The Role of Regulated mRNA Stability in Establishing Bicoid Morphogen Gradient in Drosophila Embryonic Development
The Role of Regulated mRNA Stability in Establishing Bicoid Morphogen Gradient in Drosophila Embryonic Development
The Bicoid morphogen is amongst the earliest triggers of differential spatial pattern of gene expression and subsequent cell fate determination in the embryonic development of Drosophila. This maternally deposited morphogen is thought to diffuse in the embryo, establishing a concentration gradient which is sensed by downstream genes. In most model based analyses of this process, the translation of the bicoid mRNA is thought to take place at a fixed rate from the anterior pole of the embryo and a supply of the resulting protein at a constant rate is assumed. Is this process of morphogen generation a passive one as assumed in the modelling literature so far, or would available data support an alternate hypothesis that the stability of the mRNA is regulated by active processes? We introduce a model in which the stability of the maternal mRNA is regulated by being held constant for a length of time, followed by rapid degradation. With this more realistic model of the source, we have analysed three computational models of spatial morphogen propagation along the anterior-posterior axis: (a) passive diffusion modelled as a deterministic differential equation, (b) diffusion enhanced by a cytoplasmic flow term; and (c) diffusion modelled by stochastic simulation of the corresponding chemical reactions. Parameter estimation on these models by matching to publicly available data on spatio-temporal Bicoid profiles suggests strong support for regulated stability over either a constant supply rate or one where the maternal mRNA is permitted to degrade in a passive manner.
e24896
Liu, Wei
062dd3e4-39b6-45f5-9e48-583a67055830
Niranjan, Mahesan
5cbaeea8-7288-4b55-a89c-c43d212ddd4f
August 2011
Liu, Wei
062dd3e4-39b6-45f5-9e48-583a67055830
Niranjan, Mahesan
5cbaeea8-7288-4b55-a89c-c43d212ddd4f
Liu, Wei and Niranjan, Mahesan
(2011)
The Role of Regulated mRNA Stability in Establishing Bicoid Morphogen Gradient in Drosophila Embryonic Development.
PLoS ONE, 6 (9), .
Abstract
The Bicoid morphogen is amongst the earliest triggers of differential spatial pattern of gene expression and subsequent cell fate determination in the embryonic development of Drosophila. This maternally deposited morphogen is thought to diffuse in the embryo, establishing a concentration gradient which is sensed by downstream genes. In most model based analyses of this process, the translation of the bicoid mRNA is thought to take place at a fixed rate from the anterior pole of the embryo and a supply of the resulting protein at a constant rate is assumed. Is this process of morphogen generation a passive one as assumed in the modelling literature so far, or would available data support an alternate hypothesis that the stability of the mRNA is regulated by active processes? We introduce a model in which the stability of the maternal mRNA is regulated by being held constant for a length of time, followed by rapid degradation. With this more realistic model of the source, we have analysed three computational models of spatial morphogen propagation along the anterior-posterior axis: (a) passive diffusion modelled as a deterministic differential equation, (b) diffusion enhanced by a cytoplasmic flow term; and (c) diffusion modelled by stochastic simulation of the corresponding chemical reactions. Parameter estimation on these models by matching to publicly available data on spatio-temporal Bicoid profiles suggests strong support for regulated stability over either a constant supply rate or one where the maternal mRNA is permitted to degrade in a passive manner.
Text
liu_niranjan_plosONE2011.pdf
- Other
More information
Published date: August 2011
Organisations:
Southampton Wireless Group
Identifiers
Local EPrints ID: 272827
URI: http://eprints.soton.ac.uk/id/eprint/272827
ISSN: 1932-6203
PURE UUID: 190f374f-1a8d-4615-a62c-9dbf5c16bd35
Catalogue record
Date deposited: 21 Sep 2011 16:15
Last modified: 14 May 2024 01:40
Export record
Contributors
Author:
Wei Liu
Author:
Mahesan Niranjan
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics