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Abstract

A new approach to texture segmentation is presented which uses Local Binary Pat-
tern data to provide evidence from which pixels can be classified into texture classes. The
proposed algorithm, which we contend to be the first use of evidence gathering in the field
of texture classification, uses Generalised Hough Transform style R-tables as unique de-
scriptors for each texture class and an accumulator is used to store votes for each texture
class. Tests on the Brodatz database and Berkeley Segmentation Dataset have shown
that our algorithm provides excellent results; an average of 86.9% was achieved over
50 tests on 27 Brodatz textures compared with 80.3% achieved by segmentation by his-
togram comparison centred on each pixel. In addition, our results provide noticeably
smoother texture boundaries and reduced noise within texture regions. The concept is
also a “higher order” texture descriptor, whereby the arrangement of texture elements
is used for classification as well as the frequency of occurrence that is featured in stan-
dard texture operators. This results in a unique descriptor for each texture class based
on the structure of texture elements within the image, which leads to a homogeneous
segmentation, in boundary and area, of texture by this new technique.

1 Introduction
Texture is an important property of images, representing the structural and statistical distri-
bution of elements throughout the image. Images can contain a single texture, for example
an image of a brick wall, or multiple textures of varying distribution throughout the image
such as a satellite image containing textures representing urban areas, fields, forest and water.
Image segmentation by texture has a wide range of applications, from analysis of medical
images [7] to remote sensing [8]. Additionally there are industrial applications of texture
analysis which include visual inspection and defect detection [11].

Texture descriptors can be divided into two types; structural and statistical. Structural
approaches apply a transform, such as the Fourier transform, to the image and then obtain a
set of measurements which describe the texture [13]. Statistical approaches classify textures
by measuring a property of the image and comparing the rate of occurrence of this to that
obtained from training images. A well-known example of this is the co-occurrence matrix
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(a) (b) (c) 90.2% (d) 85.6%

Figure 1: BSDS Pyramid: a) original image; b) manual segmentation; c) segmentation using
the EGTS algorithm; d) segmentation using histogram comparison.

[5], developed by Haralick et al. in 1973, where the number of pairs of pixels separated by
a particular distance with a specific intensity are counted. The matrix of number of pairs is
used as the texture descriptor for classification. Another popular and more modern operator
is Local Binary Patterns (LBP) which uses the intensity at a point to threshold surrounding
pixels to produce a code representing the texture pattern at that point [16]. A histogram of
the texture codes is used as the texture descriptor. Both operators are well established and
the LBP has continued to receive significant attention over the years with many published
extensions and applications [2, 4].

Texture classification typically relies on using a measure of similarity between a texture
sample and known texture classes to classify the sample. Segmentation is usually performed
either by classification of each pixel separately via a windowing method [10] or by an itera-
tive split and merge algorithm [14]. Both methods are computationally inefficient since they
require the same information to be processed multiple times.

Unlike texture, the field of template matching in computer vision has benefited from the
use of evidence gathering approaches, most notably present in the Hough Transform, which
accumulates votes for each pixel every time evidence indicating the presence of a desired
shape at that point is found [6]. The Hough Transform was extended further to accommodate
many different shapes such as circles and ellipses, and a generalised form of the Hough
Transform was developed to be able to search the image for any arbitrarily shaped object [1].
The advantages of this evidence gathering method include scale and rotation invariance and
resilience to noise and occlusion.

We describe a new approach to texture segmentation which determines texture class
through evidence gathering. The Local Binary Pattern (LBP) operator is used as the mech-
anism to gather evidence and Generalised Hough Transform (GHT) style R-table and accu-
mulators are employed to store this evidence and vote accordingly. This new approach is
the first use of evidence gathering to determine texture and has been demonstrated to give
very good results for texture segmentation, as illustrated by Figure 1, while maintaining
smooth texture boundaries and minimising noise. The proposed algorithm will be referred to
henceforth as the Evidence Gathering Texture Segmentation (EGTS) algorithm. To show the
advantages of this new technique our evaluation compares results from EGTS with a pure
LBP algorithm known as histogram comparison. This demonstrates that using evidence gath-
ering in conjunction with an established texture descriptor can yield improved segmentation
accuracy.

