
OFFPRINT

Tailoring the thermal Casimir force with
graphene

V. Svetovoy, Z. Moktadir, M. Elwenspoek and H. Mizuta

EPL, 96 (2011) 14006

Please visit the new website
www.epljournal.org



A LETTERS  JOURNAL  EXPLORING  
THE  FRONTIERS  OF  PHYSICS

AN INVITATION TO 
SUBMIT YOUR WORK

www.epljournal.org

The Editorial Board invites you to submit your letters to EPL
EPL is a leading international journal publishing original, high-quality Letters in all 

areas of physics, ranging from condensed matter topics and interdisciplinary research 

to astrophysics, geophysics, plasma and fusion sciences, including those with 

application potential. 

The high profile of the journal combined with the excellent scientific quality of the 

articles continue to ensure EPL is an essential resource for its worldwide audience.  

EPL offers authors global visibility and a great opportunity to share their work with 

others across the whole of the physics community.

Run by active scientists, for scientists 
EPL is reviewed by scientists for scientists, to serve and support the international 

scientific community.  The Editorial Board is a team of active research scientists with 

an expert understanding of the needs of both authors and researchers.

IM
PA

CT 
FA

CTO
R

 2
.7

53
*

*A
s r

an
ke

d b
y I

SI
 2
01

0

www.epljournal.org



 www.epljournal.orgA LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Quality – The 40+ Co-Editors, who are experts in their fields, oversee the 

entire peer-review process, from selection of the referees to making all final 

acceptance decisions

Impact Factor – The 2010 Impact Factor is 2.753; your work will be in the 

right place to be cited by your peers

Speed of processing – We aim to provide you with a quick and efficient 

service; the median time from acceptance to online publication is 30 days

High visibility – All articles are free to read for 30 days from online 

publication date

International reach – Over 2,000 institutions have access to EPL, 

enabling your work to be read by your peers in 100 countries

Open Access – Articles are offered open access for a one-off author 

payment

Details on preparing, submitting and tracking the progress of your manuscript  

from submission to acceptance are available on the EPL submission website 

www.epletters.net.

If you would like further information about our author service or EPL in general, 

please visit www.epljournal.org or e-mail us at info@epljournal.org.

Six good reasons to publish with EPL
We want to work with you to help gain recognition for your high-quality work through 

worldwide visibility and high citations. 2.753*
* As listed in the ISI® 2010 Science  

Citation Index Journal Citation Reports

IMPACT FACTOR

500 000
full text downloads in 2010

OVER

30 DAYS

16 961

average receipt to online 

publication in 2010

citations in 2010
37% increase from 2007

1

2

3

4

5

6

www.epljournal.org

EPL is published in partnership with:

IOP PublishingEDP SciencesEuropean Physical Society Società Italiana di Fisica

“We’ve had a very positive 

experience with EPL, and 

not only on this occasion.  

The fact that one can 

identify an appropriate 

editor, and the editor 

is an active scientist in 

the field, makes a huge 

difference.”

Dr. Ivar Martinv

Los Alamos National Laboratory, 
USA



EPL Compilation Index

Visit the EPL website to read the latest articles published in 
cutting-edge fields of research from across the whole of physics.  

Each compilation is led by its own Co-Editor, who is a leading 
scientist in that field, and who is responsible for overseeing 
the review process, selecting referees and making publication 
decisions for every manuscript.

• Graphene 

• Liquid Crystals 

• High Transition Temperature Superconductors 

• Quantum Information Processing & Communication

• Biological & Soft Matter Physics

• Atomic, Molecular & Optical Physics

• Bose–Einstein Condensates & Ultracold Gases

• Metamaterials, Nanostructures & Magnetic Materials

• Mathematical Methods

• Physics of Gases, Plasmas & Electric Fields

• High Energy Nuclear Physics 

If you are working on research in any of these areas, the Co-Editors would be 

delighted to receive your submission. Articles should be submitted via the 

automated manuscript system at www.epletters.net

If you would like further information about our author service or EPL  

in general, please visit www.epljournal.org or e-mail us at 

info@epljournal.org

Biaxial strain on lens-shaped quantum rings of different inner 

radii, adapted from Zhang et al 2008 EPL 83 67004.

