
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

School of Electronics and Computer Science

Faculty of Engineering, Science and Mathematics

University of Southampton

Aikaterini Gkritsi

06/05/2010

Agile Game: A Project Management Game

for Agile Methods

Project supervisor: Dr Andrew M Gravell

Second examiner: Ed J Zaluska

A project progress report submitted for the award of

BEng Software Engineering

Abstract

Since mid-1990s, companies have adopted agile methods and incorporated them in their

development methodologies. For this reason, future project managers and developers

need to have a full understanding of these methods. At present, the university’s approach

to agile methods is theoretical and is not reflected during the development of a product

and their practical use. The purpose of this project is the creation of a software system in

the form of a game, named Agile Game, which simulates their use. The system is

designed for use as supplementary material in lectures, to help students understand agile

methods, to present their use within a project, and to demonstrate how they differ from

traditional project management methodologies. The final system, which is web based,

was implemented using PHP, MySQL and JavaScript. It was fully tested against the

requirements and evaluated by peer students. The evaluation showed that the majority of

users were satisfied with the system but they thought that it should contain more detailed

information at every step of the game. For this reason, some parts of the design and the

content were reviewed to meet user requirements.

Acknowledgements

First of all, I would like to say a very big thank you my supervisor Dr Andy Gravell who

despite all the difficulties and problems that occurred during the project he was always

there for me, happy to help, advice and guide me. Also, I would like to thank Mr Quintin

Gee for his invaluable help proof-reading this report. Finally, I would also like to thank

my friend George for his advice on many aspects of my project as well as all the people

that participated in my survey and interview because without them I would not be able to

complete this project.kjblhgljkJJhgljhgljhgljhgljjh;/kjh/lkjh/lkjh/ljh/kjh/ljh/ljh/ljkhjhl/lhj

i

Table of Contents

1 Introduction .. 1

1.1 Project Description ..1

1.1.1 Detailed Description ..2

2 Background research and literature search .. 3

2.1 Outline ...3

2.2 Principles of traditional project management ..4

2.3 Agile methods ...4

2.3.1 Extreme Programming (XP) ..5

2.3.2 Scrum ...6

2.3.3 Feature Driven Development (FDD) ...7

2.3.4 Dynamic Systems Development Method (DSDM)8

2.3.5 Crystal Clear ..9

2.3.6 Agile Methods within the Agile Game ..10

2.4 Existing Games ...10

2.4.1 Overview ..10

2.4.2 Comparison of existing games ...11

2.4.3 Why Agile Game? ...12

2.5 Learning through Computer Games ..12

3 Project Management .. 15

3.1 Planning – Gantt chart ...15

3.2 Risk Analysis ...16

3.3 Project Methodology ...16

4 Design .. 18

4.1 Initial Design ...18

4.1.1 System ..18

4.1.2 Initial Database ..19

4.2 Final Design ..19

4.2.1 Final Database ..21

5 Implementation .. 22

5.1 Development Languages ...22

5.2 Development Tools ...24

5.3 Feature Implementation ...24

5.3.1 Username Availability ...25

5.3.2 Questionnaire ...25

5.3.3 Methods & Techniques ..26

6 Testing ... 29

6.1 Testing Methodologies ..29

6.2 Summary of Test Cases ...29

7 Evaluation .. 30

7.1 Overview ...30

7.2 Questionnaire & Interview Results ...30

7.3 Project Management ..34

7.4 Project Goals ...34

8 Conclusion & Future Work .. 35

ii

References .. 36

Appendix A – Background Research and Literature Search ... 40

Appendix B – Management of this Project .. 45

Appendix C – Requirements & Goals ... 49

Appendix D – Database Tables ... 53

Appendix E – Database Schema .. 55

Appendix F – Test Cases ... 60

Appendix G – Evaluation Questionnaire ... 66

Appendix H – Evaluation Questionnaire & Interview Results .. 70

Appendix I – Interview Questions ... 76

Appendix J – Project Brief ... 78

Appendix K – Additional Screenshots ... 79

Appendix K – CD ROM Index .. 82

1

1 Introduction

Agile methods are project management processes that allow a more dynamic and

flexible management of a project compared with traditional project management

methodologies. Because of these features, businesses have adopted agile methods and

successfully applied them to projects of different sizes and tailored them to the needs of

each project team. In 2008, Scott Ambler carried out a survey concerning the level of

adoption of agile methods within businesses. The results showed that 69% of the

responders work for companies that have already adopted at least one agile method and

15% are employed by businesses that plan to ‘become agile’ within a year (Ambler

2008). Since agile methods play an important role in project management and many

businesses, the developers and project managers in these companies need to have a full

understanding of these methods and concepts.

This knowledge and understanding can be gained from work experience but the

foundations are built whilst at university. At present, the Southampton University’s

approach to agile methods is theoretical and is not reflected in their impact during the

development of a product and their practical use, so students do not have a clear view of

their application. From the above statistics, it seems crucial that students become

equally familiar with agile as with traditional project management methods before

leaving university. Because some students may not have previous work experience, the

theoretical knowledge provided by the lectures can be enriched by combining them with

a software system that simulates the use of agile methods. This way, students will be

able to get a glimpse and gain deeper understanding during the learning process of what

agile methods are and how they are used by businesses.

It has been shown that students who used additional software, in the form of games in

parallel with lectures, performed better on their final examinations compared with

others that attended only the lectures during their course (Clua et al. 2006). A system in

the form of a game can be a good option of helping students learn more details about

agile methods. The aim of this project was to design and implement a game prototype

that simulates all these: the Agile Game. The Agile Game was designed to be used as

part of additional teaching material at the university and, besides introducing students to

software development and agile methods, allow them to grow their learning and

analytical skills.

1.1 Project Description

The Agile Game is a prototype of a game that simulates the use and the impact of agile

methods on every phase in the development of a project. The system is targeted at

university students with some background knowledge of software engineering issues.

Because of this, the users of the game need to be students in Computer Science,

Software Engineering or in other IT-related degrees. In addition, because some

knowledge of software engineering is assumed, the game is more suitable for students

that have already completed their first year at university. Through this game, users will

come to understand the phases that a project has to undergo for an enterprise to deliver a

product to the customer, and how agile methods differ from traditional project

2

management. The key aspect of this system is its form. Educational software in the form

of a game will trigger students’ attention, develop their understanding, motivate them

and will make the learning process more interesting and challenging (Basturk 2005).

Clua et al. characteristically state that “much research shows that the learning process is

highly enhanced when this kind of approach is used in computer science teaching, not

only because of the motivation they engender but also because high end results can be

easily generated with relatively little effort” (Clua et al. 2006).

1.1.1 Detailed Description

When starting to play the game, users are required to register with the system by

inserting a username and a password. The password is stored as a hash in the database

to ensure security. When a player first logs in, they are given instructions on how to

play the game and a detailed project profile containing information about the project

they are required to complete. The game simulates a software project that is divided into

four smaller phases (User Stories/Requirements, Design/Planning, Implementation, and

Acceptance Testing). Each of these represents the basic phases that a project has to

undergo until its final delivery. In the game, users will have the role of Project Manager,

and will be responsible for taking all the necessary decisions for the completion of every

deliverable and the management of a virtual team. Taking into consideration the data of

the project profile provided, users will have to decide which methods and techniques

would be more appropriate for each deliverable.

Every choice is credited with a certain number of points, depending on the phase of the

project and many other factors. The system will keep track of the points that every

player collects. These points will be visible to all other players in the system in the form

of a high score table. With this feature, players will be able to compare their

performance with respect to other players in each deliverable and in the overall project.

The score table makes the game more interesting and keeps the player’s motivation

high, thus challenging them to perform better in every deliverable.

Before starting and after completing the game, players are required to fill in a

questionnaire. The first questionnaire contains simple questions testing basic knowledge

on agile methods. Each answer is rewarded with a number of points. If the final score is

above a certain limit, users can proceed to the first phase of the game. Otherwise, users

are recommended to consult the additional resources provided by the help webpage. The

second questionnaire, at the end of the game, contains more detailed questions

concerning the techniques that players used during the game. Again, each answer

corresponds to a number of points. Before exiting the game, users can see their scores in

both questionnaires and track their progress.

3

2 Background research and literature search

This project focuses on the use of project management methodologies and it was

developed using the principles of Extreme Programming (XP) (Section 2.3.1). As

required by the structure of XP, the planning and the iteration phase of the project

cannot start without first defining the user requirements. To clarify the requirements of

the system, it was essential to undertake a literature review and background research on

existing and related work. The following section is a summarised review of the

literature, but a more detailed review can be found in Appendix A.

2.1 Outline

The first step of the research was to understand in more depth the term project

management and make clear the key characteristics that distinguish traditional project

management methodologies (Section 2.2) from agile methods (Section 2.3). Then,

further research was conducted on the methods that are considered as agile, such as XP,

Scrum, Crystal Clear, Dynamic Systems Development Method (DSDM) and Feature

Driven Development (FDD), which are considered to be the most popular (Ambler 2006

Parsons et al. 2007; Lindvall 2002) and widely used methods (Section 2.3). The

investigation addressed at what level businesses use these methods (Appendix A), for

what kind of system (critical or non-critical projects) and what techniques are used by

each method. Also investigated were the level of adoption of agile methods by

businesses and the affect on total cost of the project using agile methods compared with

traditional methods (Appendix A). It was also important to see how they influence the

productivity of the team, the quality of the final deliverable and how satisfied customers

are when projects are developed with agile methods (Appendix A).

Unfortunately, it was not possible to find specific information and statistics about which

methods are used in each phase of a project, and which techniques are used alone or in

combination with others during different moments in the project lifecycle. Also, there

was limited data describing the phases of the project in which the risk of failure is high

using agile methods compared with traditional methods, which methods tend to have a

lower success rate than others, and what companies do to avoid these risks or limit their

consequences. Moreover, it was not possible to determine in what types of project agile

methods are usually applied. There are probably two reasons for these limitations. First,

agile methods are relatively new in project management and there has not been enough

time to assess their overall and long-term effectiveness. Secondly, this kind of

information is often a business secret so publishing this information would jeopardise

the advantage of these businesses.

Work previously done in this field was investigated (Section 2.4) in order to assess what

features the existing systems have and in what way the Agile Game could differ

(Section 2.4.2). Because this system has the form of a game, some research was

conducted to determine whether educational systems like Agile Game are effective,

assist the learning process and enhance students’ understanding (Section 2.5). Finally,

for the purposes of this system and the project report, some background research was

necessary in order to decide whether the requirements of the project would have the

form of Use cases or user stories (Appendix A), to determine the issues that a risk

analysis needed to include, and the way that Gantt charts are constructed.

4

2.2 Principles of traditional project management

The Project Management Body of Knowledge (PMBOK) states that project

management is “the application of knowledge, skills, tools and techniques to project

activities to achieve requirements. Project management is accomplished through the

application and integration of the project management processes of initiating, planning,

executing, monitoring and controlling and closing” (Lewis 2007).

The term traditional project management refers to software models that focus on the

plan of the project, analysis, design, and quality assurance. One of the most popular

models of this kind is the waterfall model (Figure 2.1).

Figure 2.1: The waterfall model diagram (Serena 2007)

This model takes the fundamental processes of specification, development, validation

and evolution and represents them as phases of a project, i.e. requirements, design,

implementation, verification and maintenance (Somerville 2001). Some other traditional

project management models are the Spiral model and the V-Model (Appendix A). This

type of model is usually adopted by large businesses with big teams who are responsible

of projects with long duration. As Somerville says, when smaller companies apply these

models, they are dominated by the software development process (Somerville 2007).

For this reason, businesses developed agile methods and introduced them into project

management.

2.3 Agile methods

Agile methods allow a more dynamic and interactive development of a project than

traditional project management. They were first used by medium- and small-sized

businesses because they could not afford the heavyweight approach of traditional

project management that large businesses were using. Agile methods are characterised

by their incremental delivery and development of projects. “These allowed the

development team to focus on the software itself rather than on its design and

documentation” (Somerville 2007). The main difference between agile methods and

traditional project management is that the design and the requirements can change at

any time, contrasted with models like Waterfall, where a design is completely

developed first so the product is then designed, implemented and tested against that

initial design (Aguanno 2004). The difference also becomes clear from the Manifesto

5

for Agile Software Development
1
 which places “individuals and interactions over

processes and tools, working software over comprehensive documentation, customer

collaboration over contract negotiation and finally responding to change over following

a plan” (Beck 2000). Some of the commonly used agile methods are Extreme

Programming, Scrum, Feature Driven Development, Dynamic Systems Development

Method, and Crystal Clear (Ambler 2006; Parsons et al. 2007; Lindvall 2002).

2.3.1 Extreme Programming (XP)

“XP is a path of improvement to excellence for people coming together to develop

software” (Beck et al. 2004). This method focuses more on the implementation than the

documentation of the project and emphasises the customer involvement and testing. In

XP, the user requirements are expressed as user stories or scenarios from the customer/

stakeholder (Figure 2.2). This list of features forms the release plan of the project that

indicates which stories will be implemented first and in which iteration. Each iteration

has a relatively short duration (usually 2-4 weeks) and always needs to deliver some

functionality after its completion. The releases need to be small but simple in order to

get frequent and precise feedback from the customer, which is very helpful, especially

for large projects (Highsmith 2002). As Kent Beck characteristically mentions, “Every

release should be as small as possible, containing the most valuable business

requirements” (Beck 2000). In addition, the design of the system must confront the

given specifications and not consider possible future enhancements. In XP the team

needs to do only what is specified, but in the most effective and productive way

(McDonald [n.d.] a). Moreover, as soon as the release plan is conducted, during the

iteration planning, teams create acceptance tests based on the requirements and check

the functionality of the deliverable. Acceptance tests are another way to describe black

box testing and each test corresponds only to one user story (Wells 1997-1999).

Figure 2.2: XP model diagram (Serena 2007)

XP is typically used by small teams of at most 10 people, which are co-located,

although Martin Fowler tried to use it with larger teams (about 40 people) with

satisfying results in terms of understanding and planning (Highsmith 2002). A co-

located team is one whose members work either in the same room, or on the same floor,

or in the same building, thus reinforcing teamwork, communication and collaboration.

