
Capability & Potential for Formal Feature-oriented

Reuse in Event-B

Ali Gondal, Michael Poppleton, Michael Butler

School of Electronics and Computer Science, University of Southampton, Southampton,
SO17 1BJ, UK

Abstract

Context: Event-B is a leading state-based language for formal mod-
elling and verification of systems supported by an extensible Rodin toolkit.
Its existing composition techniques provide a starting point for the investiga-
tion of capability for reuse via feature-based modelling. We contribute early
methodology for formal development of software product lines (SPLs). An
SPL is a set of related products built from a shared set of resources with a
common base and having variabilities. Feature modelling has been widely
used as a technique for building SPLs.

Objective: Our objective is to explore existing capability and future po-
tential for Event-B, in the formal modelling, verification and reuse of domain
assets, ultimately targeting verifiable SPL development. We will also suggest
further requirements for tools and techniques in Event-B/Rodin for formal
product line modelling.

Method: By modelling two-case studies in Event-B using different mod-
elling styles, we explore current capability for feature modelling in Event-
B. We show that Event-B decomposition techniques can be exploited for
problem-space feature decomposition and solution-space architectural com-
position. We have also developed a feature-modelling tool for Event-B to
experiment with our example case-studies.

Results: The case-study experiments show that the existing Event-B
techniques can be used for feature-based modelling and revealed further re-
quirements for feature modelling tool support. A guideline for feature-based
modelling with Event-B/Rodin has been proposed based on the case-study
experiments that could be used to achieve the benefits of reusing formal
models.

Conclusions: By providing a prototype tool and guidelines for feature

May 24, 2012

modelling in Event-B, we can formally specify product line features that could
be reused to build different variants of a product family. This would enable
us to benefit from formal modelling and software reuse. This work has shown
the potential of Event-B’s existing tool and techniques for feature modelling
and we have also generated tooling requirements and research questions for
the future.

Keywords: Feature Modelling, Event-B, Formal Methods, Software
Product Lines, Software Reuse

1. Introduction

1.1. Research Background & Motivation

Formal methods are mathematically based languages, tools and tech-
niques for specification and verification of software and hardware systems
[1, 2]. The correctness of models with respect to functional, safety and certain
other requirements can be verified with theorem prover and model-checking
tools. Proof activity and the investigation of failed proof obligations (POs)
can serve as model and requirements debugging earlier in the software de-
velopment life cycle (SDLC). It is also well known that cost of finding and
fixing the bugs later in the SDLC is much more expensive than in the ear-
lier requirements analysis and design phase [3]. So, formal modelling, which
is carried out in the earlier phase, helps in finding such bugs and reducing
the overall cost for fixing these [4]. The reduction in testing cost to offset
increased cost in requirements/design phase can be seen in various industrial
examples. Although more time is spent in the earlier phase of SDLC while
using formal modelling, significant reduction in the overall development time
has been reported. [5]

Successful application of formal methods in safety-critical systems can be
seen in aerospace, transportation, defence and medical sectors [6, 7, 3, 8, 5].
There are several formal modelling languages around, some of the state-based
formal methods include: Z [9], B [1], VDM [10], ActionSystems [11], Event-
B [12] etc. and process-based formal methods include: CSP [13], ACP [14],
CCS [15] etc.

Event-B [12] is one of the recent formal specification languages. It is a
successor of B specification language [1], based on set-theory and first-order
logic, proposed by Abrial and others. Event-B is supported by an Eclipse [16]
based open-source toolkit called Rodin [17], which includes editors, provers,

2

animator, model checker and various other plugins. Event-B’s mathematical
language forms the core of the Rodin platform which can be easily extended
by developing additional plug-ins on top of the Rodin core. Event-B models
are specified at high abstractions levels and then refined gradually to model
further details of the system. Each refinement step is checked for correct-
ness by discharging proof obligations auto-generated by the tool with the
help of theorem provers. An Event-B development consists of a model with
various refinements. Once an Event-B development is refined down to con-
crete implementation, it can then be translated to executable code using code
generators.

A software product line (SPL) is a set of related products which share a
common base having significant variabilities to meet user requirements [18].
Each member of an SPL differentiates it from other members in terms of
functionality or behaviour but share the common base. SPL development
promises benefits of reusability, i.e., improved quality and reduced effort
and time to market when building similar products by reusing parts of the
systems that have already been developed. Feature modelling [19] has been
established as a technique for modelling commonality and variability in SPLs.
A feature has been defined to be a functionality or behaviour that is of some
value to a stakeholder [20]. It can be a module in a programming language
or a group of requirements in the requirements specification document. A
feature model is a hierarchically arranged set of product line features [21].
It consists of a tree structured feature diagram with various features of a
product line (PL) as tree nodes.

We have developed a framework that combines the strengths of both
formal methods and SPL engineering, inspired by the work of Snook et al.
[22]. This means that if we build a database of Event-B models for a PL
that have already been proved, we can specify various products of the PL
by configuring and composing these models in different ways. We propose
guidelines and tool support through which the process of configuration and
composition of Event-B models (with various refinements) would save lot of
user effort, time and reduce overall development cost.

1.2. Our Contribution

Our contribution is in providing methodology for feature-based reuse in
Event-B, exploiting its existing capabilities, building further tools and tech-
niques and suggesting modelling guidelines for SPL development using Event-
B. We have provided notations for feature-modelling in Event-B to specify a

3

feature model of a product line with variabilities. We considered an Event-B
development (collection of models) as a ‘feature’. Other possibilities of finer
granularities of a ‘feature’ in Event-B were reported in our earlier work [23].
In feature modelling, features are atomic whereas we proposed composition
and instantiation mechanism for features which are Event-B developments.
After drawing a feature model, it could then be configured to model a partic-
ular instance of a product line. The feature model could be expressed with
various constraints and how the features could be composed in a valid way
to produce a PL member. We have developed a feature modelling tool (in-
spired by earlier feature modelling tools, e.g., [24]) as a plug-in to Rodin that
can be used to draw feature models and configure these feature models that
includes conflict resolution and composition of selected features. Our case-
study examples showed that we can utilise existing Event-B (de)composition
techniques to decompose a system into various features, refine them and
recompose later to model the desired PL instance. The two case-studies
modelled different systems in different styles to explore reusability and at
the same time Event-B’s potential for feature-modelling. These also high-
lighted further tooling requirements and research questions. We have also
proposed some guidelines that we think would be useful for SPL modelling
using Event-B’s current tools and techniques.

1.3. Paper Organization

Section 2 gives an overview of Event-B language syntax, refinement,
generic instantiation and various composition approaches. Section 3 de-
scribes feature modelling concepts and notions, followed by our extension
of these notions for feature modelling in Event-B in Section 4. Section 5 & 6
explain how we have modelled the two case-studies to address our research
objectives. Section 7 explains the current state of feature modelling tool
support in Event-B. Section 8 provides some guidelines for feature-oriented
modelling and further tool support requirements. Related work is discussed
in Section 9 followed by conclusion and future work in Section 10.

2. Event-B Language

This section will discuss the syntax of the Event-B language with a sim-
ple example. We will also give a brief overview of refinement in Event-B
modelling. This will be followed by a discussion on existing (de)composition

4

Figure 1: Integral ATM abstract model

techniques in Event-B along with the existing reuse approach of generic in-
stantiation. We will discuss the application of these existing approaches of
Event-B later in the case-study Section 5.

2.1. Event-B Syntax

An Event-B model consists of a machine and can see multiple contexts.
The machine specifies the behaviour or dynamic part of the system and the
context contains static data which includes sets, constants, axioms and the-
orems. The sets define types whereas the axioms define properties of the
constants such as typing etc. Theorems must be proved to follow from ax-
ioms. The machine sees context(s). State is expressed by machine variables.
Invariant predicates provide typing for the variables and also specify require-
ments (e.g., safety or consistency) and any properties of a system that must
always hold. The state transition mechanism is accomplished through events
which modify the machine state. An event can have guard predicates which

5

must be true in order to enable the event to perform actions, e.g., assign-
ment etc. Event parameters (also known as local variables) express input to,
output from and local choice data within the event, as required. Variables
are initialized by a special event called Initialization which is unguarded.
An event has the following syntax:

e = any t where G(t,v) then A(v,t) end

An event e having parameters t can perform actions A on variables v
if the guards G on t and v are true. A model is said to be consistent if
all events preserve the invariants, i.e., the invariant predicates must be true
after any state updates. These invariant preservation properties, called proof
obligations (POs), are the verification conditions automatically generated by
the tool and then discharged using theorem provers to verify correctness of
the model. Figure 1 shows an example of a complete Event-B model with a
machine and its seen context. It has a variable bal , typed by the invariant
inv1, as a partial function from set ACCOUNT to natural number to simply
model an array of bank account balances. The bal is initialized as an empty
set in the Initialization event. The set ACCOUNT is given in the context.
There are two events, i.e., transfer and deposit , which update the variable
bal when their respective guards become true. The local variables given in
the any clause serve as input parameters here, e.g., src ac, dest ac and
am in event transfer .

