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Abstract 

We present an experimental study to demonstrate the 
effect of the time difference in image acquisition for gallery 
and probe on the performance of ear recognition. This 
experimental research is the first study on the time effect on 

ear biometrics. For the purpose of recognition, we 
convolve banana wavelets with an ear image and then 

apply local binary pattern on the convolved image. The 
histograms of the produced image are then used as features 

to describe an ear. A histogram intersection technique is 

then applied on the histograms of two ears to measure the 
ear similarity for the recognition purposes. We also use 
analysis of variance (ANOVA) to select features to identifY 

the best banana wavelets for the recognition process. The 
experimental results show that the recognition rate is only 

slightly reduced by time. The average recognition rate of 
98.5% is achieved for an eleven month-difference between 

gallery and probe on an un-occluded ear dataset of 1491 
images of ears selected from Southampton University ear 

database. 

1. Introduction 

Biometrics concerns the recognition of individuals based 
on a feature vector extracted from their anatomical and/or 
behavioral characteristic, and plays a vital role in security 
and surveillance systems. Finding efficient descriptors to 
represent these characteristics is essential for many pattern 
recognition tasks. 

Using ears as a biometric identifier has attracted much 
attention in the computer vision and biometric communities 
in recent years. The ear, characterized by the appearance of 
bone structures and lobes is frequently used in biometric. 
Ear identification has some advantages over other 
biometric technologies for various reasons. An ear contains 
a large nwnber of specific and unique features that assist in 
hwnan identification. The hypothesis that ear structure does 
not change significantly over time is demonstrated in the 
earliest studies [1]. An ear can be remotely captured 

without any knowledge or consent of the person under 
examination. Ear recognition is not affected by changes 
similar to those associated with facial expression. These 
properties make ears very attractive as a biometric 
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identifier. As a result, the ear biometric is suitable for 
security, surveillance, access control and monitoring 
applications. 

There are some studies which show how the ear can be 
used for recognition, using 2D and 3D images [2, 3]. 
Iannarelli [1] performed two early studies suggesting ears 
are unique to individuals and supporting the use of an ear as 
a biometric modality. 

One of the earliest works studying ear biometrics is that 
of Burge et. al [4], investigating the human ear as a 
biometric in the context of machine vision. They introduce 
a graph matching based algorithm for ear authentication by 
using the Voronoi diagram of the ear's edge segments to 
describe the ear. Moreno et al. [5] investigate the use of 
outer ear images for human identification. Force field 
transformation is used in [6] to reduce the dimensionality of 
the original pattern space. The algorithm consists of two 
stages: i) image to force field transformation, and ii) force 

field feature extraction. The most popular method used to 
extract the feature vectors of ear images in ear biometrics 
research is PCA [7, 8]. Arbab-Zavar et. al [9] propose the 
first model based approach for ear recognition, by the virtue 
of evidence from embryonic development of the human 
ear. In their work, the model based technique is combined 
with the Log-Gabor coefficients for recognition. 
Log-Gabor filter is used to extract the frequency content of 
the ear fluctuating surface representing the shapes of the 
Helix and the Anti-helix in an ear. Chen et. al [lO] 
introduce a two-step Iterative Closest Point (lCP) algorithm 
to match 3D ears. 

All of these techniques for ear recognition have mainly 
focused on recognition rate. The notion that ear is relatively 
time invariant is originally noted in [1]. However there is 
no experimental study to show the time invariance property 
associated with ear biometric. In this paper, the first 
experimental framework is proposed to investigate the 
effect of time on ear recognition. 

A brief description of the recognition algorithm 
proposed in this paper to demonstrate the time invariance 
property of the ear biometrics is as follows: 1) For ear 
recognition, we shall need to locate the ear in a profile 
image manually to avoid the effects of ear detection process 
on the recognition. 2) It appears appropriate to consider a 
technique to describe an ear as a feature vector depending 



on its general structure. The idea of ear description 
technique was proposed by Zhang et al. in [11] by using 
Gabor wavelets. However instead of using Gabor wavelets, 
we employ here a bank of banana wavelets, which can be 
considered as generalized Gabor wavelets, to extract 
curvilinear structures in the ear. In addition to the frequency 
and orientation, banana wavelets are also characterized 
with properties associated with the bending and curvature 
of the filter. Ear images are characterized with structures 
similar to those of banana wavelets. Banana wavelets 
appear well matched to the curvilinear structure of ears, 

particularly in the region of the helix (the uppermost part of 
the ear) and the tragus (which are the lower parts). 3) 
ANOV A technique is used to identify the best banana 
wavelets for the recognition process. 