A typical application of XP was the Chrysler Comprehensive Compensation project

(mid-1990s). The project was not completed, but it was partly implemented and it

proved that XP methodology can be used as a development method (Highsmith 2002).

1
 Available from: http://agilemanifesto.org/

6

This method is a collection of good engineering practices (McDonald [n.d.] a). Some of

the most common techniques that they use are pair programming and refactoring. In pair

programming, programmers work in pairs so they develop code efficiently and with

higher quality. A survey by the University of Utah showed that the use of pair

programming while developing software helps in faster delivery and higher quality

(Williams et al. 2000). Code refactoring is the change to the code of an existing

software system, without changing its external functionality (Fowler et al. 2004). This

technique is used to improve the reliability and reduce the complexity of the system. It

also improves maintainability, extensibility and regular testing before new code is

integrated into the system (Wake 2001), which helps to minimise the number of bugs in

the system.

2.3.2 Scrum

In Scrum, the control is moved from the central scheduling and dispatch authority to the

individual teams (Schwaber 2004). Jim Highsmith notes that “whereas XP has a definite

programming flavour (pair programming, coding standards, refactoring), Scrum has a

project management emphasis” (Highsmith 2002). The product of every iteration in

Scrum is an increment of the final product. This agile method is considered easy to learn

and it does not need much effort to start using it (Henson 2008).

In Scrum, Product Owners maintain a Product Backlog (Figure 2.3) which contains all

the features that they want the system to include, and they prioritise them. Then again,

the Product Owners choose the features they want to be released in the next iteration

(Release Backlog). In a planning meeting the Product Owners, the management and the

team, estimate the amount of work that is required to complete these tasks (Sprint

Backlog). The development period of Scrum is divided into 2-4 week iterations, called

Sprints. During Sprints, the team needs to participate in daily Scrum Meetings in order

to identify the problems that the members of the team might face and find ways to

resolve them. Daily Scrum Meetings take place every day, usually at the same place and

they last less than 30 minutes (the ideal is 15 minutes). They are held by the Scrum

Master who is responsible for identifying the team's problems, and monitoring their

overall progress. To identify the possible obstacles and difficulties faced by a member

and their progress during this meeting, every member of the team has to answer the

following three questions:

• What have you done since last meeting?

• What will you do now and for the next meeting?

• What problems do you have? (Highsmith 2002; Schwaber 2004).

Figure 2.3: Scrum method diagram (Scrum Alliance 2009)

7

As soon as a Sprint is complete, a 4-hour Sprint review meeting takes place in order to

evaluate the new features of the product against the Sprint goals, to monitor the overall

progress of the product and to present the new features of the system to the Product

Owners. In the development phase, the team uses a Burndown chart to monitor the

amount of work that still needs to be done. With this chart, it is possible to track the

proportion of the remaining work and the effort that is needed to reduce this workload.

The point where the trend line of the graph intercepts the horizontal axis of the graph

represents the time that the project is expected to finish (Highsmith 2002).

2.3.3 Feature Driven Development (FDD)

FDD focuses on the design of the project and not on its development. This method is

characterised by its interactive development, incremental delivery and emphasis on

quality (Abrahamsson 2002). It includes some prescription about what the tasks are and

who is responsible for these tasks, so many do not consider it a truly agile method. It is

considered good for companies that are changing from traditional to iterative approach

but are not comfortable with getting rid of all the tasks and assignments (McDonald

[n.d.] b).

A popular example of this method is the commercial lending application project for a

large bank in Singapore. The company that was first assigned to implement it spent two

years delivering thousands of pages of Use cases and object models, but without any

code. Then, with Jeff De Luca (architect of FDD) as the project manager, the project

was implemented using FDD in a period of 15 months, with about 2000 features

delivered. “The key, Jeff De Luca said, is having good people – good domain experts,

good developers and good chief programmers” (Highsmith 2002).

FFD lifecycle is divided into five different activities that are performed interactively

(Figure 2.4) and must be short, iterative and feature driven. An FDD project starts by

performing the first three steps. The goal of the project is to identify the amount of

effort, the initial architecture, and plan. Construction efforts occur in two-week (or

shorter) iterations, with teams working iteratively throughout the five steps as needed

(Ambler 2005-2009).

Figure 2.4: FDD Model diagram (Ambler 2005-2009)

The five different processes of FDD are Develop an Overall Model, Build a Features

List, Plan by Feature, and Design and Build by Feature. In particular, the first process is

the stage where the domain and the scope of the project are defined. As soon as the Use

cases are complete, they are used to create the overall model and are then integrated into

8

features in the next process. In the Features List process, the team develops a list of

features, groups them into feature sets and finally into major feature sets. Every feature

must be completed within 10 days. If a feature is expected to last more than 10 days, it

needs to be divided into smaller pieces. In the Plan by Feature process, the team along

with the project manager, the development manager and the chief programmers,

construct a plan for the development phase that defines the features that will be

implemented and the people responsible for their completion. Finally, the last two

processes are where the team performs multiple iterations of these processes; they break

into Feature teams and implement classes and methods, inspect code and perform unit

testing in two week time-boxes (Highsmith 2002).

2.3.4 Dynamic Systems Development Method (DSDM)

XP is considered one of the first well-known methods to handle agile software projects

and it can be integrated into DSDM implementation because its principles can improve

XP with more robust requirements and project management mechanisms (Voigt 2004).

DSDM supports the notion that nothing is built the best possible way the first time

(Highsmith 2002). The DSDM method follows 9 principles. It does not force its users to

follow its complete structure, but only requires strictly following these 9 principles. If it

is not possible to implement all of the 9 principles, then DSDM is not the most suitable

method to implement a project. These principles are:

1. Active stakeholder participation.

2. Teams empowered to make decisions.

3. Focus on frequent delivery.

4. Use fitness for business purpose as criterion for accepted deliverables.

5. Iterative and Incremental development is essential.

6. Changes during the development phase must be reversible.

7. Requirements base-lined at a high level.

8. Continuous integrated testing.

9. Collaboration and cooperation between all stakeholders.

DSSM emphasises facilitated workshops as well as customer and user involvement, so

DSDM design is done with respect to their needs and expectations. Projects that are

implemented using the DSDM method consist of several phases of which some might

be omitted to tailor the method to the needs of each project (Figure 2.5) (Highsmith

2002; Voigt 2004).

Figure 2.5: DSDM method diagram (Voigt 2004)

9

Some major phases are:

1. Feasibility & Business Study: In this phase the problem, and assessments of

likely costs and technical feasibility to deliver the product, are defined and the

business study provides the basis for all subsequent work. It is as short as

possible, while achieving sufficient understanding of the requirements.

2. Functional Model Interaction: The focus of this phase is to refine the business-

based aspects of the computer system. The functional and non-functional

requirements are defined and prioritised and they are usually represented in the

form of prototypes, rather than text.

3. Design and Build Iteration: In this phase, the system is engineered to a high

standard to be safely delivered to the user. In addition, the prototypes from the

previous process are checked against the user requirements.

4. Implementation: This phase is the transition from the development to the

operational environment (Highsmith 2002; Voigt 2004).

2.3.5 Crystal Clear

Crystal is a human powered and adaptive agile method. It achieves the project success

through developing the work of the people involved. Crystal is a family of

methodologies comparable to other agile methods (Cockburn 2009). Crystal Clear is

actually one of the four methodologies of Crystal: Crystal Yellow, Crystal Orange and

Crystal Red (Figure 2.6). Crystal has the ability to tailor these methodologies to the

needs of each project and uses incremental development cycles with a maximum

duration of four months (Abrahamsson 2002).

Figure 2.6: Crystal methods diagram

2

As Highsmith states, Crystal “focuses on people, interaction, community, skills, talents

and communications, as first-order effects on performance. Process remains important,

but secondary” (Highsmith 2002). This method supports the notion that because each

person has their own talents and strengths, they should be assigned to tasks that match

their skills. It is considered as a human powered, ultra-light and stretch-to-fit method.

2
 Available from: http://leadinganswers.typepad.com/leading_answers/images/2007/06/20/3_crystal.jpg

10

This is because it prioritises people before work, supports a minimum of documentation,

and can be adjusted to the needs of any project at any time (Chang 2010).

The method chosen from the Crystal family that is more applicable to a project depends

on its size and how critical it is, i.e. loss of comfort, loss of money or death. Crystal

Clear in particular, is used in small teams of up to six people and on projects with low

criticality (Chang 2010). In this method, if the team is not co-located they cannot

communicate. A Crystal Clear team consists of a Project Coordinator, a Business

Expert, some Requirements Gatherers and finally a Senior Programmer. The

development with Crystal Clear is divided into various iterations each lasting 2-3

months so the final product can be incrementally delivered. The progress of the overall

project can be monitored by milestones that represent every deliverable. In addition, to

test the code, some regression and user (usually two people) testing takes place. Finally,

a project developed with XP can also be implemented with Crystal because the latter

fulfils all the XP standards, except documentation (Cockburn 2002).

2.3.6 Agile Methods within the Agile Game

The principles of all the previously mentioned methods are the core of the Agile Game.

As can be seen above, there are several agile methods and each one has its own unique

principles and techniques. The aim of this system is to familiarise students with agile

methods and introduce them to these techniques and principles during the game, so

detailed information about them and their use is provided to fulfil this goal.

2.4 Existing Games

During the research phase, to specify the requirements of this project, it was necessary

to investigate what kind of systems already exist and which of their features the Agile

Game could adopt or enhance and what functionality would differentiate it from the

existing ones.

2.4.1 Overview

It was found that many games are used in education and help to enrich the teaching

process. Some of the most characteristic games are: “The Software Management

Game”, “The Agile Hour”, “The XP Game”, “Contract & Construct (C & C)” and “The

Incredible Manager”.

In particular, the game “Software Management Game” was developed by Dr P W

Garratt from the University of Southampton, and it simulates a computerised

information system. Through this game, users have the opportunity to familiarise

themselves with the principles of traditional project management and enrich their

communication and negotiation skills. The game is a complete system that simulates

accurately the phases that a project has to undergo to be delivered to the customer. In

the game, users may occupy different managerial positions so they can view different

perspectives the project development, the responsibilities of a person in that position

and the task relevant to their position (Garratt 1995). Likewise, the “Agile Hour” is

another project management game, which is a simulation game that focuses on agile

methods and, in particular, the XP methodology and its techniques. During the game,

11

players use story cards and are required to build a human-powered vehicle. The game is

not computer-based, so the team actually needs to gather in the same place in order to

communicate and coordinate. Users may hold different roles and, due to the iterative

and incremental nature of XP programming, they can change, add or remove techniques

during the project implementation (Parsons & Cranshaw 2008).

The “XP Game” is again a story card-based simulation game, where no technical

knowledge or skills are required. In the game users are divided into teams of developers

and business people. The goal of the game is to experience the way that user stories,

estimation, planning, implementation and functional tests are used. Players use cards

that contain simple tasks, which correspond to a score. The game has at least three

iterations and in each iteration, teams perform a planning game session, which is based

on the story cards (Peeters et al. 2008). In addition, Contract & Construct (which is an

implementation of the Project Management Simulation Engine) is an educational game

designed by the Business School of Warwick to support the teaching of project

management for an MBA. The game simulates “all the classical functional management

elements of planning, command, co-ordination and control” (Martin 2000). Users are

given a detailed project description, the events that might occur during the development

of the project and their impact, and the budget, requirements and constraints of the

stakeholder. This game focuses more on decision-making for general issues during the

development rather than specifically on which project management method should be

used (Martin 2000).

Lastly, the “Incredible Manager” is again a simulation software-based game aimed at

students, but it can also be used to provide experimental learning for project managers.

As Dantas et al. state, the system can be “used for educational goals, aiming at

reasoning, judgement, decision-making and system thinking.” It is also used as

additional material in teaching. The different characters in the game allow students to

understand the responsibilities of every position and the different phases of the project,

throughout the lifecycle of a real project (Dantas 2004).

2.4.2 Comparison of existing games

The table below (Table 2.1) represents the main features of the existing games along

with the features of the Agile Game. The majority of the systems are used as

supplementary teaching material to enrich the technical experience of the students but

some of them are designed as complete and stand alone systems, which means that their

users do not need to have any prior knowledge on the field to play. The project

management issues that each game covers vary. In particular, they either represent the

application of agile methods (like Agile Hour, XP Game and Agile Game), the

principles of traditional project management (Software Management Game) or cover

general managerial decisions (e.g. what be the most appropriate next move given a

situation, which people are more appropriate in a position than others) which do not

focus on the technical aspects of project management i.e. which method would be more

appropriate in a particular phase of the project. Finally, half of these games are

computer based, so their users can use them at any time without dedicating large

amounts of time at once (whereas in XP Game a project lifecycle lasts about 40 minutes

and in Agile Hour 70 minutes).

12

 Game Type
Agile

Hour

Incredible

Manager

Contract &

Construct

Software

Management

Game

XP Game
Agile

Game

Educational

game
 � � � �

Independent

system
� � � �

Traditional

methods
 �

Agile

methods
� � �

General

management
 � �

Computer

based game
 � �

�

Interpersonal

game
� � �

Table 2.1: Existing games comparison

2.4.3 Why Agile Game?

Comparing the Agile Game with existing games, it is easy to note that this system

contains many features similar to all the other systems. Specifically, Agile Game is an

educational system designed to be used as supplementary material in teaching. It is also

computer-based, a feature that makes it accessible to the majority of its targeted users

(i.e. ECS students). The main difference between the Agile Game and other systems is

that it is web-based which means that players are able to use it even if they do not have

access to their personal computer.

The most important feature that distinguishes the Agile Game from similar games is that

it teaches and helps students understand a variety of agile methods and their techniques.

In particular, unlike Agile Hour and XP Game which focus only on XP techniques and

XP methodology respectively, the Agile Game offers its users the opportunity to

familiarise themselves with some of the most commonly used agile methods, as well as

with their techniques. In the Agile Game, users are able to understand for every method,

which technique is most appropriate, depending on the phase of the project and the

reason why this happens.

