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Abstract: Many problems of system identification, model reduction aighal processing can be
posed and solved as a structured low-rank approximatioblgma In this paper a reformulation of
the structured low-rank approximation problem as minimigraof a multivariate rational function is
considered. Using two different parametrizations, we siioat the problem reduces to optimization
over a compact manifold or to a set of optimization problerer bounded domains of Euclidean space.
We make a review of methods of polynomial algebra for glolpéitnization of the rational cost function.

1. INTRODUCTION whereG(R) € R"™™ ands(R) € R"%*! are given by
An affine matrix structure”(p) is an affine map s(R) :=vec(R¥(p)),
Np .
7Pl =%+ 3 S ® ~ G(R):= [vee(RS) -~ vec(RS, )],
i= and are linear functions in the elementsof

from the structure parameter spdk® to the space of matri-
cesR™™M. In this paper we assume that< n. The family

{Z(p) : p€ R"™} is called the.”-structured matricesThe

structured low-rank approximatio(SLRA) problem [10, 19]
is formulated as follows.

Problem 1.(SLRA). For a givenp € R", structure.¥ and
natural number < m

minimize ||Ap||2 subjectto rank”(p—Ap) <r. (2)
ApeR"P

If the assumptiomp, > nd holds, the inner minimization prob-
lem in (4) is an underdetermined least squares problem. The
norm of itsminimum norm solutiofil, Ch. 1] is the following
function ofR:

f(R) := (r’rAﬁanAsz subject toG(R)Ap = s(R))
(nginHAsz subject toR¥(p—Ap) = 0) ©)
p
T

=s(RT(R)s(R),
Many problems in system identification, signal processimg) a \yhere
computer algebra can be posed and solved as SLRA problem M(R):= G(R>G(R)T e Rndxnd,

[10, 19]. A common case of an affine structure is and F(R)T is the pseudoinverse df(R). Therefore we can

S(p) = [«%’1(}9” e |35’q(p)]T, (3) eliminateAp from (4) and obtain an equivalent problem
where each blocks,(p),...,%q(p) is block-Toeplitz, block- minimize f(R), (6)
Hankel, unstructured, or exact. For structure (3) efficiecal RirankR=d _ _
optimization methods (based wariable projectionprinciple) See [8, Ch. 4] or [19, Ch. 3] for more details on equivalence
have been designed [8]. between problems (4) and (6).

The aim of this paper is to use polynomial algebra algorithms.2 SLRA as a rational minimization problem

to find the global minimum (and local minima) of the SLRA

problem. For this reason we show that the variable projacticSinceG(R) is linear inR, the matrixI" (R) is aquadratic poly-
principle leads to minimization of a multivariate ratioriahc-  nomial matrix(having entries which are quadratic functions in
tion. A similar approach has been recently proposed in [14¢lements oR). If det(I'(R)) is not a zero polynomial, then we
but it has more indeterminates involved, and thereforedrighcan define the rational inverse I6fR)

computational complexity. adi(F (R
r(R)71: J( ( ))7 (7)
1.1 Variable projection for SLRA problem det(F(R))
where ad[F(R)) is the adjoint polynomial matrix (the matrix
The rank constrain?” (p— Ap) <r is equivalent to of algebraic complements).

R7(p—Ap) =0, foranRe R™, rankR = d. If for a fixed R the matrixI"(R) is nonsingular, then the pseu-
whered := m—r. Hence the SLRA problem can be reformu-doinverse coincides with the polynomial inverse and the cos
lated as the following double minimization problem. function (5) is equal to

R A T
minimize min||Ap2 " ((R) = S(R)"adi(T(R)s(R). @®

subject to G(R)Ap = S(R), det(T(R))



Remark 2.1f det(I"(R)) > 0 for all matricesR under consider- For a fixedr different matrices of typéX —Iq M correspond

ation, then the SLRA problem is equivalent to minimizatidn oto different subspaces. In other words, the iXaps> [ X —lq]

a rational function. represents a chart of the manifoldg®d, m) (a standard coor-
dinate chart [2, App. C]).

Moreover, for a fixed1 the inner minimization problem in (11)
minimize fn (X). (12)
) XeRrxd
%, in fact, astructured total least-squardSTLS) problem [8]

2. DIFFERENT PARAMETRIZATIONS OF THE SEARCH
SPACE

The cost function (5) is homogeneous in the foIIgV\gng sens
f(R) = f(UR) for any nonsingular matriy € R%*¢, and
thereforef (R) depends only on subspace Rf", spanned by for the structuré1.#(p). Indeed T

the rows ofR. [X =lg]N.7(p) =0 < AX' =B,

In other words, f is defined on aGrassmann manifold Where matrice# € R"™" andB € R™ defined by

Grr(d,m) [2, App. C] (the manifold of ald-dimensional sub- [A B]T =N(p)

spaces ofR™). In what follows we consider two parametriza-

tions of the manifold by subsets of the setdot mmatrices of The STLS problem has advantage of being an unconstrained
full row rank. optimization problem with fewer optimization variablesath

the problem (9). However, the STLS problem may be ill-posed
(or ill-conditioned), becausk?*" is not compact and all global
minima of f (X) may not be attained (or attained for very large
For any Subspace dRm there exists an Orthonormal basiS,X). The fO”OWing theorem shows that we can restrict the dearc

2.1 Minimization over orthogonal bases

hence it is sufficient to consider all x m matrices with or-
thonormal columns:
Mot = {RERPM: RR =141},

and reduce (6) to

inimize f(R). 9
mFggj%ze(> )

Note that this parametrization is still ambiguous, becdose

anyRe R¥*™ RR' = IqandU € R9*d UUT = I4 holds
URRUT = 14.