This paper is structured as follows. Section 2 gives a 
brief background on banana wavelets, analysis of variance, 
and the local binary pattern techniques. Section 3 describes 
our proposed technique to recognize ears. The experimental 
results are presented in section 4. Finally, the conclusions 
are drawn in section 5. 

2. Basic Techniques 

2.1. Banana Wavelets 

Banana wavelets are a generalization of Gabor wavelets 
which are localized filters derived from a mother wavelet 
[12], particularly suited to curvilinear structures (figure 1). 

A banana wavelet Bb is parameterized by a vector b of 

four variables, i.e. b = (j, a, c, s ) where f , a, c and S 

are frequency, orientation, curvature, and size respectively. 
This filter consists of two components i) a rotated and 

curved complex wave function Fb ( x,y ) and ii) a Gaussian 

G b ( x, y ) function rotated and curved in the same way as 

Fb(X,y) [12], i.e.: 

Bb(X,y)= r.Gb(x,y). (Fb(x,y)-DCb ) (1) 
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is the bias of the banana wavelets, and (J x and (J yare the 

scales of the Gaussian filter in x and y directions 
respectively. 

Features can be extracted from any image by the banana 
wavelet transform to describe both spatial frequency 
structure and curvilinear structure present in the image. The 

(a) 

(b) 

Figure 1: (a) Banana wavelet filters and (b) Gabor wavelet filters 

convolution of the image with complex banana filters with 
various frequencies, orientations, curvatures, and SIzes, 
captures the local structure of the image. 

2.2. Analysis of Variance (AN OVA) 

ANOV A is a well established statistical method to provide 
a statistical analysis of data [13]. The importance of a 
feature can be realized by sorting its corresponding F-ratio 
in a descending order. F-ratio is calculated by comparing 
between classes' mean squares with the within classes' 
mean squares. 

2.3. Local Binary Pattern (LBP) 

The LBP texture operator is currently one of the most 
popular techniques for texture description and it has 
become a popular approach in various applications. The 
original LBP [14] operator labels every pixel of an image 
by thresholding the 3 x 3 neighborhood of each pixel with 
the value of the center pixel and considering the result as a 
binary number. Then, the values of the pixels in the 
thresholded neighborhood are multiplied by the weights 
given to the corresponding pixels. Finally, the values of the 
eight pixels are summed to obtain the LBP number for the 
center pixel. The histogram of these 28 = 256 different 
labels can then be used as a texture descriptor. The 
advantage of using LBP texture operator is that it is 
invariant with illumination and shift. 

3. The Proposed Recognition Technique 

3.1. Ear Description 

To describe the ear with a feature vector we apply the 
representation method proposed in [11], but instead of 
using Gabor wavelet filters, we use banana wavelet filters. 
The structure of the ear mainly contains features similar to 
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Figure 2: Ear description algorithm 

those of banana wavelets. An ear image can therefore be 
described as a histogram sequence by the following 
procedure (figure 2): 

• The ear is extracted manually from a head profile image. 
The size of extracted ear images is different. This paper is 
largely concerned with ear recognition rather than ear 
detection, however it is worth noting that the banana 
wavelet detection algorithm proposed in [15] can achieve 
a detection accuracy of 100% on XM2YTS face profile 
database and of 85% at Soton database. Here, the ear is 
extracted manually in order to minimize the effect of 
detection on the recognition performance. 

• The magnitude of the banana filter responses Mb is 
calculated by taking the magnitude of convolving banana 

wavelet filters Bb for all possible value of b (80 filters 

are selected by using ANOYA, this will be discussed in 
section 4) with the extracted ear image I: 

Mb = 1(Bb *IXxo � (2) 

where Xo and'" are the location of a pixel in I, and the 
convolution operator, respectively. 