2.5 Learning through Computer Games

The use of computer games in education is a controversial issue because there are

doubts whether students learn through such a means. Because the Agile Game is an

educational game, it was necessary to investigate if the form of the system would

actually help students to learn. Lots of research has been conducted on the subject and

the results seem very positive, and there are many examples of universities around the

world that have already incorporated educational games in their teaching material. A

survey from the University of North Carolina concerning a game for first year computer

scientists, which teaches programming, revealed that 88% of the students would use the

game as additional material (Barnes et al. 2008). There were also cases where students

13

that used educational games in combination with the teaching material improved their

overall performance, and their motivation of learning was raised (Virvou et al. 2005).

Educational games are usually confused with the video games that students play for

amusement. As Becker says “the vast majority of the educational software available

today is presented in the form of games of one sort or another” (Becker 2001). Unlike

video games that are considered as action or fighting games, there are video games in

the form of simulations, strategy games, role playing, sports, etc. These types of game,

like simulation games, represent a model of the world that is very close to reality. This

model is usually abstract or simplified for the purposes of the game, but they do not

suspend the rules of reality as action games do (Squire 2003). Galvão et al. state that

“simulation games are a mixed feature of a game competition, co-operation, participants

and rules incorporating critical features of reality.” They continue that educational

games need to create awareness and insight for the student while teaching them (Galvão

et al. 2000). Furthermore, Oblinger believes that a game that is educational needs to

follow some general guidelines, which are described in the following table (Oblinger

2004).

Principle Description Application in Games

Individualization Learning is tailored to the needs of the

individual

Games adapt to the level of the

individual

Feedback Immediate and contextual feedback

improves learning and reduces

uncertainty

Games provide immediate and

contextualized feedback

Active Learning Learning should engage the learner in

active discovery and construction of

new knowledge

Games provide an active

environment which leads to

discovery

Motivation Students are motivated when presented

with meaningful and rewarding

activities

Games engage users for hours of

engagement in pursuit of a goal

Social Learning is a social and participatory

process

Games can be played with others or

involve communities of users

interested in the same game

Scaffolding Leaders are gradually challenged with

greater levels of difficulty in a

progression that allows them to be

successful in incremental steps

Games are built with multiple levels;

players cannot move to a higher level

until competence is displayed at the

current level

Transfer Learners develop the ability to transfer

learning from one situation to another

Games allow users to transfer

information from an existing context

to a novel one

Assessment Individuals have the opportunity to

assess their own learning and/or

compare it to that of others

Games allow users to evaluate their

skill and compare themselves to

others
Table 2.2: Some principles of good pedagogy and parallels in a game environment (Oblinger 2004)

There are many examples where universities have used educational games. For

example, the University of Phoenix uses the “Thinking Strategically” simulation game

in the MBA, Undergraduate and Business Management courses, which teaches the roles

that a person can occupy within a company and what their responsibilities are (Oblinger

2004). The University of Piraeus in Greece used a virtual reality game, VR-Engage, to

teach students geography (Virvou et al. 2005). The University of Michigan used the

Conflix simulation game to allow students to discuss political and social issues, in order

14

to develop their analytical and negotiation skills (Oblinger 2004). The US Defence

Intelligence Agency uses e-games to train their agents and soldiers simulating war

situations under circumstances that would be dangerous and costly to set up in reality

(Gotterbarn 2008). In Sweden, high schools use on-line learning games to teach

different courses such as mathematics, physics, business administration. The University

of North Carolina uses the interactive game “Game 2 Learn” to teach their first year

computer science students programming (Barnes et al. 2008).

3 Project Management

3.1 Planning – Gantt chart

Cohn characteristically states that “estimating and planning are critical to

any software development project of any size or consequence” (Cohn 2007 a). The

previous statement underlines the importance of planning in every project. In particular,

plans work as a guide during the whole duration of the project to avoid

help knowing at which stage the project is at a specific time, and what needs to be done

next. They also help to see if the project is within its time limits, keep track of the

overall progress at any time and estimate the amount of work tha

until the final deliverable.

The initial plan of this project is shown below (Figure 3.1). The final Gantt chart

(Figure B.6) and Gantt charts for every semester

beginning of the project

only the main phases of the project with very draft estimations

of the project were not fully specified

defined and finalised, a more detailed Gantt chart

in the project. Figure B.2 represents the chart for

project. However, the progress of the project did not go as planned and Figure B.3

shows how it was altered

the beginning of Semester

the end. Finally, because the project was developed with agile methods, it is focused on

planning and not on the plan itself. Plans are flexible because the project has much

iteration and its requirements constantly change so planning continues throughout the

project (Cohn 2007 a).

15

Project Management

Gantt chart

Cohn characteristically states that “estimating and planning are critical to

any software development project of any size or consequence” (Cohn 2007 a). The

previous statement underlines the importance of planning in every project. In particular,

plans work as a guide during the whole duration of the project to avoid

help knowing at which stage the project is at a specific time, and what needs to be done

next. They also help to see if the project is within its time limits, keep track of the

overall progress at any time and estimate the amount of work that still needs to be done

until the final deliverable.

The initial plan of this project is shown below (Figure 3.1). The final Gantt chart

(Figure B.6) and Gantt charts for every semester can be found in Appendix B. At the

beginning of the project, a basic Gantt chart (Figure B.1) was constr

only the main phases of the project with very draft estimations because the requirements

of the project were not fully specified. As soon as the precise subject

d, a more detailed Gantt chart was essential representing every task

. Figure B.2 represents the chart for Semester One, before the

project. However, the progress of the project did not go as planned and Figure B.3

as altered by the end of the semester. Figure B.4 represents the plan

emester Two and Figure B.5 the way that the project was formed at

Finally, because the project was developed with agile methods, it is focused on

and not on the plan itself. Plans are flexible because the project has much

iteration and its requirements constantly change so planning continues throughout the

Figure 3.1: Initial Gantt chart

Cohn characteristically states that “estimating and planning are critical to the success of

any software development project of any size or consequence” (Cohn 2007 a). The

previous statement underlines the importance of planning in every project. In particular,

plans work as a guide during the whole duration of the project to avoid losing focus,

help knowing at which stage the project is at a specific time, and what needs to be done

next. They also help to see if the project is within its time limits, keep track of the

t still needs to be done

The initial plan of this project is shown below (Figure 3.1). The final Gantt chart

can be found in Appendix B. At the

structed. It contained

because the requirements

precise subject of the project was

essential representing every task

before the start of the

project. However, the progress of the project did not go as planned and Figure B.3

Figure B.4 represents the plan for

Two and Figure B.5 the way that the project was formed at

Finally, because the project was developed with agile methods, it is focused on

and not on the plan itself. Plans are flexible because the project has much

iteration and its requirements constantly change so planning continues throughout the

16

3.2 Risk Analysis

During the development of a project, many unexpected events might happen with

consequences on the quality, budget, delivery or overall progress of a project. These

events are usually caused by external sources so the time and the probability of their

occurrence cannot be predicted. To recover from these events with minimum

consequences, a risk analysis is necessary. Table 3.1 represents a number of events that

might affect the progress of the project and their impact. The table contains an

estimation of the probability of their occurrence and presents ways to deal with every

risk to minimise their consequences.

 1=Very Unlikely; 2=Unlikely; 3=Moderate; 4=Likely

Risk Impact Probability Strategy to deal with risk

Illness
Unable to complete work and

pending tasks are delayed.

1 (Serious)

3 (Non-

Serious)

Reschedule tasks left to complete in

the time available.

Database

corruption

System unable to access the

database.
1

Regularly back up the database and

inform users of the situation.

Hard disk

failure

A big part of the work may

be lost.
3

Perform regular backups and save

work into online repositories.

Missing

deadlines

Project goes out of schedule

and loss of marks.
4

Try to keep on schedule or

reschedule tasks in the time

available.

Missing

supervisor

meetings

Lose the focus of the project. 2
Inform Personal Tutor and get advice

from him and the second examiner.

ECS

filestore

failure

System will not be accessible

to third parties.
1 Keep local copies of the system.

Lack of

players

Students may not test the

system.
1

Change the target group of the

system and find volunteers to use it.

Insecure

system

System will be vulnerable to

external attacks.
3 Implement security procedures.

Coding

restrictions

Unable to complete desired

features.
4

Find alternate ways to implement the

feature; ask colleagues to help;

advice from online sources.

Extreme

weather

conditions

Unable to be in England and

submit the written version of

the report.

1
Ask a colleague to submit the paper

report instead.

Table 3.1: Risk Analysis

3.3 Project Methodology

The overall development of the project follows the structure of XP Programming

methodology (Figure 2.2) with minor differences. This model was used because the

project was programming-oriented and more focus needed to be drawn to the

implementation rather than to other aspects. Also, programming languages were used in

which the author had limited experience, so that reviewing the code as the project

progressed would help optimising and refactoring as well as the database.

17

The XP lifecycle emphasises implementation and allows continuous iteration for the

duration of the project so the system can be constantly reviewed and tested. The

implementation of the code is usually done by a pair of programmers but it is not

applicable in this case. In particular, the system had frequent releases with very short

development cycles just like XP; progress of the project is presented every week in

supervisor meetings. In addition, the design focused more on the development

(continuous integration) of the game rather than the design and documentation, due to

the short period within which the project needed to be implemented. Moreover, some

code needed to be written every week to keep to schedule, so XP was considered to be

the best method given these requirements.

Finally, the design fulfils the interactive approach of XP method because the

requirements of the system change quickly during the implementation and black box

testing regularly takes place to meet user stories.

18

4 Design

For the implementation of the game, a design was essential in order to use it as a guide.

This design was the product of the requirements, the system and the project goals of the

system that were set at the beginning of the project (Appendix C). During the

implementation process, the requirements changed, therefore the system needed to be

redesigned. This occurred because additional functionality was required to make the

system more interactive and educational, and as a result of the evaluation questionnaire

where users required some more detailed information. Because the project was

implemented with XP methodology, the occurrence of changes was expected, so only a

few modifications were needed (Appendix C). The initial and the final designs are

described below, but more specific details such as the database diagrams can be found

in Appendix D.

4.1 Initial Design

The aim of the initial design was to create a web-based game that simulates the

principles of the XP method and represents how the choice of certain techniques affects

the development process of the project and the final deliverable. The game was divided

into four smaller deliverables (User Stories/Requirements, Design/Planning,

Implementation, and Acceptance Testing) where each represents the basic phases that a

project has to undergo until its final delivery.

4.1.1 System

Since the system was web based, users needed to interact with the internet. The PHP

scripting language that was chosen for the implementation of the project offers

advanced libraries and ease of integration. Because it is a server-side language, the

users’ browser cannot recognise the PHP files without accessing the server, which

presents the PHP file in HTML format. This feature makes the code more secure

compared with other scripting languages such as JavaScript, where the full code is

visible to the user. All the necessary system information is stored in a database that can

be accessed by queries from the PHP files. Figure 4.1 represents the interaction between

the user and the system.

 Users

 Agile Game
Figure 4.1: System diagram

 Server Database

HTML

PHP

Internet

19

4.1.2 Initial Database

The complete model of the database of the initial design can be found in Appendix D

(Figure D.1). Table 4.1 gives is a brief description of the information that every table of

the database holds.

Table Name Description

User Contains all the information about the user.

Deliverables Represents the phase of the project that the user is in.

Technique Contains the techniques that players can use to complete

a deliverable.

User_has_ Technique Stores the techniques that have already been chosen by

the user and in which deliverable.

Deliverables_has_Technique Contains the points of every technique in every

deliverable.
Table 4.1: Initial model database tables description

4.2 Final Design

As previously mentioned, during the implementation process the requirements of the

system changed because additional functionality was required. Because of the

evaluation questionnaire, some features needed to be added and some needed to be

removed or to change. (New and specific changes on the requirements can be found in

Appendix C.) In particular, the game remained web-based, but instead of only helping

to understand agile methods, it was also required to test the level of knowledge of the

user before and after the completion of the Agile Game by the use of questionnaires to

track their progress. In addition, the actual game users would have the opportunity to

familiarise themselves with the most commonly used agile methods.

In particular, users would be able to choose one of the different agile methods and any

of the techniques in every deliverable. Each technique is credited with a specific number

of points depending on the phase of the project. At the end of the game, users are able to

see their overall progress and the score of the top 10 players.

As the system was becoming more and more complex, in order to avoid and reduce

coupling, the code had to be broken into smaller files. This helped to ensure that all the

files and functions interact with each other in an optimum way. Table 4.2 gives a small

description of the functionality of every PHP file and Figure 4.2 a system map,

representing the way that files interact with each other.

20

Figure 4.2: System map

File Description

index.php The main page of the website.

connect.php Connects the website with the database.

introduction.php Introduces the user to the Agile Game.

authentication.php If user is already registered in the system, after inserting the correct

username and password.

register.php Registers the new user to the database.

insert.php Checks if users are registered in the system after they inserted their

username and if yes, they let them into the system.

functions.php Contains all the necessary functions of the system.

help.php Gives the user detailed information about agile methods.

questionnaire.php Provides the questionnaire of the system.

results.php Contains the results and the score of the user after the completion of

the questionnaire.

main.php Contains a summary of the progress of the user when they return to the

system after logging out.

round.php The main page of the game. The page where users select the methods

and techniques.

report.php Summarises the progress of the user in a deliverable.

summary.php The final page of the game. Contains a summary of the overall

progress of the user during the game.
Table 4.2: Description of PHP files

21

4.2.1 Final Database

The complete model of the database of the initial design can be found in Appendix D

(Figure D.2) and the database schema on Appendix E. In the final model of the

database, some more tables were added (Methods, User_has_Methods, Points,

User_has_Points, Question, Answer and User_has_Score) to accommodate the required

additional functionality. Below is a brief description of the information that every table

of the database holds.

Table Name Description

User Contains all the information about the user.

Deliverables Represents the phase of the project that the user is in.

Methods Contains all the methods in every deliverable.

Technique Contains the techniques that players can use to complete a

deliverable.

User_has_Methods Stores the methods that have already been chosen by the user and

in which method and deliverable.

Points Contains the points of every technique in every method in every

deliverable.

User_has_Points Stores the points that of every technique in every deliverable.

Question Contains all the questions in the questionnaire.

Answer Contains all the possible answers of the questionnaire.

