which has
been widely installed within the distribution network
of UK Power Networks (UKPN).

PD phenomena within 11 kV three phase belted
paper insulated lead cover (PILC) cable has been
investigated in this paper. Both experimental data
under controlled laboratory conditions and field on-
line measurement data have been analyzed. The
experiment for PD measurement is shown in
Figure 1.
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Figure 1: Arrangement of PD measurement using
ASM a. Schematic diagram of PD measurement in
laboratory b. c. Field installations of HFCT [5]

As shown in Figure 1, the experiment is back-
energized using a three-phase 11000/415 V
delta/star distribution transformer. Three five-meter
tails have been constructed using polymeric cables
and terminals to connect between the HV side of
the power transformer and the cable sample. The
power transformer and polymeric cable tails have
been tested and are PD free under rated
conditions. In-line filters have been employed on
the mains power supply in the control room and the
resulting background noise level is 20 pC which is
adequate for this investigation. Protection systems
have been designed to protect the power supply
under fault conditions and ensure safety of
operators during operation [6]. The installation of
PD sensors and ASM monitor in the field uses
different arrangements as shown in Figure 1b and
1c [5].

The data acquisition unit within the ASM monitor
samples across the power cycle at a sampling rate
of 100 MS/s (50 MS/s for some old versions) with a
12bit resolution. The ASM monitor used in the
laboratory experiment was connected to one HFCT
and records one power cycle of data every 3
minutes. In the field, upto 128 PD sensors e.g.
HFCT can be connected to the ASM monitor using
multiplexers, therefore the recording interval
between each acquisition for a particular sensor
may be extended to 30 minutes. The obtained high
resolution raw data were pre-processed to extract
PD pulses and their phase occurrence.

In the laboratory controlled experiment, known
defects has been inserted into a cable joint during
the jointing process and act as an artificial PD
source. The PD inception voltage was below rated
voltage and PD measurements were taken under
rated conditions.

2.2 Electrical machine PD data

In this case, the PD signal was generated from
artificially defective conductor bars of ac rotating
machines and accelerated aged induction motor
coils. The signals were produced by known
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sources under controlled conditions. PD
measurements were performed using a digital
waveform analyzer that records the complete time
signature of signal pulses, using a sequence-mode
technique. The instrumentation has a bandwidth of
up to 200 MHz and operates at a suitable sampling
rate (up to 500 MS/s) to avoid frequency aliasing.
The measurement system is fully remotely-
controllable by a personal computer. The
waveform analyzer was connected to a 50 Q
resistor used as a measuring impedance. Different
coupling capacitors were adopted in the tests
using an indirect connection [7]. A low-pass filter
(100 kHz cut-off frequency) was utilized to reject
the low-frequency components of the test signal.
The output of the acquisition process consists of a
sequence of pulse signals along with their
associated time pointers on the phase occurrence.

3  PD PULSE CHARACTERISATION AND
CLASSIFICATION

3.1 Wavelet decomposition energy

The wavelet decomposition process works like a
pair of complementary high-pass and low-pass
filters, which decomposes the original signal into a
series of detail and approximate coefficients
respectively, as shown in Figure 2a, where S
represents the original signal, D represents the
detail decomposition coefficients and A represents
the approximate decomposition coefficients. As an
iterative process, the original signal can be
decomposed into different levels, where each level
is half the bandwidth (sampling rate in frequency
domain) and half the length (sample number in
time domain) than the above level, as shown in
Figure 2b, where cA and cD represent the
approximate and detail decomposition coefficients
respectively and the number after cA or cD
represents the decomposition level. Figure 3
shows an example of the decomposition
coefficients at different levels.

C5)
(5)
Lowpass Highpass
_ \ Filters A {

Approximate Detail CAZ
coefficients coefficients cAn
(cA) (cD)

a. b.