2.2. Refinement in Event-B

Refinement is a top-down development method and is at the core of
Event-B modelling. We start by specifying a system at an abstract level
and gradually refine by adding further details in each refinement step until
the concrete model is achieved. A refinement is a development step guaran-
teeing every behaviour in the concrete model is one specified in the abstract
model. It usually reduces non-determinism and each refinement step must
be proved to be a correct refinement of the abstract model by discharging
suitable refinement POs. Typically, we classify the refinement into horizontal
and vertical refinements [12]. In horizontal refinement, we add more details
to the abstract model to elaborate the existing specification or introduce fur-
ther requirements of the system being modelled. In vertical refinement, the
focus is on design decisions, i.e., transforming and enriching data types and
the elaboration of algorithms. For example, data types become more con-
crete, i.e., move from set-theoretic (sets, relations) to machine-implementable

6

types (arrays, queues). In vertical refinement, the state of a concrete model
is linked to the abstract model using gluing invariants. It is usually harder to
prove vertical refinements compared to horizontal refinements since the glu-
ing invariants increase PO complexity. A model is vertically refined after the
horizontal refinement has been performed to introduce all the requirements
of the system.

2.3. Generic Instantiation

Generic Instantiation [25] provides a reuse approach for Event-B mod-
els. The generic Event-B developments (called patterns) are instantiated
to specific models through parametrisation achieved by refactoring. Such a
pattern can include a refinement chain. This means that machine elements
(e.g., variables, event names etc.) can be renamed and context parameters
(e.g., sets, constants etc.) can be replaced with elements of the same type.
This helps in reusing patterns to build models having similar characteristics
and also maintains the validity of already discharged POs through to the
instantiated models.

Refinement

Refinement

D1

Dn

Dn+m_abs

Dn+m

Refinement

P1

Pm

Instantiation

Instantiation

Refinement

Figure 2: Instantiation of a generic chain of refinements [25]

Figure 2 shows an example of the generic instantiation for a generic pat-
tern as a refinement chain (P1 to Pm). A development D1 is refined by Dn

which can be refined by instantiating pattern P1 through a user provided
context resulting in Dn+m abs. The final refinement of pattern (Pm) can be

7

instantiated to a specific development (Dn+m) which turns out to be a re-
finement of Dn+m abs. Since the pattern has already discharged all the refine-
ment POs, there is no need to prove the refinement POs for the instantiated
developments (i.e., between Dn+m abs and Dn+m). The final refinement of
instantiated development (Dn+m) can be further refined as usual. This work
shows the reuse of generic patterns and the refinement POs. There is no tool
support for generic instantiation as of yet and we suggest similar approach in
our feature-oriented modelling framework discussed later but that requires
more than just refactoring while instantiating Event-B developments.

2.4. Decomposition & Composition in Event-B

Decomposition: When a model becomes too big to be easily refined,
we need to decompose it into various sub-models (components) which can
then be refined independently. In effect, this is complexity management by
reducing the size of models, which keeps them understandable and reduces
the number of POs to be proved for each model. This also allows the re-
finement of components in parallel by different teams. There are two types
of decomposition in Event-B known as shared-variable decomposition (SVD)
[26] and shared-event [27] decomposition (SED). Like the Event-B language,
these techniques are influenced by earlier formalisms such as CSP [13] and
Action Systems [11]. The refinement preserving nature of these decompo-
sition techniques differentiates these from the feature-based decomposition
with in the FOSD community.

In shared-variable decomposition style, shared variables are kept in all the
components, and events are partitioned between components. Each shared
variable v in each component C is affected by - i.e. has possible transitions
defined by - every event e in every other component acting on that variable.
To model this, for each such e, an external event eext is added to C. When
a component is refined, shared variables and external events must not be
refined. This type of decomposition corresponds to asynchronous shared-
memory communication between components. Figure 3 (left) is an example
of SVD where machine M is decomposed, with shared variable v2, by par-
titioning events into machines M1 and M2. Thus event e3′, a new external
event in M1, models the effect on v2 of e3 in M2. Similarly, e2′ is an external
event in M2 modelling the effect on v2 in M2 of e2.

The shared-event style is based on shared events rather than shared vari-
ables. During the decomposition, variables are partitioned between com-
ponents and shared events are split. A shared event is the one accessing

8

Figure 3: Decomposition types in Event-B

variables residing in different components. Figure 3 (right) is an example of
SED where machine N is decomposed by partitioning variables into machines
N1 (with v1) and N2 (with v2). Since event e2 works on variables v1 and
v2, it will be split between N1 and N2. So, part of event e2 (e2a) that deals
with variable v1 becomes an event of N1 and its other part (e2b) that deals
with v2 becomes event of N2. Event splitting is achieved by decomposing
its parameters, guards and actions into two. This type of decomposition is
considered appropriate for systems based on synchronous message passing.

Both the SVD and SED approaches have semantic support for modular
refinement. This means that it has been shown for both approaches that
decomposition preserves refinement: if we were to recompose components,
even after further refinement steps, the composite would refine the single
abstract model.

In practice the designer might choose to recompose - e.g., all code to
run on a single processor - or might not - e.g., where component models
are deployed on separate physical devices. The key point is that the final
model is ‘correct by construction’. A decomposition plug-in [28] has been
developed for the Rodin tool which can be used to demonstrate both styles
of decomposition.

Composition: Since we are interested in composition, we would like to
use the decomposition styles discussed above by inverting the decomposition
method. For the shared-event style this is straightforward, whether one is

9

composing all, or just a subset of components, provided these do not have any
shared state. For shared variable, composition is straightforward provided
all components are included; if not, remaining external events are a problem.
So, this brings up a tooling requirement to automatically generate external
events for the components being composed. We could manually do this but
it will be cumbersome and even more difficult when composing large number
of components with many events. We will discuss this further in our example
case-studies later.

Fusion [29] is another style of composition which allows the fusion of
events when composing Event-B models having shared variables. During
the fusion of two events, guards are conjoined and actions are concatenated.
This style of composition, inspired by the above two decomposition styles,
promises the support for reuse of models through composition as envisaged in
feature-based development. The refinement preservation is also guaranteed
as each of the abstract input feature events is refined by the concrete fused
event.

3. Feature Modelling

3.1. Introduction

Feature modelling is commonly used these days for SPL engineering. It
was proposed as part of the feature-oriented domain analysis (FODA) method
[30] in the early 90’s. “Feature modelling is a technique for representing
the commonalities and the variabilities among a set of systems in concise,
taxonomic form” [19]. It can be considered as the activity of identifying
externally visible characteristics of products in a domain [31]. It can also be
used for scoping and developing domain-specific languages [32].

Feature modelling provides means to organise features into a feature
model and configure them in order to build products of a product line. One of
the many definitions of a feature is: “a logical unit of behaviour specified by
a set of functional and non-functional requirements” [33] and usually referred
as a property of the system that is of some value to the stakeholders. It is
considered as a unit of reuse, specialization and composition (usually a piece
of code in a programming language, e.g., a module) in SPL engineering. A
feature has also been defined as an increment in program functionality [21].

10

Figure 4: Example of a Feature Model (FODA style) [30]

3.2. Existing Feature Modelling Notations & Tool Support

There are various notations used for feature modelling which extend the
original feature modelling notations from FODA. A feature model consists
of one or more feature diagrams. The most basic of these notations include
a feature diagram which represents a product family. A feature diagram
is a hierarchical tree structure of all possible features that may occur in a
product. The PL is the set of all distinct products that can be instantiated
from the feature model. A feature can be optional, mandatory or mutually
exclusive to another feature. Various composition rules are also supplied in
textual form along with the feature diagrams. Figure 4 shows an example of
a basic feature model drawn using FODA notations.

One of the common notations for feature modelling currently used is
‘cardinality-based feature modelling’ by Czarnecki et al. [32]. They extended
the FODA notations by introducing feature and group cardinalities, feature
attributes and feature diagram references. A feature diagram has a root
feature containing further features. The cardinality of a feature or a group is
provided as an interval (e.g., m..n). Features can refer to a feature diagram
which improves reusability by referring to the feature diagram at various
points in the feature model. This feature diagram reference is similar to our
feature inclusion constraint discussed later in our approach.

Different configurations of features in a feature model will result in dif-
ferent instances of the system or members of the product line. This is done

11

through the feature configuration diagram where the user selects the desired
features to be included in the feature model instance.

Several tools have been developed to support feature modelling for prod-
uct line software engineering [24, 31]. Some of these focus on the demonstra-
tion of their extended notations and others implement the existing notations
in different perspective and for different domains. Some of these also reflect
on the improvements from the previously existing tools.

4. A Feature Modelling Approach for Event-B

We adapted and extended the ‘cardinality-based feature modelling’ no-
tation [32], so that we can build an Event-B specific feature modelling tool
as a Rodin plug-in. The reason for doing so is because it was difficult to use
existing feature modelling tools to specify Event-B features. A tool specific
to Event-B would be able to adopt any modifications to the language as it
is continually being improved. Also, this would enable us to make use of all
the available plug-ins of the Rodin platform such as editors, provers, model
checkers and animators. Our recent experiment of adding Event-B support
to an existing feature modelling tool (FeatureHouse [34]) did not provide the
same flexibility of feature configuration and composition as with our proposed
feature modelling tool. It has proved difficult to integrate independently de-
veloped tools within the Rodin. One reason was an incompatibility of model
interchange format between FeatureHouse (plain text) and Rodin (Event-B
syntax aware XML). We would also require refactoring support while com-
posing features and prefer to use a graphical feature composition tool rather
than the script-based composition approach of FeatureHouse. So, our pro-
posed feature modelling approach will be fully supported by a state of the
art formal method.