User_has_Score Stores the score of the user in the questionnaire.
Table 4.3: Final model database tables description

22

5 Implementation

5.1 Development Languages

For the implementation of the Agile Game, several development languages were used.

Before deciding which programming languages were more appropriate for the

implementation of the system, some research was conducted to investigate the

advantages and disadvantages of each available development language.

At the beginning of the project, before defining the specific requirements and format of

the system, it was assumed that the game would be implemented with Java SE, because

the author had previous experience with it and was more familiar with its syntax and

documentation, so valuable time would be gained. It would also allow the creation of a

more interactive interface and insertion of more complex features in the game.

However, as soon as the requirements were established, it was determined that the use

of Java SE would restrict the users of the Agile Game because they do not have

administrative rights to install programs on the School’s machines, so they would not be

able to access the game at any time. To avoid this problem, the game had to become a

web-based application. In addition, there was the danger that the users’ attention would

be drawn by the Java interface rather than the actual functionality, quality and

information of the game, losing its educational aim.

Because the Agile Game would be web-based, the most common scripting languages

(PHP, ASP.NET& J2EE) were evaluated before deciding on the ideal one. The tables

below represent the main advantages and disadvantages of these languages.

PHP
Advantages Disadvantages

Many libraries and frameworks Few formal training courses

Recommended for small systems Poor separation of rules

Open source Low scalability

Cross platform Limited handling of exceptions

Many books and online communities

Support for objects and modularity
Table 5.1: PHP advantages and disadvantages

3

ASP.NET
Advantages Disadvantages

Good separation of roles Complex model as it progresses

Visual development environment Not recommended for small systems

Good support and training

opportunities

Not recommended for non-Windows

platforms

Many libraries and frameworks

Scalability
Table 5.2: ASP.NET advantages and disadvantages

4

3
 Available from: https://secure.ecs.soton.ac.uk/notes/comp3018/

23

J2EE
Advantages Disadvantages

Good separation roles Compatibility issues

Many libraries and frameworks Not recommended for small

businesses

Scalability Proprietary

Good support and training

opportunities

Many books and online communities

Open source and proprietary

implementations

Table 5.3: J2EE advantages and disadvantages
5

It can be seen that all three languages have very strong advantages. The main difference

between the three is that J2EE and ASP.NET are appropriate for complex and large

systems, but the Agile Game is only a simple and small web application. These

languages also provide very good separation of roles (between the designer and the

coder), which in this system is not important since both the design and the code were

implemented by the same person. ASP.NET provides a visual environment but for this

system is of minor importance since it is a prototype and focuses more on the quality of

the information that is provided and not on the interface. For these reasons, PHP was the

most appropriate language for the implementation of the game.

Furthermore, a back-end database was needed to store all the necessary user and system

information. A number of different kinds of database were considered, such MySQL,

Microsoft Access and Oracle. From these technologies, the MySQL database was

chosen because it is cross-platform, scalable, supports multiple user connections, the

technology was known by the author, and it interacts effectively with the PHP scripting

language. In addition, because the system is web-based, the use of HTML and CSS was

essential to form the structure and the view of the website.

To make the system more interactive and appealing to the user, some client-side

scripting languages were used, even though the system is a prototype. Thus, browser

languages JavaScript and AJAX were used in order to validate forms and insert

additional features in the system. It is important to note that the author had limited

knowledge of the syntax and structure of PHP
6
, JavaScript

7
 and AJAX

8
 languages and

for this reason, some time was spent becoming familiar with them. The author consulted

books that cover these subjects (Castro 2007; Nixon 2009; Welling 2009), online

resources, as well as lecture notes
9
.

4
 Available from: https://secure.ecs.soton.ac.uk/notes/comp3018/

5
 Available from: https://secure.ecs.soton.ac.uk/notes/comp3018/

6
 Available from: http://php.net/index.php

7
 Available from: http://www.w3schools.com/JS/default.asp

8
 Available from: http://www.w3schools.com/ajax/default.asp

9
 Available from: https://secure.ecs.soton.ac.uk/notes/comp3018/

24

5.2 Development Tools

Various development tools were used throughout the project. Others were used for the

creation of the database, others for the implementation of the code and others for the

writing of the report and documentation.

Specifically, at the beginning, for the implementation of the code Notepad2 was used,

but as the implementation progressed and the code became more complex it was

replaced by development using Dreamweaver. This program was chosen because it

supports all the languages used by the system (PHP, HTML, CSS, JavaScript and

AJAX) and every change in the code could be directly updated on the School’s servers.

MySQL Workbench and MySQL Query Browser were used for the creation of the

database tables and schema. The database is hosted by the School’s Linuxproj server. In

particular, Linuxproj includes an Apache web server that supports services like PHP and

MySQL. The use of this server improves the security of the system because it is visible

only within the ECS firewall and deals with storage instead of the administration of the

system. Also, because the system is only visible within ECS, the system is accessible

solely to students within the School. The database hosted by Linuxproj needs to be

regularly backed up because all the data are deleted at the end of the academic year.

Microsoft Project was used for the project Gantt charts. The use of this tool was used

with caution because of the wide functionality that it offers, so that the Gantt chart could

become complex without focusing on the important project milestones. TortoiseSVN
10

online repository was used to store different versions of the project as it progressed as a

back-up. For the creation and circulation of the evaluation questionnaire of the Agile

Game, iSurvey
11

 was used. This survey tool was created for the School of Psychology

of the University of Southampton and can be used by all the members of the University.

Its use ensures that all the participants are members of the University of Southampton.

Finally, the project brief, progress report, final project report and any other

documentation of the project were created using Microsoft Word processor, Putty was

used to access the database from Linuxproj, and WinSCP to access the public_html

folder stored in the university filestore, while remote from ECS.

5.3 Feature Implementation

Implementation of the Agile Game resulted in the production of a considerable quantity

of code. This section contains information about features that were considered the

trickiest parts of the implementation and the ways by which they were resolved. All the

files used to create the Agile Game were included on a CD ROM. An index to the CD

contents can be found in Appendix L and additional screenshots of the system can be

found on Appendix K. In addition, the online implementation of the system can

currently be found at:

http://users.ecs.soton.ac.uk/ag2006/COMP3020/

10

 Available from: http://tortoisesvn.tigris.org/
11

 Available from: http://www.isurvey.soton.ac.uk/admin/

25

5.3.1 Username Availability

When new users try to register on the system, it checks if their username already exists

in the database. If the username is available, players are notified that their details have

been recorded so are able to start the game immediately. Initially, this process was

implemented by redirecting the user from one page to another, resulting in a static

outcome. Also, users had to first insert all their details and then get notified that the

username was unavailable. To avoid that and make the system more interactive, some

AJAX and JavaScript code was used to check the availability of the username in real-

time while the user is typing (Figure 5.1).

Figure 5.1: Username Availability

5.3.2 Questionnaire

The production of the questionnaire was very important for the project to fulfil its

educational goal. For its construction, the system had to access the database multiple

times to present the questions and the possible answers, thus reducing the efficiency of

the system. Because the Agile Game is a small-scale project and the number of its

expected users is limited, efficiency does not seem to be an issue. For the questionnaire,

two nested for loops were used, one to access the database and print the question, and

the other to print the available answers. Figure 5.2 represents the outcome and Figure

5.3 the code that was used. This method was used because it is simple and easy to read.

If efficiency were an issue, then a joined query would be used to access the database the

fewest possible times.

 Figure 5.2: Questionnaire

26

Figure 5.3: Questionnaire code

5.3.3 Methods & Techniques

In the main page of the game, the user is required to select one of the available methods

and any of its techniques. Because all the methods and techniques are available to the

user, the amount of information displayed on the page was large and there was a

possibility that a user could change their mind and select another method and its

techniques, while having already selected one.

To avoid all these, it was decided that the techniques for each method would be hidden.

Thus, only the methods would be visible to the user when they visit the main page

(Figure 5.4). Next to every method, there is a radio button that if checked, reveals the

techniques for the specific method (Figure 5.5 and Figure 5.6).

27

Figure 5.4: Methods

Figure 5.5: Methods & Techniques

Figure 5.6: Methods & Techniques code

28

The main difficulty was make the techniques disappear. After some research, it was

determined that in PHP the radio buttons could not be unchecked and for this reason,

some JavaScript was used. Also, in every phase of the project, each method and

technique has a score. The score depends on the chosen method and the deliverable that

the user is implementing, stored in the table Points (Appendix D.2). This table contains

the points that correspond to every technique in every method and in every deliverable.

Figure 5.7 shows the contents of this table and Figure 5.8 shows how the points are

calculated.

Figure 5.7: Table Points

Figure 5.8: Points calculation

29

6 Testing

Testing is a very important phase of the lifecycle. In XP methodology, tests are created

before writing any code; as soon as some functionality of the system is implemented, it

is tested. As Kent Beck says “We will write tests before we code, minute by minute. We

will preserve these tests forever, and run them all together frequently. We will also

derive tests from the customer’s perspective” (Beck 2000).

6.1 Testing Methodologies

For this system, multiple types of testing methodology were used to thoroughly test the

system. In particular, black box testing was used to test the system functionality. In

black box testing, the focus is on the outputs of the system and not its internal

functionality (Test cases F.1 – F.47). In addition, white box testing and boundary

analysis were used to test the upper boundaries of the database values (Test cases F.48 –

F.52). Finally, specification testing was used to check the initial functional (Test cases

F.53 – F.78) and non-functional requirements (Test cases F.79 – F.85) of the system

against the final outcome and ensure that the system fulfils the functionality as

originally specified.

6.2 Summary of Test Cases

A full description of the various test cases can be found on Appendix F, but below there

is a summary of them.

Test Type No Total No of test cases Passed Failed

System Testing F.1 – F.47 47 46 1

Database Testing F.48 – F.52 5 5 0

Functional

Requirements

Testing

F.53 – F.78 25 25 0

Non-Functional

Requirements

Testing

F.79 – F.85 6 5 1

 Total: 83 81 2

Table 6.1: Summary of Test Cases

30

7 Evaluation

The evaluation of the overall system and progress is one of the most important aspects

of this project. To be more specific, evaluating the final outcome of the project is

essential to assess how successful the project has been. To investigate this, two different

methods have been used:

• Evaluation questionnaire

• Interviews

7.1 Overview

One can say that the project has been successful because all the deadlines have been

met, despite some minor changes in the initial plan. In addition, the system is complete

and functional to 98% of its requirements, as the test cases showed (see Section 6.2).

However, these metrics do not constitute a very precise way to evaluate user

satisfaction. For this reason, the use of an evaluation questionnaire was necessary. In

particular, as soon as the system was complete, a questionnaire was given to some

students to evaluate the game. The questionnaire can be found in Appendix G and its

detailed results are given in Appendix H. The questions concerned the system’s

interface, its usability and whether it managed to achieve its educational aim.

The results of the questionnaire indicated that changes concerning the amount of

feedback that a player gets about their decisions during the game were essential but

despite the criticisms the game got positive feedback and it was rated quite high overall

(Figure H.20). Also, there were comments on the game’s interface (e.g. “it is very

simple”) which are important, but the game’s interface was not its primary goal. Its aim

was to present helpful and meaningful information to familiarise students with agile

methods. For this reason, following the evaluation questionnaire, some improvements

were made to the database and the code to meet the user requirements.

After these changes, the author wanted to conduct another evaluation, but this was not

possible due to time constraints. As a substitute, the author interviewed a small number

of people for their opinion on the additional changes, using the same evaluation

questionnaire as before (Appendix G). The users again drew attention to the user

interface, but the comments concerning the quality and the amount of information that

the system offers were positive, although some still believed that a considerable amount

of prior knowledge was assumed. Appendix H provides a more a more detailed

evaluation.

7.2 Questionnaire & Interview Results

Appendix H contains all the detailed information from the results of the evaluation

questionnaire. In this section, only a summary of the results is illustrated. Only 17 users

completed the questionnaire. Ideally, this type of evaluation would be made by a large

number of users and over a long period of time, but this was not possible due to time

constraints.

31

Specifically, it was noticed that players were more familiar with traditional project

management methods rather than with agile methods, even though they have been

taught about the latter whilst at university (Figures 7.1 and 7.2).

Figure 7.1: Questionnaire Results Figure 7.2: Questionnaire Results

The majority were familiar with the XP method (which is taught at the University of

Southampton as part of the agile methods syllabus) and some of its techniques, which

are also used in traditional project management (Figures 7.3 & 7.4).

Figure 7.3: Questionnaire Results

Figure 7.4: Questionnaire Results

32

While playing the game, 67% of the users found that they could easily navigate through

the website (Figure 7.5), and more than half of them believe that the interface was

pleasant (Figure 7.6).

Figure 7.5: Questionnaire Results Figure 7.6: Questionnaire Results

As previously mentioned, the majority felt that too much prior knowledge was assumed

(Figure 7.7) and only 14% strongly agrees that the provided help resources were useful

(Figure 7.8) and there was satisfying amount of feedback in every step of the game.

Figure 7.7: Questionnaire Results Figure 7.8: Questionnaire Results

At the end of the game, users were almost equally more confident with all of the agile

methods (Figure 7.9) and most of their techniques (Figure 7.10), while 44% believe that

it fulfils its initial aim (Figure 7.11) and the system was rated at about 7 out of 10

(Figure 7.12).

33

Figure 7.9: Questionnaire Results

Figure 7.10: Questionnaire Results

 Figure 7.11: Questionnaire Results Figure 7.12: Questionnaire Results

Furthermore, in the additional interview only 4 students took part due to time

constraints (for the interview the evaluation questionnaire in Appendix G was used

34

again due to time constraints). Because the sample was small, it was considered that

including graphs of their opinions would not represent accurate results. The

interviewees found that, after the changes, they could find feedback that was more

accurate at every step of the game and an explanation of how their score was formed. In

addition, they believed that the information in the help resources was more

comprehensive. However, there were still comments about the game’s interface stating

that it could be improved, but due to time constraints the author focused more on the

quality of the information of the game rather than on its interface (Appendix H).

7.3 Project Management

Overall, the project was successful in terms of project management. Even though there

were some differences in the final plan compared to the initial plan, they did not affect

the overall schedule so all the tasks were delivered on time (More detailed explanation

can be found in Appendix B).

