The University of Southampton
University of Southampton Institutional Repository

Theoretical and practical foundations of large-scale agent-based micro-storage in the smart grid

Record type: Article

In this paper, we present a novel decentralised management technique that allows electricity micro-storage devices, deployed within individual homes as part of a smart electricity grid, to converge to profitable and efficient behaviours. Specifically, we propose the use of software agents, residing on the users' smart meters, to automate and optimise the charging cycle of micro-storage devices in the home to minimise its costs, and we present a study of both the theoretical underpinnings and the implications of a practical solution, of using software agents for such micro-storage management. First, by formalising the strategic choice each agent makes in deciding when to charge its battery, we develop a game-theoretic framework within which we can analyse the competitive equilibria of an electricity grid populated by such agents and hence predict the best consumption profile for that population given their battery properties and individual load profiles. Our framework also allows us to compute theoretical bounds on the amount of storage that will be adopted by the population. Second, to analyse the practical implications of micro-storage deployments in the grid, we present a novel algorithm that each agent can use to optimise its battery storage profile in order to minimise its owner's costs. This algorithm uses a learning strategy that allows it to adapt as the price of electricity changes in real-time, and we show that the adoption of these strategies results in the system converging to the theoretical equilibria. Finally, we empirically evaluate the adoption of our micro-storage management technique within a complex setting, based on the UK electricity market, where agents may have widely varying load profiles, battery types, and learning rates. In this case, our approach yields savings of up to 14% in energy cost for an average consumer using a storage device with a capacity of less than 4.5 kWh and up to a 7% reduction in carbon emissions resulting from electricity generation (with only domestic consumers adopting micro-storage and, commercial and industrial consumers not changing their demand). Moreover, corroborating our theoretical bound, an equilibrium is shown to exist where no more than 48% of households would wish to own storage devices and where social welfare would also be improved (yielding overall annual savings of nearly £1.5B).

PDF vytelingum_etal2011.pdf - Version of Record
Download (3MB)

Citation

Vytelingum, Perukrishnen, Voice, Thomas, Ramchurn, Sarvapali, Rogers, Alex and Jennings, Nick (2011) Theoretical and practical foundations of large-scale agent-based micro-storage in the smart grid Journal of Artificial Intelligence Research, 42, pp. 765-813. (doi:10.1613/jair.3446).

More information

Published date: 2011
Additional Information: AAMAS 2010 iRobot Best Paper Award
Organisations: Agents, Interactions & Complexity

Identifiers

Local EPrints ID: 272961
URI: http://eprints.soton.ac.uk/id/eprint/272961
PURE UUID: bd04daa1-86ca-4c35-b473-6d37501bd6eb
ORCID for Sarvapali Ramchurn: ORCID iD orcid.org/0000-0001-9686-4302

Catalogue record

Date deposited: 25 Oct 2011 08:46
Last modified: 24 Jul 2017 16:40

Export record

Altmetrics

Contributors

Author: Perukrishnen Vytelingum
Author: Thomas Voice
Author: Sarvapali Ramchurn ORCID iD
Author: Alex Rogers
Author: Nick Jennings

University divisions


Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×