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Abstract: Many problems of system identification, model reduction andsignal processing can be
posed and solved as a structured low-rank approximation problem. In this paper a reformulation of
the structured low-rank approximation problem as minimization of a multivariate rational function is
considered. Using two different parametrizations, we showthat the problem reduces to optimization
over a compact manifold or to a set of optimization problems over bounded domains of Euclidean space.
We make a review of methods of polynomial algebra for global optimization of the rational cost function.

1. INTRODUCTION

An affine matrix structureS (p) is an affine map

S (p) = S0+
np

∑
i=1

Si pi (1)

from the structure parameter spaceR
np to the space of matri-

cesRm×n. In this paper we assume thatm < n. The family
{S (p) : p ∈ R

np} is called theS -structured matrices. The
structured low-rank approximation(SLRA) problem [10, 19]
is formulated as follows.
Problem 1.(SLRA). For a givenp ∈ R

np, structureS and
natural numberr < m

minimize
∆p∈Rnp

‖∆p‖2 subject to rankS (p−∆p)≤ r. (2)

Many problems in system identification, signal processing and
computer algebra can be posed and solved as SLRA problem
[10, 19]. A common case of an affine structure is

S (p) =
[

B1(p)| · · · |Bq(p)
]T
, (3)

where each blockB1(p), . . . ,Bq(p) is block-Toeplitz, block-
Hankel, unstructured, or exact. For structure (3) efficientlocal
optimization methods (based onvariable projectionprinciple)
have been designed [8].

The aim of this paper is to use polynomial algebra algorithms
to find the global minimum (and local minima) of the SLRA
problem. For this reason we show that the variable projection
principle leads to minimization of a multivariate rationalfunc-
tion. A similar approach has been recently proposed in [14],
but it has more indeterminates involved, and therefore higher
computational complexity.

1.1 Variable projection for SLRA problem

The rank constraintS (p−∆p)≤ r is equivalent to

RS (p−∆p) = 0, for anR∈ R
d×m, rankR= d.

whered := m− r. Hence the SLRA problem can be reformu-
lated as the following double minimization problem.

minimize
R: rankR=d

min
∆p

‖∆p‖2

subject to G(R)∆p= s(R),
(4)

whereG(R) ∈ R
nd×np ands(R) ∈ R

nd×1 are given by

s(R) := vec(RS (p)) ,

G(R) :=
[

vec(RS1) · · · vec
(

RSnp

)]

,

and are linear functions in the elements ofR.

If the assumptionnp ≥ nd holds, the inner minimization prob-
lem in (4) is an underdetermined least squares problem. The
norm of itsminimum norm solution[1, Ch. 1] is the following
function ofR:

f (R) :=
(

min
∆p

‖∆p‖2 subject toG(R)∆p= s(R)
)

=
(

min
∆p

‖∆p‖2 subject toRS (p−∆p) = 0
)

= s(R)TΓ(R)†s(R),

(5)

where
Γ(R) := G(R)G(R)T ∈ R

nd×nd,

and Γ(R)† is the pseudoinverse ofΓ(R). Therefore we can
eliminate∆p from (4) and obtain an equivalent problem

minimize
R: rankR=d

f (R), (6)

See [8, Ch. 4] or [19, Ch. 3] for more details on equivalence
between problems (4) and (6).

1.2 SLRA as a rational minimization problem

SinceG(R) is linear inR, the matrixΓ(R) is aquadratic poly-
nomial matrix(having entries which are quadratic functions in
elements ofR). If det

(

Γ(R)
)

is not a zero polynomial, then we
can define the rational inverse ofΓ(R)

Γ(R)−1 =
adj

(

Γ(R)
)

det
(

Γ(R)
) , (7)

where adj
(

Γ(R)
)

is the adjoint polynomial matrix (the matrix
of algebraic complements).

If for a fixed R the matrixΓ(R) is nonsingular, then the pseu-
doinverse coincides with the polynomial inverse and the cost
function (5) is equal to

f (R) =
s(R)T adj

(

Γ(R)
)

s(R)

det
(

Γ(R)
) . (8)



Remark 2.If det(Γ(R)) > 0 for all matricesR under consider-
ation, then the SLRA problem is equivalent to minimization of
a rational function.

