
RESOURCE ORIENTED MODELLING: DESCRIBING RESTFUL
WEB SERVICES USING COLLABORATION DIAGRAMS

Areeb Alowisheq, David E. Millard and Thanassis Tiropanis
School of Electronics and Computer Science,University of Southampton, Southampton, SO17 1BJ, UK

{aaa08r, dem, tt2}@ecs.soton.ac.uk

Keywords: Resource Oriented Architecture, REST, UML collaboration diagrams, Semantic Web Services.

Abstract: The popularity of Resource Oriented and RESTful Web Services is increasing rapidly. In these, resources

are key actors in the interfaces, in contrast to other approaches where services, messages or objects are. This

distinctive feature necessitates a new approach for modelling RESTful interfaces providing a more intuitive

mapping from model to implementation than could be achieved with non-resource methods. With this

objective we propose an approach to describe Resource Oriented and RESTful Web Services based on UML

collaboration diagrams. Then use it to model scenarios from several problem domains, arguing that

Resource Oriented and RESTful Web Services can be used in systems which go beyond ad-hoc integration.

Using the scenarios we demonstrate how the approach is useful for: eliciting domain ontologies; identifying

recurring patterns; and capturing static and dynamic aspects of the interface.

1 INTRODUCTION

The increasing popularity of RESTful Web

Services is based on a number of factors like: being

light-weight, providing easy accessibility, and being

resource-oriented and declarative (Zhao and Doshi,

2009). This creates a demand for a modelling

technique to abstract design from implementation.

There are several approaches for modelling RESTfu l

and Resource-Oriented (RO) Web Services, based

on process calculus and related methods ; however

we adopt a more familiar approach (using UML)

focusing on resources, which contributed to the

success of RO and RESTfu l Web Serv ices.

The advantages of Resource-Oriented Modelling

lie from it being a more natural way to represent

REST and ROA solutions, allowing designs to be

easily mapped to solutions. It provides a simple

mechanis m for eliciting domain ontologies and

captures dynamic and static aspects of the interface,

it enables us to identify patterns across different

domains. In section 2 existing approaches for

RESTful and RO modelling are discussed. Section 3

discusses REST, ROA and our modelling approach.

In section 4, scenarios are modelled from different

domains. Sect ion 5 will d iscuss its advantages.

2 RELATED WORK

Several approaches are proposed to model

RESTful or ROA Web Services. Overdick (2007)

shows how ROA is modelled using -calculus, and

since there is a mapping from Business Process

Modelling Notation (BPMN) to -calculus, then

business processes can be modelled in ROA. Zhou

and Doshi (2009) categorised WS into three types;

they described them with ontology and rules and

provided a framework for composing those services

based on situation calculus . In work by (2010)

resources were modelled in triple spaces, and a

process calculus method was used to describe

resource composition. These approaches overlook

the REST constraint: hypermedia as the engine of

application state, meaning that servers guide clients’

transitions. They require formal descriptions which

is not intuitive to most developers. In our work we

use UML collaboration diagrams.

3. RO MODELLING

3.1. REST and ROA

Despite REST’s popularity, it is misunderstood

and oversimplified. Field ing, an author of the HTTP

and URI web standards, introduced the REST
architecture style in his PhD dissertation (Fielding,

2000). The aim of his thesis was to realise the

architectural aspects that made the Web successful
as a scalable network-based hypermedia system. The

constraints are: a client-server architecture,

statelessness, cache, uniform interface, layered, and
code on demand. These provide scalability,

portability, simple replication of servers, reliability,

efficiency, visibility, decoupling, and reusability.
Developers welcomed REST because it provided a

uniform interface without imposing additional

layers. Many service providers like Google, Yahoo
and Amazon started offering RESTfu l Web

Services; however this rapid uptake came with the

cost of not adhering to REST. The so-called
RESTful Web Services vio late two of REST’s

constraints: the uniform interface and statelessness.

