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ABSTRACT
Weighted voting games (WVGs) are an important mechanism for
modeling scenarios where a group of agents must reach agreement
on some issue over which they have different preferences. How-
ever, for such games to be effective, they must be well designed.
Thus, a key concern for a mechanism designer is to structure games
so that they have certain desirable properties. In this context, two
such properties are PROPER and STRONG. A game is PROPER if
for every coalition that is winning, its complement is not. A game
is STRONG if for every coalition that is losing, its complement is
not. In most cases, a mechanism designer wants games that are
both PROPER and STRONG. To this end, we first show that the
problem of determining whether a game is PROPER or STRONG
is, in general, NP-hard. Then we determine those conditions (that
can be evaluated in polynomial time) under which a given WVG is
PROPER and those under which it is STRONG. Finally, for the gen-
eral NP-hard case, we discuss two different approaches for over-
coming the complexity: a deterministic approximation scheme and
a randomized approximation method.

1. INTRODUCTION
Weighted voting games (WVGs) provide a way of modeling sce-
narios where a group of agents must reach agreement on some is-
sue over which they have different preferences [8]. They have long
been studied in game theory, and have more recently been used by
researchers in multi-agent systems [3]. In a WVG, the individual
players are assigned weights (a player’s weight is the number of
votes he or she has). In such a game, the players resolve an issue
by voting for or against it. Those in favor of the issue form one
coalition and those against form another. The issue is then resolved
in favor of the coalition whose cumulative weight of players ex-
ceeds a given quota. Such a coalition is a winning coalition. A
coalition that is not winning is a losing coalition.

A WVG game can be viewed from two perspectives: that of an
individual voter and that of a game designer. From the former’s
perspective, a key concern is how much influence it has on turning
a losing coalition into a winning one. This influence is measured
in terms of power indices such as the Shapley value [9] and the

Banzhaf index [2]. But from the game designer’s perspective, a key
concern is to structure games with specific properties such as en-
suring that a coalition and its complement1 cannot simultaneously
be winning, or that a coalition and its complement cannot simul-
taneously be losing. In this context, two important properties are
PROPER and STRONG. A game is PROPER if for every coalition that
is winning, its complement is not. A game is STRONG if for every
coalition that is losing, its complement is not. Games that are not
PROPER are typically of little practical interest because they allow
disjoint winning coalitions, giving rise to the peculiar possibility
of two winning coalitions forming independently and simultane-
ously. This can lead to contradictory decisions being made by a
voting body. In the same way, games that are not STRONG allow
for two disjoint losing coalitions to form simultaneously and in-
dependently, thereby giving rise to the possibility of leaving some
issues unresolved. A mechanism designer therefore wants games
that are PROPER and STRONG.

To date, however, the analysis of games from a mechanism de-
signer’s perspective has received little attention. This paper there-
fore aims to fill this gap by asking the following key questions:

• is a given WVG PROPER?, and

• is it STRONG?

Finding answers to the above questions is crucial because most ex-
isting work on WVGs (including the very definitions of main power
indices like the Shapley value and the Banzhaf index) is based on
the assumption that games are PROPER and STRONG. This is a very
strong assumption because, as we will show, it is computationally
hard to answer the above questions.

This paper makes a number of important contributions to the state
of the art. First, and most importantly, for the first time, we show
that the problem of finding whether a given WVG satisfies any
of the above mentioned properties is, in general, computationally
hard. Second, we determine those problem instances for which it
can be decided in polynomial time whether the game is PROPER
or STRONG. Finally, for the general NP-hard case, we discuss two
different approximation methods for overcoming the complexity.

The rest of the paper is structured as follows. Section 2 provides
background. Section 3 shows that the problem of determining whether
a WVG is PROPER or STRONG is NP-hard. Section 4 determines

1The complement of a coalition is the set of players that are in the
game but not in the coalition.



those instances for which this problem is computationally easy.
Section 5 discusses approximation methods. Section 6 concludes.