2. DIFFERENT PARAMETRIZATIONS OF THE SEARCH
SPACE

The cost function (5) is homogeneous in the following sense:
f (R) = f (UR) for any nonsingular matrixU ∈ R

d×d, and
therefore f (R) depends only on subspace ofR

m, spanned by
the rows ofR.

In other words, f is defined on aGrassmann manifold
GrR(d,m) [2, App. C] (the manifold of alld-dimensional sub-
spaces ofRm). In what follows we consider two parametriza-
tions of the manifold by subsets of the set ofd×m matrices of
full row rank.

2.1 Minimization over orthogonal bases

For any subspace ofRm there exists an orthonormal basis,
hence it is sufficient to consider alld× m matrices with or-
thonormal columns:

Mort = {R∈ R
d×m : RRT = Id },

and reduce (6) to
minimize

R∈Mort
f (R). (9)

Note that this parametrization is still ambiguous, becausefor
anyR∈R

d×m, RRT = Id andU ∈R
d×d, UUT = Id holds

URRTUT = Id.

In particular, optimalR for problem (9) is not unique.

However,Mort is a submanifold of the(dm−1)-sphere inRdm

defined by
d,m

∑
i, j=1

(Ri j )
2 = d, (10)

and therefore it is compact (compact Stiefel manifold[2,
App. C] ).

If det(Γ(R)) 6= 0 for all R∈ R
d×m of full row rank, thenf (R)

is a continuous and infinitely differentiable rational function on
Mort , and therefore it attains a global minimum onMort . This
makes the optimization problem (9) well-defined.

2.2 Exploiting input/output partitions

For anyd×m matrix R of full row rank one can find a set of
d linearly independent columns. In other words, there existsa
permutation matrixΠ such that

R= [Q −P ]Π,

whereQ∈R
d×r andP is ad×d nonsingular matrix. Therefore

the row subspace ofR coincides with the row subspace of the
matrix

[

QP−1 −Id
]

Π,

and alld-dimensional subspaces ofR
m are generated by matri-

ces[ X −Id ]Π.

Proposition 3.The SLRA problem is equivalent to

minimize
Π

min
X∈Rd×r

fΠ(X), (11)

where
fΠ(X) := f

(

[X −Id ]Π
)

.

For a fixedΠ different matrices of type[ X −Id ]Π correspond
to different subspaces. In other words, the mapX 7→ [ X −Id ]
represents a chart of the manifold GrR(d,m) (a standard coor-
dinate chart [2, App. C]).

Moreover, for a fixedΠ the inner minimization problem in (11)
minimize

X∈Rr×d
fΠ(X). (12)

is, in fact, astructured total least-squares(STLS) problem [8]
for the structureΠS (p). Indeed

[X −Id ]ΠS (p) = 0 ⇐⇒ AXT = B,

where matricesA∈R
n×r andB∈ R

n×d defined by

[A B]T := ΠS (p)

The STLS problem has advantage of being an unconstrained
optimization problem with fewer optimization variables than
the problem (9). However, the STLS problem may be ill-posed
(or ill-conditioned), becauseRd×r is not compact and all global
minima of fΠ(X) may not be attained (or attained for very large
X). The following theorem shows that we can restrict the search
space of the STLS problems (11) to compact subsets ofR

d×r .
Theorem 4.The SLRA problem is equivalent to

minimize
Π

min
X∈Td,r

fΠ(X), (13)

where
Td,r := {X ∈ R

d×r : |Xjk| ≤ 2 j−1}.

Proof. It suffices to show that for anym×d matrix R of
full row rank matrix there exist a permutation matrixΠ and a
nonsingular matrixU , such thatUR= [X −Id ]Π andX ∈ Td,r .

(1) d = 1. LetV = [v1 · · · vm] be a rank one 1×m matrix.
Then there existsj such that|vk| ≤ |v j | for any k, 1 ≤

k ≤ m. If we take u = −v−1
j and Π the permutation

matrix interchangingj-th andm-th elements, thenuVΠ =
[x1 · · · xm−1 −1] and|xk| ≤ 1.

(2) d > 1. DefineR1 = R. Consider the last row(R1)d of the
matrixR1. By the previous case (d = 1) there existu1 ∈R

andΠ1 such that
u1(R1)d = [vd,1 · · · vd,m−1 −1]Π1

and|vd,k| ≤ 1. By subtracting the last row of the matrixR
from others we obtain that

U1R1 =

[

R2 0
vd,1 · · · vd,n−1 −1

]

Π1, (14)

whereU1 is a nonsingular matrix andR2 is a (d− 1)×
(m−1) matrix of full row rank. Repeating this procedure
for Rk, k = 2, . . . ,d− 1, we obtain that existU0 andΠ0
such thatR0 :=U0RΠ0 has the form

R0 =







v1,1 . . . v1,r −1 0 0
...

...
.. .

. . . 0
vd,1 . . . vd,r . . . vd,m−1 −1






, (15)

where|v j ,k| ≤ 1.
By subtracting a scaled first row ofR0 from each other

row of R0, we obtain the matrix

W1R0 =















v1,1 · · · v1,r −1 0 0 · · · 0
v2,1,1 · · · v2,r,1 0 −1 0 · · · 0

...
...

... v3,r+1
. ..

. . .
...

...
...

...
...

. ..
. . . 0

vd,1,1 · · · vd,r,1 0 vd,r+1 · · · vd,m−1 −1















,



such that|v j ,k,1| ≤ 2. If we repeat this process for second
row, third row, etc., we can eliminate with nonsingular
transformations all elements under the diagonal of the
right block ofR0

Wd−1 · · ·W2W1R0 = [ X −Id ] ,

such that|Xjk| ≤ 2 j−1. ✷

Remark 5.(Local optimization methods). From the viewpoint
of numerical optimization, the problem (13) may seem more
difficult, because it involves a combinatorial problem of choos-
ing the best permutationΠ. For local optimization with ini-
tial approximationR0 the exhaustive search over all possible
permutations, however, can be avoided. The following strategy
may be suggested based on Theorem 4.

• ForR0 choose parametrizationΠ, such that

UR0 = [ X −Id ]Π and X ∈ Td,r .

• Perform local optimization offΠ until the optimization
variable X significantly exceeds the domainTd,r . (This
can be checked for example by monitoring the size of
‖X‖F.) In this case, restart the optimization with initial
approximation equal toR= [ X −Id ]Π, whereX is the
current value of the parameterX, by choosing a new
permutation matrixΠ.

3. GLOBAL SOLUTION OF THE SLRA PROBLEM

In this section we consider methods of optimization of a rational
functions that exploit the algebraic structure of the problem and
allow to find a global minimum.

3.1 Overview of optimization methods

SDP relaxations Problem (9) or each subproblem of (13) can
be reduced to minimization of a rational functionQ(z)

H(z) , z∈ R
M

subject to polynomial constraintsCk(Z) ≥ 0, 1≤ k ≤ s. This
problem is equivalent to minimization over the set of Borel
measures

minimize
µ

∫

RM

Q(Z)dµ , subject to

∫

RM

H(Z)dµ = 1,
∫

RM

Ck(Z)dµ ≥ 0,

where the minimum corresponds to an atomic measure [11].
This problem can be expressed as a generalized moment prob-
lem and solved by semidefinite programming (SDP) relaxations
of fixed order that involves a truncated generalized moment
matrix.

It is known that the relaxations converge to a global minimum
[9], however the speed of convergence is not guaranteed. Op-
timization of a rational function is implemented in package
GloptiPoly [11].

Systems of polynomial equationsThe second, more general,
approach consists of finding stationary points of the cost func-
tion as solutions of polynomial systems of equations.