Artistic impression of electrostatic particle–particle  

interactions in dielectrophoresis, adapted from N Aubry 

and P Singh 2006 EPL 74 623.

Artistic impression of velocity and normal stress profiles 

around a sphere that moves through a polymer solution,

adapted from R Tuinier, J K G Dhont and T-H Fan 2006 EPL 

75 929.

 www.epl journal.org

A LETTERS  JOURNAL 

EXPLORING  THE  FRONTIERS 

OF  PHYSICS

Image: Ornamental multiplication of space-time figures of temperature transformation rules 

(adapted from T. S. Bíró and P. Ván 2010 EPL 89 30001; artistic impression by Frédérique Swist).



October 2011

EPL, 96 (2011) 14006 www.epljournal.org

doi: 10.1209/0295-5075/96/14006

Tailoring the thermal Casimir force with graphene

V. Svetovoy1(a), Z. Moktadir2, M. Elwenspoek1,3 and H. Mizuta2,4

1MESA+ Institute for Nanotechnology, University of Twente - PO 217, 7500 AE Enschede, The Netherlands, EU
2University of Southampton - Highfield, Southampton, SO17 1BJ, UK, EU
3 FRIAS, University of Freiburg - 79104 Freiburg, Germany, EU
4 School of Materials Science, Advanced Institute of Science and Technology (JAIST) - Ishikawa, 923-1292 Japan

received 25 June 2011; accepted in final form 19 August 2011
published online 20 September 2011

PACS 42.50.Lc – Quantum fluctuations, quantum noise, and quantum jumps
PACS 12.20.Ds – Quantum electrodynamics: Specific calculations
PACS 78.67.-n – Optical properties of low-dimensional, mesoscopic, and nanoscale materials

and structures

Abstract – The Casimir interaction is omnipresent source of forces at small separations between
bodies, which is difficult to change by varying external conditions. Here we show that graphene
interacting with a metal can have the best known force contrast to the temperature and the Fermi
level variations. In the distance range 50–300 nm the force is measurable and can vary a few times
for graphene with a bandgap much larger than the temperature. In this distance range the main
part of the force is due to the thermal fluctuations. We discuss also graphene on a dielectric
membrane as a technologically robust configuration.

open  access Copyright c© EPLA, 2011

Introduction. – The Casimir force [1] manifests itself
at short distances (< 1μm) as a result of the electromag-
netic interaction between neutral bodies without perma-
nent polarizations. For two ideally reflecting parallel plates
separated by a distance a, this force is given by: FC =
(π2/240)(�c/a4). The universal character of the force stim-
ulated active development of the field [2] with applications
in physics, biology, and technology.
The Lifshitz theory [3] gives the most detailed descrip-

tion of the force. According to this theory, current fluctua-
tions (quantum and classical) in the bodies are responsible
for the force. Fluctuations in a wide range of frequencies
give significant contribution to the force. For this reason it
is difficult to change the force at will as one has to modify
the dielectric response of interacting materials in a wide
range of frequencies. Hydrogen-switchable mirrors did not
show observable contrast to the Casimir force [4]. It was
demonstrated that the force between indium tin oxide
(ITO) and a gold surface is 50% smaller than it is between
two Au surfaces [5]. For the same material the best result
was found for the phase-changing material (Ag-In-Sb-Te)
with 20% difference between amorphous and crystalline
phases [6]. In situ modulation of the force between a gold
sphere and a silicon membrane [7] was shown to 1% level
when the carrier density was changed optically by 4 orders
of magnitude.