7.4 Project Goals

The evaluation of the project shows that the project was successful. This can also be

seen by the table below that illustrates that all the initial system goals (Appendix C)

have been met:

Project Goal Status Justification
Meet all the deadlines of the project. Met As can be seen from Figure B.6, all

deadlines were met.

Implement a project following the

planned design.

Met The Agile Game was implemented

following the specified requirements.

Meet all the system goals. Met As can be seen from Figure C.3, the

project has met all its initial system goals.

Meet all the project goals. Met As can be seen from Figure C.4, the

project has met all its initial project goals.

Provide a fully functional prototype of

the Agile Game.

Met The summary of the test cases of the Agile

Game illustrates that only 2% of the tests

failed.

Create a game that helps students

understand agile methods in more

depth.

Met Almost 60% of the users agree that the

game helps to understand agile methods.

Table 7.1: Achieved Project Goals

35

8 Conclusion & Future Work

The evaluation showed that the project was a success in many aspects. The aim of the

project was achieved by creating a prototype of a system that simulates the use and the

impact of agile methods and their techniques within the project lifecycle. The planning,

design, implementation, testing and evaluation of the project satisfied the requirements

that were set. Even though in the first evaluation users were not very satisfied with the

information on agile methods provided, after reviewing the system, their opinion

changed and their comments were positive. Almost 98% of the tests were successful and

all of the project and the system goals were met. Thus, from these and from the user

reviews it was demonstrated that the Agile Game managed to familiarise its users with

agile methods.

In this project, the author managed to research a broad part of project management

methods, both traditional and agile, other educational games and the role of games in

education. These helped the author understand and specify which features were

important and which had to be incorporated in the Agile Game. In addition, the author

had the opportunity to test and practice project management skills across the duration of

the project, to manage and keep on schedule and meet the deadlines producing a good

quality system that satisfies its requirements and goals. Finally, through this project, the

author had the opportunity to learn new scripting languages PHP, JavaScript and AJAX,

where there was no previous experience and managed to enrich existing knowledge of

HTML, CSS and MySQL.

The Agile Game is a promising system/game and has many aspects that can be

improved. In particular, specific information on which method and techniques are more

appropriate to use on each phase of a project, or which method is more suitable for a

specific type of project, could be provided by enterprises leading to more detailed and

accurate scores for every user choice during the game. Because it is web-based, the

Agile Game could become more interactive, implementing it with 3D graphics or with

other technologies such as Flash. Finally, the system could be improved by

accommodating a multiplayer game for a team of players, and as soon as a project has

been successfully completed, the team could proceed to the implementation of a new,

more competitive project.

36

References

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002) Agile Software

Development Methods Finland: VTT Technical Research Centre of Finland Available

from: http://www.pss-europe.com/P478.pdf [Accessed: March 2010].

Aguanno, K., (2004) Managing Agile Projects USA: Multi-Media Publications Inc.

Ambler, S.W. (2008) Agile Adoption Rate Survey Results: February 2008 Available

from: http://www.ambysoft.com/surveys/agileFebruary2008.html [Accessed: March

2010].

Ambler, S.W. (2007) Agile Adoption Rate Survey Results: March 2007 Available from:

http://www.ambysoft.com/surveys/agileMarch2007.html [Accessed: March 2010].

Ambler, S.W. (2005-2009) Feature Driven Development (FDD) and Agile Modelling

Canada: Ambysoft Inc. Available from: http://www.agilemodeling.com/essays/fdd.htm

[Accessed: October 2009].

Ambler, S.W. (2006) Agile Adoption Rate Survey Results: March 2006 Available from:

http://www.ambysoft.com/surveys/agileMarch2006.html [Accessed: November 2009].

Barnes, T., Powell, E., Chaffin, A. & Lipford, H. (2008) Game2Learn: improving the

motivation of CS1 students GDCSE '08: Proceedings of the 3rd international

conference on Game development in computer science education ACM.

Basturk, R. (2005). The Effectiveness of Computer-Assisted Instruction in Teaching

Introductory Statistics. Educational Technology & Society, 8 (2), 170-178.

Beck, K. & Andres, C. (2004) Extreme Programming Explained. 2
nd

ed. U.S.: John

Wait, Pearson Education.

Beck, K. (2003) Test – Driven Development: by example Boston: Addison- Wesley.

Beck, K. (2000) Extreme Programming Explained: Embrace Change. Boston: Addison-

Wesley.

Becker, K. (2001) Teaching with Games: the Minesweeper and Asteroids Experience

Journal of Computing Sciences in Colleges Volume 17 Issue 2

Castro, E. (2007) HTML, XHTML & CSS 3
rd

 ed. USA: Peachpit Press.

Chang, M. (2010) Agile and Crystal Clear with Library IT Innovations In Proceedings

of VALA2010 Conference [online] Available from:

http://www.vala.org.au/vala2010/papers2010/VALA2010_14_Chang_Final.pdf

[Accessed: April 2010].

37

Clua, E., Feijó, B., Rocca, J., Schwartz, J., Perlin, K., Tori, R. & Barnes, T. (2006)

Game and Interactivity in Computer Science Education IN: SIGGRAPH ’06:

SIGGRAPH 2006 Educators program. ACM.

Cohn, M. (2007 a) Agile Estimating and Planning Upper Saddle River: Pearson

Education, Inc.

Cohn, M. (2007 b) User Stories Applied Boston: Pearson Education, Inc.

Cockburn, A. (2009) Crystal Methodologies Available from:

http://alistair.cockburn.us/Crystal+methodologies [Accessed: October 2009].

Cockburn, A. (2002) Agile Software Development Boston: Addison-Wesley.

Dantras, A., Barros, M. & Werner, C. (2004) A Simulation-Based Game for Project

Management Experiential Learning [online] Available from:

https://reuse.cos.ufrj.br/prometeus/publicacoes/SEKE04-AlexDantas.pdf [Accessed:

March 2010].

Gotterbarn, D., (2008) Thinking professionally: a real problem with video games; not

murder, not torture... SIGCSE Bulletin Volume 40 Issue 4 ACM.

Fowler, M. Beck, K., Brant, J., Opdyke, W. & Roberts, D. (2004) Refactoring:

Improving the Design of Existing Code Boston: Addison-Wesley.

Fowler, M. [n.d.] Refactoring Home Page [online] Available from:

http://www.refactoring.com/ [Accessed: March 2010].

Galvão, J. R., Martins, P. G. & Gomes M. R. (2000) Modelling Reality with Simulation

Games for a Cooperative Learning WSC '00: Proceedings of the 32nd conference on

Winter simulation ACM.

Garratt, P. W. (1995) Simulation & Gaming - The Software Management Game, Sage

Publications.

Henson, V. L. (2008) Agile Bad Available from:

http://www.agiledad.com/Documents/AgileDadAgileMethod.pdf [Accessed: March

2010].

Highsmith, J. (2002) Agile Software Development Ecosystems Indianapolis: Addison

Wesley.

Jeffries, R. (2001) XProgramming.com: An Agile Software Development Resource

[online] Available from: http://xprogramming.com/xpmag/whatisxp [Accessed: March

2010].

Lewis, J. P. (2007) Fundamentals of Project Management. 3
rd

ed. New York:

AMACOM.

38

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., Tesoriero, R.,

Williams, L. & Zelkowitz, M. (2002) Empirical Findings in Agile Methods Computer

Science Notes vol. 2418/2002, Springer, Berlin pp.81-92.

MacDonald, K. J. ([n.d.] a) Agile Method Brief – Extreme Programming [online]

Available from: http://www.projectconnections.com/templates/detail/agile-extreme-

programming.html [Accessed: April 2010].

MacDonald, K. J. ([n.d.] b) Agile Method Brief-Feature Driven Development [online]

Available from: http://www.projectconnections.com/templates/detail/agile-techniques-

fdd.html [Accessed: March 2010].

Martin, A. (2000) A simulation engine for custom project management education

International Journal of Project Management 18 pp.201-213 [online] Available from:

http://www.sciencedirect.com/science/article/B6V9V-3YMW43B-

7/2/561cfd9d3dc8f2ed4b27391de1305f34 [Accessed: April 2010].

McFarland, D. S. (2008) JavaScript the missing manual CA: Pogue Press O’Reilly.

MSDN (2010 a) Regression Testing Available from: http://msdn.microsoft.com/en-

us/library/aa292167%28VS.71%29.aspx [Accessed: March 2010].

MSDN (2010 b) Continuous Integration using Team Foundation Build Available from:

http://msdn.microsoft.com/en-us/library/ms364045%28VS.80%29.aspx [Accessed:

March 2010].

Nixon, R. (2009) Learning PHP, MySQL and JavaScript CA: Pogue Press O’Reilly.

Oblinger, D. (2004). The Next Generation of Educational Engagement. Journal of

Interactive Media in Education (8) Available from:

http://jime.open.ac.uk/2004/8/oblinger-2004-8-disc-paper.html [Accessed: March

2010].

Schwaber, K. (2004) Agile Project Management with Scrum USA: Microsoft Press.

Scrum Alliance (2009) Scrum Alliance: transforming the world to work [online]

Available from: http://www.scrumalliance.org/pages/what_is_scrum [Accessed: April

2010].

Serena (2007) An Introduction to Agile Software Development [online] Available from:

http://www.serena.com/docs/repository/solutions/intro-to-agile-devel.pdf [Accessed:

26
th

 October 2009].

Shine Technologies (2004) Agile Methodologies Survey Results Available from:

http://www.agilealliance.org/system/article/file/1121/file.pdf [Accessed: March 2010].

Somerville, I. (2007) Software Engineering 8
th

ed. Essex, England: Pearson

Education Limited.

Somerville, I. (2001) Software Engineering 6
th

ed. Essex, England: Pearson Education

Limited.

39

Squire, K., (2003) Video Games in Education International Journal of Intelligent

Simulations and Gaming (2) 1 Available from:

http://website.education.wisc.edu/kdsquire/research.html [Accessed: April 2010].

Parsons, D. & Cranshaw, M. (2008) Agile Technique Hour Available from:

http://www.massey.ac.nz/~dpparson/agilehour.htm [Accessed: November 2009].

Parsons, D., Ryu, H. & Lal, R. (2007) The Impact of Methods and Techniques on

Outcomes from Agile Software Development Projects [online] Available from:

http://www.massey.ac.nz/~dpparson/ParsonsRyu.pdf [Accessed: November 2009].

Peeters, V. & Cauwenberghe, P. V. (2008) The XP Game Available from:

http://www.xp.be/xpgame.html [Accessed: November 2009].

VersionOne (2009) State of Agile Survey 2009 Available from:

http://trailridgeconsulting.com/surveys/state-of-agile-development-survey-2009.pdf

[Accessed: March 2010].

Virvou, M, Katsionis, G. & Manos, K. (2005) Combining Software Games with

Education: Evaluation of its Educational Effectiveness Educational Technology &

Society 8 (2) pp.54-65 Available from: http://www.ifets.info/journals/8_2/5.pdf

[Accessed: April 2010].

Voigt, B. J. J., (2004) Dynamic System Development Method [online] Available from:

http://www.ifi.uzh.ch/req/courses/seminar_ws03/14_Voigt_DSMD_Ausarbeitung.pdf

[Accessed: March 2010].

Wake, W. C. (2001) Extreme Programming Explored Upper Saddle River: Pearson

Education Corporate.

Wells, D., (1997-1999) Acceptance Tests Available from:

http://www.extremeprogramming.org/rules/functionaltests.html [Accessed: November

2009].

Welling, L. & Thomson, L. (2009) PHP and MySQL Web Development USA: Pearson

Educational Inc.

Williams, L., Kessler, R. R., Cunningham, W. & Jeffries, R. (2000) Strengthening the

Case for Pair Programming IEEE Software, vol. 17, no. 4, pp. 19-25 Available from :

http://www.cs.utah.edu/~lwilliam/Papers/ieeeSoftware.PDF [Accessed: March 2010].

40

Appendix A – Background Research and Literature

Search

A.1 Traditional Project Management Models

A.1.1 Waterfall Model

As mentioned in section 2.2, the Waterfall model is a characteristic example of a

traditional project management model (Figure 2.1). This model represents the

fundamental processes of a specification, development, validation and evolution and

represents them as phases of a project, i.e. requirements, design, implementation,

verification and maintenance (Somerville 2001).

The Waterfall model offers a complete analysis of the user’s requirements. Even though

this analysis is usually time-consuming, it offers “well-documented information” that

can be used in the design of the project. This way, the program developers have a very

precise design that can be used in the implementation and testing phases of the project.

However, it is common that customers change their minds during the implementation of

the project, because either the market needs have changed while the project is

progressing, or they were not sure about what kind of system they needed exactly. For

this reason, the requirements change and the Waterfall model cannot adapt to the new

changes because the requirements have been determined at the beginning of the project

and the delivery is one fully functional system (Aguanno 2004).

In contrast, agile methods are more flexible to changes because their development phase

can be broken into many small sections, where each section delivers a fully functional

part of the final deliverable. This incremental and iterative development allows

alteration of the requirements, reducing their impact. As Aguanno says, agile methods

are like “taking the processes behind Waterfall and repeating it throughout the

development process (Aguanno 2004).

A.1.2 Spiral Model

Spiral is another traditional project management model. Unlike Waterfall, Spiral does

not define all the requirements and the entire system at the beginning of the project but

instead it first prioritises all the features of the system by risk (while agile methods

prioritise feature by importance and functionality) and focuses on documentation. Also,

this model includes long phases of requirements specification and design (Aguanno

2004).

41

Figure A.1 shows a typical Spiral lifecycle:

Figure A.1: Spiral Model

12

The model has four phases (Requirements, Risk analysis, Development/Testing and

Evaluation) which a project passes through repeatedly. In particular, at the beginning of

the project, the requirements of the system are defined and a design is constructed based

on them. The project constraints like budget, quality, deadlines, are defined as well as

all the risks that might occur during the project development. Further, the risks are

prioritised and if there are any significant project risks, a prototype might be constructed

to identify and resolve the sources of the risk. Then, the software is implemented and

tested and finally evaluated by the user.

