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Abstract
The syntactic relationships between words allow a communicator to express a virtually
endless array of thoughts by a finite set of elements. The co-occurrence of words in a
sentence reflects the syntactic dependency between words, and can be represented as a di-
rected graph. In this account we compiled the grammar dependency networks of 86 texts
from 11 well known English authors. In an analysis of the common and specific features
of these networks we try to attribute network properties to individual authors. A pointwise
defined measure shows no significant groups which could be identified with authors. Fur-
ther, a comparison to randomized versions of the same texts shows a systematic, but very
small difference between networks constructed for the originals and the randomisations, re-
spectively. This suggests, that the scale-free and small world-like nature of these networks
can be explained by an underlying regularity in the word frequency distribution, known as
Zipf’s law. A stochastic model, which allows the construction of networks for arbitrary
word frequency distributions, illustrates this idea.

1. Introduction

Human language has the very distinct property of being able to communicate an endless array
of thoughts through the use of a finite set of elements (Chomsky 2002). The power of language
can—at least in part—be attributed to the flexibility given to each word by the rules of assem-
blage or syntax. In short a syntax is a set of rules for combining words into logical phrases and
sentences. Such rules ultimately define explicit syntactic relationships among words (Chomsky
1965).

For some time now language has been regarded as a complex adaptive system (Gell-mann
1994; Pinker 1997). Over time, the meanings, spelling, accepted usage and even the syntax
evolve to reflect trends, and social norms. Language usage, also varies between authors, social
status and education, all of which influence an individual’s ability to assemble, and colour
written and spoken prose.

Recently the application of network theory to an array of complex systems has revealed
that they share a number of common topological properties (for a summary see, (Albert &
Barab́asi 2002; Albert & Barab́asi 2002)). The application of network theory based approaches
to grammar dependency networks, have provided new insights into semantic networks (Ferrer i
Cancho & Soĺe 2001; Ferrer i Cancho et al. 2004). Network analysis provides an alternative to
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theuniversal grammar approaches proposed by Chomsky ((Chomsky 1965; Chomsky 2002)),
and supported by others (e.g. Pinker 1997). These recent studies have discovered that linguistic
networks display both small world (Watts & Strogatz 1998), and scale-free (Albert & Barabási
1999) network properties. They also found that some of these network properties vary between
languages, while others seem to remain constant.

In this paper we analyse the syntactic structures formed by 86 texts of 11 well known au-
thors. Our intention here is twofold. First we aim to investigate the topological properties
of these linguistic networks and attempt to identify in how far peculiarities can be attributed
to individual authors. The second aim is to find out in how far the linguistic networks differ
from networks generated for randomized texts. For this purpose, we develop a simple random
null model. The model abstracts from all syntactic rules of real language, but still conserves
statistical regularities such as Zipf’s law (Zipf 1932) for the frequency of word occurrences.

2. Dependency Grammar Networks

Here we have analysed the text of 86 books. The text of these works was obtained from the
Gutenberg Project (http://www.gutenberg.net/ ). The texts were preprocessed to re-
move disclaimer statements, formatting, obscure symbols and standard punctuation marks. Ap-
pendix 1 lists the texts used in this study.

The networks that are analysed here have been defined according to the dependency gram-
mar formalism. Dependency grammars are a family of grammatical formalizations, which share
the assumption that syntactic structures consist of a lexicon and binary dependencies linking its
elements. Such a formalization lends itself easily to a network representation, where the words
represent nodes, and the dependencies are depicted as arcs. The networks are constructed in
accordance with the procedures defined in (Ferrer i Cancho & Solé 2001).

Essentially each distinct word forms a node within the network. All the links between nodes
are directed. An arc is made between two nodes, if a word is within the next two words within
a sentence. Figure 1 illustrates the construction of a grammar dependency network for the
sentence fragment “It was the best of times, it was the worst of times, it was the age of wisdom,
it was the age of foolishness, ...” from Charles Dickens’ A Tale of Two Cities. For a more
detailed account of the construction of grammar dependency networks see (Ferrer i Cancho &
Soĺe 2001; Ferrer i Cancho et al. 2004).

3. Word Frequency and Degree Distribution

3.1 Zipf’s Law

An understanding of the patterns of language requires an understanding of the regularities that
occur in the elements that make up the language. One of the most well known regularities in
human language is Zipf’s law (Zipf 1932). Zipf’s law states that the frequencyf of words
decays in accordance with a power law of its rankr, i.e. f ∝ r−α with an exponentα ≈ 1.
Figure 2 (A), shows the decay of the frequency of the 100 most common words occurring across
all of the Gutenberg texts analysed here.