2. BACKGROUND
For a set N = {1, . . . , n} of players, a WVG is represented as a
tuple of the form 〈q;w1, . . . , wn〉. Here, wi ∈ R+ denotes player
i’s weight, and q the quota. The value of a coalition X is given by
a function v defined as follows:

v(X) =


1 If w(X) =

P
x∈X wx ≥ q

0 otherwise

A coalition with value zero is a losing coalition and with value one
a winning coalition.

A common initial intuition from the above context may well be that
there are only two kinds of subsets ofN : the winning coalitions and
the losing ones. Moreover, one may tend to think (appropriately)
that the former are the large subsets of N , and the latter are the
small subsets ofN . However, there is a secondary type of largeness
that plays an important role in both the real world and in theory.
Specifically, coalition X is said to be a blocking coalition [10] if
X ′ (the complement of X) is losing. Thus, X is blocking if it
corresponds to a collection of voters that can prevent an issue from
being passed.

EXAMPLE 1. Let the voting game be 〈4;w1 = 1, w2 = 2, w3 =
2, w4 = 3〉. Then {1, 4} is a winning coalition that is not block-
ing because its complement {2, 3} is a winning coalition. On the
other hand, {3, 4} is a winning coalition that is blocking because
its complement {1, 2} is losing.

Given this background, a more appropriate intuition, then, is that
there are four kinds of coalitions ofN , arising from a consideration
of both X and its complement. These are as follows [10, p 15]:

1. A coalition X is LARGE if X is both winning and blocking
(i.e., if X is winning and X ′ is losing).

2. A coalition X is W-MEDIUM if X is winning but not block-
ing (i.e., if X is winning and X ′ is winning).

3. A coalitionX is B-MEDIUM ifX is blocking but not winning
(i.e., if X is losing and X ′ is losing).

4. A coalitionX is SMALL ifX is neither winning nor blocking
(i.e., if X is losing and X ′ is winning).

Based on the above coalition types, a voting game is said to have
the property STRONG or PROPER. These properties are defined as
follows [10, p 15]:

DEFINITION 1. A WVG is PROPER if it has no W-MEDIUM coali-
tions, and STRONG if it has no B-MEDIUM coalitions.

EXAMPLE 2. Consider three gamesG1 = 〈4; 1, 1, 1, 1, 1〉,G2 =
〈2; 1, 1, 1, 1, 1〉, andG3 = 〈3; 1, 1, 1, 1, 1〉. G1 is PROPER because
any winning coalition must have at least four players and the com-
plement of such a coalition is losing. G1 is not STRONG because
any two player coalition is losing and its complement (i.e., a three
player coalition) is also losing. G2 is STRONG: the only losing

coalitions are those containing a single player, and the comple-
ment of any single player coalition is winning. G2 is not PROPER
because any two player coalition is winning and its complement is
also winning. Finally, G3 is both PROPER and STRONG.

3. TIME COMPLEXITY
We begin by defining key terms and then introduce problems (called
WMC, CLW, BMC, and CLL) that will be used to determine whether
a game is PROPER or STRONG.

DEFINITION 2. Least winning coalition: LetW denote the set
of all winning coalitions. The least winning coalition is a winning
coalition with least weight (i.e., S ∈ W is a least winning coalition
if, for all s ∈ W , w(S) ≤ w(s)).

DEFINITION 3. Largest losing coalition: Let L denote the set
of all losing coalitions. The largest losing coalition is a losing
coalition with maximum weight (i.e., L ∈ L is a largest losing
coalition if, for all l ∈ L, w(L) ≥ w(l)).

WMC:

Instance: A WVG (defined in terms of N , q and w).
Question: Is there a W-MEDIUM coalition in the game?

CLW:

Instance: A WVG (defined in terms of N , q and w).
Question (decision version): Is the complement of a
least winning coalition winning?
Question (optimization version): Find a least winning
coalition.

BMC:

Instance: A WVG (defined in terms of N , q and w).
Question: Is there a B-MEDIUM coalition in the game?

CLL:

Instance: A WVG (defined in terms of N , q and w).
Question (decision version): Is the complement of a
largest losing coalition losing?
Question (optimization version): Find a largest losing
coalition.