Section 2 summarises the existing work on texture classification and evidence gathering
that is used as the basis for this new method and Section 3 describes the new EGTS algorithm.
Section 4 provides experimental results and Section 5 concludes the paper.

Citation
Citation
{Haralick, Shanmugam, and Dinstein} 1973

Citation
Citation
{Ojala, Pietikäinen, and Mäenpää} 2002

Citation
Citation
{Bhatt, Bharadwaj, Singh, and Vatsa} 2010

Citation
Citation
{Guo, Zhang, Zhang, and Zhang} 2010

Citation
Citation
{Mäenpää, Pietikäinen, and Ojala} 2000

Citation
Citation
{Ojala and Pietikäinen} 1999

Citation
Citation
{Illingworth and Kittler} 1988

Citation
Citation
{Ballard} 1981



WALLER ET AL.: TEXTURE SEGMENTATION BY EVIDENCE GATHERING 3

2 Background

2.1 Local Binary Patterns
Local Binary Patterns are texture descriptors which label individual pixels in an image with
a code corresponding to the local texture pattern surrounding the pixel. First introduced by
Ojala et al. [15], the earliest form of the LBP used the centre pixel of a 3x3 grid, gc, to
threshold each of the eight neighbouring pixels g0 to g7. This produced an eight bit binary
code which represents the texture element present at that point. The LBP was later extended
to give the texture pattern for P points on a circle of radius R. It was observed that certain
fundamental patterns make up the majority of all LBP patterns observed [16]. These were
found to be the patterns which had at most two zero to one transitions (U(LBPP,R) ≤ 2) and
are called uniform LBP patterns. All of the uniform patterns are labelled according to the
number of ‘1’ bits in the code. When P is equal to eight, there will be ten different patterns:
the uniform patterns from ‘0’ to ‘8’ and the pattern ‘9’ which is the agglomeration of all other
patterns. Since the sampling positions for the neighbouring points are arranged in a circle,
the uniform LBP is, by nature, rotation invariant. This is because if the sample image texture
is rotated, the LBP code produced will still have the same number of zero to one transitions
and the same number of ‘1’ bits, resulting in an identical uniform LBP code regardless of the
order of the bits. The rotation invariant uniform LBP code for a point, LBPriu2

P,R , is calculated
by:

LBPriu2
P,R =

{
∑

P−1
p=0 s(gp−gc) if U(LBPP,R)≤ 2

P+1 otherwise
(1)

where

U(LBPP,R) = |s(gP−1−gc)− s(g0−gc)|+
P−1

∑
p=1

∣∣s(gp−gc)− s(gp−1−gc)
∣∣ (2)

and

s(x) =
{

1 if x≥ 0
0 otherwise (3)

Textures can be classified using the LBP by obtaining a histogram of the uniform patterns
and using a dissimilarity metric to compare this to histograms obtained from known texture
classes. Segmentation can be performed by performing classification on a pixel by pixel
basis by obtaining the histogram of a region centred on the pixel.

2.2 Generalised Hough Transform
The Generalised Hough Transform [1] uses an evidence gathering approach to determine the
location of previously defined arbitrary shapes within an image. An arbitrary shape can be
described by the following set of parameters:

a = {y,s,θ} (4)

where y = (xr,yr) is the reference origin for the shape, s is the scale of the shape and θ is
the orientation of the shape. For each edge point x on the shape the gradient is calculated
and the vector r between x and y is stored in a table called the R-table. The R-table contains
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a series of bins, each representing a range of gradients. The r vector for each edge point is
stored in the bin that matches the calculated gradient, resulting in the R-table containing a
complete description of the shape. The algorithm for using the R-table to find shapes with in
an image is described by Ballard [1] as:

“For each edge pixel x in the image, increment all the corresponding points x + r in the
accumulator array A where r is a table entry indexed by θ , i.e., r(θ ). Maxima in A correspond
to possible instances of the shape S.”