Further, typically the number of words sharing a rank increases withr. Figure 2 (B) illus-
trates that also the numbern of words occurring with the same frequencyf obeys a power law
n ∝ f−β, with βh ≈ 1.33 for very high ranks andβm ≈ 1.52 for intermediate ranks. The first
1000 most frequent words occupy their rank alone, i.e.βl = 0. Recasting this, one obtains that
the probabilitypr to find a word with rankr obeys
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Figure1. A sample of a dependency grammar network. This network is generated from the first
part of a sentence found in Charles’ Dickens story A Tale of Two Cities, “It was the best of
times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, ...” Note
that the network is highly cliquish and has a relatively short path length between nodes.

pr ∝




r−α if r < 1000
r−α−βm if 50 < r < 1000
r−α−βh otherwise

(1)

Various mechanisms have been identified to obtain such distributions. One of more surpris-
ing results is that Zipf’s law can be obtained by assembling “words” from random sequences of
characters (Li 1992). This may be one reason why Zipf’s-law-like distributions are so common
in many different contexts. An alternative model suggests that the power law observed in the
word frequency could be the result of an evolutionary optimisation process (Ferrer i Cancho &
Soĺe 2003).

3.2 Degree Distribution

One of the hallmarks of many complex networks is a degree distribution with a power law
tail P (k) ∼ k−γ, with exponentsγ typically in the range between2 and3 (Albert & Barab́asi
2002). A previous study (Ferrer i Cancho & Solé 2001) has shown that the syntactic dependency
network of the English language also obeys a power law. Distinguishing a kernel lexicon (the
most frequently used words), Ferrer i Cancho & Solé (Ferrer i Cancho & Solé 2001) found an
exponentγ = −2.7 holding for words belonging to the kernel. Beyond the kernel, the degrees
of less frequently used words are found to obey a power law with exponentγ = −1.5. The
exponent for words belonging to the kernel is similar to exponents found in networks formed
by preferential attachment (Albert & Barabási 1999). Accordingly, Ferrer i Cancho & Solé
(Ferrer i Cancho & Solé 2001) argue that preferential attachment plays a role in the formation
of the network reflecting the core lexicon.

Conversely, the non-kernel part of the lexicon is highly specialised and contains a subset
of words not common to all speakers. Figure 3 shows the in-degree distributions for two net-
works compiled from two of the Gutenberg texts. In comparison to the networks constructed in
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Figure2. An Example of Zipf ’s Law. (A) The decay of the frequency of the 100 most common
words occurring across all Gutenberg texts. (B) The decay of the number of words with the
same frequency. The decay of the numbers of words sharing the same ranks has several distinct
power laws for high, medium and low ranks.

(Ferrer i Cancho & Solé 2001; Ferrer i Cancho et al. 2004) each network is constructed from
a relatively small set of words. Additionally, because of the finite size of the compiled texts,
only a subset of the links found in the whole language network are present in these samples.
Hence, the compiled networks represent only relatively small subgraphs of the whole language
network. Their specific nature is determined by the bias of the text, from which they are com-
piled. However, the size of the networks—though small in comparison to the whole language
network—is still large enough to observe statistically significant patterns.

The data in Fig. 3 show, that the small size of the subgraph does not destroy the overall
pattern observed by Ferrer i Cancho and Solé: both networks exhibit a power law degree dis-
tribution. However, the exponentsγA

in ≈ −2.1 (for Charles Dickens’ “A Tale of two Cities”)
andγB

in ≈ −1.76 (for Jane Austin’s “Emma”) are different from those observed for the whole
lexicon. Further, although both texts are not substantially different in length (Wemma = 158161
compared toWtwo cities = 135710), network size, number of links, and the exponents of the
degree distributions differ substantially. These observations seem to confirm the thought that
linguistic sub-networks compiled from relatively short texts are not just a representative sample
of the whole linguistic network, but define distinct subnetworks, seemingly characteristic for
the text that they are compiled from.

We also “scrambled” the texts by randomly selecting pairs of words and exchanging them.
Repeated often1 enough this procedure destroys all correlations between words in the text. The
result conserves the frequencies with which individual words appear, but is otherwise an appar-
ently senseless assemblage of words, i.e. a “randomized text”.

Figure 3 (overlay panels) shows the in-degree distributions of the networks constructed from

1We repeated the procedure 20 times the textlength, which ensures that almost every word has been picked and
exchanged with another randomly chosen word at least once.
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Figure3. In-Degree distributions for two linguistic networks compiled from the Gutenberg texts.
(A) Charles’ Dickens “A tale of two cities”. HereN = 9815 andL = 70916, γA

in ≈ −2.1± .05,
γArand

in ≈ −1.98± .07 (overlay). (B) Jane Austen’s “Emma”. The network containsN = 7316
vertices andL = 74093 links. We findγB

in ≈ −1.76 ± .02 andγBrand
in ≈ −1.81 ± .05 for the

randomized version of “Emma” (overlay).

the randomized texts. We find that the respective exponents (e.g.γA
in ≈ −1.98 andγArand

in ≈
−1.81 for “Emma”) are within the error bounds of the exponents of the real texts. From this, we
can conclude that the exponent of the degree distribution is not specific to the syntactic structure
of the network. Assembling a text at random from the same set of words yields almost the same
results. Clearly, in the latter procedure almost all syntactic rules are violated.