4.1. Our Feature Modelling Notations

We define a feature to be an Event-B development which consists of a
machine with various refinements and their seen context(s). This definition
of feature is different to the one presented in our earlier work [35], where we
considered a single machine and its context as a feature. Since an Event-B
feature can now have a chain of refinements, that makes it more difficult
to deal with composing features having various refinement levels. We will
discuss this later in our case-study examples.

12

Figure 5: Our Feature Modelling Graphical Notations

The graphical notations used in our feature modelling framework are
given in Figure 5. A feature model consists of a tree structured feature
diagram whose root feature takes the name of the model. The filled circle
on a feature shows that it is a mandatory feature and optional otherwise
(empty circle). The features with a triangle attached represent group features
which are containers for other features and specify any constraints on the
selection of features within that group. One such is the cardinality constraint
that indicates how many of the features in the group must be present in
a particular instance. An empty triangle means exclusive OR (XOR) or
otherwise a group with cardinality (e.g., ‘2..4’) and the filled triangle means
OR, i.e., the cardinality ‘1..k’, where k is the number of features in that group.
There are three types of connections that can be used to connect various
model elements: child features, includes and excludes. The includes and
excludes serve as constraints in the feature model. A feature can include other
features, i.e., selecting that feature must also select the included features.
Similarly, a feature can exclude other features and it is mutually exclusive,
which means you can not have any two features with excludes connection
between them in the configured instance. The leaf level features are actually
mapped to Event-B developments during configuration.

Figure 6 shows an example feature model drawn using our feature mod-
elling notation. The root feature PC has a group of five features with car-
dinality “5..5” which means an instance must select all five of the group
features. The features BeltCrane and AdvCrane of the CraneType group are
mutually exclusive (i.e., cardinality ‘1..1’ shown by an empty triangle) which
means both of these can not be present in a particular variant of PC derived
from this feature model. By selecting BeltCrane feature, both the Deposit-
Belt and Crane become mandatory due to group cardinality constraint, i.e.,
‘2..2’.

13

Figure 6: Example Feature Model

Our main extension to existing notations is that of including the refine-
ment concept of Event-B. We consider an Event-B development as a feature,
where each refinement model can be composed during the configuration for
product line instantiation. We also provide includes and excludes constraints.
Our feature modelling notation slightly differs from [36], as we allow feature
refinements and a feature can exclude other features in a feature model. On
the other hand, that work considers the reuse of proof obligations for invari-
ant preservation and feasibility; we have not yet examined this.

5. Case-Study Experiments

The case-study experiments were carried out to explore whether existing
Event-B tools and techniques can be used for feature-oriented modelling in
Event-B, to gain the benefits of reusability. We would see how the Event-B
methodology of single system, top-down refinement based development with
decomposition can be combined with multi-system, side-ways in, composi-
tional, reuse-oriented approach of feature modelling for SPL engineering. The
case-studies would also show the opportunities and constraints for feature-
based working in Event-B and would help in suggesting tools and techniques
for future.

We have modelled two case-studies in Event-B, i.e., production cell (PC)
and ATM. Our first case-study (PC) suits the typical top-down refinement
approach of Event-B. At first sight, this case study does not show obvious

14

reuse potential in terms of functional requirements features; variability arises
as different possible connection topologies between PC components. We then
model it in a different way by considering a fine-grained view of features as
controllers that were generic and revealed more reuse opportunity for PC
modelling. We would explain how we modelled PC in different ways to
explore Event-B’s capability for feature modelling using its decomposition
and genericity techniques to exploit reuse. In order to support our findings
of the PC case-study, we then modelled the second case-study(ATM). ATM
example is more reuse-oriented in term of functional features and suits the
traditional feature modelling approach where we can have a product line
of ATM systems having different features. This has revealed a pattern of
modelling that could be used as a guideline for SPL modelling in Event-B for
future users. Both case-studies will use existing (de)composition approaches
of Event-B discussed earlier.

We have developed a prototype feature composition tool [37] which was
used for composing Event-B feature during the case-study experiments. This
tool allows the free-style composition (including fusion) in whatever ways the
user wants but it does not automatically discharge proof obligations for the
composite model. This means the user need to reprove the composite model
to make sure that the composition was performed correctly. The case-study
results will show how we can avoid reproof effort by following a particular
modelling pattern involving different (de)composition styles.

5.1. Production Cell

The production cell (PC) [38] is an example of a reactive system which
has been modelled in more than 30 formalisms [39, 40, 41, 42]. It has also
been specified in the B formal method which is a predecessor of the Event-B
language [43]. It is a metal processing production line where metal blanks
are routed to a press for forging, then routed away from it after processing.
Figure 7 shows the top view of the production cell plant. Metal blanks enter
into the system through the feed belt and are dropped on to the elevating-
rotary table when the table is empty and in the loading position. The table
elevates and rotates to a position so that the first robot arm can pick up the
blanks as the robot arms are positioned at a different horizontal plane. The
robot rotates anti-clockwise to drop the blanks in the press. The press forges
the blanks which are picked up by the second robot arm and then dropped on
to the deposit belt. A moving crane then picks the blanks from the deposit

15

Figure 7: Production Cell Plant [38]

belt, that have not been forged properly, and brings them back to the feed
belt for reprocessing.

We have modelled PC in three ways, i.e., physical component-based,
controller-based (functional) and a domain-specific modelling approach based
on static variability as described below in detail. This allows us to use dif-
ferent methods of modelling the same system in Event-B and analysing our
approaches to feature-based modelling using existing tools and techniques in
Event-B.

PC Component-based: In the physical component-based modelling
approach, we started with an abstract model of the production cell and
refined up to a few levels by adding more details in each refinement step.
At the abstract level (see Figure 8), we only have one event Operate which
models the processing of blanks from ‘forged’ to ‘unforged’ state through
the variable ‘blanks’. Initially, all the blanks are set to ‘unforged’. We
refined this model by introducing various physical components of PC (e.g.,
table, robot, press etc.) and where the blanks are positioned across these
components. This is further refined by modelling operations taking place
at different components of PC, e.g., the elevation and rotation of table etc.
In the next refinement, we introduced control functionality of robot arms
and the movement of belts for delivering blanks. Some safety requirements
were also modelled such as arms should not be extended while the robot

16

Figure 8: PC Abstract Machine

is not positioned correctly. Another refinement was done to introduce the
functionality of the ‘crane’ component. These were all horizontal refinement
steps.

At this stage, the model became quite large and was difficult to refine
further as a whole. So, we decomposed the model into various physical com-
ponents (sub-models) of the PC (i.e., feed belt, table, robot, press, deposit
belt and crane). We used both types of decomposition, i.e., shared-variable
(SVD) and shared-event decomposition (SED). At first, it seemed appropri-
ate to use SVD since different components were sharing variables, e.g., all
components shared the variable blanks , which models the status of blanks
at any component. So, during the decomposition, events related to a par-
ticular physical component became events of that sub-model and any events
of the sub-model involving the shared-variable became external events in all
the other components. For example, event loadTable , moved to the table
sub-model, became an external event in all the sub-models for other physical
components of PC and so on.

In order to explore whether we can use SED to decompose the integral
model into sub-models, we had to prepare the model to be decomposed using
the SED style. For this, we had to partition(localize) the variable blanks for
each component (i.e., blanksOnFb, blanksOnTbl etc.), so that there is no
more shared-variable. In this case, we partitioned the variables into various
sub-models along with their related events. Figure 9 shows how an event

17

Figure 9: Event Splitting for SED

loadTable is split into two events, i.e., loadTableF and loadTableT for
table and feed belt components. We simply split the guards and actions into
two. If a guard or action of an event is complex and can not be split then
it must be simplified in the preparatory step to be split into two. Note that
we had to do vertical refinement in order for us to perform SED unlike SVD
where we only carried out horizontal refinements before the decomposition.
So, it depends on the type of system being modelled and for distributed
systems, the SED approach seems more appropriate.

After decomposing the model into sub-models, we could then refine each
of these sub-models independently. In case of SVD, we had to maintain
the restrictions of the SVD style while refining these sub-models, i.e., to
ensure that the shared variables and external events were not refined. We
further refined the ‘press’ sub-model vertically by introducing actuators and
sensors. This involved another three levels of refinement and was done using
a refinement pattern for control systems [44]. Other sub-models could also
be refined similarly.

This gives us a product of PC which models a particular topology (see
Figure 10) and how the physical components are connected to model the pro-

18

-moveRbt

-moveFb
-stopFb

-moveTbl
-rotateTbl

-extract/
retract

-pick/drop

-movePr
-operate

-moveFb
-stopFb

-moveCr
-pick/drop

-extract/
retract

-pick/drop

loadTblloadFb loadArm1 loadPress

loadArm2loadDbloadCrane

Robot

unloadCrane

FeedBelt Table

Press

DepositBeltCrane

Arm1

Arm2

Figure 10: PC Topology 1

-moveRbt1

-moveFb
-stopFb

-moveTbl
-rotateTbl

-extract/
retract

-pick/drop

-movePr1
-operate1

-moveFb
-stopFb

-moveCr
-pick/drop

-extract/
retract

-pick/drop

loadTblloadFb loadArm1r1 loadPress1

loadArm2r1

loadDb

loadCrane

Robot1

unloadCrane

FeedBelt Table

Press1

DepositBeltCrane

Arm11

Arm21

-moveRbt2

-extract/
retract

-pick/drop

-movePr2
-operate2

-extract/
retract

-pick/drop

loadPress2

loadArm2r2

Robot2

Press2

Arm12

Arm22

loadArm1r2
Fromr1

Figure 11: PC Topology 2

19

duction cell plant. The figure is designed to visualise the topology in terms
of events and helps in reuse for instantiation of alternative topologies. The
events placed inside the boxes are local for the components and those placed
between the boxes represent shared events containing topological informa-
tion for modelling the connectivity of the components. This is an example of
domain specific instance modelling with Event-B. Each different topology is
an instance of PC product line and we can build more variants of PC by se-
lecting a different configuration (or topology) of these physical components.
For example, if we want to model a production cell with two press compo-
nents for processing blanks twice and using two robots. We can call this
‘topology 2’ where robot1 picks blanks from the table and drops onto press1
and robot2 takes the blank from robot1 which picks it from press1 and drops
on press2 (see Figure 11). Here we are interested in exploring to what extent
we can reuse the models of topology1 while modelling topology2 and hence
the proof effort. For topology2, we had to do instantiation and refactoring to
simply duplicate the functionality of existing components. This means that
we would not have to reprove the models which have already been proved
for topology1. This is because renaming of elements would not affect the
POs and is currently supported by the refactory plug-in [45]. We only had
to prove the POs generated for any additional information modelled in the
second topology. For example, we specify that arm1 of robot2 collects the
blank from arm2 of robot1 unlike picking it from the table in topology1.

Figure 12 shows the refinement architecture for modelling the two topolo-
gies and their components as achieved after decomposition. An example of
event instantiation while modelling topology2 after topology1 is shown in
Figure 13 where event loadPress is duplicated for the two presses (events:
loadPress1 & loadPress2). This type of instantiation and refactoring has
no proof burden. The POs for topology2 were discharged in the same way
as topology1. Figure 14 shows the number of POs for both topology devel-
opments at different refinement levels and how these were discharged, i.e.,
automatically or interactively. The Figure would be more interesting if we
could reflect the percentage of POs reused when modelling topology2 after
topology1. So, this shows that we can reuse the existing models and their
proofs if we have tools to automate the instantiation and refactoring. Hence
this exercise generated additional tooling requirements which are discussed
later.

PC Controller-based: In the controller-based PC modelling, the func-
tional requirements to model the behaviour of each controller were grouped

20

PC_1

PC_2

PC_3

PC_4

FeedBelt Table Robot Press
Deposit-

Belt
Crane

PC Topology 1

PC_0

Refines

Decomposition

PC_1

PC_2

PC_3

PC_4

FeedBelt Table Robot1 Press1
Deposit-

Belt
Crane

PC Topology 2

PC_0

Decomposition

Robot2 Press2

Figure 12: Refinement architecture for modelling the two topologies

Figure 13: Event instantiation example for PC topology2

21

Figure 14: POs for two topology developments

together as a feature. So, the requirements specification was decomposed into
various controller features. We also generalised the requirements for each of
the controller so that we could model generic controllers which could then be
specialised and reused for modelling various controllers of different physical
components of PC. Hence, the controller-based modelling of PC was a result
of decomposition plus generalization. Table 1 shows part of the requirements
specification for the table feature of component-based PC and the movement
feature for controller-based PC. This shows how we can define the feature in
terms of requirements for two styles of modelling the PC while making the
features more reusable. The compositional requirements are modelled while
actually composing various components, this may include topological infor-
mation and how components are connected together. The controller-based
PC models consisted of loader, movement, rotation and magnet controllers.
A member of PC product line could be modelled by instantiating and com-
posing these controller-based reusable features. These features were then
refined independently. We discuss the refinement of magnet and movement
features below where we introduced sensors and actuators in various refine-
ment steps using the pattern for refining control systems as suggested in
[44].

Magnet Controller: At the abstract level, we have events for picking
and dropping of blanks by a component. A component which has not already

22

Table 1: Requirements description for table and movement features of PC
Table Component Generic Movement Controller

- Move table upwards/downwards - Move a component from position A to
- Rotate table clockwise/anti-clockwise position B and vice-versa
- Table must not rotate when its at low position
- Table must not move down if it is rotated Instantiation Requirements

(rotate backward first and then then move down) - Extract/Retract Arm1
or if it is already not elevated - Extract/Retract Arm2
- The table must not rotate clockwise if it is in - Move Feed Belt/Deposit Belt
a position to deliver blanks (unloading position) - Move the Table upwards/ downwards
- The table must not rotate at all if it is not - Move Press to upper/lower/middle position
elevated - Move Crane To and from Feed Belt/Deposit Belt
Compositional Requirements

- Drop blank on table from feed belt when it is in Compositional Requirements

the loading position (not elevated and not rotated) - Extract/Retract Arm1 if robot is facing table or
- Robot picks blank from table when it is in facing press while press is in middle position
unloading position (elevated and rotated) - Extract/Retract Arm2 if robot is facing deposit

or facing press while press is in lower position
- Table must not move down if its rotated (rotate
backward first and then move down) or if it is
already not elevated
- The press must not move downward if it is in
lower position and must not move upward if it is
in upper position
- Crane should only move towards feed belt if it
is positioned on deposit belt and vice-versa

picked a blank can do so and a component which has picked a blank can drop
it. The feature will be instantiated to a specific component such as a crane
or a robot arm. The model is quite abstract and the details are added later in
the refinements and during specialization. In the first refinement, we added
sensor for magnet which informs the controller whether a blank has been
picked up or dropped off. An electromagnet switch acts as an actuator for
the magnet which performs the pick and drop of blanks. We have events for
starting and stopping the magnet and switching the sensor on and off. In the
second refinement, we differentiate between the actual and sensed values of
the sensors. This is done to model the system closer to reality, as the actual
value of the sensors at some point in time will be different from the sensed
values. Similarly, in the third refinement, we refine the actuation where
controller sets the actuation of the motor before the motor can be actuated.
Here we split the actuation events into two, i.e., an event for setting the
actuation of magnet by the controller and the event for magnet to actuate
accordingly.

Movement Controller: At the abstract level, we have events for
moving a physical component forward and backward between two positions.

23

CraneMagnetCtrl_0

CraneMagnetCtrl_1

CraneMagnetCtrl_2

CraneMagnetCtrl_3

CraneMoveVert_0

CraneMoveVert_1

CraneMoveVert_2

CraneMoveVert_3

CraneMoveHoriz_0

CraneMoveHoriz_1

CraneMoveHoriz_2

CraneMoveHoriz_3

Refines*

* An arrow head points to the abstract model and its tail to the refinement model.

Crane Spec Full

Crane Impl Full

Refines ?

+

+

Generic Magnet Ctrl Generic Movement
 Ctrl

Generic Instantiation

Figure 15: Crane Instantiation

The feature will be instantiated to a specific component such as a press or a
crane. During the first refinement, we added sensors for the two positions and
a motor for moving backward and forward. Events were added for starting
and stopping the motor at different positions and switching the sensors on
and off. In the second refinement, we differentiate between the actual and
sensed values of the sensors as discussed earlier. Using the same refinement
style, at third level of refinement, we differentiate between setting the motor’s
actuation by the controller from its actual movement.

Instantation & Composition:
The magnet and movement controllers provide us refinement chains of

generic Event-B models for the two features. In order to model any compo-
nent of the PC, we need to instantiate and compose these chains of models.
The composition is done in two phases. In the first phase, we compose in-
stantiated models to build a component (e.g., crane or robot) and in the
second phase, we compose all the components while providing topological in-
formation. For example, if we want to model the crane component, we have
to specialize one instance of the magnet controller to pick and drop blanks
and two instances of the movement controllers for moving the crane horizon-
tally and vertically, as shown in Figure 15. In this example, we have three
refinements in each development which align well during the composition.
This alignment issue needs to be explored further to address the composition
of Event-B developments having different number of refinements. Figure 16

24

Figure 16: Event Specialization for Crane

shows a simple example where event PickBlank of magnet controller is spe-
cialized for the crane component. Here the generic model parameter XcompX
is replaced by crane provided both of these are of the same type. For now,
we use X...X as a syntactic convention to model a generic parameter, given
that the current Rodin tool does not support generics.