3 Evidence Gathering Texture Segmentation
A new evidence gathering approach to texture segmentation is proposed which uses the prin-
ciples of template matching present in the Generalised Hough Transform (GHT) and mod-
ifies it to match texture instead of shape. The technique exploits a property of the Local
Binary Pattern (LBP) texture descriptor which is that if there is structure in the image space,
there must be structure in the LBP space. Mäenpää and Pietikäinen observed in [9] that each
LBP code limits the set of possible codes adjacent to it. This implies that the arrangement of
LBP codes within a texture element is not random and that taking a histogram of the codes
reduces the available information further to that originally lost in the LBP process. It is pos-
sible for several textures to have the same histogram, rendering such methods incapable of
distinguishing between them. By storing the LBP code along with its offset to the centre
of the texture region for each pixel, this structural information is not lost and a unique de-
scriptor is produced which can be used in the classification and segmentation of images. The
descriptor is unique because it can be used to regenerate the array of LBP codes that repre-
sent the texture sample, unlike a histogram of LBP codes which cannot. The new algorithm
is thought to be the first use of evidence gathering in texture segmentation and achieves high
efficiency by transferring the principles of low computational complexity present in the GHT
method to the field of texture analysis.

3.1 Method
As with the GHT, before sample images can be analysed, an R-table must be generated for
each known texture class. This describes the structure and composition of a section of the
texture and is used to classify the texture class of the sample images. Sub-images, or cells,
are taken from the training images and the LBP code is calculated for each pixel within the
cell. The R-table contains a number of bins equal to the number of different LBP codes that
exist for the version of the LBP that is being used. For LBP P values of eight, the number of
bins will be ten; one for each of the nine uniform LBP codes and a miscellaneous bin for all
other codes which are not classified as one of the uniform patterns. For each pixel in the cell
an entry is submitted to the bin corresponding to the LBP code for that pixel. The entry is a
two dimensional vector r=(xr,yr) representing the translation from the pixel to the reference
point of the cell. This reference point is usually chosen to be the centre. In Figure 2, the top
left pixel (shown in red) in the cell has an LBP code of ‘1’ and so an entry is made in the ‘1’
bin with the vector (2,2) which maps the top left pixel to the centre. The size and number
of cells taken from the training images are not fixed and these parameters can be tailored for
different applications. The size of the cell should be large enough to contain at least one full
example of the repeating pattern in the texture. Having multiple cells for each texture class
will provide more evidence for classification during the segmentation process.
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8 (-1,-2) 

9  

(b) R-table

Figure 2: Example LBP values for a 5x5 pixel cell and corresponding R-table. The reference
point for the cell is shaded in blue.

The following equation is used to calculate the R-table entry for each pixel x = (x,y) in a
cell of centre c = (xc,yc):

r = c−x (5)

where the R-table index is the LBP code calculated by Equation 1 at the point x = (x,y).
As with the GHT, evidence is stored in an array called the accumulator, and a separate

accumulator is maintained for each of the texture classes that are being searched for. In the
segmentation of sample images, the LBP code for each pixel in the entire image is calculated.
The entries in the R-tables represent the possible locations of the current pixel relative to the
reference point of the cell. For the example in Figure 2, if a pixel in the sample image had
an LBP code of ‘6’, it could correspond equally to any of the three positions within the cell
also with that LBP code. For each in turn, votes are made for the area that would cover the
entire cell positioned on that pixel. Rephrasing Ballard, the algorithm becomes: For each
pixel x in the image, increment all the corresponding points in a cell centred on the point x
+ r in the accumulator array A where r is a table entry indexed by the LBP code at point x.
Maxima in A correspond to possible instances of the texture T.

Voting is done in blocks rather than for individual pixels because texture covers an area
and a single pixel on its own does not contain texture. The area covered by each block vote
is equal to the area of the cell from which the evidence was gathered. The three block votes
for an LBP code of ‘6’ using the R-table in Figure 2(b) are shown in Figure 3. The algorithm
is effectively searching the sample image for the texture structure observed in the training
cell. In Figure 3, it can be seen that four of the pixels in the image were within all three
possible cells for that R-table and hence these pixels have a higher probability of belonging
to that texture class. The equations for calculating the coordinates of the four corners of the
rectangle covering the voting block for each R-table entry, where the reference point is the
centre of the cell, are as follows:

Topleft = x+ r+(−cw

2
,−ch

2
) (6)

Topright = x+ r+(
cw

2
,−ch

2
) (7)

Bottomleft = x+ r+(−cw

2
,

ch

2
) (8)
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Figure 3: Accumulator showing block votes for three R-table entries, bordered by red, green
and blue rectangles.