• Local binary pattern LBPb is calculated for 

each Mb which has invariant characteristics. 

• Each LBPb is divided into four non-overlapping regions 
which expose basic structures in the ear. 

• Histogram Hr•n calculated by applying filter n ( n is from 

1 to 80) on region r ( r varies from 1 to 4) is used to 
produce the ear features. 

• All of the calculated histograms are concatenated into a 

single histogram sequence HS to describe the given ear 

image as a feature vector: 

HS = (HI,I,H2,I,H3,I,H4,I,HI,2, ... ,H4,80) (3) 

3.2. Ear Comparison 

Histogram intersection HI [16] is used as a similarity 
measure between two histograms. We normalize each 
histogram to produce a probability distribution function. 
The histogram intersection can then be calculated as: 

HI(HI 
, H2)= ±min[-

.
Lh } '

.
Lh;
2 j (4) i=O L h� L hJ ;=0 ;=0 

where hi and h2 
are two histograms, and L is the number 

of bins in the histogram (in this case L equals 255). 
Once the ear is described as histogram sequence, the 

similarity S between two histogram sequences is measured 

by calculating HI between them: 

( I 2 ) 
4 80 

(I 2 ) S HS ,HS = L L HI Hr,n,Hr,n (5) 
r=ln=1 

To select the matched ear with the test one, the 
similarities between the histogram sequence of the test ear 
and all of the other histogram sequences are measured, and 

the ear with maximum S is selected as the correct one. 



4. Results 

4.1. Database Description 

There are two databases used in our experiments. One 
database is used to select the best banana filters to describe 
the ear, and the other database is used to evaluate the effect 
of time on the performance of ear recognition: 

1) XM2VTS database: First ear database is selected from 
the XM2VTS face profile database [17]. The selected 

dataset consists of 252 images from 63 individuals with 

four images per person collected during four different 
sessions over a period of five months to ensure the natural 
variation between the images of the same person. The 
images selected are those where the whole ear is visible in a 
nOx576 24-bit image. The ears in the database are not 
occluded by hair but there are few images with some 
occlusion by earrings. This is the same subset of the 
XM2VTS face profile database used by Hurley et al. [6] 
and Arbab-Zavar et. al [9]. Figure 3-a illustrates images 
from XM2VTS database. 

2) SOTON ear database: Two datasets are selected from 
the SOTON ear database [18,19]. The database is acquired 
as subjects walk past a camera triggered by a light beam 
signal, and other biometrics are acquired at the same time 
(face and gait biometrics). The subjects are between 20 and 
55 years old. The advantage of this database is that, it has 
much variation in ear orientation, size, color skin, and 
lighting condition. This database therefore allows 
evaluation of the performance of our technique on a data 
acquired in a more realistic scenario. Dataset 1 [18] 
contains 548 face profile images from 137 subjects with 
four images per person (figure 3-b). Dataset 2 [19] is 
selected to enable analysis to be performed over time which 
is captured in five different sessions over a period of eleven 
months (figure 3-c). There are 25 subjects used in these 
sessions. The number of subjects in each session may vary. 
The number of the images for each subject may also change 
because we select only the images without ear occlusion. 
The number of subjects and images available in the 
SOTON database for each session is shown in table 1. 

4.2. Filters Selection 

ANOV A based feature selection algorithm is applied to 
select the best filters from a bank of banana filters used in 

Month Number of subjects Number of images 

0 18 337 

1 18 350 

4 14 234 

9 12 231 

11 15 339 

Table 1. Number of Subjects and Images in each Session 

the recognition process. To select the best filters, first a 
bank of banana filters (nO filters) is convolved with 
XM2VTS database images and the magnitudes of the 
filters' responses are computed (XM2VTS database is used 
for filter selection as it is constrained and has fewer 
variations). Then, LBP algorithm is applied on each 
magnitude image to produce a feature image which is then 
divided into four parts (quadrants). The histogram is 
calculated for each part and the four histograms are 
concatenated for each filter. 