The composition of abstract level models from each refinement chain
would give us an abstract specification for the crane. We also had to do
some guard strengthening and add some invariants during the composition.
The composition of implementation level models for each refinement would
provide us with the implementation of the crane. Again extra guards for
events and invariants were needed. Figure 17 shows two events from magnet
and movement controllers for picking up blanks by crane and the movement
of crane towards feed belt (before composition). Figure 18 (after composi-
tion) shows these events with extra guards added during the composition. For
example, grd3 of CranePickBlank event specifies that the crane can only
pick a blank when it is positioned on the deposit belt. Similarly, grd2 of
moveToFB event in Figure 18 specifies that the crane can only move towards
the feed belt if it has picked up a blank. The guard grd2 of CranePickBlank
event means it can pick any blank in the system. When we finally compose
all the components to model the entire PC in the second phase of composi-
tion, we will need to strengthen this guard to say that the crane can only
pick a blank from the deposit belt. Here we would need to give topological
information of PC in terms of how different components are connected to
each other as discussed in the components-based PC example earlier.

We call this style of composition ‘feature composition’ where additional
information can be added during the composition. As of yet, this style of
composition does not guarantee refinement preservation between the com-

25

Figure 17: Events of Magnet and Movement Controllers

Figure 18: Guard strengthening of events during composition

posed abstract and implementation models (see ‘refines?’ in Figure 15). In
order to deal with this kind of composition, we need support for proof reuse.
By this we mean to find a way of automatically discharging composite POs
with the help of already discharged POs of the components being composed.
This requires further work. We will discuss an alternative approach in ATM
example where we can avoid reproof by following a modelling pattern. In
comparison to the component-based approach discussed earlier, this style of
modelling SPLs in Event-B seems more appropriate because it provides more
reuse opportunities.

The shared-event composition could not be applied here due to the shared
state between the components being composed. The shared-variable compo-
sition approach is too constraining and could only be used here if we start
with an abstract model containing the functionality of both the magnet and
movement features. We could then decompose these into two, refine each
of these, instantiate for the crane and compose to build the crane model.
The ATM case-study discussed in Section 6 further explores these issues and
suggests the modelling style through which we could use existing techniques
of Event-B to achieve partial reuse of existing specifications, when modelling
variants of a product line.

26

PC – Domain-specific SPL modelling through contexts: We also
modelled a generic component-based PC which supports the two topologies
mentioned earlier. The variability is provided through the context which
means the machine for both the topologies will remain same and we could
have a different topology by just switching the contexts. We modelled the
topology of PC in the context, i.e., we specify in the context what are the
physical components and how these could be connected to each other. The
machine is modelled in a generic way, e.g., an event loadComponent is
used to model the loading of blanks onto a PC component and an event
passBlankBtwCpts for moving a blank from one component to another.
This is shown in Figure 19. The invariant inv1 defines the position of blank
at a component. The topology is given in the contextual part at the bottom
where cptGraph defines the components graph, i.e., valid ways of connecting
different components. This is then used in grd7 of the passBlankBtwCpts

event to make sure that the blank is passed between connectable components.
The advantage of modelling in this way is that we will not need to reprove

a variant of PC resulting from static variability through context switching.
The disadvantage is that the modeller may not visualise various events of the
machine for a particular topology as this machine may not be instantiated.
This could be a useful domain modelling activity for exploring variability of
a product line in a distributed environment.

Evaluation: By modelling the PC in three different ways, we have
explored to what extent we can use existing Event-B tools and techniques
for feature-based product line modelling. This also enabled us to figure out
the requirements for future tooling and techniques (discussed later) that can
further facilitate such development approach to benefit from reuse of existing
models and their proofs.

The first style of modelling – component-based – is a natural approach of
modelling in Event-B which used both types of decomposition techniques to
reduce the complexity of modelling and proving by decomposing large models
into smaller sub-models. It also showed that we could model variants of PC
product line by configuring the different topology of physical components of
PC. This is not a typical example for feature-based modelling as the entire
model needs to be redone again for building a second topology after doing the
first one. But this allowed us to explore requirements for instantiation and
refactoring tool support that could be useful in automating this approach.

The second approach of controller-based modelling is more feature-oriented
as we have modelled generic reusable features that could be instantiated and

27

Figure 19: Example of domain-specific modelling through context

28

composed in different ways to model different PC components and hence
benefit from their reuse.

The third approach of modelling static variability through context switch-
ing allows to evaluate the scope of a product line and without doing proving
effort upfront. This in another way of modelling component-based PC and
suits the product line development approach as we can figure out the com-
mon base for different variants (topologies) of the PC, and the configuration
or the variability is embedded in the context. This could be useful to foresee
how a product line would evolve for a particular domain and later on this
could be modelled in one of the two styles mentioned to build a database of
reusable features.

6. ATM Case-Study

The auto teller machine (ATM) provides services to bank customers using
their ATM cards issued by the bank. There are some basic services provided
by an ATM such as cash withdrawal, view account balance and card acti-
vation related services. Other services can also be provided by ATMs which
vary for different banks and ATM locations, e.g., mobile top up, cash deposit
and emergency cash withdrawal etc.

We can build a product line of ATMs to manage variability and benefit
from reuse while building various ATMs providing different features from a
shared set of available features. Figure 20 shows a feature model for ATM
product line. A different configuration of features will result in a variant of
an ATM. We have modelled some ATM features in Event-B to see if existing
tools and techniques are capable enough for our feature-oriented modelling
framework in Event-B or whether we can find other patterns where these
existing approaches fall short. Hence, we can propose ways to handle those
situations and suggest any requirements for the tools and techniques to be
built in the future to complement the feature-based development in Event-
B. In this Section, we will discuss balance transfer and deposit features to
model an ATM product and then modelling another variant of ATM product
line by extending existing ATM product to provide cash withdrawal feature
as well. Although some ATM requirements have previously been modelled
in Event-B [46], we have used a different set of features and modelled in a
different way to experiment with our reuse approach.

29

Figure 20: ATM feature model

6.1. Event-B Modelling of ATM Features

We started modelling the deposit and balance transfer (which we will
simply call “transfer”) features independently and refined each of them to
introduce all their requirements. At the abstract level, the deposit feature
contains an event for deposit which increments the account balance (bal)
by an amount. Similarly, the transfer feature contains an event for transfer-
ring balance that decrements the source account and increments the target
amount by an amount (see Figure 1). Both features contain external events,
i.e., deposit feature has external event transfer and transfer feature has
external event deposit . These external events must not be refined along
with the shared variable as a restriction of SVD. These features are then
refined horizontally and vertically as discussed below.

The first refinement of the balance transfer feature refines the transfer

event for a successful transfer of money and another event is introduced
when the transfer fails due to the account balance being less than the trans-
fer amount. The second level of refinement introduces a request and response
mechanism between the ATM and the Bank. Here the ATM sends a balance
transfer request to the bank, which responds after a successful or failed trans-
fer event takes place and then the ATM displays the transfer status. The
third level of refinement further refines the request and response mechanisms
by partitioning the request event for sending and receiving the request and

30

Figure 21: Balance Transfer fourth refinement model with events ready for architectural
decomposition

similarly for the response event. The fourth refinement introduces the mid-
dleware (MW) between the ATM and the Bank. This allow us to make an
architectural decomposition of the balance transfer feature into ATM, MW
and the Bank where MW is used for communicating between the two. The
recomposition of these (ATM, MW, Bank) would refine the feature being
decomposed (fourth refinement).

Figure 21 shows the architecture of this refinement model including all
the events and which component these would belong to after decomposition.
It also shows the sequence of events. An ATM sends a balance transfer
request through the MW which is received by the bank. The bank then
sends a response for a successful or failed transfer through the middleware.
The ATM finally displays the transfer status accordingly. We used SED here
and the components synchronise using the shared-events. Each of these three
components can be further refined.

Similarly, we refined the deposit feature resulting in three components,
i.e., ATM, MW and the Bank. Figure 22 shows the development and compo-
sition structure for the deposit and balance transfer features of the ATM. In
the figure, asterisk (*) denotes a model with external events, and bal indi-
cates the model’s shared variable. We need external events in order to later
compose these features using SVC after several refinement steps, to make
sure the composition is correct by construction and hence not need reprov-
ing. This means we need to make sure that the two features were a result

31

Integral

ATM Abstract

Deposit_0(bal)*Transfer_0(bal)*

Deposit_n(bal)*Transfer_n(bal)*

SVD

Bank0_T(bal)* ATM0_TMW0_T

SED

Bank_T+D(bal)

MW

ATM

Withdraw_0(bal)*

Withdraw_n(bal)*

Bank0_D(bal)*ATM0_D MW0_D Bank0_W(bal)*ATM0_W MW0_W

MWn_DMWn_T MWn_W

SED SED

SEC

SVC

SEC

Figure 22: Refinement & (de)composition architecture for ATM features

of SVD of an integral abstract model. Figure 23 shows the SVD of integral
abstract model of Figure 1 with external events and shared variable. This
generated a tooling requirement to automatically generate external events
for the features that we would like to compose using SVC and hence saving
time to manually do so. Note that in this case study, the shared variable bal
and its corresponding external events are localized in the Bank component.