We first prove that the WMC problem is equivalent to CLW (Lemmas
1 and 2 together prove this), and BMC is equivalent to CLL (Lem-
mas 3 and 4 together prove this). Then in Theorem 1, we prove
that WMC and BMC are NP-hard. In what follows, S denotes a least
winning coalition, L a largest losing coalition, S′ and L′ their re-
spective complements, and |X| denotes the number of elements in
a set X . We let W =

Pn
i=1 wi.

LEMMA 1. There is a W-MEDIUM coalition iff the complement
of a least winning coalition is winning.



PROOF 1. If the complement of a least winning coalition is win-
ning, then clearly there is a W-MEDIUM coalition. We now prove
that if there is a W-MEDIUM coalition, the complement of a least
winning coalition is winning. Let X and X ′ denote a W-MEDIUM
coalition and its complement respectively. So both X and X ′ are
winning, and so there are two possibilities with respect to w(X):
w(X) = w(S) or w(X) > w(S). For the former case (w(X) =
w(S)), we get w(X ′) = w(S′). Since X ′ is winning, w(S′) must
also be winning (i.e., the complement of a least winning coalition
is winning). Now consider the latter case w(X) > w(S). This
implies w(X ′) < w(S′) because w(X ′) = W −w(X). Since X ′

is winning, S′ must also be winning. This proves that if there is a
W-MEDIUM coalition, the complement of a least winning coalition
is winning. �

LEMMA 2. There is no W-MEDIUM coalition iff the comple-
ment of a least winning coalition is losing.

PROOF 2. We first prove that if the complement of a least win-
ning coalition is losing, there is no W-MEDIUM coalition. The
weight of the complement of every winning coalition that is not a
least wining coalition is lower than w(S′). So if S′ is losing, then
the complement of every winning coalition that is not a least win-
ning coalition is losing. This proves that, if the complement of the
least winning coalition is losing, there is no W-MEDIUM coalition.

We now prove that if there is no W-MEDIUM coalition, the com-
plement of a least winning coalition is losing. If there is no W-
MEDIUM coalition, then the complement of every winning coalition
(including least winning) is losing. �

LEMMA 3. There is a B-MEDIUM coalition iff the complement
of a largest losing coalition is losing.

PROOF 3. If the complement of a largest losing coalition is los-
ing, then it is obvious that there is a B-MEDIUM coalition. We
now prove that if there is a B-MEDIUM coalition, the complement
of a largest losing coalition is losing. Let X and X ′ denote a B-
MEDIUM coalition and its complement respectively such thatw(X) ≥
w(X ′). So both X and X ′ are losing, and there are two possibil-
ities with respect to w(X): w(X) = w(L) or w(X) < w(L).
For the former case, we get w(X ′) = w(L′) (where w(X ′) =
W −w(X) and w(L′) = W −w(L)). SinceX ′ is losing, L′ must
also be losing. Thus, the complement of a largest losing coali-
tion is losing. For the latter case, we get w(X ′) > w(L′) (be-
cause w(X) < w(L) and w(X ′) = W − w(X) and w(L′) =
W −w(L)). Thus, if X ′ is losing, then so is L′. This proves that if
there is a B-MEDIUM coalition, the complement of a largest losing
coalition is losing. �

LEMMA 4. There is no B-MEDIUM coalition iff the complement
of a largest losing coalition is winning.

PROOF 4. We first prove that if the complement of a largest los-
ing coalition is winning, then there is no B-MEDIUM coalition. The
weight of the complement of every losing coalition that is not a
largest losing coalition is greater than w(L′). So the complement
of every losing coalition that is not a largest losing coalition is
winning. This proves that, if the complement of a largest losing
coalition is winning, there is no B-MEDIUM coalition.

We now prove that if there is no B-MEDIUM coalition, then the com-
plement of a largest losing coalition is winning. If there is no B-
MEDIUM coalition, then the complement of every losing coalition
(including a largest losing coalition) is winning. �

THEOREM 1. The decision problems WMC, CLW, BMC, and
CLL are NP-hard.