(a)E-mail: v.svetovoy@utwente.nl

The force measured in modern experiments is mainly
the result of quantum fluctuations whilst the force due to
classical fluctuations (thermal Casimir or Lifshitz force)
was measured only recently between an ultracold atomic
cloud and a sapphire substrate [8], and between two Au
surfaces [9]. The thermal fluctuations dominate the force
at large distances a� �c/T (kB = 1) where the force itself
is extremely weak and approaches the Lifshitz limit [3].
Between two metals this limit is given by

FL =
Tζ(3)

8πa3
, a≫ λT =

�c

T
, (1)

where λT is the thermal wavelength and ζ(x) is the zeta-
function.
In this paper we show that significant variation (up to

5 times) of the total Casimir force is possible for graphene
with a bandgap 2Δ≫ T . The force changes in response to
the variation of the Fermi level mainly due to the change
of its thermal part. It can be realized at the distance range
a= 50–300 nm, where the force is well measurable.
Graphene, a single layer material with carbon atoms

arranged in a honeycomb lattice, attracted enormous
attention [10,11]. Unusual electronic properties of
graphene are due to massless relativistic dispersion of elec-
trons at low energies [11,12]. The Casimir/van der Waals
interaction of graphene was mainly discussed at zero
temperature [13–15] with the conclusion that the force due
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to graphene is weak in comparison with the interaction
of bulk bodies.
An important development was made by Gómez-

Santos [16] at finite temperature. It was argued that at
T = 0 graphene is a critical system, with no characteristic
length scale. At non-zero T this scale is given by the
thermal length ξT = �vF /T , where vF ≈ 10

6m/s is the
Fermi velocity in graphene. It was found that in the long
distance limit the force between two graphene sheets is
given by the same eq. (1) but this equation is true for
much shorter distances a≫ ξT . At room temperature the
scales ξT and λT are 25 nm and 7.6μm, respectively. This
property makes the thermal Casimir force operative for
separations in the 50–300 nm range, which are readily
accessible using an atomic force microscope (AFM) or
other force measuring techniques (see [2] for a review).
Graphene is a promising material for the development

of high-performance electronic devices [17] but pristine
graphene is a semimetal with zero bandgap [11]. The
major challenge of graphene electronics is to open an
energy bandgap [18]. As we will see later, the bandgap
is also important for tailoring the Casimir force by elec-
tronic means. Significant progress has been made in this
direction. For instance, epitaxially grown graphene on SiC
has a gap of 2Δ≈ 0.26 eV [19]. Opening a bandgap was
also demonstrated by water adsorption [20] and patterned
hydrogen adsorption [21]. Graphene nanomesh proved to
generate bandgaps with values depending on the mesh
density [22–24]. Very recently, an efficient way to fabri-
cate graphen nanomesh was developed [25]. In the present
work we will assume the presence of a gap without speci-
fying its origin.

Graphene on a substrate. – We consider here the
interaction between two plates 1 and 2 having dielec-
tric functions ε1(ω) and ε2(ω), respectively. In contrast
with [16] graphene is not free standing but covers the
plate 1. As we will see it has significant influence on the
system. The case of suspended graphene is reproduced by
taking ε1(ω) = 1. The Lifshitz formula [3] expresses the
force between two parallel plates via their reflection coef-
ficients. If graphene sheet has the two-dimensional (2D)
dynamical conductivity σ, then the reflection coefficient
of the plate with graphene (for p polarization) is given
by [26,27]

r1 =
k0ε1− k1+(4πσ/ω) k0k1
k0ε1+ k1+(4πσ/ω) k0k1

. (2)

Here the normal components of the wave vectors in
vacuum and in the substrate are k0 =

√

ω2/c2− q2 and

k1 =
√

ε1ω2/c2− q2, respectively, where q is the wave
vector along the plate. In the T = 0 limit the graphene
conductivity is σ∼ e2/� for frequencies up to near UV
[26,28,29]. It means that the reflection coefficient gets only
a small correction ∼ α= e2/�c= 1/137 due to the presence
of graphene on the dielectric substrate. This explains a
weak force between two graphene sheets [13,14] (2.6% of
the force between ideal metals, ∼ πα).