In the method of network construction explained in§2. one could also assign a “weight” to
each link by counting how many times the respective words forming its ends co-occur. It turns
out that the distribution of these weights also follows a power law with an exponentγco ≈ −2.3
(cf. Fig. 4). As for the degree distributions, the differences between the original texts and the
scrambled versions are very small.

4. Statistical Properties of Complex Networks

In this section we will briefly introduce some quantities that have previously been used to char-
acterize linguistic and other complex networks. We briefly summarize some of the previous
results and then turn to the analysis of text-specific network patterns.

4.1 Small World Properties

Many complex networks display what is known as “small world” properties (Watts & Strogatz
1998). A small world is characterized by the extent to which a network is locally similar to a
clique; and how short the average distance is between any pair of nodes within the network.
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Figure4. Word co-occurrence distributions for two texts from the Gutenberg texts. (A) Jane
Austen’s “Emma”, a text containingW = 158161 words.. We findγA

co ≈ −2.31 andγArand
co ≈

−2.36 for the randomized version of “Emma” (overlay). (B) Charles’ Dickens “A tale of two
cities”. HereW = 135710, γB

co ≈ −2.34, andγBrand
co ≈ −2.36 (overlay).

The cliquishness or degree of clustering within a network is measured by the clustering coef-
ficient (Watts & Strogatz 1998). The average clustering coefficient is defined asc = 1/N

∑
i ci.

Given a nodei, with ki neighbours,Ei is the number of links between theki neighbours. We
define the clustering coefficient as the ratio between the number of links that actually exist
between the neighbours (Ei) and the potential number of linkski(ki − 1), i.e.

ci =
Ei

ki(ki − 1)
. (2)

Theshortest path length, is the minimum number of edges that need to be traversed, in order
to move from vertexi to vertexj, and is denoted byd(i, j). The average shortest path length is:

l =
1

N(N − 1)

n∑

i=1

n∑

j=1

j 6=i

d(i, j). (3)

Another networks property that we measure is the diameter of the network. The diameter of
a network is the longest shortest path within the network. More formally

lmax = max
i,j

d(i, j). (4)

A network is called a small world if it exhibits a high clustering coefficient while having
a low average path length. Hence it combines properties of regular lattices (which are highly
cliquish) with the small average path lengths of random graphs (Erdös 1959; Bollob́as 1998),
the average shortest path length of which only grows logarithmically with the network’s size.

It has recently been shown that linguistic networks are small worlds (Ferrer i Cancho &
Soĺe 2001). For instance, analysing the English language, the above authors found a value of
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c ≈ .687 while l ≈ 2.63, showing that on average it takes surprisingly few steps to reach any
other word from a random starting word.

As noted in (Ferrer i Cancho & Solé 2001) preferential attachment appears to play a role
in the formation of the network corresponding to the whole English network. Notably, prefer-
ential attachment itself leads to ‘ultrasmall’ networks for whichl ∼ ln ln N (Cohen & Havlin
2003). However, the observed high clustering coefficients can not be attributed to preferential
attachment alluding to a different mechanism shaping this aspect of the linguistic networks.

4.2 Assortativness

A network is said to show assortative mixing if nodes of high degree are typically connected
to other nodes of high degree. Conversely, in a dissortatively mixed network nodes with many
links tend to be adjacent to nodes with few neighbours. Following (Newman 2002) we use a
Pearson correlation coefficientΓ to quantify the assortativeness of a network. Newman (New-
man 2002) defines this correlation as:

Γ =
c

∑
i jiki −

[
c

∑
i

1
2
(ji + ki)

]2

c
∑

i
1
2
(j2

i + k2
i )−

[
c

∑
i

1
2
(ji + ki)

]2 , (5)

whereji andki arethe degrees of the veritices at the ends of theith edge. Withm defined as
the number of edges we setc = 1/m. A network displays assortative mixing whenΓ > 0
and dissortative mixing whenΓ < 0. While some social networks are assortative, many other
networks with power law degree distributions are dissortatively mixed (Newman 2003). Values
for linguistic networks (Ferrer i Cancho et al. 2004) are found in a range fromΓ = −.06
(Czech) toΓ = −.2 (Romanian). Thus, linguistic networks show dissortative mixing. Again
these values are different from the value (Γ = 0) of a network which is formed by preferential
attachment alone.

5. Analysis of Texts

For all the networks we calculated the connectivity, average shortest pathlength, diameter, clus-
tering coefficient, degree of assortativeness, and the exponents for the total degree, in-degree
and out-degree distributions. This information is summarized in Appendix 1. Also, from each
of the texts 10 randomized (scrambled) versions were produced. We applied the network gener-
ation algorithm to the randomized texts and calculated the average network properties pertaining
to them. In the following sections we examine the global properties of these networks; next we
attempt to identify author specific characteristics.

