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In this technical report, we prove some theorems leading to new mathematical expressions. 

These expressions then can be exploited to form a fast and reliable similarity registration 

technique based on signed distance functions. Let us initially define signed distance function 

of shape p as: 
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where ( ) ℜ→Ω:, yxBφ is a Lipschitz function and Ω  is the bounded domain, DE stands for 

minimum Euclidean distance between perimeter B of the shape  and the domain Ω, and Ip is 

the subset of Ω  representing the interior of the shape. 

We basically start from the following dissimilarity measure introduced by Paragois et al. [1]: 
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where ( ) ℜ→Ω:, yxpφ  and ( ) ℜ→Ω:, yxqφ  are signed distance functions of shapes p and q: 

Registration between two shapes aims to retrieve transform parameters s , θ , 
xT  and 

yT  

(scaling, rotation, and translations along x  and y  axes respectively) minimizing dissimilarity 

measure (2) between 
pφ  and 

qφ , such that  
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where Ω ,
yx TTs ˆ,ˆ,ˆ,θ̂  and Rθ are image domain, the estimated angle, scale, translations 

parameters, and a conventional rotation (transform) matrix .
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a) Rotation 

Let us now assume that the two shapes are centered at the origin of the coordinate system and 

we would like to find the optimal rotation angle minimizing the following dissimilarity 

measure. 
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Centralized shapes are mapped to polar coordinates i.e., ( )ωρφ ,ˆ
p  and ( )ωρφ ,ˆ

q  such 

that ωρ cos=x and ωρ sin=y . In theorem 1, we prove that the rotation angle minimizing 

term (5) minimizes dissimilarity measure (4): 
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Theorem 1: The minimizer of dissimilarity term (4) is the minimizer of term (5) 

where 2R=Λ . 

 

Proof: 

Dissimilarity measure (4) can be written in polar coordinate system, i.e.: 
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where ρ and ω  are polar coordinates so that ωρ cos=x , and ωρ sin=y . 

In a polar coordinate system, term (6) can be written as: 
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It is easy to see from (6) and (7) that a parameter θ̂  minimizing 
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b) Scaling 

The dissimilarity measure (2) is reduced to the following term when two shapes are different 

in scaling: 
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where the relation between two shapes’ SDFs which have different scales is well known to 

be: 
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In Theorem 2, we prove that the scaling parameter s minimizing the following term is a 

minimizer of term (8). 
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where p
mnM and q

mnM  are respectively the (m + n)
th

 order geometrical moments of ),(ˆ yxpφ  and 

),(ˆ yxqφ  defined as: 
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Theorem 2: The scaling parameter minimizing term (8) is also the minimizer of term (10). 

 

Before proving theorem 2, we need to visit theorem 3: 

Theorem 3: Let a geometrical moment with orders m and n of signed distance function 

(SDF) Ryxq →Ω :),(φ  be
q

mnM . The geometrical moment with orders m and n of the scaled 

SDF with scaling parameter s is
3++nm

q
mn

s
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Proof:  
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The m
th

 and n
th

 order moment of the scaled SDF ),(
1

sysx
s

qφ is therefore calculated as: 
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By changing the variables sxX = and syY = , equation (12) is rewritten as: 
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Proof of theorem 2: The signed distance functions ),( yxpφ  and ),( yxqφ  can be 

approximated in terms of their geometrical moments, i.e.:  
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where ∫∫
Ω

= dxdyyxyxM i

nmi

mn ),(φ and i can be p or q. M and N are the total number of 

geometrical moments around the axes x and y. If equations (14) are substituted in equation 

(8), by using the result of theorem 3, one can obtain: 
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By letting 
mna denote 
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Without loss of generality, for [ ] ],0[,0 HL ×=Ω , 
sE  in (16) can be calculated as: 
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It is easy to conclude from (17) that 
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By recalling that the term 
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scaling parameter s and from inequality (18), it is straightforward to see that the scaling 

parameter s minimizing 
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