Consider first the STLS problem (12) for a fixedΠ. Since
fΠ(X) is a rational function with no singularities, the local

minima of the function are attained at stationary points, i.e.
solutions of the system

∂
∂Xi j

fΠ(X) = 0, for i = 1, . . . ,d, j = 1, . . . , r. (16)

Denote

fΠ(X) =
QΠ(X)

HΠ(X)
,

whereH(X) 6= 0. Then the system (16) is equivalent to

qi j (X) :=
∂QΠ
∂Xi j

(X)HΠ(X)−QΠ(X)
∂HΠ
∂Xi j

(X) = 0,

for i = 1, . . . ,d, j = 1, . . . , r,
(17)

which is a system of polynomial equations. The number of
equation coincides with the number of variablesdr.

The problem (9) can be also reduced to finding stationary
points, introducing Lagrange multipliers for the constraint
RRT = Id. The number of equations in this case is again equal
to the number of indeterminates.

3.2 Solving systems of polynomial equations

In what follows, we consider a polynomial system with the
number of equations equal to the number of variables

q1(z1, . . . ,zM) = 0,
...

qM(z1, . . . ,zM) = 0,

(18)

also called acomplete intersection system.

For multivariate system of equations it is possible that the
system has infinite number of solutions. Most multivariate
solvers deal with the case of finite number of solutions and we
consider only this case. The number of complex solutionsN
(and therefore possible local minima) is bounded by the Bezout
bound [7, Ch. 8]:

N ≤
M

∏
i=1

deg(qi). (19)

Resultant-based methodsThese methods are based on multi-
variate resultants. They reduce the solution to univariatepoly-
nomial equations, however they are applicable only for small
degrees or sparse polynomials (see for example [5]). Our poly-
nomials are usually dense and have large degrees, so we do not
consider these methods.

Stetter-Moller matrix methods These methods are based on
the following fact: the coordinates of the roots of the system of
equations coincide with the eigenvalues ofmultiplication ma-
trices Azk, corresponding to joint eigenspaces of the matrices.
The multiplication matrices are representation of multiplication
by variableszk in a basis of the residue ringR[X]/I of the
ideal of the system. The problem therefore reduces to finding
multiplication matrices and computing their joint eigenspaces.
See [7, Ch. 2] for more details.

The residue ringR[X]/I has dimension equal toN (the num-
ber of complex solutions), and the matrices are sparseN×N
matrices. In addition, to obtain the multiplication matrices one
needs to calculate a Grobner basis. Having a Grobner basis, the
matrices can be calculated using, for example, the ApCoCoA
package [15].



Triangular systems and rational univariate representations
One can try to find an equivalent to (18) triangular system

g1(z1) = 0
g2(z1,z2) = 0

...
gM(z1, . . . ,zM) = 0

and sequentially eliminate variables, solving at each steppoly-
nomial equations in one variable. However, this procedure is
numerically inaccurate and is being replaced by the rational
univariate representation approach of [4].

Both approaches require computation of a Grobner basis. Ef-
ficient computations with Grobner bases, in their turn, involve
linear algebra computations withN×N matrices. State of art al-
gorithm for the above approaches are implemented as packages
for Maple [17].

Subdivision methods Note that we are interested to find only
real roots of a polynomial system in a bounded box[a1,b1]×
·· ·× [aM,bM]. For this particular case one can exploit properties
of Bernstein polynomials to efficiently locate real zeros [12].

The complexity of the algorithm depends on the number
of coefficients in the Bernstein representation, which can be
bounded by(deg(qi))

M for a single polynomialqi . The Bern-
stein subdivision algorithms are implemented in the package
SYNAPS [16].

Homotopy continuation This method is based on considering
a homotopy from a simpler system to the system which is to be
solved, and tracking the solutions. In general, this is a merely
heuristic method and there is no guarantee of obtaining all the
roots.

All the complex solutions are tracked, therefore the complexity
depends onN. This method is implemented in the package
PHCpack [3].

Perturbed systems For large degree of polynomials the com-
putation of the Grobner basis may become infeasible. In [6] it
is proposed to solve a perturbed system already in a form of a
Grobner basis

λzD+1
1 +q1(z1, . . . ,zM) = 0

...