5.1 Global Trends

Among the analysed texts we find a substantial variation in text length, ranging from about
3000 to 360,000 words. We included authors (e.g. Charles Dickens) who tend to write very
long texts, but also others who wrote shorter texts. The analysis of the networks reveals that
their properties change with size. For instance, the connectivity typically decays with size as
p ∝ N−δ with δ = .6± .1. As the network size depends on the text length, network properties
change with text length. To reduce this size effect we use only network properties relative to
the respective property calculated for randomized texts. In other words, for a network property
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Figure5. Relative difference(y− yrand)/y of the network propertiesy to the propertiesyrandom

of the networks corresponding to the respective randomized texts. Typically, though there are
tails of a few outliers, almost all networks are found in a small band, deviating not more than
10% from networks of the randomized texts. More substantial differences are found in the
network diameter (which is on average approx. 20% underestimated by the random networks)
and the exponentγ of the (total) degree distribution.

y we define a relative propertyyrel as

yrel =
(y − yrand)

y
. (6)

The distribution of the relative differences are shown in Fig. 5. Disregarding some outliers,
properties of the texts are typically found within 10% deviation from the randomized texts.

In random texts word combinations occur which are forbidden in the syntactic structure
of language. Hence, in a random text a word can potentially acquire more links than in a
human produced text. So, not surprisingly, we find a trend to lower connectivities in the original
networks. Similarly, in the randomized texts, infrequent words typically occur after frequently
used words. Accordingly, combinations of infrequent words —which in normal language lead
to longer path length— are very scarce in randomized texts. Thus, one also finds a tendency for
randomized texts to have slightly higher path length, and considerably larger diameters. The
same argument explains a typically steeper decay in the in- and out-degree distributions of the
randomized networks. In the randomized texts, highly frequent words have a better chance to
acquire more neighbours than in the original texts. Consequently, the randomized networks
have more vertices with many neighbours. As a result the exponent characterizing the decay of
the in- and out-degree distributions is expected to be lower. For the clustering coefficients and
the assortativeness we don’t find a systematic trend to higher or lower values in the networks
for the randomized texts. The same holds for the exponentsγ for the total degree distribution.
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Author p l lmax c Γ γ γin γout average
Alcott .19 .46 .93 .32 .17 .81 .54 .60 .51
Austen .48 .58 .93 .89 1.10 1.03 .80 1.20 .87
ConanDoyle .14 1.48 .63 .60 .49 .50 .53 .67 .63
Darwin 1.48 1.86 .61 1.44 1.16 1.01 1.13 1.58 1.28
Defoe .29 .63 1.04 .33 .77 1.00 .88 .74 .71
Dickens .41 .70 .61 1.04 .72 .79 1.04 .91 .78
Joyce 4.26 1.04 1.33 .59 1.60 1.65 .59 .75 1.47
Lawrence 1.74 .82 .49 1.07 1.10 .58 2.23 1.61 1.21
Malthus .84 1.28 .60 1.51 1.80 1.86 1.45 1.18 1.32
Scott 1.66 .65 .80 .79 1.16 .74 .87 .62 .91
Trollope .65 .45 1.17 .90 .91 1.29 1.01 1.10 .93
Authoravg. 1.05 .90 .83 .86 .99 1.02 1.01 1.00 .97

Table 1.Table of group consistencies for all analysed authors. The rows give the consistencies
as calculated for an individual network property (see Eq. 7). A value less than one means that
books of the respective authors are closer to each other than to the average text of all other
authors.

5.2 Author Correlations

In this subsection, we are interested in finding out, whether networks compiled for one au-
thor have structural characteristics unique to that author. For this purpose, we define a group
consistency of a relative propertyy, for an authorG as

c(y)(G) =
|B|(|B| − 1)

∑
g1,g2∈G
g1<g2

|y(g1)− y(g2)|
|G|(|G| − 1)

∑
b1,b2∈B

b1<b2

|y(b1)− y(b2)| , (7)

whereB denotes the set all analysed texts, and| · | is the usual notation for the cardinality of a
set. This group consistency gives the average distance between any two members ofG relative
to the average distance of any two elements chosen from all texts. The average relative group
consistency of a groupG in the space spanned bym propertiesym then is

c(G) = 1/m
∑

c(ym)(G). (8)

Likewise, the “suitability”c(yi) of a propertyyi to identify groups can be defined as

c(yi) = 1/|G|∑
G

c(yi)(G). (9)

For a valuec(G) = 1 elements ofG have the same average distance to each other as any two
randomly chosen elements from the whole setB. Subsets whose elements have higher average
distance than the whole havec(G) > 1, whereas valuesc(G) < 1 indicate the onset of local
concentrations of elements.