PROOF 1. As per Lemmas 1 and 2, the problem WMC is equiv-
alent to CLW. Also, as per Lemmas 3 and 4, BMC, is equivalent
to CLL. Hence we will now prove that CLW and CLL are NP-hard.
The optimization version of CLW, can be formulated as the follow-
ing integer programming problem:

CLW: minimize
nX
i=1

wixi

subject to
nX
i=1

wixi ≥ q xi ∈ {0, 1}

Thus CLW is nothing but the minimization version of the standard
SUBSET-SUM problem which is already known to be NP-complete
[4, 6, 7].

Now consider the problem CLL , which can be formulated as the
following integer programming problem:

CLL: maximize
nX
i=1

wixi

subject to
nX
i=1

wixi < q xi ∈ {0, 1}

Thus CLL is clearly the maximization version of the standard SUBSET-
SUM problem which is already known to be NP-complete [4, 6, 7].
Thus, WMC, CLW, BMC, and CLL are NP-hard. �

As per Theorem 1, the problem of determining whether a WVG is
STRONG or PROPER is, in general, NP-hard. So it is almost certainly
not possible to devise computationally feasible ‘exact’ solutions to
these problems. Hence, we will present ‘approximate’ solutions to
them. Before doing so, however, we find those problem instances
for which it is computationally easy to determine whether a voting
game is PROPER or STRONG.

4. COMPUTATIONALLY EASY INSTANCES
Here we focus on those games where, q > 0, and for all i, wi > 0.
Also, we focus on those games that are neither dictatorial – this oc-
curs if, for an i, wi ≥ q – nor those where only the grand coalition
wins (since such games are of little practical interest). For such
games, depending on the relation between q and W , Theorem 2
classifies games into three types: those that are PROPER, those that
are not PROPER, and those that may or may not be PROPER. The-
orem 3 does the same for the property STRONG. Based on Theo-
rems 2 and 3, Theorem 4 finds the conditions under which a game
may be both PROPER and STRONG. Corollary 1 shows the time
complexity of evaluating the conditions in each of these theorems.

THEOREM 2. If, for a voting game 〈q;w1, . . . , wn〉, q > W
2

the game is PROPER. If q ≤ W
3

, the game is not PROPER. If
W
3
< q ≤ W

2
, the game may or may not be PROPER.

PROOF 2. We first prove that games with q > W
2

are PROPER.
For such games, w(S) > W

2
. Since w(S′) = W −w(S), we have

w(S′) < W
2

. So S′ is a losing coalition. Thus, as per Lemma 2,
such a game is PROPER.



Next, we prove that games with q ≤ W
3

are not PROPER. Let q =

kW/3 where 0 < k ≤ 1. For such a game, we have w(S) ≥ kW
3

and so w(S′) ≤ (W − kW
3

). We assume that such a game is
PROPER and prove by contradiction that it is not. If the game is
PROPER, then (as per Lemma 2) S′ must be a losing coalition, i.e.,
w(S′) < q or w(S′) < kW

3
. This means that w(S) > (W − kW

3
)

which is a lower bound for w(S). We will now obtain an upper
bound for it. Consider S which must have at least two players,
i.e., |S| ≥ 2 since any winning coalition must have at least two
players. Now, for j ∈ S, we have w(S − {j})) < q (since S
is a least winning coalition and so any proper subset of it must
be a losing coalition). We sum this inequality for all subsets (of
size |S| − 1) of S. There are |S| such subsets. So the summed
inequality is

P
j∈S w(S − {j}) < q|S|. Simplifying the terms inP

j∈S w(S − {j}), we get
P
j∈S w(S − {j}) = (|S| − 1)w(S).

This gives us (|S| − 1)w(S) < q|S| or w(S) < q|S|
|S|−1

. Since
|S| ≥ 2, we get w(S) < 2q or w(S) < 2kW/3. So the lower
and upper bounds for w(S) are w(S) > (W − kW

3
) and w(S) <

2kW/3. But the lower bound is always greater than the upper
bound, i.e., (W − kW

3
) > 2kW/3 since 0 < k ≤ 1. Thus, there

is a contradiction with the assumption that games with q ≤ W
3

are
PROPER. So such games are not PROPER.