(a) XM2VTS face profile database 

(b) SOTON ear dataset 1 

(c) SOTON ear dataset 2 

Figure 3: Images from XM2VTS and SOTON databases 

• 
Figure 4: The selected banana filters 



After that, ANOV A is applied to compute the F-ratio 
for each filter. Finally, the filters are ranked in descending 
order according to their F-ratio and the first 80 filters are 
selected as the best filters. Figure 4 illustrates the selected 
filters. Having selecting the best filters, our recognition 
technique is then applied to XM2VTS face profile database 
to obtain a recognition rate of 98%. A recognition rate of 
99.3% is also achieved by applying the algorithm proposed 
here to SOTON ear dataset l. We also investigated use of 
uniform LBP but recognition was not as good as for basic 
LBP. 

4.3. The Effect of Time 

The effect of time on the perfonnance of ear recognition is 
investigated by applying our proposed recognition 
technique to SOTON ear dataset 2. The average recognition 
rate achieved over eleven months is 98.5%. Table 2 shows 
the combinations of probe and gallery which are used in 
this experiment. The recognition rate for each combination 
is shown in figure 5. The recognition rate for the time 
difference of 0, 2, 4, 5, 10 and 11 months is nearly 100%. 
But the recognition rate drops by a value between 2% and 
5% for the time difference corresponding to 1,3, 7, 8 and 9 
months due to the higher values of rotation (figure 6-a). Our 
recognition approach is relatively immune to slight rotation 
(figure 6-b). 

4.4. Verification Performance 

The verification perfonnance of the proposed technique is 
measured in terms of the receiver operating characteristic 
(ROC) curve and decidability measure. The ROC curve 
describes a relation between the false accept rate (FAR) and 
the false reject rate (FRR) at different thresholds. Figure 7 
shows the ROC curve of the proposed technique on 
XM2VTS face profile database and SOTON ear dataset 1. 
The equal error rate (EER) of the experiments is 7.4% for 
XM2VTS database and 5.2% for SOTON ear dataset 1. The 
EER is the location on the ROC curve (figure 7) where the 

Probe (month) Gallery (month) Time Difference (months) 

0 0 0 

0 1 1 

9 11 2 

1 4 3 

0 4 4 

4 9 5 

4 11 7 

1 9 8 

0 9 9 

1 11 10 

0 11 11 

Table 2. The Combinations of Probe and Gallery 

FAR and the FRR are equal. The decidability value 
provides an indication of mean separation with respect to 
standard deviation. The measured decidability [20] is 3.27 
for XM2VTS database and 3.5 for SOTON ear dataset l. 
For a database, the higher the decidability measure, the 
better the algorithm is perfonnance. 
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Figure 5: Recognition rate over time 

(a) Highly rotated ears for the same person 

." �. 

14 . .. .".' (.' 
(b) Slightly rotated ears for the same person 

Figure 6: Examples of highly and slightly rotated ears 
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Figure 7: The ROC curve for XM2VTS and SOTON databases 

5. Conclusions 

The main contribution of this paper is to test the effect of 
time on the performance of the ear recognition. This is the 
first biometric experimental study to investigate the time 
effect on ear biometrics. The recognition approach is based 
on the description of the ear image as histogram sequences. 
Our method to describe the ear depends on the local binary 
pattern algorithm. It is therefore robust to local image 
transformation due to variations of lighting and shifting. 
One of major strength of our proposed method is that it 
appears to be general for various databases. The general 
structure of the ear has many curvilinear structures which 
match the structures of the banana filters. We apply a 
feature selection algorithm by using ANOV A based feature 
selection method to select the best filters from a bank of 
banana filters. 

The experiments show that when our proposed 
recognition technique is applied to XM2VTS face profile 
database and SOTON ear dataset 1, a recognition rate of 
98% and 99.3% are achieved; respectively. The average 
recognition rate over eleven months is also 98.5% for the 
SOTON ear dataset 2. The experiments show that the 
recognition rate is not affected considerably over eleven 
months. We can therefore conclude that ear can be used in 
various applications as a time invariant biometric. Clearly a 
database gathered over a longer time frame could extend the 
results achieved here, but an 11 month timeframe is all that 
is currently available. 
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