A.1.3 V Model

This model is characterised by its sequential execution of deliverables. In particular,

every phase of the project needs to be finished, completed and tested before proceeding

to the next one. It is easy to use because it has specific deliverables, but it is not flexible

to changes and it is difficult and expensive to alter the requirements of the system as

soon as the implementation has started.

In addition to Waterfall model, in the V Model the attention is drawn to testing which

takes place in every phase from the beginning of the lifecycle until the development of

the software (Figure A.2). As soon as all the requirements and the design phases are

complete (System Design, Architecture Design and Module Design), the software is

implemented. When the implementation is complete, the software is validated against

the tests that have already been created in the verification phase.

12

 Available from: http://accuracyandaesthetics.com/wp-

content/uploads/2008/05/spiral_model_boehm_1988.jpg

42

Figure A.2: V Model

A.2 Agile Methods

Agile methods are known for their ability adapt to any changes that might occur,

because of their incremental delivery and small releases of the product during the

development phase. This way, the impact of the change can be small, resulting to saving

time and cost. With agile methods, the product is developed in multiple lifecycles,

called iterations. Each iteration builds on the previous one to produce the final product,

so the development becomes iterative and incremental (Aguanno 2004).

In addition, stakeholder participation is very important in agile methods. Every iteration

is very short, in order to get feedback from the customer about the product, to ensure

that the product is developed satisfying the user requirements, and to reduce the risk and

impact of a change in the requirements (Aguanno 2004).

A.2.1 Extreme Programming (XP)

The basic features of XP have been described in section 2.3.1. Here, the different XP

techniques will be examined. In particular:

• Code Refactoring: Code refactoring is the change to the code of an existing

software system, without changing its external functionality. “The essence is

improving the design of the code after it has been written” (Fowler et al. 2004;

Fowler [n.d.]). It also improves maintainability, extensibility and regular testing

before new code is integrated into the system (Wake 2001), which helps to

minimise the number of faults in the system.

• Pair Programming: Pair programming is “when two programmers work side

by side at one computer, continuously collaborating on the same design,

algorithm, code or test” (Williams et al. 2000). Working in pairs helps both to

understand and improve all the code as needed (Jeffries 2001). Surveys showed

that implementing in pairs improves the productivity and the quality of the

product (Williams et al. 2000).

43

• Code Regression Testing: is a procedure that needs to take place every time

that some part of the code is altered. This can be done by running already

existing tests with the modified code, to identify if any features that previously

were working do not pass the tests and by writing new tests where necessary

(MSDN 2010 a).

• Continuous Integration: is the software engineering practice that helps the

quick delivery of the product. It is done when developers integrate their code

and add more functionality and deliver a functional part of the project (MSDN

2010 b).

• Stakeholder Participation: is when the clients/stakeholders cooperate with the

development team to define the requirements of the system to be implemented

and give feedback during the development phase.

• Test Driven Design (TDD): The motto of this technique is “Red, Green,

Refactor” where red means to create a test that fails, green is to implement some

code and make the test pass, and refactor means to change the code to remove

any duplication and improve its design, ensuring that all the tests still pass. From

the previous, one can understand that TDD is the use of automated unit tests that

help reduce coupling and verify that at any point the code is fully functional

(Beck 2003).

A.3 User Stories vs. Use Cases

Some research was conducted to decide whether to use user stories or Use cases for the

specification of the requirements. It was decided that the requirements should be in the

form of user stories because they are mostly employed on projects developed with agile

methods. They also represent the non-functional requirements of the system compared

with the Use cases that cover only the functional requirements. Furthermore, user stories

are normally written by the customers but here this is not applicable. They are written in

a simple way so both customers and designers can understand them. They also include

an estimate of the effort for a task, and customers prioritise them (Cohn 2007 b).

A.4 Agile Statistics

Many surveys have been conducted to identify the level of adoption of agile methods,

their effectiveness, and the way that their development affects the project compared to

traditional management methods. In 2008, in a survey conducted by Ambler it was

shown that 68.5% of the responders are currently using agile methods in their teams

(similar figures were shown in the same survey in 2007) and that almost 80% of these

projects were successful (Ambler 2008; Ambler 2007). The most common reasons that

agile projects fail, was found to be either because there is lack of expertise of the

method that is being used, or because the company did not adopt all the principles of

that particular method (VersionOne 2009). More than half of the responders (60%) state

that the productivity of their team was a bit higher than traditional management

methods, and 22% claim that the productivity is much higher (Ambler 2008). In

addition, a bit more than 80% of responders stated that business satisfaction was slightly

44

or significantly higher with the use of agile methods, while only 1% felt that the

adoption had negative effect (Shine Technologies 2004).

As for the quality of the final deliverable, slightly less than half state that the quality of

the product was somewhat higher, and 29% believe that it was much higher when only

10% state that the quality is much lower (Ambler 2008). The previous figures contrast

with the claim by some people that agile methods are used on projects where the final

quality is not an issue or on projects with low quality. Finally, 40% state that the overall

cost of the project did result in any change by the adoption of agile methods and a

considerable 32% found that the overall cost was somewhat lower (Ambler 2008).

Appendix B – Management of this Project

In this section are the detailed plans of the project. Figure B.1 shows the Gantt chart that

was created at the very beginning of the project. It represents a draft estimation of

planning. Figure B.2 shows the

changed during the semester. Figure B.4 shows the plan of the remainder of the project

in Semester Two, Figure B.5 represents the

Two and Figure B.6 shows ho

45

Management of this Project

In this section are the detailed plans of the project. Figure B.1 shows the Gantt chart that

was created at the very beginning of the project. It represents a draft estimation of

planning. Figure B.2 shows the initial plan for Semester One, and Figure B.3 how plans

changed during the semester. Figure B.4 shows the plan of the remainder of the project

, Figure B.5 represents the changes on the plan at the end of semester

wo and Figure B.6 shows how the plan was actually developed.

Figure B.1: Draft Gantt chart

Figure B.2: Initial Semester 1 Gantt chart

In this section are the detailed plans of the project. Figure B.1 shows the Gantt chart that

was created at the very beginning of the project. It represents a draft estimation of

initial plan for Semester One, and Figure B.3 how plans

changed during the semester. Figure B.4 shows the plan of the remainder of the project

he plan at the end of semester

46

Figure B.3: Final Semester 1 Gantt chart

Figure B.4: Initial Semester 2 Gantt chart

47

Figure B.5: Final Semester 2 Gantt chart

Figure B.6: Final Overall Gantt chart

48

From figures B.2, B.4 and B.6, it can be seen that there have been some changes in

terms of the duration of tasks and the general project management. These changes

occurred either because some tasks were estimated to be more difficult or easier than

expected, or because the requirements have changed.

In particular, the most important change was in the duration of the actual

implementation of the system, which took a week more than it was first estimated. This

was because of some problems concerning information stored in the database and

because the author, at the beginning of the implementation, was not as confident as at

the end, so some valuable time was lost implementing features that later were

considered trivial. For this reason, some of these features needed to be refactored (both

in the database and the code). In addition, close to the end of the project, some of the

requirements changed, so some features that had already been implemented needed to

be removed or changed, and some additional functionality had to be incorporated.

The literature review took longer than expected because of the lack of availability of

specific resources that could help to make the system more detailed (lack of information

concerning which technique is used in which phase of the project, etc.). Also, some

additional research had to be done close to the end of the project, but this did not

influence the overall schedule.

During the project, there were also tasks that were completed earlier than expected such

as the requirements, the design of the user interface, and the structure of the database.

This allowed more time for the rest of the tasks.

In conclusion, despite the above changes to the schedule, the outcome was not

influenced and the project has been delivered on time with the required quality and

functionality. This is because the methodology with which the project was

implemented, which allowed changes and considered them as expected during the

implementation; so their impact was minor.

49

Appendix C – Requirements & Goals

C.1 Requirements

In this section it is possible to find the detailed requirements of the system. In particular,

Table C.1 shows the functional requirements and Table C.2 the non-functional

requirements. Requirements with Should priority are the requirements of the initial

version and the Must-Low priority represent additional requirements for the final

design.

Functional Requirements
No User Story Effort Priority

1
Users will be able to access the system from the

Internet.
1 Must

2
Users will have to insert their username and password in

order to log in to the system.
3 Must

3
New users will be required to fill in a registration form

in order to add their details to the database.
3 Must

4
Passwords will be hashed to ensure security and stored

in the database.
5 Must

5 Passwords cannot be viewed by other users. 5 Must

6
Usernames will be used to keep a log of the

performance of each user.
5 Must

7

The username and the points that each user accumulated

will be visible to all users of the system in a point-

system list.

7 Must

8

New users that log in to the game for the first time, will

be given a project profile with information about the

project they will have to complete.

4 Must

9

For new users, a short description of what tasks they

should perform is provided in order to complete the

game.

4 Must

10
For returning users, the system will present the status of

the project, previous deliverables and the next moves.
9 Must

11

The status of the project will contain information

concerning the cost of the project up to a certain point,

techniques that have been used and how effective these

techniques were.

9 Must

12

The status of the project will contain information

concerning the cost of the project up to a certain point,

the methods and techniques that have been used and

how effective these techniques were.

9 Low

13
Previous deliverables will represent the parts of the

project that have been completed.
6 Must

14
Users will be able to choose which techniques they want

to use for the part of the project they are in.
8 Must

15
Users will be able to choose which agile methods they

want to use for the part of the project that they are in.
8 Should

50

Functional Requirements
No User Story Effort Priority

16
Users will be able to use more than one technique and

agile method for a specific task
9 Should

17
Users will be able to change the method that they are

using for the next deliverable.
7 Low

18
Users will be able to change the techniques that they are

using for the next deliverable.
7 Should

19 Users will not be able to delete their scores. 6 Low

20 Users will not be able to delete their accounts. 5 Low

21
Scores will be a function of how appropriate a technique

was for the specific phase of the project.
8 Must

22

Scores will be a function of how appropriate the

combination techniques and agile methods were for the

specific phase of the project.

9 Low

23
The role of the user inside the game will be the role of

the manager.
- Must

24
Users need to be able to choose one method and any of

its techniques
9 Must

25
Before starting the game users will have to fill in a

questionnaire concerning agile methods.
8 Must

26
After finishing the game users will have to fill in a

questionnaire concerning agile methods.
8 Must

Table C.1: Functional Requirements

Non-Functional Requirements
No User Story Effort Priority

27 The system will be targeted at students within ECS. 5 Must

28 The system needs to function in the major browsers. 9 Low

29
The system will not require sensitive information from

the user during the registration phase.
- Must

30
The system and the database need to be secure in order

to prevent attacks.
7 Should

31 The system needs to be accessible at all times. - Must

32
Only the administrator will be able to delete users from

the database.
1 Low

33

The users of this system need to be at least second year

students because some background knowledge of

Software Engineering issues is assumed.

- Must

Table C.2: Non-Functional Requirements

51

C.2 System Goals

1. Create a prototype of a game that simulates the use and the impact of agile

methods in every phase of a project.

2. The game will be targeted at students that have already completed their first

year.

3. Help students understand the phases that a project has to undergo to be delivered

to the customer.

4. The delivered system must have the form of a game.

5. The game must be divided into four rounds, where each round represents a phase

of the lifecycle of a project.

6. The user will have a selection of agile methods and their techniques with which

they can implement their project.

7. Every choice of method and technique must be credited with a specific number

of points, depending on the phase of the project.

8. The system must represent the score of the top 10 players of the game, to help

competition.

C.3 Project Goals

1. Meet all the deadlines of the project.

2. Implement a project following the planned design.

3. Meet all the system goals.

4. Meet all the project goals.

5. Provide a fully functional prototype of the Agile Game.

6. Create a game that helps students understand agile methods in more depth.

C.4 Changed Requirements and Actions Taken

During the implementation the project, some of the requirements needed to change. To

be more specific, the first change occurred as soon as the first version of the system was

complete and the other after the completion of the evaluation questionnaire.

After the completion of the initial version of the game, the requirements and the design

of the project were reviewed in order see if the outcome met the initial plan. During this

process, it was found more appropriate to make clear to the users the impact that each

method and its techniques have in a specific phase of the project, rather than

demonstrating the way that a combination of them could affect the outcome of the

project. For this reason, the initial functional requirement “Users will be able to choose

a combination of agile methods to complete a task” was removed. In the final system,

52

users can choose only one of the agile methods and any of its techniques. This way it is

easier for the user to learn the principles of each method, its different techniques and the

way that these techniques can be used in every phase of the project.

Furthermore, because the system is a prototype, before the development of the final

version of the game, it was considered that it would be more appropriate not to include

the cost that every choice of method and technique might have on the total budget of the

project. This happened because it was not possible to find specific figures on which

method and which technique is more costly than others. For this reason, the initial

requirement “The status of the project will contain information concerning the cost of

the project until a certain point, the methods and techniques that have been used and

how effective there techniques were” of the functional requirements was affected. Now,

the system only contains information concerning the methods and techniques that a user

has used and how effective these choices where.

For the final design, two more functional requirements (numbers 25 and 26) were

added. These requirements involve the creation of a questionnaire before the start and

after the completion of the game. These features were inserted in order to check the

knowledge and the understanding of the user of agile methods. The first questionnaire

contains general questions on agile methods. If after its completion the user gets a score

lower than 50%, then they are advised to refer to the help resources provided by the

system, otherwise, they can start playing the game. The second questionnaire contains

slightly more difficult questions, concerning the use of the different techniques within

the development process. After the completion of both questionnaires, users are able to

see if their performance has improved.

Finally, the results of the evaluation questionnaire showed that users needed some more

detailed feedback on why their choices were credited with the specific number of points.

Also, they felt that too much prior knowledge was assumed, so for this reason more

precise information was added in the help resources and in every step of the game.

Another feature that was altered because of the evaluation questionnaire was the

countdown clock. This feature was originally included to give the user the feeling of a

real game, but some users felt that it felt more like a test, rather than a game. For this

reason, the countdown clock was removed. This way, users have the opportunity to

spend more time in the game, learning about agile methods while playing it. Without the

clock, users will have the opportunity to refer to their notes and look for additional

resources to complete the game in their own time and completing the game successfully.