Finally, we prove that games with W
3
< q ≤ W

2
may or may not

be PROPER. We do this by giving examples of those games that
are PROPER and those that are not. We first give examples for the
former. Consider games with n = 3 players and weights w1 = kq
and w2 = w3 = W−w1

2
where W

q
− 2 < k < 1. We first prove

that such a game2 exists and then prove that it is PROPER. Given
that W

3
< q ≤ W

2
, we have 2 ≤ W

q
< 3 or 0 ≤ W

q
− 2 < 1.

This proves that a k satisfying W
q
− 2 < k < 1 exists. Next, we

prove that none of the three players can win individually, i.e., for
1 ≤ i ≤ 3, wi < q. Since k < 1 and w1 = kq, we get w1 < q.
Now, we are given that W

q
− 2 < k, which can be rearranged as

W−kq
2

< q. Since w2 = w3 = W−w1
2

= W−kq
2

, we get w2 < q

and w3 < q. Thus a game with w1 = kq and w2 = w3 = W−w1
2

where W
q
− 2 < k < 1 exists.

We will now prove that S′ is losing. For players 2 and 3, we have
w2 + w3 = W − w1 = W − kq. Given that k < 1 and q ≤
W/2, we get kq < W/2. This implies that W − kq > W/2 or
W−kq > q. Hence,w2+w3 > q. This, together with the fact that
none of the three players can win individually and all weights are
greater than zero, gives us |S| = 2. But irrespective of which two
player coalition is wining, we know that the complement of any two
player coalition contains a single player and is therefore losing.
Hence, the complement of least winning coalition is losing. So As
per Lemma 2, the above defined game is PROPER.

We now give examples of games that are not PROPER. Consider
games with n = 4 players and w1 = w2 = q/2 and w3 = w4 =

w1 + W−2q
2

. We prove that no single player can win on its own.
Clearly players 1 and 2 cannot win individually. For player 3, we
have w3 = w1 + W−2q

2
= W−q

2
. Given that q > W/3, we

get w3 < W/3 or w3 < q. Thus, players 3 and 4 cannot win
individually. We now prove that S′ winning. Since w3 = W−q

2
and

q ≤ W/2 (or W ≥ 2q), we get w3 ≥ q/2 or w3 ≥ w1. Since no
single player can win individually, w1 = w2 = q/2, w3 ≥ q/2,

2That is, a game that is neither dictatorial nor one in which only the
grand coalition wins.

and w4 ≥ q/2, we get S = {1, 2}. This implies S′ = {3, 4} and
w(S′) ≥ q, i.e., S′ is winning. So as per Lemma 1, such games are
not PROPER. �

THEOREM 3. If, for a voting game 〈q;w1, . . . , wn〉 , q ≤ W
2

the game is STRONG. If q > 2W
3

, the game is not STRONG. If
W
2
< q < 2W

3
, the game may or may not be STRONG.

PROOF 3. Consider games with q ≤ W
2

. To prove that such
games are STRONG, we will show thatL′ is winning. Since q ≤ W

2
,

we have w(L) < W
2

, and therefore w(L′) > W
2

or w(L′) > q. In
order to ensure thatL′ is a winning coalition, we must show thatL′

contains at least two players. Since no individual player can have
a weight greater than or equal to q, we get wi < W

2
for all i. This

means that there must be at least two players in L′. Hence |L′| ≥ 2
and w(L′) > q, so, as per Lemma 4, such a game is STRONG.