In this paper we neglect the effects due to α on
the force. In this approximation the force between a
suspended graphene sheet and any another material
tends to zero at T = 0 (negligible in comparison with
the force between bulk materials). If graphene covers
a substrate then the force difference ΔF = Fg −Fb is
equally negligible, where Fg and Fb are the force with and
without the graphene layer on the substrate, respectively.
One can systematically neglect the effects ∼ α in ΔF
by taking the non-retarded limit c→∞. The possibility
to use this limit was already indicated for two graphene
sheets [16]. Detailed calculation of the force between
suspended graphene and Au [30] gave an independent
proof of this approximation. Taking the limit c→∞ in
the Lifshitz formula one finds the graphene contribution:

ΔF (a, T ) =
T

8πa3

∞
∑

n=0

′
∫

∞

ξn

dxx2
[

R

ex−R
−

R0
ex−R0

]

,

(3)
where the integration variable in the physical terms is
x= 2aq. Here R= r1r2 is the product of the reflection
coefficients for the body 1 (covered with graphene) and the
body 2, and R0 = r0r2, where r0 is the reflection coefficient
of the body 1 without graphene. The reflection coefficients
also have to be calculated in the non-retarded limit. The
sum is taken over the imaginary Matsubara frequencies
ωn = 2iπTn/�, which enter the dielectric functions in the
reflection coefficients. Only p polarization contributes to
ΔF since the s polarization vanishes in the non-retarded
limit. It has to be stressed that c→∞ limit can only
be applied to the force difference but not to Fg or Fb
separately. We keep the lower integration limit in (3) finite
ξn = 2πTn(�c/2a)

−1. Doing so we stay within acceptable
uncertainty ∼ α in ΔF . This definition is more convenient
because convergence of ΔF is defined only by graphene
but not high frequency transparency of the bulk bodies.
To proceed further we need to know the dielectric

function of graphene. It is related to the dynamical
conductivity of the vacuum-graphene-dielectric system by
the relation [31]

ε(q, ω) = 1+
4πσ(q, ω)

ω

(

k0k1
ε1k0+ k1

)

. (4)

Combining eq. (4) with eq. (2) one finds a simple expres-
sion for the reflection coefficient of the body covered with
graphene:

r1 = 1−
1− r0
ε(q, ω)

. (5)

Dielectric function of graphene. – The dielec-
tric function of graphene can be calculated using the
random phase approximation (RPA). The RPA was used
extensively for graphene in different situations (see the
reviews [11,12]). Specific to our case, we need to know this
function for imaginary frequencies at non-zero tempera-
ture for doped graphene with a non-zero gap. In the liter-
ature one can find ε(q, ω) only in different limiting cases.

14006-p2
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I1,2 =

∫

∞

0

dμ

∫ π

0

dν

[

1∓
Q2(ξ2+ η2− 2)+Δ2T

ǫ1ǫ2

]

Q(ǫ2± ǫ1)
(

ξ2− η2
)

4Z2+(ǫ2± ǫ1)2

[

sinh ǫ2
cosh ǫ2+cosh ǫF

±
sinh ǫ1

cosh ǫ1+cosh ǫF

]

. (10)

For non-zero gap the electron energy in the valence
(s=−1) or in the conduction (s=+1) band is Esk =
s
√

(�vFk)2+Δ2. The probability to find an electron
(hole) with the energy Esk is given by the Fermi distri-
bution fsk = [1+ e

(Esk−EF )/T ]−1, where EF is the Fermi
level. In the RPA, the dielectric function of graphene can
be expressed as ε= 1+ vc(q)Π(q, ω). Here vc = 2πe

2/κq is
the 2D Coulomb interaction, κ is defined by the environ-
ment of the graphene layer (in our case 2κ= ε1(0)+ 1),
and Π(q, ω) is the 2D polarizability given by the bare
bubble diagram:

Π(q, ω) =−4
∑

s,s′

∫

d2k

(2π)2
V ss

′

kk′
fsk− fs′k′

�ω+Esk−Es′k′
, (6)

where k′ = k+q, s, s′ =±1, and the vertex factor is given
by 2V ss

′

kk′ = 1+ (�
2v2Fk ·k

′+Δ2)/EskEs′k′ . The factor 4 at
the front comes from two spins and two valleys degeneracy.
In what follows we use the dimensionless variables:

Q=
�vF q

2T
, Z =

�ζ

2T
, ΔT =

Δ

T
, ǫF =

EF
T
, (7)

where ζ is the imaginary frequency. It is convenient to
calculate the polarizability in the elliptic coordinates μ
and ν defined by the relations:

k=
q

2
(coshμ− cos ν) , k′ =

q

2
(coshμ+cos ν) . (8)

The notations ξ = coshμ and η= cos ν will also be used.
Separating interband (k and k′ in different bands) and
intraband (k and k′ in one band) transitions in (6) we can
present the dielectric function as

ε(q, iζ) = 1+
αg
π
(I1+ I2) , αg =

e2

κ�vF
, (9)

where I1 and I2 are the contributions coming from
interband and intraband transitions, respectively, and αg
is the interaction constant in graphene. For I1,2 one finds

see eq. (10) above

In eq. (10) ǫ1,2 =
√

Q2(ξ∓ η)2+Δ2T and the upper (lower)
sign is related to index 1 (2).
Typical values of q for the Casimir problem are ∼ 1/2a.

Therefore, for the distances a≫ ξT of interest in this
paper, the values of Q are always small, i.e. Q≪ 1. In this
limit eq. (10) can be simplified further. The parameter
Qη is always small but Qξ is not. In fact, the important
values of ξ in the integrals are large: ξ ∼max(1/Q,ΔT /Q).
Making the corresponding expansions and performing

explicit integrations over ν we find for I1,2 in the limit
Q≪ 1:

I1 = πQ

∫

∞

∆T

dǫ
ǫ2+Δ2T
ǫ2(Z2+ ǫ2)

·
sinh ǫ

cosh ǫ+cosh ǫF
, (11)

I2 =
2π

Q

∫

∞

∆T

dǫǫ

[

1−
Z

√

Z2+Q2− (ΔTQ/ǫ)2

]

×
1+ cosh ǫ cosh ǫF

(cosh ǫ+cosh ǫF )
2 , (12)

where we introduced a new integration variable ǫ=
√

Q2ξ2+Δ2T . Note that the intraband contribution
dominates the dielectric function in the Q≪ 1 limit.

The force. – In the large distance limit a≫ ξT the
dielectric function of graphene is significant (ε− 1≫ α)
at frequencies �ζ � T , which are low for T ∼ 300K. For
these frequencies most of dielectric materials have static
permittivities and metals can be considered as perfect
conductors. In such cases we can simplify the calculation
of ΔF in eq. (3) taking the static permittivities ε1,2(0)
for bulk bodies (ε2(0)→∞ for metals) and keeping q and
ζ dependence only for the graphene dielectric function
ε(q, iζ). It has to be mentioned that ε(q, iζ) is essentially
nonlocal. This nonlocality, however, is two-dimensional,
which simplifies the calculation of the Casimir force in
comparison with the 3D case [32]. This is because there is
only an in-plane wave vector.
Consider first a gapless graphene. For Δ= 0 the dielec-

tric function at large distances a≫ ξT follows from (9)
and (12)

ε(q, iζ) = 1+
2αgG(ǫF , 0)

Q

(

1−
Z

√

Z2+Q2

)

. (13)

The function G(ǫF , 0) here increases monotonously start-
ing from 2 ln 2 at ǫF = 0 (fig. 1(a)). In general G(x, y) is
given by the expression

G(x, y) =

∫

∞

y

dtt
1+ cosh t coshx

(cosh t+coshx)
2 . (14)