The need for a guide on how to design RESTfu l
Web Services was met by Richardson and Ruby

(2007), who focus on Resource-Oriented

Architecture (ROA). The main idea in ROA is fo r
the server to identify the resources and provide a

uniform interface for them, through which a client

can create, read, update and delete the resources.
These actions are mapped respectively to the HTTP

methods, POST, GET, PUT and DELETE. Fielding

criticised ROA for not focusing on the hypermedia
constraint. This entails using media types to specify

not only the resources, but also the controls that

indicate which actions can be performed. An
example in HTML, the <form>, indicates GET or

POST. The difficulty in discussing RESTful Web

Service solutions lies in the fact that existing Web
Service existing Web Serv ice representations focus

on services or messages. In our work we have

sought to develop a resource-oriented modelling
approach using UML Collaboration Diagrams.

3.2. The UML Collaboration

Diagrams for RO Modelling

The UML collaboration diagram is one of the
UML interaction diagrams (Booch et al., 2005) and

it shows the interaction between objects and their

structural organisation. It can model static and
dynamic aspects of the system. When building ROA

and RESTful Web Service, we are creating an

interface not a complete system; therefore our
modelling approach focuses on the interface. The

interface is formed by the resources that the server

exposes to the client. In our modelling approach
resources take the place of objects in collaboration

diagrams. According to ROA, these resources have

a uniform interface: they can be created, read,
updated or deleted.

Sending a POST request to a factory resource, or
a class in UML terms, creates a resource. Figure 2

describes a Web Service for ordering pizzas. The

client reads the menu, and then submits its order.

Figure 1. RO Diagram

r, c and i on the messages respectively correspond to

read, create and instantiate. The links labelled
Contains are structural links showing how

resources relate to each other.

4 RO MODELLING OF PROBLEM

DOMAINS’ SCENARIOS

We have chosen five scenarios each from a key
problem domain. These domains are: Web mashups,

Enterprise Services, Business to Business (B2B),

Cloud Computing and Grid Computing. In each
domain we present a scenario, and its RO modelling.

Our intention is to provide evidence our technique

works across a range of important domains, and then
in Section 5 show how it facilitates their analysis.

4.1. Yahoo Pipes (Mashups)

Mashups combine APIs and data sources to form
new applications and new data sources . This

scenario is creating a mashup using Yahoo Pipes , an

interactive web application that enables the creation
and execution of mashups. A user can add widgets,

such as data sources, and filters to merge the data.

A user has built a stock quote mashup using
Yahoo Pipes(Donnelly, 2010), it displays last quotes

and chart for stocks. He uses the widgets to retrieve

original stock data from a .csv file at Yahoo Finance
downloads. Then he uses a widget to filter the stock

file for stock quotes. To loop through the obtained

data he uses a widget to display the results as a
chart.

The generic scenario of building mashups using

Yahoo Pipes is broken down to the following steps:

(1.) The client creates a mashup

(2.) The client creates widgets

(3.) The widget produces the results

(4.) The client reads the results

Figure 2 Modelling Mashups Creations with Yahoo Pipes

4.2. City University (Enterprise Services)

Enterprise Services integrate different systems,

whilst maintaining independent evolution of these
components. The scenario chosen is an integration

project from City University (2008) called Single

Sourcing of Programme Data (SSPD). Information
about the study programmes is used in different

processes, however these operate independently this

leads to inconsistencies in data and effort
duplication.

SSPD is concerned with how programme

information is created, updated and used, so that
different processes could be facilitated and any

inconsistencies resolved. It enables academic and

administrative staff to maintain module and
programme specifications and submit for approval.

This scenario can be decomposed into:

(1.) Academic Staff reads the programme info

(2.) Creates a modification

(3.) Can update it, when it is finished

 (4.) It is approved by the Administrative staff

 (5.) The programme info is updated

(6.) It can be read by interested processes

Figure 3 Modelling City University’s SSPD

4.3. Reverse Auctioning (B2B)

Business to Business services offer the ability to

share information and performing transactions on
the Web. The scenario modelled here is a reverse

auctioning scenario from (Decker and Weske, 2007):

“A buyer (e.g., car manufacturer) uses reverse
auctioning for procuring specially designed

components. In order to get help with selecting the

right suppliers and organizing and managing the
auction, the buyer outsources these activities to an

auctioning service. The auctioning service

advertises the auction, before different suppliers can
request the permission to participate in it. The

suppliers determine the shipper that would deliver

the components to the buyer or provide a list of
shippers with different transport costs and quality

levels, where the buyer can choose from. Once the

auction has started, the suppliers can bid for the
lowest price. At the end, the buyer selects the

supplier according to the lowest bid. After the

auction is over, the auctioning service is paid.”