We calculated the values ofc(ym)(G) and the averagesc(G) for all considered network
properties and all eleven authors. These results are summarized in table 1. Averaged over
all authors, all properties have group consistencies in a range betweenc(p) = 1.05 (for the
connectivity) andc(lmax) = .83 (for the diameter). Even diameter, the best suited property to
identify groupings in our dataset, has a value of the consistency close to one. Averaged over
all authors, the data in table 1 show no significant group consistency. Yet, while our measure
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Figure6. Relative differences to randomized texts plotted against each other for the three best
suited properties to identify groupings, i.e. clustering coefficient, assortativeness, and average
shortest pathlength.

typically reveals no groupings, the works of some authors (e.g. Alcott and Conan-Doyle) form
relatively consistent groups.

Judging the results one must bear in mind, that the above pointwise distance-oriented mea-
sure for group consistency (Eq. (7)) does not take account of trends and patterns in a group.
Changes in an author’s writing style or subject would lead one to expect certain patterns of
earlier and later works in the property space. From this point of view, it appears not surprising
to find more variability in scientific texts (cf. Malthus and Darwin). Constancy, i.e. successive
texts having only a small distance to each other, could allude to a relatively unchanged writing
style and subject choice, which we find in the works of Alcott or Conan-Doyle.

Figure 6 shows the above identified three best properties2 plotted against each other. Closer
inspection might suggest the formation of groups distinguished by patterns and not by relative
distance. Groupings defined in this way could be identified by machine learning techniques
(Kennedy et. al 1995), which is, however, out of the scope of the present paper.

6. Networks from Random Texts

The previous sections have underlined that the analysed linguistic networks form small worlds
and have power law tails in the degree distribution. Yet the same is observed for networks
constructed from randomized texts. These texts lack all the syntactic structure of the originals.
Hence it seems unlikely that the small world structure of the linguistic networks is only a conse-
quence of structural rules in language which allow us to form meaningful sentences. However,
the randomized texts—though being freed of all grammatical constraints of language—still re-
tain the frequencies with which individual words have been used in the original texts. For

2We have chosen to use path length and not diameter, as diameter scales with path length
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Figure7. Dependence of the exponentγ of the degree distribution on the exponentα of the
word frequency distribution for networks constructed by the stochastic model described in the
text. The data are for networks withN = 5000 nodes and a connectivityp = L/N2 = 0.0022.
The network was chosen of such a size, that no significant change inγ is observed for further
increases ofN .

example, as pointed out earlier in§3.1, the rank ordering of the frequencies follows Zipf’s law.
In this section we explore a random construction mechanism for networks. We assume that

a sequence of wordsW = {wr}N
r=1 with individual frequenciesf(wr) is ordered in descending

orderf(wi) ≥ f(wj) for i ≤ j, starting with the most frequent wordw1. As in the real texts
we assume that the frequencies follow a power lawf(r) = Cr−α, whereC−1 =

∑N
i=1 r−α. At

each iteration0 < t < T we draw a symbolst from W with probabilityf(r) at random. For
t < T we connectst to st + 1. The number of iterationsT (or the “text length”) is chosen such
that all the constructed networks have the same connectivity.

Simulation results show that this procedure produces a plethora of networks with power
law degree distribution (cf. Fig. 7). A cross check, using non-power law word frequency
distributions did not lead to power laws in the degree distributions of the constructed networks.
This rules out, that the power laws in the degree distributions are simply a consequence of the
linear construction process.

The exponentsγ of the identical in- and out-degree distributions are determined by the
exponentsα of the word frequency distributionf(r). Values ofγ are found to decay with
α, quickly saturating slightly belowγ = −2 for values ofα above 1. The exponents roughly
correspond to the exponents found in the analysed linguistic networks (e.g.γA

in = −2.1 or γB
in =

−1.76 see Fig. 3). These results seem to suggest that the power law tail observed in linguistic
networks is essentially a consequence of Zipf’s law for the word frequency distribution.

Next we analysed the clustering coefficients, average shortest path length and values for the
assortativeness of the above networks (cf. Fig. 8). For comparison, an Erdös-Ŕenyi random
graph has a clustering coefficient ofc ≈ p = .0022, assortativenessΓ = 0 and a path length
l ≈ ln N/ ln(Np) ≈ 3.6. For low exponentsα < .5 we find clustering coefficients, shortest
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Figure8. Simulation results for the assortativeness (A), the clustering coefficient (B), and the
average shortest path length (C) depending on the exponentα of the word frequency distribution
shown for two different network sizesN = 3000 (triangles) andN = 5000 (circles). The
networks are constructed as described in the text. Each data point represents an average over
10 independent configurations.

path length and values of assortativeness very close to the values for comparable Erdös-Ŕenyi
random graphs. However, fromα ≈ .6 onwards the network properties, change dramatically.
Typical networks begin to exhibit high clustering, shortened path length and substantial dis-
sortative mixing. We also note that forα = 1 the values of all three quantities are found in a
reasonable range of the values obtained for the texts.

The above observation shows that important properties of linguistic networks: A power law
tail, small world structure and the high degree of dissortative mixing, can all be obtained from
our random null model.