Let us stress that the characteristic frequency in the
dielectric function (13) is ζ ∼ vF q as is expected from
general consideration [16]. For the Matsubara frequency
ω0 = i0 the dielectric function has a metallic charac-
ter, i.e. ε(q, i0)≫ 1 and the reflection coefficient of the
body covered with graphene approaches 1, i.e. r1→ 1.
Already, for n= 1 we have Z1≫Q and ε(q, iζ1) is strongly
suppressed. For n 	= 0 the reflection coefficient approaches

14006-p3
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Fig. 1: (Color online) (a) (top-right axes) Function G(x, 0)
that enters eq. (13). (bottom-left axes) The factor K(r0) in
eq. (15) as a function of the static reflection coefficient of the
substrate supporting graphene. (b) The force ratio ΔF/FL as
a function of distance for free-standing graphene, graphene-
on-membrane, and graphene-on-substrate at T = 300K. The
solid lines are for ǫF = 0 and the dashed lines are for ǫF = 10.
(c) The relative force for graphene-on-membrane as a function
of a for two different temperatures. The lowest dashed and
solide curves are for graphene-on-substrate at T = 300K. The
curves for membrane in (b) and (c) were calculated for h=
20nm and r0 = 0.6.

the substrate value, r1→ r0. Let us stress that just
one monolayer covering the substrate makes it perfectly
reflecting at low frequencies.
For distances a≫ ξT we can apply (13) to calculate the

force (3). The n= 0 term dominates in ΔF . If the second
body is a metal we can take R= 1 and R0 = r0, where
r0 has to be taken in the static limit. The force in this
case is

ΔF (a, T ) =
Tζ(3)

8πa3
K(r0), a≫

�vF
T
, (15)

where the function K(r0) describes the effect of the
substrate on the force. This function is shown in fig. 1(a)
and is expressed analytically as

K(r0) =
1

2ζ(3)

∫

∞

0

dxx2
[

1

ex− 1
−

r0
ex− r0

]

. (16)

For suspended graphene r0 = 0, and eq. (15) coincides with
the Lifshitz force FL. Note that a metallic substrate for

graphene will result in the zero force because K(r0)→ 0
when r0→ 1.
The effect of graphene will be appreciable if ΔF is

measurable but also if ΔF is not negligible in comparison
with the background force Fb. The force (15) is maximal
for free-standing graphene when Fb = 0. This configura-
tion is realizable in practice [33] and has significant inter-
est. However, it can not always be practical due to the
deformation induced by the force. A more stable configu-
ration is graphene on a dielectric membrane of thickness
h. For a membrane, the reflection coefficient is

r0m = r0
1− e−2qh

1− r20e
−2qh

, (17)

where r0 corresponds to the bulk material. For a thin
membrane, h≪ a, r0m becomes small and the background
force Fb is much weaker than that for the thick substrate.
For graphene-on-membrane the force in the long distance
limit is also given by eq. (15) but now the factorK depends
slightly on the distance due to q-dependence of r0m. The
graphene-on-membrane configuration maximizes not only
the absolute value of the force ΔF but also the relative
value ΔF/Fb. This is an important practical observation.
Figure 1(b) shows how the force approaches its limit

value (15) for free-standing graphene, for graphene on
20 nm thick SiO2 membrane, and for graphene on a thick
SiO2 substrate. Numerical calculations were performed
using the dielectric function (9) with I1,2 from (10)
without additional approximations. The continuous lines
are for EF = 0 and the dashed lines are for EF = 10T . One
can see that the force is not very sensitive to EF .
This is especially obvious in fig. 1(c) where the relative

force (ΔF in respect to the background force Fb) is
shown. This figure demonstrates significant dependence
on temperature and shows that the relative force is
considerably smaller for a thick substrate than for a thin
membrane.
Significant dependence on the Fermi level is desirable

to change the force by electronic means. This can be
realized if graphene has a non-zero gap. The material will
change from insulating to conducting state in response
to the position of EF . It has to influence the dielectric
function and thus the force. The dielectric function of
graphene with the gap 2Δ was calculated in [34], on
the real frequency axis at T = 0. Here we are using our
result (9), (10) for the dielectric function on the imaginary
frequency axis at non-zero T .
As in the case of gapless graphene the main contribution

to the force at large distances comes from the n= 0 term,
which depends on the static dielectric function:

ε(q, i0) = 1+
2αg
Q
G(ǫF ,ΔT ), (18)

where the function G(ǫF ,ΔT ) is given by eq. (14). The
gap gives significant effect for ΔT ≫ 1. If the Fermi level
is in the middle of the gap, i.e. ǫF = 0, the function G

14006-p4
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Fig. 2: (Color online) (a) The force as a function of the
Fermi level for free-standing graphene with ΔT = 10. The
thick line is for a= 50nm and the thin solid line is for a=
100 nm. The dashed, dash-dotted, and dotted lines are the first
three components for the a= 100 nm case. (b) The force for
graphene-on-membrane (ΔT = 10). The lines marked as 1, 2,
and 3 correspond to a= 100, 200, and 300 nm, respectively.
(c) The background force as a function of the distance in units
of the bare Casimir force FC = π

2
�c/240a4.

is exponentially suppressed, i.e. G(0,ΔT )≈ 2ΔT e
−∆T . In

this case the effect of graphene on the force is small. When
ǫF becomes comparable with ΔT the dielectric function
ε(q, i0) is large and the effect of graphene is significant.
In the long distance limit the force behavior is similar to
eq. (15).
Figure 2(a) shows the force for suspended graphene

with the gap ΔT = 10 as a function of the Fermi level
for a= 50nm and 100 nm (solid curves). About ten terms
are important in the sum (3); the first three terms for
a= 100 nm are shown. Indeed, the n= 0 term gives the
main contribution. The finite value of the force at EF = 0
decreases as a and Δ increase. It is mainly due to interband
transitions, which are not included in (18). As expected,
the force is small for EF = 0 and is on the level of FL
for the Fermi level EF �Δ. Typically the force changes
3–5 times on the interval 0<EF �Δ proving significant
sensitivity to the Fermi level position.
The force for graphene-on-membrane is shown in

fig. 2(b). The behavior is similar to that for suspended
graphene. However, in this case the force has to be
compared with the background force for membrane
shown in fig. 2(c). The latter one was calculated using
frequency-dependent dielectric functions of SiO2 and Au.
The relative force ΔF/Fb varies in the range 10–100%; it
is small for short separation and increases with a. The

background force Fb can be reduced further by decreasing
thickness and/or the permittivity of the membrane.

Conclusions and discussion. – In this paper we
analyzed the Casimir interaction of a graphene-covered
dielectric with a metal plate. The dielectric function of
graphene was found at finite temperature for imaginary
frequencies for the material with a finite bandgap and
non-zero Fermi level. A simple expression (3) describes
the graphene contribution to the force. We can conclude
that for graphene with the gap 2Δ≫ T there is a strong
dependence of the Casimir force on both the tempera-
ture and the Fermi level. This is realized at distances
a≫ �vF /T when the main contribution to ΔF originates
from thermal fluctuations. The predicted force is measur-
able with modern AFM instruments and can have signi-
ficant technological applications. Graphene-on-membrane
interacting with a metal has special interest for practi-
cal applications. This configuration combines mechanical
strength with unique electronic properties of graphene.
It allows tailoring of the Casimir force by electronic
means. Manipulations with the thermal force opens up
completely new possibilities which, so far, seemed to have
pure academic interest for condensed matter. For exam-
ple, it becomes possible to observe the non-equilibrium
Casimir force [35,36] between solid bodies at distances
∼ 100 nm. This possibility put the Casimir effect on the
same ground as the short distance radiative heat trans-
fer [37]. For all bulk materials the equilibrium component
of the force at a∼ 100 nm is orders of magnitude larger
than the non-equilibrium one. However, for suspended
graphene or graphene-on-membrane interacting with a
metal these components of the total force can be compa-
rable.
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