The scenario could be broken down into:

(1.) The buyer creates an auction

(2.) The buyer starts the auction

(3.) The suppliers place their bids

(4.) The buyer selects a bid

(5.) The buyer pays for the service

(6.) The buyer deletes the auction

Figure 4 Modelling Reverse Auctioning

4.4. TimesMachine (Cloud Computing)

Cloud computing offers software, platforms and

infrastructures as services to clients. These are

dynamically scalable to respond to high peak loads.
The cloud computing scenario we chose is the New

York Times project called TimesMachine (Klems et

al., 2009), which aims to provide access to issues
dating back to 1851, adding up to 11 million art icles.

The team wanted to generate the PDF files from
TIFF images. They decided to generate all the PDF

files and serve them on request. The size of TIFF

files was 4 Terabytes. So they used Amazon's Elastic
Compute Cloud (EC2) and Simple Storage Service

(S3). The TIFF files were uploaded to S3, they

started a Hadoop cluster of 100 customized EC2
Machine Images. They transferred the conversion

application. That resulted in the conversion to PDFs

and storing the results to S3 taking 36 hours only.
The decomposition of the scenario:

(1.) Create the data items, upload the images

(2.) Create a Hadoop Cluster

(3.) Create an application and upload it

(4.) The application returns the results

(5.) The client reads the results

Figure 5 NYT Cloud Computing RO Model

4.5. NEESgrid (Grid Computing)

Grid Computing is concerned with enabling the

utilisation of distributed resources to provide a

seamless platform for computational or data-
intensive applications. This platform is used to

enable remote collaboration and instrument sharing.

NEESgrid is an NSF funded project to build a virtual
laboratory for earthquake engineers. Using grid

technologies enables remote access and control to

observational sensors, experimental data,
computational resources, and earthquake

engineering control systems such as shake tables and

reaction walls (Gullapalli et al., 2004).
Earthquake engineers wanted to study the effect

of an earthquake on different types of substances

and structures, these different structures and their
shake tables are distributed across a number of labs,

the aim was to coordinate these experiments with

computer simulations. So the Multi-site Online
Simulation Test (MOST) was devised to test and

illustrate this capability using the NEESgrid system.

MOST coupled physical experiments testing the
effect of an earthquake on the interior of a multi-

story building at 3 different sites each testing a part

of the structure. MOST linked the physical
experiments at the University of Illinois at Urbana-

Champaign (UIUC) and at the University of

Colorado, Boulder (CU) with a numerical
simulation at the National Centre for

Supercomputing Applications (NCSA). A simulation

coordinator coordinates the overall experiment.

The scenario consists of the following steps:

(1.) Create experiments and the simulation

(2.) Create an experiment coordinator

(3.) The coordinator starts the experiments

(4.) The coordinator retrieves experiment results

(5.) The coordinator aggregates the results

(6.) The results are read

Figure 6 NEESgrid Experiment RO Model

5. ADVANTAGES OF RO

MODELLING

5.1 Eliciting Domain Ontologies

Semantic Web Service approaches such as
SAWSDL (Farrell and Lausen, 2007), and OW L-S

(Martin et al., 2004) require domain ontologies. The

structural view that RO models offer can be used to
elicit domain ontologies. By mapping the resource

factories to classes, resources to objects and the links

into relationships, the structure of the domain
ontology can be elicited, what remains is to add the

data properties. We can use this simple mapping to

create the basis of an ontology in OWL (Bechhofer
et al., 2004) for the scenario 4.3:
:Auction a owl:Class.

:Bid a owl:Class;

:Payment a owl:Class.

:For a owl:ObjectProperty;

rdfs:domain :Bid; rdfs:range :Auction.

:Has a owl:ObjectProperty;

rdfs:domain :Auction; rdfs:range :Payment.

5.2 Modelling Static and Dynamic

Aspects

This is a result of being based on UML

collaboration diagrams. The static aspect of RO

models informs developers on the resource type and
the relationships between them from the client’s

point of view; in other words, the domain model.

The dynamic aspect is shown by the messages
showing the control flow: how the server needs to

guide clients to achieve the functionality described,

and what “next state” options the server should
provide.

5.3 Identifying Recurring Patterns

RO models aid in identify ing recurring patterns.
Some we know from other software engineering

areas. For example:

Factory: the factory is a well-known pattern that

appears several times in all of the scenarios. In it a

given object creates and initialises new objects.