7. Discussion

In this paper we have analysed the syntactic structures of linguistic networks of a number of
well known English authors. In agreement with previous studies (Ferrer i Cancho & Solé 2001;
Ferrer i Cancho et al. 2004) we have been able to identify a number of characteristics that
appear to be universal. The use of a relative-distance based clustering measure did not lead
to statistically significant clusters that could be attributed to authors. However our results do
suggest that a number of authors do produce “consistent” patterns in their syntactic networks,
possibly associated with changes in the author’s writing style. It appears an interesting line of
research to classify these patterns using machine learning techniques.

Previous studies have demonstrated that dependency grammar networks are highly clus-
tered, have short path lengths, and display dissortative mixing. One of the more surprising
results presented here is that many of these network properties deviate only slightly from such
calculated for randomly assembled texts. Generating random texts from a word frequency that
follows a power law is sufficient to obtain networks that are small worlds and exhibit a degree
distribution with a scale-free tail.

Accordingly, in the final section of this paper we analysed a simple null model that examines
the relationship between the word frequency distribution and the emergence of the various net-
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work properties. This model confirms that network properties similar to those commonly found
in dependency grammar networks emerge when the decay of the word frequency distribution is
described by a power law with an exponent close to−1.

Understanding the origins and evolution of language requires an understanding of the un-
derlying dynamics. Recent studies have explored this question, through the use of mathematical
models of evolutionary dynamics. These studies lend strong support to the explanation that a
word frequency distribution following Zipf’s law emerges as a result of a trade-off between the
effort to send a message and its information content (Ferrer i Cancho & Solé 2003). However,
other works (Li 1992) demonstrated that Zipf’s-law-like degree distributions is also obtained
for random collections of symbols.

The present study indicates, that the small world and scale-free character of linguistic net-
works merely seems a statistical feature, that in turn is a consequence of a lower level statistical
regularity expressed in Zipf’s law. However there are small systematic deviation from the orig-
inal networks. Only very few syntactic rules may allow one to create meaningful language.
Combining this result with the above explanation for Zipf’s law, two mutually exclusive inter-
pretations appear possible. First, following (Li 1992) the regularities of the complex network
formed by our language do not appear special. Indeed, it would also be expected for random
sequences of symbols.

More interestingly, following the line of thoughts presented in (Ferrer i Cancho & Solé
2003) one can speculate about an optimization process shaping the network structure of the
linguistic network (i.e. need for efficient communication, flexibility in language, etc.). By
changing the network structure, also the type of word frequency distribution that can produce
such a network is constrained. It appears an interesting prospect for a future study to explore
the relation between optimization processes shaping network topology and consequent effects
on the word frequency distributions.
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Appendix 1

Author Title N L N/L2 l lmax c Γ γ γin γout

Alcott 1 6791 81740 0.0018 2.79 8 0.49 -0.25 -1.75 -2.19 -1.90
2 6642 82696 0.0019 2.75 7 0.49 -0.23 -1.52 -2.17 -1.97
3 7741 101967 0.0017 2.78 16 0.51 -0.23 -1.75 -2.10 -2.08
4 8555 113822 0.0016 2.75 6 0.50 -0.23 -1.70 -1.94 -1.87
5 7791 109904 0.0018 2.73 7 0.52 -0.24 -1.53 -1.92 -1.81
6 7409 92786 0.0017 2.78 7 0.50 -0.24 -1.68 -2.23 -2.07

Annon. 7 3608 34863 0.0027 2.87 6 0.39 -0.20 -1.89 -2.27 -1.72
Austen 8 7316 135625 0.0025 2.67 8 0.58 -0.29 -1.61 -1.60 -1.69

9 2923 28807 0.0034 2.82 5 0.47 -0.28 -1.76 -2.35 -1.85
10 4214 41877 0.0024 2.83 9 0.47 -0.27 -2.02 -2.31 -1.56
11 8025 140429 0.0022 2.66 6 0.58 -0.28 -1.44 -1.69 -1.51
12 6081 82084 0.0022 2.73 6 0.52 -0.27 -1.62 -2.04 -2.04
13 6380 111175 0.0027 2.66 7 0.56 -0.30 -1.48 -1.69 -1.74
14 5824 85038 0.0025 2.71 7 0.54 -0.27 -1.53 -1.81 -2.20
15 6388 109901 0.0027 2.66 5 0.56 -0.30 -1.63 -1.63 -1.67

Conan-Doyle 16 6113 64009 0.0017 2.79 7 0.53 -0.28 -1.86 -2.22 -2.04
17 8269 88229 0.0013 2.78 8 0.52 -0.24 -1.81 -2.27 -2.20
18 7986 103460 0.0016 2.74 7 0.54 -0.28 -1.55 -2.09 -1.91
19 4882 48341 0.0020 2.83 6 0.49 -0.26 -2.22 -1.88 -1.75
20 5619 64341 0.0020 2.77 6 0.52 -0.27 -1.77 -2.11 -2.05
21 11970 192302 0.0013 2.64 8 0.55 -0.21 -1.55 -1.81 -1.65
22 7803 86633 0.0014 2.79 9 0.51 -0.25 -1.84 -2.09 -1.91
23 8221 87991 0.0013 2.78 7 0.51 -0.24 -1.93 -2.10 -1.99
24 5026 55140 0.0022 2.77 7 0.54 -0.27 -1.74 -2.24 -2.03