λzD+1
M +qM(z1, . . . ,zM) = 0

(20)

whereD=maxdegqi . This method is motivated by the problem
of minimization of a polynomialH(Z) of degree 2d, where
the perturbation of the system of equations is equivalent to
perturbing a polynomial itself

Hλ (Z) := λ (z2d+2
1 + . . .+ z2d+2

M )+H(Z). (21)

The global minimum ofH(X) can be approximated by global
minima ofHλ (X) whenλ → 0 (see [6]).

We were not able to find a perturbation of a rational function
that leads to a system of the form (20). However, we may
perturb the system (17), hoping that the roots of the perturbed
system (20) do not diverge too far.

Complexity of the methods As we discussed, the complexity
of the polynomial system solving usually depends on the num-
ber of complex solutions.

Let us first calculate the total degree of the involved polynomi-
als. The polynomial matrixΓ(R) consists of quadratic polyno-
mials, and therefore

degdet
(

Γ(R)
)

≤ 2nd.

The degree of the numerator is also bounded by 2nd, since

degadj
(

Γ(R)
)

≤ 2(nd−1)

and degs(R) = 1. The degree bounds are almost always at-
tained.

Hence, the degrees of polynomial equations (18) is bounded by
4nd− 1 The total number of solutions is bounded by(4nd−
1)dr for the STLS problem.

4. EXAMPLES

4.1 Identification of autonomous systems

SLRA of a Hankel matrix withm = r + 1 rows and rank
reduction by 1 is equivalent to identification of an autonomous
linear-time-invariant system of order less than or equal tor [10].

A Hankel matrix is defined by

S (p) =









p1 p2 · · · pn
p2 p3 · · · pn+1
...

...
...

pm · · · · · · pnp









,

wherenp = m+n−1. The matricesSi in (1) are given by

(Si) jk =

{

1, if j + k= 1− i,
0, if j + k 6= 1− i.

(22)

Due to the constraintnp ≥ nd, only rank reduction by one is
possible, and therefored = 1, andR= [r1 . . . rm]

T. Then

G(R) =











r1 r2 · · · rm 0 · · · 0

0 r1 r2 · · · rm
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 r1 r2 · · · rm











, (23)

is of full row rank forR with rankR= 1 (i.e.R 6= 0). Hence
f (R) and fΠ(X) are rational functions without singularities.

Our running example is withm= 3 rows and varyingnp. We
denoteX = [x1 x2] and consider three permutation maps

[x1 x2 −1 ]Π1 = [x1 x2 −1] ,

[x1 x2 −1 ]Π2 = [−1 x1 x2] ,

[x1 x2 −1 ]Π3 = [x1 −1 x2] ,

which exhaust all possible row spaces of full row rank 1×
3 matrices. By Theorem 4 it is sufficient to find minima of
functions fΠk in the box[−1,1]× [−1,1].

(1) Case of multiple local minima Consider a time series

pk = sk+ εk, εk i.i.d. N(0,σ)

sk =

(

3
4

)k−1

sin

(

2π(k−1)
6

)

+σεk,
(24)

with np = 12. In this casen= 10 and polynomials have degree
40, which leads to 1600 possible solutions of the polynomial
system. This makes the computation of the Grobner bases
prohibitive. Therefore, we compare the approaches that areleft:



homotopy continuation, Bernstein subdivision, SDP relaxations
and perturbed system.

For the choiceσ = 0.35, the 2-norm of the noiseεk is more than
two times higher than the variance of the signalsk, and multiple
local minima of the cost function are likely to exist. We consider
a particular realisation, and also introduce rounding.

p(1) = [−0.14,1,0.21,−0.42,0.255,−0.62,

0.315,−0.1,−0.2,−0.21,0.835,0.005]T.

Experiments show that the global minimum is attained forfΠ1
in [−1,1]× [−1,1]. Table 1 demonstrates the performance of
the methods forp(1).

Table 1. Performance of the methods in Example 1.