53

Appendix D – Database Tables

Figure D.1: Initial Database Model

54

Figure D.2: Final Database Model

55

Appendix E – Database Schema

Below there is a detailed description about the contents of the tables in the database:

SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;

SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,

FOREIGN_KEY_CHECKS=0;

SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='TRADITIONAL';

CREATE SCHEMA IF NOT EXISTS `db_ag2006` DEFAULT CHARACTER SET latin1

COLLATE latin1_swedish_ci ;

USE `db_ag2006`;

-- ---

-- Table `db_ag2006`.`Deliverables`

-- ---

DROP TABLE IF EXISTS `db_ag2006`.`Deliverables` ;

CREATE TABLE IF NOT EXISTS `db_ag2006`.`Deliverables` (

 `deliv_id` INT NOT NULL ,

 `deliv_desc` VARCHAR(45) NULL ,

 PRIMARY KEY (`deliv_id`))

ENGINE = InnoDB;

-- ---

-- Table `db_ag2006`.`User`

-- ---

DROP TABLE IF EXISTS `db_ag2006`.`User` ;

CREATE TABLE IF NOT EXISTS `db_ag2006`.`User` (

 `user_name` VARCHAR(45) NOT NULL ,

 `pass` VARCHAR(45) NULL ,

 `returning` BOOLEAN NULL DEFAULT 0 ,

 `current_deliv` INT NULL ,

 PRIMARY KEY (`user_name`) ,

 INDEX `current_deliv` (`current_deliv` ASC) ,

 CONSTRAINT `current_deliv`

 FOREIGN KEY (`current_deliv`)

 REFERENCES `db_ag2006`.`Deliverables` (`deliv_id`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB;

-- ---

-- Table `db_ag2006`.`Methods`

-- ---

DROP TABLE IF EXISTS `db_ag2006`.`Methods` ;

56

CREATE TABLE IF NOT EXISTS `db_ag2006`.`Methods` (

 `meth_id` INT NOT NULL ,

 `meth_desc` VARCHAR(45) NULL ,

 `delivid` INT NULL ,

 PRIMARY KEY (`meth_id`) ,

 INDEX `delivid` (`delivid` ASC) ,

 CONSTRAINT `delivid`

 FOREIGN KEY (`delivid`)

 REFERENCES `db_ag2006`.`Deliverables` (`deliv_id`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB;

-- ---

-- Table `db_ag2006`.`Technique`

-- ---

DROP TABLE IF EXISTS `db_ag2006`.`Technique` ;

CREATE TABLE IF NOT EXISTS `db_ag2006`.`Technique` (

 `tech_id` INT NOT NULL ,

 `tech_desc` VARCHAR(45) NULL ,

 `method_id` INT NULL ,

 PRIMARY KEY (`tech_id`) ,

 INDEX `method_id` (`method_id` ASC) ,

 CONSTRAINT `method_id`

 FOREIGN KEY (`method_id`)

 REFERENCES `db_ag2006`.`Methods` (`meth_id`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB;

-- ---

-- Table `db_ag2006`.`User_has_Methods`

-- ---

DROP TABLE IF EXISTS `db_ag2006`.`User_has_Methods` ;

CREATE TABLE IF NOT EXISTS `db_ag2006`.`User_has_Methods` (

 `user` VARCHAR(45) NOT NULL ,

 `deliv` INT NOT NULL ,

 `method` INT NULL ,

 PRIMARY KEY (`user`, `deliv`) ,

 INDEX `user` (`user` ASC) ,

 INDEX `deliv` (`deliv` ASC) ,

 INDEX `method` (`method` ASC) ,

 CONSTRAINT `user`

 FOREIGN KEY (`user`)

 REFERENCES `db_ag2006`.`User` (`user_name`)

 ON DELETE NO ACTION

57

 ON UPDATE NO ACTION,

 CONSTRAINT `deliv`

 FOREIGN KEY (`deliv`)

 REFERENCES `db_ag2006`.`Deliverables` (`deliv_id`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `method`

 FOREIGN KEY (`method`)

 REFERENCES `db_ag2006`.`Methods` (`meth_id`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB;

-- ---

-- Table `db_ag2006`.`Points`

-- ---

DROP TABLE IF EXISTS `db_ag2006`.`Points` ;

CREATE TABLE IF NOT EXISTS `db_ag2006`.`Points` (

 `point_id` INT NOT NULL ,

 `deliv_no` INT NOT NULL ,

 `meth_no` INT NOT NULL ,

 `tech_no` INT NOT NULL ,

 `points` INT NULL ,

 INDEX `meth_no` (`meth_no` ASC) ,

 INDEX `tech_no` (`tech_no` ASC) ,

 INDEX `deliv_no` (`deliv_no` ASC) ,

 PRIMARY KEY (`point_id`) ,

 CONSTRAINT `meth_no`

 FOREIGN KEY (`meth_no`)

 REFERENCES `db_ag2006`.`Methods` (`meth_id`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `tech_no`

 FOREIGN KEY (`tech_no`)

 REFERENCES `db_ag2006`.`Technique` (`tech_id`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `deliv_no`

 FOREIGN KEY (`deliv_no`)

 REFERENCES `db_ag2006`.`Deliverables` (`deliv_id`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB;

-- ---

-- Table `db_ag2006`.`User_has_Points`

-- ---

DROP TABLE IF EXISTS `db_ag2006`.`User_has_Points` ;

58

CREATE TABLE IF NOT EXISTS `db_ag2006`.`User_has_Points` (

 `name` VARCHAR(45) NOT NULL ,

 `point_no` INT NOT NULL ,

 PRIMARY KEY (`name`, `point_no`) ,

 INDEX `user` (`name` ASC) ,

 INDEX `point_no` (`point_no` ASC) ,

 CONSTRAINT `user`

 FOREIGN KEY (`name`)

 REFERENCES `db_ag2006`.`User` (`user_name`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 CONSTRAINT `point_no`

 FOREIGN KEY (`point_no`)

 REFERENCES `db_ag2006`.`Points` (`point_id`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB;

-- ---

-- Table `db_ag2006`.`Question`

-- ---

DROP TABLE IF EXISTS `db_ag2006`.`Question` ;

CREATE TABLE IF NOT EXISTS `db_ag2006`.`Question` (

 `number` INT NOT NULL ,

 `qtext` VARCHAR(100) NULL,

 `correct` VARCHAR(100) NULL,

 `final` INT NULL(11) ,

 PRIMARY KEY (`number`))

ENGINE = InnoDB;

-- ---

-- Table `db_ag2006`.`Answer`

-- ---

DROP TABLE IF EXISTS `db_ag2006`.`Answer` ;

CREATE TABLE IF NOT EXISTS `db_ag2006`.`Answer` (

 `choice` INT(11) NOT NULL ,

 `question_numb` INT NOT NULL,

 `otext` VARCHAR(100) NULL,

 `stage` INT(11) NULL

 PRIMARY KEY (`choice`,`question_numb`),

 INDEX `fk_Answer_Question` (`question_numb` ASC),

 CONSTRAINT `fk_Answer_Question`

 FOREIGN KEY (`question_numb`)

 REFERENCES `db_ag2006`.`Question`(`number`)

 ON DELETE CASCADE

59

 ON UPDATE CASCADE)

ENGINE = InnoDB;

-- ---

-- Table `db_ag2006`.`User_has_Score`

-- ---

DROP TABLE IF EXISTS `db_ag2006`.`User_has_Score` ;

CREATE TABLE IF NOT EXISTS `db_ag2006`.`User_has_Score` (

 `username` VARCHAR(45) NOT NULL,

 `init_score` INT NOT NULL,

 `final_score` INT NOT NULL,

 PRIMARY KEY (`username`,`init_score`,`final_score`),

 INDEX `username`(`username` ASC),

 INDEX `init_score` (`init_score` ASC),

 INDEX `final_score` (`final_score` ASC),

 CONSTRAINT `username`

 FOREIGN KEY (`username`)

 REFERENCES `db_ag2006`.`User` (`user_name`)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION)

ENGINE = InnoDB;

SET SQL_MODE=@OLD_SQL_MODE;

SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;

SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;

60

Appendix F – Test Cases

Below there are the tests that were conducted in order to check the functionality of the

system:

F.1 System Testing - Black Box Testing

No Test Case Expected Outcome Result

1
Users access the homepage of the

system.

Homepage is loaded.
Pass

2

Users click “Log In” button and log in

to the system without being registered.

Notification that they are not

logged in and redirects them to the

homepage.

Pass

3
Users log in without entering a

username.

Pop-up message that user id is

blank appears.
Pass

4
Users log in without entering a

password.

Pop-up message that password is

blank appears.
Pass

5 Users click on “Register” link. Page register.php is loaded. Pass

6
Users insert valid username and

password to register.

User details inserted in the

database.
Pass

7
Users insert only their username to

register.

Pop-up message that password is

blank appears.
Pass

8
Users insert only their username to

register.

Details have not been recorded by

the system.
Pass

9
Users insert only their password to

register.

Pop-up message that username is

blank appears.
Pass

10
Users insert only their password to

register.

Details have not been recorded by

the system.
Pass

11
Users leave all fields of register form

blank.

Pop-up message that details are

missing appears.
Pass

12
Users leave all fields of register form

blank.

Details have not been recorded by

the system.
Pass

13

While users type a username, the

system checks username availability.

Message about availability appears

while users type next to username

textbox.

Pass

14

Users insert usernames fewer than 3

characters long to register.

Pop-up message that username

should be at least 3 characters long

appears.

Pass

15

Username contains characters different

from [^A-Za-z0-9_-] to register.

Pop-up message that only letters,

numbers, _, - and ^ characters are

allowed appears.

Pass

16
Users insert valid username and

password to register.

Users registered and notification

that they can now log in.
Pass

17
Users click on “Log In” link. Users are redirected in the

homepage.
Pass

18
Users click on “Log In” button leaving

the login form blank.

Pop-up message that details are

missing appears.
Pass

61

No Test Case Expected Outcome Result

19
Users insert only their username to log

in.

Pop-up message that password is

blank appears.
Pass

20
Users insert only their password to log

in.

Pop-up message that username is

blank appears.
Pass

21

Users insert usernames fewer than 3

characters long to register.

Pop-up message that username

should be at least 3 characters long

appears.

Pass

22

Username contains characters different

from [^A-Za-z0-9_-] to register.

Pop-up message that only letters,

numbers, _, - and ^ characters are

allowed appears.

Pass

23
Users insert valid username and

password to log in.

Users are redirected to

introduction.php if first time users.
Pass

24
Display the username of player in

introduction.php.
Display “Hello <username>”. Pass

25
Users click on “Log Out” button to

exit the game.

Users exit the game and are

redirected in the home page.
Pass

26 Users log in again to the system. Users are redirected in main.php. Pass

27
Display the name of the player in

main.php.

Display “Welcome back

<username>.
Pass

28
Display the username of the player in

main.php.

Display “You are currently on

deliverable <deliverable_number>.
Pass

29

Users click on “Log Out” while in

introduction.php and log back in

again.

Users are redirected in

questionnaire.php.
Fail

30 In questionnaire.php CSS is loaded. Background picture appears. Pass

31
Questions and answers appear in

questionnaire.php.
All questions and answers appear. Pass

32
One radio button of each question is

pre-checked.

Bottom radio button of each

question is pre-checked.
Pass

33
Users click on “Clear” button in

questionnaire.php.

All radio buttons are reset to the

default position.
Pass

34
Users click on “Check Results” button

in questionnaire.php.

Pop-up message to proceed

appears.
Pass

35
Pop-up message gives users the option

to either proceed or cancel.

Pop-up message provided “OK”

and “Cancel” options.
Pass

36
Users select “OK” option in pop-up

message.

Users are redirected to results.php

to view their score.
Pass

37
Users select “Cancel” option in pop-up

message.

Users return to questionnaire.php

to alter their options.
Pass

38
Page results.php provides feedback on

players’ answers.

Information on which questions

were wrong (if any) and why and

the overall score.

Pass

39
Users score less that 50% on the

questionnaire.
“Help” button appears. Pass

40
Users click on “Proceed” button on

results.php.
Users are redirected to round.php. Pass

62

No Test Case Expected Outcome Result

41
Users click “Submit” button without

making any selections.

Error message appears “You

haven’t selected a method or

techniques” and “Proceed” button

takes users to round.php.

Pass

42
Users select one method and then click

on “Submit” button.

Error message appears “You

haven’t selected a method or

techniques” and “Proceed” button

takes users to round.php.

Pass

43

Users select one method and some of

its techniques and then check another

method and some of its techniques

without un-checking the techniques of

the first method.

The score of the player at this stage

is the addition of the points of the

techniques of the currently selected

method (ignoring the techniques of

the first selected method).

Pass

44
Users make their selections correctly

and click on the “Submit” button.

Users are redirected in report.php

to view detailed feedback.
Pass

45
Users click on “Proceed” button while

in report.php.

Users are redirected to round.php

for the next deliverable.
Pass

46
Users reach finish deliverable 4, are in

report.php and click “Proceed” button.

Users are redirected to the second

questionnaire.
Pass

47

Users have completed the second

questionnaire and are in results.php

and click “Proceed” button.

Users are redirected to

summary.php where they can view

of their progress and the score of

the top 10 players.

Pass

Table F.1: System Testing – Black Box Testing

F.2 Database Testing

No Test Case Expected Outcome Result

48
Users insert a username that

exceeds 45 characters.

The database stores only the first

45 characters of the username. Pass

49
Users insert a password that

exceeds 45 characters.

The database stores only the first

45 characters of the password. Pass

50
Users leave the username field

empty.

JavaScript pops-up a message

notifying that username is blank. Pass

51
Users leave the password field

empty.

JavaScript pops-up a message

notifying that password is blank. Pass

52
Users leave username or password

fields empty.

If JavaScript is disabled, blank

fields are not inserted in the

database.

Pass

Table F.2: Database Testing

63

F.3 Functional Requirements Testing

No Test Case Expected Outcome Result

53
Users will be able to access the

system from the Internet.

Homepage is loaded.
Pass

54

Users will have to insert their

username and password to log in

to the system.

If correct username and password,

users log in the system. Pass

55

New users will be required to fill

in a registration form to add their

details in the database.

The registration form is loaded,

users insert their correct details

and the information is stored in the

database.