-~ ¢Dn

Figure 2: Wavelet decomposition a.
Complementary filters decomposition b. Iterative
decomposition

20
Original Signal Waveform
10+

mewwf .1 ‘J’”\WMWWMWWWMWWW
0

0 5 10 15 20
E —db10D1 . ‘ —db10D2
g OMWWWMWM oAl
£

=555 10 20 Y 10 20

(4]
o

db1OD3 ‘ db10D4

“, Mw y\,rm\ i'!

‘V
o IF (4 Uil

-
0 10 20 100 10 20
Time(us) Time(us)

Figure 3: Wavelet decomposition coefficients

The energy of the coefficients at different
decomposition levels can therefore be calculated
using the following equations:

NCch_z
Eoi = 2% 100 (1)

oSy 1ZNC'Cd 0+ CaZ(t)
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where Ep; is the energy of the detail decomposition
coefficients, E,, is the energy of the approximate
decomposition coefficients. n is the wavelet
decomposition level. Nc is the number of
decomposition coefficients. Cd and Ca are the
detail and approximate decomposition coefficients
respectively. The result obtained at each
decomposition level using equations (5) and (6) is
the percentage of the total signal energy.
Therefore the produced feature vector consists of a
set of values describing the percentage of total
signal energy contained in each set of
decomposition coefficients. The feature vector
produced is then normalized to sum to 1. Figure 4
shows an example of the wavelet decomposition
energy, expressed in terms of percentages.
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3.2 Principal Component Analysis

The wavelet energy based feature vector
described above will have more than 3 dimensions,
as the applied decomposition is more than 2 levels.
Therefore it is impossible to represent the vector in
a visible coordinate space, which must consist of
no more than 3 dimensions. In order to visualise
the wavelet energy vectors and manually verify the
clustering and classification results, a dimension
reduction technique has to be implemented to
reduce the dimension of the feature vectors whilst
preserving their characteristics.

Principal Component Analysis (PCA) is a non-
parametric linear method that is extensively used
for dimensionality reduction as well as simplifying
the structure of complex data sets, by means of an
orthogonal linear transformation in the direction of
the greatest variance. PCA is applied here to
reduce the number of energy levels associated to
each decomposition level to three, thus allowing a
representation of the PD signals in 3-D space.

The sample PD data sets (X) considered are
expressed as N vectors, each comprising of M
dimension columns (10 energy levels as the
example shown in Figure 4), where N is the
number of the pulse-like recorded signals. The
PCA procedure is produced from solution of an
eigenvalue problem that consists of: calculation of
covariance matrix

X-XT

cov(X)=——— (3)

N -1
Evaluation of eigenvalues (A); mapping the input
data to the new coordinate space using

P=v"xX (4)

The mapped matrix represents the principal
components with a decreasing significance. The
first three components within the matrix are
therefore plotted in a 3 dimensional space. Using
this method, the recorded signals can be visually
presented and the quality of the separation
algorithm can also be manually verified.

3.3 Automatic clustering using Density
Based Spatial Clustering of Applications
with Noise

Among the various density-based clustering
algorithms, DBSCAN has been considered for this
application due to its ability to discover clusters of
arbitrary shape as well as to distinguish noise
(sparse points) in n-dimensional space. DBSCAN
labels data points that are densely distributed and
associated by a single cluster [8, 9]. Density
represents the number of points, n, that fall in a
small volume V surrounding a given point, P. V can
be assumed as a hyper-sphere of radius ¢
centered at P, hence, the threshold density can be
specified by a parameter n.,, that represents the

minimum number of points to make the volume V,
significantly dense. ¢ and ny,, are the two degrees
of freedom defined by the method. Point P can
either be a dense (core point) or non-dense point
(non-core point). A non-dense point might be a
border point of a dense region or disconnected
(noise). In particular, as shown in Figure 5: A
generic point Q, is a core-point if a number n>n,,
of points are included in the hyper-sphere V,
having radius ¢ and centered at P; A point P is
directly-density reachable (DDR) from Q if P is
included in V and Q is a core-point; A point P is
density reachable (DR) from R within V, if there is
a chain of objects p;, p...,pn, Where p;=R and
p.=P, such that, for 1<isn, p;eQ and p;+1 is DDR
from p;; A point S is density-connected (DC) to P in
a set of volumes V;, if there is an object TeV; such
that both S and P are DR from R.