Table 2.Texts and Network Properties.(1) Eight Cousins, (2) A Garland for Girls, (3) Jack And Jill,
(4) Jo’s Boys, (5) Little Men, (6) Little Women, (6) Under the Lilacs, (7) Boewulf, (8) Emma, (9) Lady
Susan, (10) Love And Friendship, (11) Mansfield Park, (12) Northanger Abbey, (13) Pride And Prejudice,
(14) Persuasion, (15) Sense and Sensibility, (16) Uncle Bernac, (17) The Last Galley Impressions and
Tales Impressions and Tales,(18) The Adventures of Sherlock Holmes (19) Beyond the City, (20) The
Hound Of The Baskervilles, (21) Great Boer War, (22) The Lost World, (23) The Green Flag, (24) The
Great Shadow and Other Napoleonic Tales.
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Author Title N L N/L2 l lmax c Γ γ γin γout

Darwin 25 11566 175394 0.0013 2.85 8 0.46 -0.20 -1.59 -1.60 -1.62
26 12192 177192 0.0012 2.90 18 0.46 -0.20 -1.74 -1.76 -1.89
27 5523 75780 0.0025 2.80 11 0.47 -0.21 -1.64 -2.09 -1.64
28 3441 48939 0.0041 2.74 10 0.44 -0.21 -1.52 -1.94 -1.88
29 14532 211770 0.0010 2.43 13 0.49 -0.20 -1.54 -1.71 -1.72
30 6411 108449 0.0026 2.80 10 0.50 -0.22 -1.40 -1.62 -1.79
31 6983 122480 0.0025 2.64 7 0.52 -0.24 -1.55 -1.68 -1.70
32 6797 126069 0.0027 2.79 12 0.49 -0.21 -1.52 -1.71 -1.58
33 6457 112565 0.0027 2.72 11 0.47 -0.20 -1.41 -1.78 -1.77
34 12482 195784 0.0013 2.70 11 0.52 -0.21 -1.57 -1.89 -1.57
35 4717 59339 0.0027 2.76 10 0.44 -0.21 -1.50 -1.78 -1.71

Defoe 36 6563 97124 0.0023 2.67 6 0.55 -0.24 -1.59 -1.76 -1.89
37 6128 94193 0.0025 2.69 7 0.58 -0.28 -1.51 -2.06 -2.01
38 2173 15042 0.0032 2.93 11 0.41 -0.24 -2.09 -2.12 -1.95
39 1754 11589 0.0038 3.00 6 0.37 -0.23 -1.93 -2.31 -2.15
40 5096 56830 0.0022 2.76 9 0.49 -0.25 -1.81 -2.00 -1.99
41 5989 84352 0.0024 2.73 10 0.56 -0.26 -1.59 -2.12 -1.79
42 4216 41584 0.0023 2.80 13 0.50 -0.25 -2.22 -2.04 -1.80
43 5924 88234 0.0025 2.67 6 0.58 -0.28 -1.66 -1.96 -1.84
44 6087 97844 0.0026 2.63 6 0.59 -0.29 -1.57 -2.09 -1.96

Dickens 45 9815 135037 0.0014 2.71 6 0.56 -0.25 -1.84 -1.93 -1.88
46 9328 145254 0.0017 2.63 7 0.56 -0.24 -1.45 -2.00 -1.88
47 10431 118464 0.0011 2.75 7 0.51 -0.23 -1.89 -2.17 -2.02
48 4233 38956 0.0022 2.86 7 0.46 -0.24 -1.89 -2.26 -1.98
49 15166 280918 0.0012 2.67 7 0.59 -0.26 -1.63 -1.85 -1.79
50 4300 37493 0.0020 2.88 7 0.46 -0.25 -1.96 -1.87 -1.88
51 14235 268392 0.0013 2.65 7 0.61 -0.27 -1.58 -1.86 -1.65
52 10911 161667 0.0014 2.71 6 0.59 -0.28 -1.75 -1.83 -1.72
53 8863 108667 0.0014 2.79 6 0.54 -0.27 -1.71 -1.99 -2.00
54 13067 228578 0.0013 2.65 6 0.56 -0.24 -1.55 -1.91 -1.84
55 4259 39768 0.0022 2.87 9 0.47 -0.24 -1.73 -2.14 -2.03
56 4288 40241 0.0022 2.86 7 0.48 -0.25 -1.83 -2.26 -2.01

Joyce 57 796 4261 0.0067 3.20 7 0.30 -0.17 -1.93 -1.52
58 7327 77067 0.0014 2.80 7 0.50 -0.25 -1.97 -1.85 -1.91
59 9029 94639 0.0012 2.79 8 0.51 -0.23 -2.00 -1.86 -1.82
60 29561 309556 0.0004 2.98 20 0.47 -0.20 -1.78 -1.95 -2.07