Now that we have the same architectural decomposition (ATM, MW,
Bank) for each feature, we would like to compose these models pairwise (i.e.,
BankT+D = BankT + BankD, etc.) for implementation purposes. In general,
the task would of course be more complex, involving more than two features.
In our case, where the shared variable bal is localized into the two architec-
tural Bank components, intuition suggests that these can be composed, with
the composite Bank refining each component Bank. This is because each
Bank’s external events are exactly “cancelled out”, or implemented, by the
other Bank’s actual events. This assertion remains to be proved in general
for this pattern of mixed decomposition-recomposition.

32

Figure 23: ATM Integral Model Decomposed using SVD into Transfer & Deposit Features

33

6.2. Modelling ATM product by reusing existing features

After building an ATM with two features, we want another ATM product
having a cash withdrawal feature as well (as shown by dotted lines in Figure
22). We elaborate the top-level integral model to include the withdrawal
feature and decompose it into three components (i.e., deposit, transfer and
withdrawal). Provided the new feature is separable - in the sense that in
the SVD refinement the other two features remain unchanged - then all we
have to do is refine the withdrawal component. This means that both the
deposit and transfer features would now contain external event withdraw of
withdrawal feature. Since the deposit and balance transfer components have
already been proved, new POs will only be generated for the newly added
external event acting on shared variable bal . These new POs will only be
generated in the abstract models of deposit and transfer features no matter
how many refinements exist because of the restriction of SVD that external
extents and shared variables should not be refined. Hence, we will only have
to discharge these small number of POs when reusing existing models. So,
If we can have a tool for analysing and automatically generating external
events in the existing components for the newly added components, then we
could reduce the amount of POs needed to be discharged.

6.3. Evaluation

We have examined a specific pattern of mixed decomposition-recomposition
- SVD followed by SED and then SVC/SEC in a single development. It
appears possible to do this provided shared variables and their associated
external events become localized in one of the shared-event components. At
present, there is no SVC tool support which means that we have manu-
ally done this composition using our feature composition tool that does not
guarantee correct composition without reproving. Should this pattern be
validated theoretically, other architectural possibilities should emerge: e.g.,
an ATM-specific shared variable as well as a Bank-specific one in the same
development. Interesting avenues of future work are indicated. We can gen-
eralise this pattern where the shared variables and their associated external
events must be localised in exactly the same component in each of the fea-
ture developments, i.e., if a shared-variable ‘a’ goes into component1 and
shared-variable ‘b’ goes into component2 in feature1 then these variables ‘a’
and ‘b’ should be localised to components 1 & 2 respectively in feature2 and
so on. Figure 24 shows this general pattern. We have to use SVC while
composing Nr2(a) and Pr2(a) as these two components have external events

34

M

PN

PrNr

SVD

Nr3Nr2(a) Pr2(a)Pr3

SED

Nr1(b) Pr1(b)

SED

.

NPr3

NPr2 (a)

. . .

SEC

SVC

SEC

Problem

Decomposition

Architectural

Decomposition

Architectural

Composition

Figure 24: Feature-oriented Refinement & (De)Composition Pattern

and shared-varible ‘a’. We can compose Nr3 and Pr3 using SEC since both
components are disjoint. This pattern needs to be experimented with more
complex example case-studies.

7. Current Feature Modelling Tool Support for Event-B

Based on our feature modelling notation discussed in Section 4, we have
developed a feature modelling tool to specify feature models of product lines
and to configure the feature models to generate their instances. The tool is
open source, developed in Eclipse using Java and integrated as a plug-in to
the Rodin platform. It consists of two parts, i.e., feature model editor and
configuration editor, discussed next.

7.1. Feature Model Editor

Our feature modelling tool includes a graphical feature model editor de-
veloped using GMF (Graphical Modelling Framework) [47]. This editor can
be used to draw feature models for product lines in a free form tree structured
hierarchy and uses our graphical notations of feature modelling. There is a
three way validation mechanism provided by the editor to ensure that valid

35

feature models are drawn which could then be configured. The division is
based on how this is implemented by the tool. Firstly, feature models should
conform to the feature metamodel. Secondly, it does not let the user draw a
feature model that violates any of the following validation cases:

• A feature model may not have cycles, i.e., a feature x having a child
feature y, which is a parent feature of x.

• A feature may not include and exclude the same feature.

• An Event-B feature must be a leaf feature in the feature model tree
and should not have further features or groups.

Thirdly, the editor validates the feature model when it is saved based
on the following validation cases and warns the user if any of the cases is
violated by the model. This differs from the above as it lets the user save an
inconsistent/incomplete model to be completed later. Note that we have not
yet explored automated feature model verification and the generated instance
validation as proposed by Sun et al. [48].

• A feature x may not include features y and z, which exclude each
other. If this scenario is present in the feature model, it is not possible
to generate a valid instance of the feature model.

• A feature may not exclude any of its ancestor features.

• A feature may not be unreachable during the configuration or may not
be selected in any valid configuration. An example would be a group
of two features with group cardinality ‘1..1’ and one of the features is
mandatory. In this case, the user will never be able to have the optional
feature selected in a valid configuration as doing that will violate the
group cardinality due to the other mandatory feature.

• A feature model may not have orphan features.

A metamodel provides a language or notations for building the models.
The feature models built using the feature model editor are transformed into
their equivalent EMF metamodels at run-time and for each product family.
This model to metamodel transformation is needed in order to instantiate

36

the feature models and this forces the instances to conform to their meta-
model. So, a feature model is an instance of the metamodel defining our
feature modelling notations and it also serves as a metamodel for any of its
instances. The transformation is done using Epsilon Transformation Lan-
guage (ETL) [49] . After transforming feature models into metamodels, for
different product lines, these are then used as an input to the feature config-
urator for instantiation discussed next. This model transformation process is
internal to the tool and not visible to the modeller. This is shown in Figure
25 as part of the feature modelling tool architecture.

Feature

Model

Editor

(EMF/GMF)

Feature

Configurator

(EMF)

Feature

Meta-

model

(Ecore)

Product

Line

Model

(FM)

Product Line

Metamodel

(Ecore)
Feature

Model

Instance

Model

Transforma-

tion

(ETL)

Feature Modelling Level

Feature Configuration Level

Internal Process

Event-B Features DB

Figure 25: Feature Modelling Tool Architecture

7.2. Feature Configurator

The feature configurator is a collapsible tree-structured editor (screenshot
in Figure 26) that allows the user to configure a feature model by select-
ing features that they want to include in a particular product. The editor
then highlights any conflicts and provides options for resolving these con-
flicts automatically/interactively. The selected features (Event-B models)
are then composed into a single composite Event-B model. The configurator
enforces some of the constraints provided in the feature model. It automat-
ically selects the mandatory features and highlights any violation of cardi-
nality constraints. Whenever a feature is selected, the tool automatically
selects/deselects features specified using includes/excludes constraints. The
configurator also shows Event-B elements of machines and contexts (e.g.,
variables, events etc.) for the Event-B features which is different to other
feature modelling tools (e.g., FeatureHouse [34]).

37

Figure 26: Feature Configurator Screenshot

At the moment it detects naming conflicts within Event-B models (e.g.
variables or events having same name). It provides ways to automatically
resolve these name clashes either by making them disjoint through refactoring
or by simply deselecting repeating entries in multiple features. It also helps
the user in automatically selecting any dependencies, for example, if an event
is selected, it can then select the related variables and their invariants to build
the correct model.

Once all the desired features are selected and conflicts are resolved, these
are composed to generate a composite Event-B feature. All the machines are
merged into a machine and all the contexts are merged into a context. This
can be called as a structured cut-and-paste composition. The editor also en-
ables the user to merge multiple events into a single event. This concatenates
the actions and conjoins the guards to maintain invariant preservation. This
composition of Event-B features into a composite feature is required in order
for us to reason about the complete model of the generated instance, e.g.,
using animation, theorem provers etc.

The feature modelling tool was quite useful while modelling our case-
study examples as we had to compose models in different ways to experiment
with our modelling approaches and to use existing decomposition techniques,
specifically SVD, since there is no tool support for shared-variable composi-
tion. The tool will be extended further to include the requirements we have

38

generated during this research, presented in the next Section.

8. Guidelines for Feature Modelling in Event-B & Tooling Require-
ments

Our case-study experiments reveal some patterns of modelling that could
be used as a guideline for specifying SPLs in Event-B. These patterns make
use of Event-B’s existing tools and techniques. If we could develop further
tool support as discussed later, then this whole process could be automated
saving lot of user time and effort. At the moment, the lack of proper tool
support meant that we had to do lot of things manually, e.g., trivial refac-
toring and instantiation of a generic model into two disjoint models. In the
following we present some guidelines for formal feature-based modelling in
Event-B which generalise our approach of modelling the two case-studies
discussed earlier.

By grouping a list of requirements into small features as we did for
controller-based PC modelling, making each feature as a stand alone generic
development, we can reuse and specialise these features in different configura-
tions to build variants of a PL. This could also be done by first modelling the
system up to a few refinements as a whole and then trying to figure out how
the system could be decomposed in terms of requirements/functionality. In
this way, the modeller will be able to identify earlier on what sort of informa-
tion would be required in order to compose these features so that the generic
features could be modelled with that input/output connector information as
in component-based software development. This would serve as a domain-
analysis step to predict reusability of features before actual modelling them
as reusable features.