Bottomright = x+ r+(
cw

2
,

ch

2
) (9)

where cw and ch are the cell width and cell height respectively.
An accumulator for each texture class maintains the number of votes for each pixel for

that texture. If there is more than one cell for a texture class, the votes of the subsequent
cells are added to the accumulator for the first cell. When the voting process is finished, the
higher the number of votes for each pixel, the higher the probability of the pixel belonging
to that texture class. It is important to note that analysis of a single pixel yields evidence for
many other pixels. This works because if there is structure in the texture, the LBP code at a
point is related to those around it. Using a higher number of cells per texture class increases
the amount of evidence used to classify pixels and leads to a higher accuracy. Segmentation
is performed by filling an accumulator for each texture class and assigning each pixel to the
texture class with the highest number of votes at that point.

3.2 Extensions
3.2.1 Multi-scale Support

Multi-scale versions of the LBP operator can be obtained from the individual histograms
of the LBP at different scales by extending the measure of dissimilarity to compare over
multiple histograms. The multi-scale LBP has been demonstrated to give better results than
the single scale version [16]. The EGTS algorithm can be similarly extended to support
multiple scales by calculating the votes for each pixel at each scale and then adding them
together. In Figure 4(b) it can be seen that not all textures are identified correctly using an
LBP radius of 1, however when these results are combined with those obtained from an LBP
radius of 2, as seen in Figure 4(c), a vastly improved segmentation is obtained.

3.2.2 Matched Voting

An issue with the original form of the EGTS algorithm is overvoting. Since most modern
LBP variants only have ten different codes many votes are made for the wrong texture since
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(a) (b) 59.3% (c) 95.5%

Figure 4: Multiscale: a) original image; b) Segmentation results using LBP radius of 1 and
nine cells of 32x32 pixels c) Segmentation results using LBP radius of 1 and 2 and nine cells
of 32x32 pixels.

(a) (b) 93.8% (c) 95.5%

Figure 5: Matched Voting: a) original image; b) Results using radius of 1 and 2 and nine
cells of size 32x32 pixels without using matched voting; c) Results under the same conditions
using the matched voting extension.

there will always be an element of overlap in the code occurrence. The LBP methodology
still works; there will always be more votes for a perfect sample than for a different texture,
however the presence of noise or a slightly distorted texture sample can reduce the contrast
of votes between texture classes. A solution to this problem is the matched voting extension.
In the standard version of the algorithm the LBP code of the pixel being classified is matched
to those of the training cells. However if we revisit the theory of structure present in the LBP
space it is apparent that if there is also a match between the LBP codes of the neighbouring
pixels in the sample image and the neighbouring pixels in the training cell there is a higher
chance of the pixel belonging to that texture class. The matched voting extension awards one
extra block vote per correctly matched neighbouring pixel. Tests have shown that allowing
the neighbouring LBP codes to match any of the neighbouring codes in the R-table gives
the best contrast increase while maintaining the rotation invariant properties and number of
votes for correct textures. This means that in the example in Figure 3, the three entries in
the R-table will not be treated equally and will be assigned votes dependant on how closely
the structure matches. Each R-table entry is now required to contain the LBP codes for the
neighbouring pixels as well as the vector from the pixel to the centre of the cell. Figure
5 shows the typical performance increase when matched voting is used instead of standard
voting.

3.2.3 Normalisation

It can be observed that different textures have different voting strengths. This means that
some textures could give a larger number of votes for an incorrect texture than another texture
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Figure 6: Segmentation accuracy of mosaics from the Brodatz subset using both the new
evidence gathering algorithm and the histogram comparison algorithm. The solid blue line
represents the line of equality and the dashed green line is the trend line.

could give for a correct match. This leads to cases where votes from one texture overpower
those from another, distorting the segmentation results. A solution is to normalise the voting,
whereby the votes from each texture are weighted according to their strength factor. One
way of calculating the strength factor is to add up the total number of votes for the texture
over the entire image and divide by the number of pixels. When all votes for a texture are
divided by its strength factor the stronger textures will have their influence over the regions
of other textures weakened, reducing the “overspill” effect. The equation for performing
normalisation on an accumulator A of size w by h is:

Anorm (x,y) =
A(x,y)∗w∗h

∑
w
a=0 ∑

h
b=0 A(a,b)

(10)

If normalisation is required where one texture is weaker than the others, its use can
restore the texture boundaries to their correct locations. Better results can sometimes be
obtained from manual assignment of the strength factors, leading us to believe that a machine
learning approach is the best way of obtaining the optimum strength factor during the training
stage.