Now consider games with q > 2W
3

. We will prove by contradic-
tion that such games are not STRONG. Assume that the game is
STRONG. This implies that L′ is a winning coalition, i.e., w(L′) >
2W
3

(see Lemma 4). Therefore w(L) < W
3

. Since no player can
win individually, we get wi ≤ 2W

3
for all i. Moreover, for j ∈ L′,

it must be that wj > W
3

. Otherwise, (i.e., wj ≤ W
3

), there will
be a contradiction with the fact that L is a largest losing coalition
(because w(L) < W

3
and wj ≤ W

3
means w(L ∪ {j}) < 2W

3
,

i.e., L ∪ {j} is losing so L cannot be a largest losing coalition).
But wj > W

3
means that |L′| = 2 because a winning coali-

tion must have at least two players, and w(L′) cannot exceed W .
Let the weights of the two players in L′ be w1 = W

3
+ δ1 and

w2 = W
3

+ δ2 where 0 < δ1 ≤ W
3

and 0 < δ2 ≤ W
3

. Then we
haveW = w1+w2+w(L) orw(L)+w1 = 2W

3
−δ2. This means

L∪{1} is losing which contradicts with the fact that L is a largest
losing coalition. Thus |L′| = 2 is false. Or wj > W

3
cannot be

true for any value of |L′|. Hence a contradiction. So games with
q > 2

3
W are not STRONG.

Finally, consider games with W
2
< q < 2W

3
. We prove that such

games may or may not be STRONG by giving examples of those
games that are STRONG and also those that are not STRONG. Con-
sider games with n = 4 players and weights w1 = w2 = q/2 and
w3 = w4 = w1 + W−2q

2
. We first show that none of the players

can win individually. Clearly, this is true for player 1 nor 2. Given
that w3 = w1 + W−2q

2
= q

2
+ W−2q

2
= W−q

2
and the fact that

q > W/2 (i.e., W < 2q), we get w3 < q/2. Hence neither player
3 nor 4 can win individually. We will now prove that L′ is losing.
To do so, we obtain a lower bound for w3. Since w3 = W−q

2
and

we are given that q < 2W
3

, we get w3 > q/4. This together with
the fact that w1 = w2 = q/2 and w3 = w4 proves that every three
player coalition is winning. So a possible largest losing coalition
is L = {1, 3}. This gives L′ = {2, 4} which is a losing coalition.
Thus the complement of L is losing, so as per Lemma 3, such a
game is not STRONG.

Next, we give an example for games that are STRONG. Consider
games with n = 3 players and weights w1 = w2 = q/2 and
w3 = W − 2w1. We first prove that no individual player can
win. Clearly, this is true for players 1 and 2. For player 3, we
have w3 = W − 2w1 = W − q. This together with the fact that
q > W/2 (i.e, W < 2q), gives w3 < q. Thus no single player
can win individually. We now prove that L′ is winning. Given that
w3 = W − q and q < 2W

3
(i.e., W > 3q

2
), we get w3 > q/2. This,

together with the fact that w1 = w2 = q/2 shows that any two



player coalition is winning. Hence |L| = 1, and since player 3 has
the highest weight among all three players, we get L = {3}. Thus,
L′ = {1, 2} which is a winning coalition. So, as per Lemma 4,
such a game is STRONG. �

THEOREM 4. If for a WVG, q > 2W
3

, the game is PROPER

but not STRONG. If q ≤ W
3

, it is STRONG but not PROPER. If
W
2
< q < 2W

3
, it may be both PROPER and STRONG.

PROOF 4. For q > 2W
3

and q ≤ W
3

, the proof follows di-
rectly from Theorems 2 and 3. For W

2
< q < 2W

3
, we know

from Theorem 3 that a game may or may not be STRONG. So
we will now show that for W

3
< q < 2W

3
, a game may be both

PROPER and STRONG. Theorem 3 showed that games with n = 3,
w1 = w2 = q/2, and w3 = W − 2w1 are STRONG. We now show
that these games are also PROPER. From Theorem 3, we know that
w3 > q/2. So S = {1, 2}, and S′ = {3}. Since S′ is losing, as
per Lemma 2, such a game is PROPER. �

COROLLARY 1. The conditions in Theorems 2, 3, and 4 can be
evaluated in O(n) time.