Pass

56

Passwords will be hashed to

ensure security and stored in the

database.

Passwords are stored hashed in the

database using sha() function. Pass

57
Passwords cannot be viewed by

other users.

Passwords are represented as dots

while users type their passwords
Pass

58

Usernames will be used to keep a

log on the performance of each

user.

Usernames will be used to

represent the overall score of the

user in the game.

Pass

59

The username and the points that

each user accomplished will be

visible to all users of the system in

a point-system list.

The username and the score of the

top 10 players are represented as a

high score board.
Pass

60

New users that log in to the game

for the first time, will be given a

project profile with information

about the project they will have to

complete.

First time users, after registering

and logging in are redirected in

introduction.php which contains

the project profile.

Pass

61

For new users, a short description

of what tasks they should perform

is provided in order to complete

the game.

First time users, after registering

and logging in are redirected in

introduction.php which contains

the project profile.

Pass

62

For returning users, the system

will present the status of the

project, previous deliverables and

the next moves.

Returning users, after logging in to

the system, are redirected to

main.php which contains a

summary of the users’ progress

until this point.

Pass

63

The status of the project will

contain information concerning

the techniques that have been used

and how effective these

techniques were.

The main.php contains information

about the methods and techniques

that players used and their overall

score.

Pass

64

The status of the project will

contain information concerning

the methods and techniques that

have been used and how effective

these techniques were.

The main.php contains information

about the methods and techniques

that players used and their overall

score.

Pass

65 Previous deliverables will Every deliverable corresponds to a Pass

64

No Test Case Expected Outcome Result

represent the parts of the project

that have been completed.

project lifecycle.

66

Users will be able to choose which

techniques they want to use for the

part of the project they are in.

Users are able to choose a number

of techniques. Pass

67

Users will be able to choose which

agile methods they want to use for

the part of the project that they are

in.

The system offers a number of

agile methods and users can pick

one them.
Pass

68

Users will be able to use more

than one technique and agile

method for a specific task.

Users are able to choose a number

of techniques. Pass

69

Users will be able to change the

method that they are using for the

next deliverable.

Proceeding to the next deliverable

users can choose one of the

methods independently of their

previous choices.

Pass

70

Users will be able to change the

techniques that they are using for

the next deliverable.

Proceeding to the next deliverable,

users can choose one of the

methods and any of the techniques

independently of their previous

choices.

Pass

71
Users will not be able to delete

their scores.

Only the administrator has access

the database.
Pass

72
Users will not be able to delete

their accounts.

Only the administrator has access

the database.
Pass

73

Scores will be a function of how

appropriate a technique was for

the specific phase of the project.

Score is dependent on how

appropriate the chosen techniques

are for the specific phase of the

project.

Pass

74

Scores will be a function of how

appropriate the combination

techniques and agile methods

were for the specific phase of the

project.

Score is dependent on how

appropriate a chosen method and

its techniques are for the specific

phase of the project.

Pass

75

The role of the user inside the

game will be the role of the

manager.

Users hold the role of the Project

Manager of the game. Pass

76
Users need to choose one method

and any of its techniques.

Users choose one method and any

of its techniques.
Pass

77

Before starting the game users

need to fill in a questionnaire

concerning agile methods.

A questionnaire for agile methods

was created.
Pass

78

After finishing the game users

need to fill in a questionnaire

concerning agile methods.

A questionnaire for agile methods

was created.
Pass

Table F.3: Functional Requirements Testing

65

F.4 Non-Functional Requirements Testing

No Test Case Expected Outcome Result

79
The system will be targeted at

students within ECS.

The system is targeted at ECS

students.
Pass

80
The system needs to function in

the majority of browsers.

The system functions on Mozilla

Firefox and Internet Explorer.
Fail

81

The system will not require

sensitive information from the

user during the registration phase.

The system requires only a

username and a password. Pass

82

The system and the database of the

system need to be secure in order

to prevent attacks.

Sessions and prevention against

SQL injection was used. Pass

83
The system needs to be accessible

at all times.

The system is stored on the ECS

server.
Pass

84
Only the administrator will be able

to delete users from the database.

Only the administrator of the

system has access to the database.
Pass

85

The users of this system need to be

at least second year students

because some background

knowledge on Software

Engineering issues is assumed.

The users of the system were at

least second year students on

Computer Science. Pass

Table F.4: Non-Functional Requirements Testing

As mentioned in Section 6.2 only 2.3% of the tests failed. In particular, only 2 out of 85

different test cases failed. The first test was test case 29 in the system testing section

which was “Users click on “Log Out” while in introduction.php and log in back again.”

This bug could have been fixed, but due to time constraints the author was unable to fix

it. The other test that failed was test case 80 in the Non-Functional requirements testing

section which was “The system needs to function in the majority of browsers”. The

specific requirement was a low priority requirement (see Table C.2) and because its

effort rate was very high, it was considered right to focus only on two of the available

browsers (Mozilla Firefox and Internet Explorer) rather than trying to comply the

interface with the requirements of every browser.

The two test cases that failed, do not affect the overall functionality and the final aim of

the project, so for this reason the project can be considered as successful in terms of the

test cases.

66

Appendix G – Evaluation Questionnaire

Below there is the evaluation questionnaire that users completed to evaluate the Agile

Game. The analytical results can be found on Appendix H.

Background

1. What is your year of study?

a. 1st year

b. 2nd year

c. 3rd year

d. 4th year

e. MSc

2. Are you aware of any of the following agile methods?

a. XP Programming

b. Scrum

c. Crystal

d. Feature Driven Development (FDD)

e. Dynamic Systems Development Method (DSDM)

3. Are you familiar with any of the following agile techniques?

a. Pair programming

b. Code refactoring

c. Continuous integration

d. Test Driven Design (TDD)

e. Stakeholder Participation

f. Code regression testing

g. Daily scrum meeting

h. Sprint review meeting

i. Sprint planning meeting

j. Product backlog

k. Sprint backlog

l. Burndown chart

4. Do you believe that you are more familiar with traditional project

management methods (e.g. Waterfall model, Spiral model etc) rather than

agile methods?

a. Yes

b. No

c. I am familiar with both

67

5. Have you been taught about agile methods whilst being at University?

a. Yes

b. No

c. No, by work experience

(Skip question 6 if you choose option c.)

6. What resources did you use to learn about agile methods during your

course?

a. Text books

b. Lecture notes

c. Online resources

Game Usability

7. Too much prior knowledge was assumed:

I strongly disagree I strongly agree

8. The user interaction with the system was smooth:

I strongly disagree I strongly agree

9. Was the interface of the game pleasant?

I strongly disagree I strongly agree

10. Would you like to add any comments about the user interface of the game?

Learning

11. The game helps the user understand the use of agile methods and fulfils its

educational aim:

I strongly disagree I strongly agree

12. Did the system provide you with a satisfying amount of feedback in every

step of the game?

I strongly disagree I strongly agree

68

13. In what ways could the system be improved to excel the users’

understanding on agile methods?

14. Did you understand the different techniques of every method in more depth

through the Agile Game?

a. Yes

b. No

c. It did not become very clear

15. Were the help resources useful and informative?

I strongly disagree I strongly agree

16. Which method did you understand in more depth after playing the Agile

Game?

a. XP Programming

b. Scrum

c. Crystal

d. Feature Driven Development (FDD)

e. Dynamic Systems Development Method (DSDM)

17. Out of the following techniques with which one do you feel more confident

after playing the game?

a. Pair programming

b. Code refactoring

c. Continuous integration

d. Test Driven Design (TDD)

e. Stakeholder Participation

f. Code regression testing

g. Daily scrum meeting

h. Sprint review meeting

i. Sprint planning meeting

j. Product backlog

k. Sprint backlog

l. Burndown chart

18. Was it clear in which phase of the project lifecycle is more appropriate to use

each method and technique?

a. Yes

69

b. No

19. If no, why?

System

20. How would you rate the system overall?

Very poor Excellent

21. Would you like to add any more comments about the overall system?

70

Appendix H – Evaluation Questionnaire & Interview

Results

Below there are analytic graphs demonstrating the results of the evaluation

questionnaire:

Figure H.1: Question 1 Figure H.2: Question 2

Figure H.3: Question 3

Figure H.4: Question 4

71

Figure H.5: Question 5 Figure H.6: Question 6

Figure H.7: Question 7 Figure H.8: Question 8

Figure H.9: Question 9

72

Figure H.10: Question 10

Figure H.11: Question 11

Figure H.12: Question 12

73

Figure H.13: Question 13

Figure H.14: Question 14

74

Figure H.15: Question 15 Figure H.16: Question 16

Figure H.17: Question 17

Figure H.18: Question 18

Key

1 – I strongly disagree

5 – I strongly agree

75

Figure H.19: Question 19

Figure H.20: Question 20

Figure H.21: Question 21

In the interview, only four students took part due to time constraints. During the interview,

the author used the same evaluation questionnaire as before (Appendix G). Because the

sample was small, it was considered that the creation of graphs would not be representative

of their opinion. In particular, 3 out of 4 felt that after the changes, they could find more

detailed and helpful information in the help resources, as well as in every step of the game.

Two of them thought that they now they could understand better why this number of points

corresponded to their selections. Two of them suggested that the user interface could be

improved, and only one felt that they still were not clear about the principles of every agile

method. Finally, the majority agreed that the new changes improved the overall system.

76

Appendix I – Interview Questions

During the research phase, some work had to be done to investigate similar systems. One of

them was the “Software Management Game” as previously mentioned. The game was

implemented by Dr P W Garratt, a lecturer in the University of Southampton. Because of

that, it was a great opportunity to meet him and acquire a bit more information about the

way that his system works and because of his expertise on the subject, to ask his advice on

this project. For this reason, it was considered right to prepare some questions and make this

meeting in the form of an interview. These questions were aimed to give the author a bit

more understanding of how the “Software Management Game” is structured and to ask his

advice on how to proceed with the implementation of a game concerning agile methods

(Garratt 1999).

Questions

1. Who are the users of the game? To which people is it addressed?

- Students?

- Managers?

2. What is the goal of the game?

- To teach traditional project management

- Entertainment

3. How is the game structured?

- Different levels?

- Different teams?

- Is the user part of a team? Or the leader of it?

- If user not a leader but just a member of the team, how do they take orders?

- How do players communicate with their supervisors?

- If user the leader how are their decisions reflected in the system?

- What hierarchy is presented inside the company?

- How many people does the team consisted of?

- Do all the teams have the same project to complete?

- If the same project, do they still have the same problems during all the phases of

the project lifecycle?

- If different projects, how do you compare the outcomes?

- How long does a project take to be completed in the game?

- What resources do the users have? Money, personnel, etc.

4. How long did your software take to be completed?

5. Why did you only implement a game for traditional project management and

not proceed with a game on agile project management?

6. How do you evaluate the work of each team? What are the criteria?

7. How do a team proceed to a different level? What if the team manages to complete

the project successfully, but not as successfully as another team?

77

8. How do you ensure that users have learned something from the game?

9. If given, how is feedback given to users?

10. If a team fails to complete a project, do they start the same project again? Are

they able to see what other teams have done? Do they see where they went wrong?

How do you ensure they understand their mistakes and get constructive feedback?

11. What kind of agile methods do you believe need to be used in a game concerning

agile project management?

12. If different kinds of methods should be used, how will they be applied?

- Different mode for every method? (If the user is the leader)

- The system itself will pick a different agile method for the teams to represent the

difference between each method on a project

- Application of a combination of agile methods (XP+ Scrum)

13. What kind of agile methods should be used in the game?

- Scrum

- XP

- Crystal

14. If you were doing a game concerning agile project management, what would be

the key features of the game?

15. What kinds of project does the game has to have in order to have a productive

illustration of agile methods in comparison with the traditional project

management game?

16. What kind of background research is necessary to have a system that well

represents the fundamentals of agile project management?

78

Appendix J – Project Brief

TITLE

Development of a software management game that helps students to understand agile project

management.

PROBLEM

Traditional project management is a very heavyweight approach for small-sized companies.

This led to the application of agile methods because they allow iteration during the

development process, since the priority of the company is the development of the product

and not the documentation. While at university, students that are studying Software

Engineering learn both traditional and agile project management. The way that they are

taught is vague and it does not give them a clear idea of how agile methods are used in real

life.

GOALS

The aim of this project is the creation of a program that helps students to understand the

application of agile methods during the development of a project. The program will be a

game in which the player will be part of a team that consists of students from the players’

course. Their team is required to compete with other teams so they all complete the same

project using agile methods. The teams that have successfully completed all the different

stages of the software lifecycle applying agile methods, will be able to continue to a more

advanced level with a new project. Via this game, the player will be able to learn in more

detail about Software Engineering and Project Management in an amusing and interactive

way. They will also be able to get a glimpse of how companies work and what tasks they

have to perform in order to deliver a new product to the market.

The draft Gantt chart below represents how the project will progress. The first priority will

be research on the subject, finding out what has been done on the past on the subject. Then,

as soon as research is complete, the design phase of the project begins followed by the

implementation of the project. Also, the system will be tested in order to eliminate any faults

in it. Finally, the presentation of the viva will take place.

Figure J.1: Draft Gantt chart

79

Appendix K – Additional Screenshots

Figure K.1: introduction.php

Figure K.2: results.php

80

Figure K.3: help.php

Figure K.4: report.php

81

Figure K.5: summary.php

82

Appendix K – CD ROM Index

Agile Game Implementation

 Images

 DSDM.jpg

 FDD.jpg

 picture.jpg

 Scrum.jpg

 sticker.jpg

 XP.jpg

 Files

 authentication.php

 connect.php

 functions.php

 help.css

 help.js

 help.php

 index.css

 index.js

 index.php

 insert.js

 insert.php

 introduction.css

 introduction.php

 main.php

 questionnaire.css

 questionnaire.php

 questionnaire.js

 register.css

 register.js

 register.php

 report.css

 report.php

 results.css

 results.php

 round.css

 round.js

 round.php

 summary.php

Documentation

 iSurvey – Online Question1.pdf

 iSurvey – Online Question2.pdf

iSurvey – Online Question3.pdf

Project Brief.pdf

Progress Report.pdf

Project Description.pdf

Final Report.pdf