The decision to use top-down usual modelling approach of Event-B, bottom-
up approach of SPLE or the middle-in approach of the ATM example would
vary for different domains. The domain expert or system modeller would be
in a better position to judge which approach would suit more for a partic-
ular system. We have used both top-down and bottom-up approach in PC
case-study and middle-in approach in the ATM case-study.

Based on experience of the two case-studies modelled in different ways, if
the user is planning to model a PL and would need to build many variants
of the PL in future, then its probably useful to take the middle-in approach
and make the features as generic as possible. If the abstract models of the
features being modelled initially could be considered as a result of SVD, then

39

their recomposition at any later refinement will be correct by construction.
These features later on could also be decomposed using SED for architectural
decomposition and that would not violate the correctness promise of SVD if
the same pattern of modelling is followed as in ATM example, i.e., the shared-
variables and their corresponding external events are localised in the same
components across the different features as shown in the ATM modelling
pattern (see Figure 24). If this pattern is not followed and feature are
modelled as generic reusable models independently and later on composed
and additional composition time information is supplied (discussed as Feature
Composition earlier), then the user need to reprove the composite model.
This could only be helpful if we have a mechanism for proof reuse that would
reduce the reproving effort.

Also, if the features being developed can use generic placeholders which
could be filled during composition, then that would reduce effort of reproving
by simple refactoring. The generic placeholder could the be specified, e.g.,
X...X at the moment as Event-B tool will not raise an error, so the compo-
sition tool would force the user to fill these placeholder at the composition
time.

8.1. Future Tool Support Requirements

In order to make use of the feature modelling approach suggested, the
following tool support will be needed to facilitate the modeller.

• Refactoring Support: During the composition of features, allow
the user to add new variables, invariants and guards. These additional
variables, guards and invariants should be static-checked for errors and
instantly reported to the user. The user should be able to guide the
refactoring, i.e., when refactoring a machine, allow the user to suggest
prefixes. This should also support instantiation of generic refinement
chains by refactoring. The refactored elements should also be static-
checked for any errors. The tool should provide support for generic
placeholders. For example, an element name (e.g., vars, events etc.)
must be provided by the user at the time of composition when a model
contains any placeholder (e.g., X...X).

• Feature Modelling & Topology Tool: The tool should allow
the user to specify cardinality for feature instantiation (cloning), so
that a feature could be replicated a number of times in a particular

40

instance. For example, in PC feature model, the feature ‘press’ could
have a cardinality ‘1..n’, which means any instance of the PC could
have at least one and up to ‘n’ presses. This must be then supported
in the configuration editor and would also need user guided refactoring
support as discussed above.

The user should be able to annotate the feature model, i.e., to spec-
ify composition rules, more complex constraints and other information
that they think might be helpful during the configuration process. For
example, the composition rule and rationale provided in the example
feature model of Figure 4. This would help the modeller during the
selection of a particular feature while instantiating a product line.

After drawing a feature model, allow the user to draw a topology graph
based on that feature model to visualize the feature model instance and
how different features will be connected to each other in the graph, as
discussed in PC. The features are drawn as nodes and the user should be
able to select the transitions between these nodes by selecting an event
from the available features in the feature machine. This may be also be
achieved by adding extra constraints to the feature model that specifies
connection between components. So the user specifies which component
is connected to which other components and this information could be
used to draw transitions between different nodes. At the moment, the
feature modelling tool only supports two constraints, i.e., includes and
excludes.

• SVC Tool: There should be a tool for composing models using the
SVC style. This may also include support to automatically generate
external events and shared-variables so that the models could be com-
posed using shared-variable composition style. Also, it would be helpful
for the modelled to have a single tool that could be used to compose
models using any of the composition styles, i.e., SEC, SVC, fusion and
feature composition.

• Composition Replay Support: All the composition decisions must
be saved so that the user can come back later to modify or redo the
composition without losing additions or refactoring etc. It would be
useful to have a script of all the configuration decisions so that the
user can replay the configuration by editing the script (may be doing
some refactoring etc.). This will be like an audit trail of all the actions

41

performed during the configuration. This may also include graphical
representation of the actions performed during the composition to vi-
sualise more complex multi-step compositions.

9. Related Work

As far we know, there is no tool support for feature-oriented modelling in
Event-B that can be used to specify product lines and reuse existing features
to model different variants of a SPL. Formal SPL development has been
researched for quite a while now [50], but there is no standard tool and
technique for doing so. HATS [51] provides a methodology for applying
formal methods at different stages of SPL development cycle. This seems to
be a promising work to bring together the domains of formal methods and
SPL. Lau et al. [52] proposed component-based verification approach which
allows the composition of existing verified components and support proof
reuse. This is different to our approach because an Event-B component is
not a single model but a chain of refinements. We need to compose models
at different refinement levels and also preserve the refinement relationship
between the abstract and concrete composite models. Mannion [53] has
used first-order logic for PL model validation by representing requirements
and their relationship as a logical expression. Some work on formal feature
modelling has been done by Sun et al. [48] which provides automated feature
model verification and the validation of generated PL instances.

There are a number of feature modelling tools that can be used for mod-
elling SPLs. FeaturePlugin [24] was developed to support the ‘cardinality-
based feature modelling’ as discussed above. This is an Eclipse plug-in pro-
viding EMF based tree structured editor for building feature models, their
specialization and configuration. CaptainFeature [54] is another similar tool
and the major difference to the above is in the rendering style for feature mod-
els. XFeature [55] is another Eclipse-based tool that requires the feature mod-
els to be expressed in XML using the XML editor. The editor is supported by
an XML Schema representing the metamodel of feature modelling notations.
Pure::Variants [56] is a commercial tool for SPL development which does not
use cardinality based notations and provides constraint-oriented configura-
tion through a Prolog-based constraint solver. FeatureHouse [34] is another
tool that allows the composition of artefacts and supports various languages
with option to include more. Our experiment to use Event-B language in Fea-
tureHouse did not seem feasible because integration of FeatureHouse in the

42

Rodin was not straightforward and we also found it less usable for Event-B
modellers in comparison to our proposed feature modelling tool.

Some work has been done by Sorge et al. [36] which deals with invariant
POs for composing features. This does not support feature refinement and
event fusion which is required to complement our feature modelling frame-
work. Verification of a PL variant through proof composition [57] has been
suggested where the proofs for the composite model (PL variant) are gen-
erated by composing proofs of selected features. These proofs can then be
checked by a proof assistant to validate the PL member.

10. Conclusion & Future Work

We have given an overview of our research on feature-oriented reuse ap-
proach using Event-B and to what extent this is possible using existing Event-
B’s tools and techniques. Although, it seems possible to model SPLs using
existing techniques with some restrictions, we still need more tool support to
gain full benefits of formal SPL engineering. Our case-study examples have
revealed some patterns of modelling that could be used as a guideline for
SPLE using existing (de)composition approaches and to minimise the proof
effort while reusing already proven Event-B features. We have also generated
some tooling requirements that could facilitate the user for feature-modelling
in Event-B. Some interesting research questions came up during this work
that would need to be addressed in the future. For example, to what extent
our suggested modelling pattern could be generalised. This would require
further work where we could apply these guidelines and pattern on more
complex case-studies.

We also need to do some research on a proof reuse approach that would
allow more complex and freer form of composition with minimal proof burden
for the modellers. We would like to see if the proof composition approach of
[57] can be applied to Event-B using the case-studies presented. The issue
of feature interactions [58] also needs to be explored for feature-oriented
modelling in Event-B.

11. Acknowledgement

We are grateful to Todor Spasov (MSc Student), Chris Franklin and
Nikola Milikic (University of Southampton Interns), for their contribution
towards the development of prototype tools to support our research. This

43

work is partly supported by the EU research project ICT 214158 DEPLOY
(Industrial deployment of system engineering methods providing high de-
pendability and productivity) www.deploy-project.eu.

References

[1] J. R. Abrial, The B-book: assigning programs to meanings, Cambridge
University Press, New York, NY, USA, 1996.

[2] R. W. Butler, What is formal methods?, Technical Report, NASA, 2001.

[3] E. M. Clarke, J. M. Wing, Formal methods: state of the art and future
directions, ACM Comput. Surv. 28 (1996) 626–643.

[4] J. P. Bowen, M. G. Hinchey, Ten commandments of formal methods
...ten years later, Computer 39 (2006) 40–48.

[5] J. Woodcock, P. G. Larsen, J. Bicarregui, J. Fitzgerald, Formal methods:
Practice and experience, ACM Comput. Surv. 41 (2009) 19:1–19:36.

[6] J. P. Bowen, M. G. Hinchey, The use of industrial-strength formal meth-
ods, in: COMPSAC ’97: Proceedings of the 21st International Com-
puter Software and Applications Conference, IEEE Computer Society,
Washington, DC, USA, 1997, pp. 332–337.