PROOF 1. It takes O(n) time to compute W =
Pn
i=1 wi; so it

is possible to evaluate the conditions in linear time. �

5. APPROXIMATION METHODS
We explore two possible approaches for determining whether a
game is PROPER or STRONG. The first approach is to solve CLW
and CLL. The second approach is to count the number of W-MEDIUM
and B-MEDIUM coalitions in a game. For the latter approach, let CP
and CS be two boolean functions that map any subset (i.e., a coali-
tion) to 0 or 1. There are 2n possible coalitions. If N denotes the
set of all possible coalitions of N , we have CP : N → {0, 1} and
CS : N → {0, 1}. For X ⊆ N , CP(X) = 1 if both X and X ′ are
winning, otherwise CP(X) = 0 (i.e., CP(X) = v(X) ∧ v(X ′)).
Also, CS(X) = 1 if bothX andX ′ are losing, otherwise CS(X) =
0 (i.e., CS(X) = ¬v(X)∧¬v(X ′)). Then, we define two real val-
ued functions P and S on the interval [0,1] as follows: P(X) =
(1/2n)

P
s⊂N CP(X) and S(X) = (1/2n)

P
s⊂N CS(X). So

P gives the average number of W-MEDIUM coalitions in a game
and S gives the average numberof B-MEDIUM coalitions. Thus, if
P(X) = 0, the game is PROPER and if P(X) = 0, the game is
STRONG.

The problem of finding the number of W-MEDIUM/B-MEDIUM coali-
tions in a game is #P-hard (i.e., computing P or S is a #P-hard prob-
lem) because it is the counting3 version of the NP-hard problem
CLW/CLL. Hence we can only aim to find an approximation for P
and S.

For the former approach (i.e., solving the problems CLW and CLL),
we discuss a deterministic approximation scheme. For the latter
(i.e., computing P or S), we discuss a sampling based randomized
approximation method.
3Note that the function P/S gives the ‘average’ number of W-
MEDIUM/B-MEDIUM coalitions in a game, the average taken over
all possible coalitions. We consider average instead of the ‘total’
because a game is PROPER/STRONG if the total or average number
of W-MEDIUM/B-MEDIUM coalitions is zero, but taking the average
offers of ease of discussion of approximation method.

A Deterministic Approximation Scheme
As shown in Section 3, WMC is equivalent to CLW, and BMC is
equivalent to CLL. Also, CLW is the minimization version of the
standard SUBSET-SUM problem while CLL is its maximization ver-
sion. Thus we will focus on finding an approximate solution to
CLL, i.e., finding an approximate weight for a largest losing coali-
tion.

A polynomial time approximation scheme was proposed in [7] for
the standard SUBSET-SUM problem. For performance ratio r =
a/(a+1) where a ≥ 6, this scheme has time complexityO(na−3).
This means that an approximate solution to the optimization ver-
sion of CLW (or CLL) can also be found in the same time and with
the same performance ratio. Given an approximate weight of a
smallest winning coalition, one can determine whether its comple-
ment is winning (i.e., the game is PROPER) or not (i.e., the game
is not PROPER). Likewise, one can determine whether a game is
STRONG or not.

A Randomized Approximation Method
Here, we seek to find approximate solutions to the functions P and S
defined above. The proposed approximation algorithm builds upon
the sampling method proposed in [1] for finding a player’s approx-
imate Banzhaf index (BI) for a WVG. A player’s BI depends on
the number of coalitions in which it is critical, out of all possi-
ble coalitions that contain the player. Specifically, player i’s BI is
βi = 1

2n−1

P
X⊂N|i∈X [v(X)−v(X\{i})]. We first describe how

β̂i (an approximate for βi) is computed in [1], and then show how
this method can be extended to compute P̂ (an approximate for P)
and Ŝ (an approximate for S).