Returning Results : This is where a resource creates

results for a client to read. Th is appears in steps 3

and 4 in Figure 2, and steps 4 and 5 in Figure 5.

Controller: this occurs in Figure 6, where a resource

updates several resources.
Identifying patterns can aid in providing RO

solutions when modelling systems, and also in

designing code generation tools for patterns, making
development faster and less error-prone.

6. CONCLUSIONS AND FUTURE

WORK

We introduced an RO modelling approach for

modelling RESTful and RO Web Services. We used
RO models to describe Web Services in five

different problem domains. The approach models

structural and behavioural aspects of the Web
Service. The structural aspect can be used to elicit

domain ontologies. Moreover RO models can be

used to describe recurring patterns. Further work
will be done to identify recurring patterns from the

RESTful and RO perspective; this will help in

providing solutions to common problems and in
informing design decisions for standards and

platforms, which will emerge in this dynamic area.

7. REFERENCES

BECHHOFER, S., HARMELEN, F. V., HENDLER,

J., HORROCKS, I., MCGUINNESS, D. L.,

PATEL-SCHNEIDER, P. F. & STEIN, L.

A. 2004. OW L Web Ontology Language

Reference. In: DEAN, M. & SCHREIBER,

G. (eds.). W3C Recommendation, World

Wide Web Consortium (W3C).

BOOCH, G., RUMBAUGH, J. & JACOBSON, I.

2005. Unified Modeling Language User

Guide, Addison-Wesley Professional.

CITY UNIVERSITY. 2008. Introducing SOA at

City University, City University, London.

DECKER, G. & W ESKE, M. 2007. Behavioral

consistency for B2B process integration.

Advanced Information Systems

Engineering, Proceedings, 4495, 81-95.

DONNELLY, P. 2010. Yahoo Finance Stock Quote

Watch List Feed [Online]. Yahoo.

Available:

http://pipes.yahoo.com/31337/watchlist

[Accessed 26/02/2010 2010].

FARRELL, J. & LAUSEN, H. 2007. Semantic

Annotations for WSDL and XML Schema.

W3C Recommendation, World Wide Web

Consortium (W3C).

FIELDING, R. T. 2000. Architectural Styles and the

Design of Network-based Software

Architectures. Doctoral dissertation,

University of California.

GULLAPALLI, S., DYKE, S., HUBBARD, P.,

MARCUSIU, D., PEARLMAN, L. &

SEVERANCE, C. Year. Showcasing the

features and capabilit ies of NEESgrid: A

grid based system for the earthquake

engineering domain. In: the 13th IEEE

International Symposium on High

Performance Distributed Computing, 4-6

June 2004 2004 Honolulu, Hawaii USA.

268-269.

HERNANDEZ, A. G. & GARCIA, M. N. M. Year.

A Formal Definition of RESTful Semantic

Web Services. In: First International

Workshop on RESTful Design (WS-REST

2010), 2010 Raleigh, North Carolina. 39-

45.

KLEMS, M., NIMIS, J. & TAI, S. 2009. Do Clouds

Compute? A Framework for Estimating the

Value of Cloud Computing. Designing E-

Business Systems, 22, 110-123.

MARTIN, D., BURSTEIN, M., HOBBS, J.,

LASSILA, O., MCDERMOTT, D.,

MCLLRAITH, S., NARAYANAN, S.,

PAULOCCI, M., PARSIA, B., PAYNE, T.

R., SIRIN, E., SRINIVASAN, N. &

SYCARA, K. 2004. OWL-S: Semantic

Markup for Web Serv ices. W3C Member

Submission, World Wide Web Consortium

(W3C).

OVERDICK, H. Year. The Resource-Oriented

Architecture. In: the IEEE Congress on

Services, 7-11 Ju ly 2008 2007 Hawaii,

USA. 340-347.

RICHARDSON, L. & RUBY, S. 2007. RESTful

Web Services, O'Reilly Media.

ZHAO, H. & DOSHI, P. Year. Towards Automated

RESTful Web Service Composition. In:

Proceedings of the 2009 IEEE International

Conference on Web Services, 2009.

1586928: IEEE Computer Society, 189-

196.

http://pipes.yahoo.com/31337/watchlist

