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In this technical report, we prove some theorems leading to new mathematical expressions.
These expressions then can be exploited to form a fast and reliable similarity registration
technique based on signed distance functions. Let us initially define signed distance function
of shape p as:
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where ¢, (x, y) : Q — Ris a Lipschitz function and Q is the bounded domain, Dg stands for

minimum Euclidean distance between perimeter B of the shape and the domain Q, and I, is
the subset of Q) representing the interior of the shape.

We basically start from the following dissimilarity measure introduced by Paragois et al. [1]:
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where ¢,(x,y):Q—>% and ¢, (x,y): @ —> R are signed distance functions of shapes p and g:

Registration between two shapes aims to retrieve transform parameters s, 6, r, and T,
(scaling, rotation, and translations along x and y axes respectively) minimizing dissimilarity
measure (2) between 9, and ¢_, such that
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whereQ,4,5,7,,7, and Ry are image domain, the estimated angle, scale, translations
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parameters, and a conventional rotation (transform) matrix Ry ={ } respectively.
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a) Rotation

Let us now assume that the two shapes are centered at the origin of the coordinate system and
we would like to find the optimal rotation angle minimizing the following dissimilarity
measure.
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Centralized shapes are mapped to polar coordinates i.e., (/3,, (p,w) and gﬁq(p,w) such

that x=pcos@wand y= psinw. In theorem 1, we prove that the rotation angle minimizing
term (5) minimizes dissimilarity measure (4):
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Theorem 1: The minimizer of dissimilarity term (4) is the minimizer of term (5)
where A =R,

6,(p.0)~4,(p.0+6))| dp do 5)

Proof:

Dissimilarity measure (4) can be written in polar coordinate system, i.e.:
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where pand @ are polar coordinates so thatx=pcosw, and y = psin@ .

In a polar coordinate system, term (6) can be written as:
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It is easy to see from (6) and (7) that a parameter 0 minimizing
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Scaling

The dissimilarity measure (2) is reduced to the following term when two shapes are different
in scaling:
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where the relation between two shapes’ SDFs which have different scales is well known to
be:
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In Theorem 2, we prove that the scaling parameter s minimizing the following term is a
minimizer of term (8).
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where M? and M2, are respectively the (m + n)™ order geometrical moments of &p (x,y) and

mn mn

¢3q (x,y) defined as:
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Theorem 2: The scaling parameter minimizing term (8) is also the minimizer of term (10).

Before proving theorem 2, we need to visit theorem 3:

Theorem 3: Let a geometrical moment with orders m and n of signed distance function
(SDF) ¢,(x,y):Q —> R be M ;
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The geometrical moment with orders m and n of the scaled
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SDF with scaling parameter s is

Proof:

M, = ﬂx'” ", (x, y)dxdy (11)
The m™ and n™ order moment of the scaled SDF l¢q (sx,sy) is therefore calculated as:
s
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By changing the variables X = sxand Y = sy, equation (12) is rewritten as:
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Proof of theorem 2: The signed distance functions ¢, (x, y) and ¢, (x, y) can be

approximated in terms of their geometrical moments, i.e.:

G (x, )= > M, x"y" (14)
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where M| = J. I x"y"@.(x,y)dxdy and i can be p or g. M and N are the total number of
Q

geometrical moments around the axes x and y. If equations (14) are substituted in equation
(8), by using the result of theorem 3, one can obtain:
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By letting a, denote (M b —hJ , equation (15) can be written as:
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Without loss of generality, for Q = [0, L]x [0,H], E_ in (16) can be calculated as:
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It is easy to conclude from (17) that
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By recalling that the term a,, (M b —ij is the only term which is a function of the
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scaling parameter s and from inequality (18), it is straightforward to see that the scaling
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parameter s minimizing is a minimizer of E_ given in equation (8).
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