In [1], coalitions X containing i are randomly sampled and β̂i
is computed based on the proportion of sampled coalitions where
v(X) − v(X\{i}) is one. When sampling coalitions, each sample
has a probability βi of being a coalition where v(X) − v(X\{i})
is one. So βi can be approximated by taking several such samples.
The number of samples determines the accuracy of the procedure:
for a given ε > 0, the probability δ of missing the correct βi by
more than ε depends on the number of samples taken. The method
determines the number of samples (k) according to the required
confidence level δ and the accuracy ε (i.e., the correct βi lies in
the interval [β̂i − ε, β̂i + ε]). Specifically, for confidence interval4

[β̂i −
q

1
2k
ln 2
δ
, β̂i +

q
1
2k
ln 2
δ
], the required number of samples

is k ≥ 1
2ε2
ln 2
δ

. Although this method is simple, their empirical
studies have shown that it performs well in terms of running time,
accuracy, and confidence. Specifically, they showed that no deter-
ministic algorithm can achieve comparable accuracy with a polyno-
mial number of queries, and no randomized algorithm can achieve
superpolynomial accuracy. Given this, and the similarity between
the definitions of βi and P (or S), we now show how this method
can be extended to find P̂ and Ŝ.

4This a a conservative confidence interval because it is based on
Hoeffding’s [5] bound which is an exact rather than an approximate
bound.



Algorithm 1 P̂(n, q, w, ε, δ)
1: count⇐ 0; k ⇐ 0;
2: while k ≤ ln 2

δ
2ε2

do
3: Choose a random coalition X;
4: k ⇐ k + 1;
5: if (v(X) ∧ v(X ′)) = 1 then
6: count⇐ count+ 1
7: end if
8: end while
9: P̂ ⇐ count/k;

10: ConfidenceInterval⇐ [P̂ −
q

1
2k
ln 2
δ
, P̂ +

q
1
2k
ln 2
δ
]

11: return P̂ and ConfidenceInterval

Comparing βi with P, we see that the former requires computing
v(X)−v(X\{i}) for all possible coalitions containing i, while the
latter requires computing v(X) ∧ v(X ′) or ¬v(X) ∧ ¬v(X ′) for
all possible coalitions. Also, for a given coalition X containing
i, it takes O(n) time to compute v(X) − v(X\{i}). This is also
the time it takes to compute v(X) ∧ v(X ′) or ¬v(X) ∧ ¬v(X ′)
for any X . Thus, by using the method of [1] to compute P̂, we
get the same confidence interval and the same number of required
samples as that for β̂i. Specifically, the confidence interval for P̂ is

[P̂−
q

1
2k
ln 2
δ
, P̂+

q
1
2k
ln 2
δ
], and that for Ŝ is analogous. Likewise,

the number of required samples for P̂ or Ŝ is k ≥ 1
2ε2
ln 2
δ

.

The method for computing P̂ is described in Algorithm 1. The while
loop in line 2 is repeated for k samples. Each time a sample coali-
tion X is drawn and count is incremented if X is W-MEDIUM.
Finally, line 9 gives the average number of W-MEDIUM coalitions
as an approximate for P̂. The method for computing Ŝ is analogous
to Algorithm 1.

Comparing the approximation scheme with approximation by sam-
pling, we note the following key differences. First, the former
method is deterministic in that it is guaranteed to have performance
ratio r = a/(a+ 1) for a ≥ 6, while the latter method is random-
ized and may, with probability δ, generate an approximate that lies
outside the confidence interval. Second, in terms of accuracy, the
two methods can be made to achieve comparable performance. By
varying a for the deterministic method, it is possible to achieve an
accuracy that is comparable to that of the randomized method (al-
though the running time for the former is O(na−3) while that for

the latter is O(
ln 2
δ

2ε2
)).

6. CONCLUSIONS AND FUTURE WORK
This paper focussed on two desirable properties of WVGs: PROPER
and STRONG and showed that the problem of determining whether
a game has either of these properties is, in general, an NP-hard.
Then, we determined those conditions (that can be evaluated in
polynomial time) under which a game is PROPER and those under
which it is STRONG. We also determined conditions under which a
game may be both PROPER and STRONG. Finally, for the general
NP-hard case, we discussed two different approximation methods
for overcoming the complexity.

Possible avenues for future work include extending this work to
more general k-vector WVGs, which are intersections of k different
WVGs.
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