4 Results

4.1 Texture Mosaics
A subset of 27 textures from the Brodatz album [3] was used to generate 50 mosaics contain-
ing four randomly selected textures. This subset is included in the supplementary material.
For each texture in the subset, the bottom right quarter was used to generate the mosaics, and
the top left quarter was used to provide training data for segmentation. Segmentation was
performed using the EGTS algorithm, employing LBP radii of both 1 and 2 for multi-scale
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(a) (b) (c) 76.7% (d) 67.8%

Figure 7: BSDS Mountain: a) original image; b) manual segmentation; c) segmentation
using the EGTS algorithm; d) segmentation using the HC algorithm.

support and segmenting using 9 cells of 32x32 pixels each. The matched voting and auto-
matic normalisation features were also enabled. The standard method of image segmentation
using a texture classification algorithm classifies each pixel individually by taking a window
centred on it and performing comparison against the training data [17]. For comparison, we
have used the LBP segmentation from [10] which uses this method to segment each of the 50
texture mosaics. For simplicity, this algorithm will be referred to as Histogram Comparison
(HC). Results from the 50 tests are shown in the graph in Figure 6, where the preponderance
of results exceeding the line of equality shows the superiority of the new approach. Segmen-
tation accuracy was calculated by comparing the results pixel-by-pixel against the ground
truth. Our EGTS algorithm achieved an average segmentation accuracy of 86.9% and stan-
dard deviation of 8.12 over the fifty tests compared with an average of 80.3% and standard
deviation of 10.36 achieved by HC.

4.2 Real Images
Results from two real images from the Berkeley Segmentation Dataset [12] have been in-
cluded. The first is an Egyptian pyramid shown in Figure 1. The results obtained from our
EGTS algorithm and the standard HC algorithm are shown in Figures 1(c) and 1(d) respec-
tively. A manual segmentation of the image is included in Figure 1(b) and the segmentations
are compared to this ground truth to obtain a numerical indicator of their quality which is
shown in the captions. Both algorithms provide a good segmentation of the image, however
it is apparent that that the EGTS algorithm provides a much smoother boundary between
the textures along with a higher segmentation accuracy. The second image is of a mountain
scene and results are shown in Figure 7. Our algorithm provides a significantly better result
than the HC algorithm and again features smoother boundaries between textures and lower
noise within texture segments.

5 Conclusions
In this paper, we have presented a new method for image texture segmentation which we
contend to be the first use of an evidence gathering approach in the field of texture analy-
sis. In contrast to conventional methods which compare measurements from a sample of an
image to training data to classify a single pixel, our approach compiles information gath-
ered from each pixel into evidence to support the classification of nearby pixels into each
known texture class. Each pixel is then classified into the class for which it has the most
evidence. We have performed a statistical test using a subset of the Brodatz texture database
and our EGTS algorithm gives a higher average performance and lower standard deviation
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than the HC algorithm under the same conditions. The lower standard deviation implies that
in addition to performing better on average, our algorithm is also more robust. Two tests
on real images from the Berkeley Segmentation Dataset show significantly higher segmen-
tation accuracies are obtained from the EGTS algorithm. Our results also provide noticeably
smoother texture boundaries and reduced noise within texture regions. The proposed EGTS
algorithm is an implementation of a higher order texture descriptor; classifying texture based
on the structure of the individual elements which make up the texture. Existing “low order”
descriptors use the rate of occurrence of the texture elements to classify the textures, pro-
viding a descriptor which is not necessarily unique to a single texture class. By contrast,
our EGTS algorithm generates a unique R-table for each texture which not only supplies
information on the occurrence of texture elements, but also their structure. Further work will
focus on parameter optimisation and developing a colour version of the algorithm.
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