Figure 5: Principle of DBSCAN

A density-based cluster is defined as a set of
density-connected points maximized with respect
to the density-reachability concept. Every point not
contained by a sufficiently populated cluster is
classified as noise. Taking this into account,
DBSCAN is a member of the partial clustering
algorithm group. For any given g, ny, value, by
selecting an initial point P (randomly or resorting to
the maximum/minimum weight of a selected
function, e.g. considering the point that show the
maximum frequency of occurrence), DBSCAN
checks if P is a core-point. If this is found to be the
case, it selects the DR and DDR points and
expands the cluster by merging neighbouring
dense regions together. Once the border of the
first cluster is identified, DBSCAN selects another
point P’ in space that does not belong to a
previously formed cluster and the procedure
mentioned above is repeated [9]. The algorithm
collects DDR from these core-points iteratively,
which may involve the merging of a few density-
reachable clusters. The process terminates when
no new points can be added to any of the clusters.

4  RESULTS AND DISCUSSION

The proposed separation algorithm has been
applied to analyze PD measurement results
obtained testing a frame representing the complete
stator coil of an HV induction motor rated at 11 kV.
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The insulation system is based on mica tape
impregnated with epoxy resin, completed with
polyester-graphite tape and uses polyester-
semiconductive tape as an end-winding corona
suppression system. The stator coil was cured
using vacuum pressure impregnantation (VPI)
technology. The frame was subjected to an
accelerated multi-factor ~ aging procedure
composed of a series of thermal, electrical and
mechanical stresses. Each aging cycle had a
duration of one week. PD patterns have been
recorded before and after the aging process. A PD
pattern was then recorded as shown in Figure 6.
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Figure 6: Phase resolved PD pattern obtained
from coil of an induction motor at 6 kV after the
inception of a new PD phenomenon

The automatic classification method proposed in
section 3 has been applied to the obtained data.
The clustering results are shown in Figure 7. The
clustered PD pulses were then reconstructed using
the phase resolved pattern, as shown in Figure 8.
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Figure 7: PCA and DBSCAN clustering result
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Figure 8: Phase resolved pattern for each cluster
a. cluster 1 b. cluster 2

Figure 8a shows typical pattern generated by
distributed micro-voids within the coil sample. The
new PD phenomenon due to tape delamination
(macro-void) in the aging process has been shown
in Figure 8b. This defect was confirmed after
forensic analysis of the coil.

PD data obtained from the 11 kV PILC 3 phase
cable utilized in a distribution network using the
ASM monitor have also been analyzed. Figure 9
shows the pattern of 10 days of PD data.
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Figure 9: Phase resolved pattern of 326 power
cycles

The measured PD pulses have been classified in
to 2 clusters, as shown in Figure 10.
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Figure 10: PCA and DBSCAN clustering result
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Figure 11: Phase resolved pattern for each cluster
a. cluster 1 b. cluster 2

Figure 1la represents a typical PD pattern
produced by distributed voids which commonly
exist within such mass-impregnated cable. Figure
11b shows the PD activity generated by a defect
between the sheath and a phase conductor.

5 CONCLUSION

A new PD classification algorithm has been
detailed in this paper. The method is based on the
use of wavelet decomposition energy distribution
as the feature vector; unsupervised learning i.e.
Principal Component Analysis as the dimension
reduction and feature extraction technique; and

Density-Based Spatial Clustering of Applications
with Noise as the automatic clustering technique.

The proposed method has been applied to analyze
PD data measured from high voltage different
plant. It has robust and effective performance in
discriminating different PD sources. Moreover, the
approach has shown an important advantage in
term of minimizing the requirement from human
intervention thus constituting a significant step
forward in the development of automatic PD
classification system.
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