Method Time (s) Solution f (R)
SDP, ort 55.6 failed 1.45585
SDP, u, 10 1.9 failed 1.45293
SDP, u, 20 19.3 failed 1.45672
SDP, b, 10 4.2 (-0.83663, -0.96014) 1.45290
PHCPack 373.9 (-0.83661, -0.96015) 1.45290
Perturbed > 4·103 (-0.20134, 0.13092) 1.45536
SBDV <1 (-0.83661, -0.96015) 1.45290
STLS <0.01 (-0.83661, -0.96015) 1.45290

• SDPn denotes the GloptiPoly method with the order of
relaxationn. The tolerance of the underlying SDP solver
(SeDuMi) is set to 10−10. “ort” corresponds to problem
(9), “u” — to subproblem (12) for fixedΠ, “b” — to
subproblem of (13) with box constraints (domain bounded
by polynomial inequalitiesx2 ≤ 1 and y2 ≤ 1). If the
method fails to extract the solution, an upper bound on
the minimum value is displayed.

• Perturbed stands for the solution of (20) by Rational
Univariate Representation implementation in Maple.λ is
taken to be 4000. (For comparison, the maximal absolute
value of the polynomials’ coefficients in the unperturbed
system is 9.9828·106 and is attained at the monomial of
degree 30.)

The multiplication matrices even forλ = 4000 are ill-
conditioned. (The maximal absolute value of the coeffi-
cients of multiplication matrices is 8.1851·1016.)

• For PHCpack and SBDV (Bernstein subdivision solver)
the global minimum is computed by selecting the smallest
value of the cost function in the box[−1,1]× [−1,1].

• STLS denotes the solution of STLS problem by a local
optimization method [18] started from unstructured low-
rank approximation.

GloptiPoly with default order of relaxation (SDP, 10) and with
increased order (SDP, 20) fails to extract the solution. Bounding
of domain helps in this case, whereas solving problem (9)
fails as well. SYNAPS and PHCPack find the same solution,
however the perturbed system approach fails to find the true
minimum because it is close to the boundary of the box.

On Fig. 1 on can see that PHCPack and SYNAPS identify
correctly all stationary points. The roots of the perturbedsystem
remain unchanged in the vicinity of 0, but are more likely to
move or disappear if they are close to the boundary of the box.

(2) Case of single local minimum, np = 19 Consider the time
series (24)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5
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−0.5

0

0.5

1

1.5

Fig. 1. Cost function forp(1), stationary points found by
SYNAPS and PHCPack for the original system (x), and
stationary points found by SYNAPS for the perturbed sys-
tem withλ = 4000 (+) andλ = 106 (box)

p(2) = [−0.051, 0.570, 0.478, −0.075, −0.348, −0.166,
0.040, 0.068, 0.052, 0.049, −0.071, 0.171, 0.074,

−0.115, −0.001, −0.021, −0.012, −0.014, 0.063]T

with np = 19. In this casen= 17 and polynomials have degree
at most 68, which leads to 4624 possible solutions. But in
this case we add noise withσ = 0.1 to ensure that the cost
function has exactly one local minimum. The results are shown
in Table 2.

Table 2. Performance of the methods in Example 2.

Method Sec. Solution f (R)
SDP, 17 8.4 failed failed
SDP, 24 46.5 failed failed
SDP, b, 17 26.1 failed failed
PHCPack 2883.9 (0.74802, 0.87727) 0.74087
SBDV <3 (-0.55547, 0.63950) 0.07822
STLS <0.01 (-0.55548, 0.63951) 0.07822

GloptiPoly fails to find the global minimum, reporting “numer-
ical problems”. PHCPack also fails to find the global minimum,
possibly due to large number of complex solutions. The Bern-
stein subdivision solver happened to find the solution with a
good accuracy, as well as all stationary points in the box (see
Fig. 2).

5. CONCLUSIONS

Reformulating the structured low-rank approximation problem
as a rational function minimization problem and deriving its
optimality conditions, we used polynomial algebra packages to
find all local and global minima. Unfortunately, using this pro-
cedure, the current state-of-the-art packages one can solve only
structured low-rank approximation problem of small dimen-
sion, say less than 20 structure parameters. Our experiments
also showed that for rational function optimization problem
methods that consider only real solutions of the polynomial
system are more efficient.
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Fig. 2. Cost function forp(2) and stationary points found by
SYNAPS (x) and PHCPack (o)
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