Table 3.Texts and Network Properties (cont.)., (25) The Variation Of Animals And Plants Under
Domestication – Volume 1, (26) The Variation Of Animals And Plants Under Domestication – Volume
2, (27) Coral Reefs, (28) The Movements And Habits Of Climbing Plants, (29) The Descent Of Man,
(30) Insectivorous Plants, (31) On the Origin of Species, (32) The Power Of Movement In Plants, (33)
Geological Observations On South America, (34) The Voyage Of The Beagle, (35) Volcanic Islands,(36)
Memoirs of a Cavalier, (37) The Life, Adventures & Piracies of the Famous Captain Singleton, (38)
Dickory Cronke, (39) Everybody’s Business Is Nobody’s Business, (40) An Essay Upon Projects, (41) A
Journal Of The Plague Year, (42) From London To Land’s End, (43) Robinson Crusoe, (44) The Adven-
tures of Robinson Crusoe, (45) A Tale of Two Cities, (46) A Child’s History Of England, (47) American
Notes, (48) The Battle of Life, (49) Bleak House, (50) A Christmas Carol, (51) David Copperfield, (52)
Great Expectations, (53) Hard Times (54)Barnaby Rudge: a tale of the Riots of ’eighty, (55) The Chimes,
(56) The Cricket on the Hearth.
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Author Title N L N/L2 l lmax c Γ γ γin γout

Lawrence 61 6608 74495 0.0017 2.80 7 0.50 -0.25 -1.94 -1.90 -1.79
62 6730 67815 0.0015 2.83 9 0.49 -0.22 -1.67 -2.32 -2.15
63 9504 146016 0.0016 2.73 9 0.56 -0.27 -1.68 -1.98 -1.64
64 2845 28900 0.0036 2.92 9 0.44 -0.25 -2.16 -1.47 -1.57
65 11227 167948 0.0013 2.76 8 0.56 -0.25 -1.50 -1.83 -1.71

Malthus 66 1595 12446 0.0049 2.84 8 0.41 -0.25 -1.72 -2.08 -2.19
67 1761 15358 0.0050 2.94 11 0.42 -0.22 -1.90 -2.42 -2.33
68 4849 55891 0.0024 2.72 10 0.49 -0.24 -1.76 -1.97 -1.81

Scott 69 13386 187966 0.0010 2.78 14 0.53 -0.23 -1.60 -1.77 -1.88
70 7632 74848 0.0013 2.81 6 0.48 -0.24 -1.90 -2.40 -2.23
71 11607 139711 0.0010 2.75 10 0.52 -0.23 -1.78 -2.07 -1.87
72 10259 105768 0.0010 2.80 13 0.50 -0.23 -1.77 -2.18 -2.15
73 13825 186556 0.0010 2.75 12 0.52 -0.23 -1.57 -1.86 -1.73
74 13441 199680 0.0011 2.69 12 0.53 -0.22 -1.68 -1.58 -1.65
75 15822 235789 0.0009 2.71 10 0.54 -0.23 -1.65 -1.80 -1.67
76 15014 204921 0.0009 2.73 8 0.53 -0.23 -1.64 -1.92 -1.75

Trollope 77 7828 98287 0.0016 2.79 16 0.56 -0.27 -1.78 -2.06 -2.08
78 3299 23719 0.0022 2.99 11 0.43 -0.24 -2.12 -2.01 -2.13
79 1937 16274 0.0043 2.83 6 0.46 -0.27 -1.58 -2.55 -2.17
80 1807 16272 0.0050 2.84 5 0.44 -0.27 -1.86 -1.85 -1.55
81 8748 157468 0.0021 2.68 7 0.62 -0.31 -1.64 -1.69 -1.63
82 1588 13733 0.0054 2.88 6 0.43 -0.27 -1.70 -2.11 -2.17
83 8510 153907 0.0021 2.67 6 0.61 -0.30 -1.57 -1.70 -1.69
84 9991 190080 0.0019 2.67 6 0.62 -0.29 -1.55 -1.82 -1.55
85 2062 16088 0.0038 2.93 6 0.42 -0.25 -1.87 -2.11 -1.80
86 8754 155735 0.0020 2.65 6 0.61 -0.30 -1.49 -1.87 -1.61

Table 4.Texts and Network Properties (cont.)(69) The Abbot, (70) The Black Dwarf, (71) Bride Of
Lammermoor, (72) Chronicles Of The Canongate, (73) Guy Mannering, (74) Ivanhoe, (75) Old Mortality,
(76) Rob Roy, (77) Autobiography of Anthony Trollope, (79) Aaron Trow, (80) The Courtship Of Susan
Bell, (81) The Duke’s Children, (82) Harry Heathcote Of Gangoil, (83) The American Senator, (84) The
Eustace Diamonds, (85) An Unprotected Female, (86) John Caldigate.
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