[7] J. C. Bicarregui, J. S. Fitzgerald, P. G. Larsen, J. C. Woodcock, Indus-
trial practice in formal methods: A review, in: Proceedings of the 2nd
World Congress on Formal Methods, FM ’09, Springer-Verlag, Berlin,
Heidelberg, 2009, pp. 810–813.

[8] J.-R. Abrial, Formal methods in industry: achievements, problems,
future, in: ICSE ’06: Proceedings of the 28th international conference
on Software engineering, ACM, New York, NY, USA, 2006, pp. 761–768.

[9] J. P. Bowen, Formal Specification and Documentation using Z: A Case
Study Approach, International Thomson Computer Press, 2003.

[10] D. John, The VDM-SL Reference Guide, Routledge, UK, 1991.

[11] R. Back, J. von Wright, Trace refinement of action systems, in: B. Jons-
son, J. Parrow (Eds.), Concurrency Theory, volume 836 of LNCS, 1994,
pp. 367–384.

44

[12] J.-R. Abrial, Modeling in Event-B: System and Software Engineering,
Cambridge University Press, first edition, 2010.

[13] C. A. R. Hoare, Communicating sequential processes, Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1985.

[14] J. Bergstra, J. Klop, Algebra of communicating processes with abstrac-
tions, in: Theoretical Computer Science, volume 33, Netherlands, pp.
77–121.

[15] R. Milner, Communication and concurrency, Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[16] Eclipse - An open development platform, http://www.eclipse.org, Au-
gust 2011. October 2009.

[17] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, L. Voisin,
Rodin: An open toolset for modelling and reasoning in event-b, Inter-
national Journal on Software Tools for Technology Transfer (STTT) 12
(2010) 447–466.

[18] P. Clements, L. Northrop, Software Product Lines : Practices and Pat-
terns, Addison-Wesley Professional, 2001.

[19] K. Czarnecki, M. Antkiewicz, C. H. P. Kim, S. Lau, K. Pietroszek,
Model-driven software product lines, in: OOPSLA ’05, ACM, NY, USA,
2005, pp. 126–127.

[20] A. Classen, P. Heymans, P.-Y. Schobbens, What’s in a fea-
ture: a requirements engineering perspective, in: Proceedings of
FASE’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 16–
30.

[21] D. Batory, Feature models, grammars, and propositional formulas, in:
SPLC ’05: Proceedings of the 9th International Software Product Line
Conference, Springer, 2005, pp. 7–20.

[22] C. Snook, M. Poppleton, I. Johnson, Rigorous engineering of product-
line requirements: a case study in failure management, IST 50 (2008)
112–129.

45

[23] M. Poppleton, B. Fischer, C. Franklin, A. Gondal, C. Snook, J. Sorge,
Towards Reuse with “Feature-Oriented Event-B”, McGPLE: Workshop
on Modularization, Composition, and Generative Techniques for Prod-
uct Line Engineering, Nashville, TN, 2008.

[24] M. Antkiewicz, K. Czarnecki, Featureplugin: feature modeling plug-in
for eclipse, in: eclipse ’04: Proceedings of the 2004 OOPSLA workshop
on eclipse technology eXchange, ACM, New York, NY, USA, 2004, pp.
67–72.

[25] R. Silva, M. Butler, Supporting Reuse of Event-B Developments through
Generic Instantiation, in: ICFEM, pp. 466–484.

[26] J.-R. Abrial, S. Hallerstede, Refinement, Decomposition, and Instan-
tiation of Discrete Models: Application to Event-B, Fundam. Inf. 77
(2007) 1–28.

[27] M. Butler, Synchronisation-based Decomposition for Event-B, in:
RODIN Deliverable D19 Intermediate report on methodology.

[28] R. Silva, C. Pascal, T. S. Hoang, M. Butler, Decomposition tool for
event-b, in: Workshop on Tool Building in Formal Methods - ABZ
Conference.

[29] M. Poppleton, The composition of event-b models, in: ABZ2008: Int.
Conference on ASM, B and Z, volume 5238, Springer LNCS, 2008, pp.
209–222.

[30] K. Kang, S. Cohen, J. Hess, W. Nowak, S. Peterson, Feature-Oriented
Domain Analysis (FODA) Feasibility Study., Technical Report, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, 1990.

[31] K. Lee, K. C. Kang, J. Lee, Concepts and guidelines of feature modeling
for product line software engineering, in: ICSR-7, Springer-Verlag, UK,
2002, pp. 62–77.

[32] K. Czarnecki, S. Helsen, U. Eisenecker, Staged configuration through
specialization and multilevel configuration of feature models, Software
Process: Improvement and Practice 10 (2005) 143–169.

46

[33] J. Bosch, Design and use of software architectures: adopting and evolv-
ing a product-line approach, ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 2000.

[34] S. Apel, C. Kastner, C. Lengauer, FEATUREHOUSE: Language-
independent, automated software composition, ICSE ’09, USA, pp.
221–231.

[35] A. Gondal, M. Poppleton, M. Butler, C. Snook, Feature-Oriented Mod-
elling Using Event-B, in: SETP-10, Orlando, FL, USA.

[36] J. Sorge, M. Poppleton, M. Butler, A Basis for Feature-oriented Mod-
elling in Event-B, in: ABZ2010.

[37] A. Gondal, M. Poppleton, C. Snook, Feature composition - towards
product lines of Event-B models, in: MDPLE’09, CTIT Workshop Pro-
ceedings, 2009.

[38] T. Lindner, Task description, in: C. Lewerentz, T. Lindner (Eds.),
Formal Development of Reactive Systems, volume 891 of Lecture Notes
in Computer Science, Springer, 1995.

[39] C. Lewerentz, T. Lindner, Case study ’production cell’: A compar-
ative study in formal specification and verification, in: M. Broy,
S. Jähnichen (Eds.), Tech. Rep., Forschungszentrum Informatik, volume
1009 of LNCS, LNCS 891, Springer-Verlag, 1994, pp. 1–54.

[40] M. Ouimet, K. Lundqvist, Modeling the Production Cell System in the
TASM Language, Technical Report, Massachusetts Institute of Technol-
ogy, 2007.

[41] D. Paun, M. Chechik, B. Biechelle, Production cell revisited, 1998.

[42] H. Dierks, The production cell: A verified real-time system, in: B. Jon-
sson, J. Parrow (Eds.), Formal Techniques in Real-Time and Fault-
Tolerant Systems, volume 1135 of LNCS, Springer, 1996, pp. 208–227.

[43] E. Sekerinski, Program Development By Refinement, Springer-Verlag,
1998.

[44] M. Butler, Towards a cookbook for modelling and refinement of control
problems (2009).

47

[45] R. Silva, Renaming framework, 2011. http://wiki.event-
b.org/index.php/Refactoring Framework.

[46] M. Y. Said, Methodology of refinement and decomposition in UML-B,
Ph.D. thesis, School of Electronics and Computer Science, University of
Southampton, 2010.

[47] Online, Graphical Modeling Framework (GMF), Project Website:
http://www.eclipse.org/modeling/gmf/, 2011.

[48] J. Sun, H. Zhang, H. Wang, Formal semantics and verification for feature
modeling, in: Proceedings of the 10th IEEE International Conference
on Engineering of Complex Computer Systems, IEEE Computer Society,
Washington, DC, USA, 2005, pp. 303–312.

[49] D. Kolovos, R. Paige, F. Polack, The epsilon transformation language,
2008, pp. 46–60.

[50] T. Kishi, N. Noda, Formal verification and software product lines, Com-
mun. ACM 49 (2006) 73–77.

[51] D. Clarke, N. Diakov, R. Hähnle, E. B. Johnsen, G. Puebla, B. Weitzel,
P. Y. H. Wong, HATS-a formal software product line engineering
methodology, in: Proc. Intl. Workshop on Formal Methods in SPL
Engineering, Southa Korea.

[52] K.-K. Lau, Z. Wang, A. Wang, M. Gu, A component-based approach
to verified software: What, why, how and what next?, in: X. Chen,
Z. Liu, M. Reed (Eds.), Proc. 1st Asian Working Conference on Verified
Software, pp. 225–229. UNU-IIST Report No. 347.

[53] M. Mannion, Using first-order logic for product line model validation, in:
Proceedings of the Second International Conference on Software Product
Lines, SPLC 2, Springer-Verlag, London, UK, UK, 2002, pp. 176–187.

[54] C. E. T. Bednasch, M. Lang., CaptainFeature,
https://sourceforge.net/projects/captainfeature/, 2002-2004.

[55] A. Pasetti, O. Rohlik, Concept for the XFeature Tool, Technical Report
1.3, P&P Software GmbH, 2008.

48

[56] P.-S. GmbH, Variant Management with pure::variants, Technical Re-
port, 2006.

[57] T. Thum, I. Schaefer, M. Kuhlemann, S. Apel, Proof composition for
deductive verification of software product lines, IEEE International Con-
ference on Software Testing Verification and Validation 0 (2011) 270–
277.

[58] M. Calder, M. Kolberg, B. Evan H. Magill, Feature interaction: a critical
review and considered forecast, Computer Networks 41 (2003) 115–141.

49