In particular, optimaR for problem (9) is not unique.

However,.#o is a submanifold of thédm— 1)-sphere irfRdm
defined by
d,m
Z (RH )2 =d,
i,]=1
and therefore it is compactcgmpact Stiefel manifold2,
App. C]).

If det(T(R)) # O for all R € RY*™ of full row rank, thenf (R)
is a continuous and infinitely differentiable rational ftina on
AMort, and therefore it attains a global minimum o#;. This
makes the optimization problem (9) well-defined.

(10)

2.2 Exploiting input/output partitions

For anyd x m matrix R of full row rank one can find a set of
d linearly independent columns. In other words, there exsts
permutation matrix1 such that

R=[Q -P]N,

whereQ € R andP is ad x d nonsingular matrix. Therefore
the row subspace d® coincides with the row subspace of the

matrix

[QPt —14] 1,
and alld-dimensional subspacesBf" are generated by matri-
ces[X —Ig]M.

Proposition 3. The SLRA problem is equivalent to

minimize min fr(X), (11)
n XeRdxr

where

fr(X) = f([X —lg]M).

space of the STLS problems (11) to compact subseks'6f .

Theorem 4.The SLRA problem is equivalent to

inimi in fq(X 13
mln[|1m|zexn€1+2r n(X), (13)
where .
Tar i= {X € R" 1 |X| < 2171},
Proof. It suffices to show that for anynx d matrix R of

full row rank matrix there exist a permutation matfixand a

nonsingular matrixJ, such thaUR=[X —Ig]M andX € Ty, .

(1) d=1. LetV =[v1 --- Vm| be a rank one X m matrix.
Then there exist§ such that|v| < |v;| for anyk, 1 <
k<m. If we takeu = —vj*l and N the permutation
matrix interchanging-th andm-th elements, theaVv =
[X1 -+ Xm—1 —1] and|x| < 1.

(2) d>1. DefineR; = R. Consider the last ro{R; )4 of the
matrix R;. By the previous casel(= 1) there exist; € R
and[1; such that

Ur(Re)d = Va1 -+ Vam-1 —1]My
and|vg k| < 1. By subtracting the last row of the matifk
from others we obtain that
_ R |0

UiR = Va1 Vdn-1]—1

whereUs is a nonsingular matrix anB;, is a (d — 1) x

(m— 1) matrix of full row rank. Repeating this procedure

for R, k=2,...,d—1, we obtain that exidty and Mg

such thaRy := UgRIMg has the form

My, (14)

Vi1 ... Vir -1 0 0
Ro= 0 |- (15)
Vda .- Vdr - Vdm-1 -1

wherelv; | < 1.
By subtracting a scaled first row & from each other
row of Ry, we obtain the matrix

Vi1 - Vi -1 0 0 0
V211 *+ V2r1 0 -1 0 0
W]_RO = V3,r+l ) )
: N I 0
Va1l o Vart] O Varsr oo Vame1 —1



such thatv;j 1| < 2. If we repeat this process for secondminima of the function are attained at stationary points, i.
row, third row, etc., we can eliminate with nonsingularsolutions of the system

transformations all elements under the diagonal of the d ) )
right block of Ry a—x-f”()q =0, fori=1,....d, j=1,...,r. (16)
i
Wd,lVVZW]_RO: [X|7Id]7 Denote

such thatX;,| <211, i fa(X) = Qn(X)
Remark 5(Local optimization methods). From the viewpoint Hn (X)
of numerical optimization, the problem (13) may seem morerhereH (X) # 0. Then the system (16) is equivalent to
difficult, because it involves a combinatorial problem obok- A0n AHn
ing the best permutatiofl. For local optimization with ini- Gij (X) = d—Xi-(X)Hn(X) _QH(X)O—X@-(X) =0, 17
tial approximationR, the exhaustive search over all possible J ) e @)
permutations, however, can be avoided. The following estyat fori=1,....d, j=1,....1,
may be suggested based on Theorem 4. which is a system of polynomial equations. The number of

« ForRy choose parametrizatidf, such that equation coincides with the number of variabiis

URy=[X|-Ig]M and X e Ty, Th_e pro_blem (9_) can be also redl_JC(_ad to finding station_ary
’ points, introducing Lagrange multipliers for the consitai

e Perform local optimization offn until the optimization pmr ' "1h ; i ; ;
) e . = lq. The number of equations in this case is again equal
variable X significantly exceeds the domaify,. (This t d q 9 g

can be checked for example by monitoring the size OP the number of indeterminates.

[IX][e.) In this case, restart the optimization with initial ) ) )
approximation equal t&k = [ X|—I4 ]I, whereX is the 3.2 Solving systems of polynomial equations
current value of the parameté&, by choosing a new

permutation matrixl. In what follows, we consider a polynomial system with the
number of equations equal to the number of variables
3. GLOBAL SOLUTION OF THE SLRA PROBLEM Q(z,. - 2m) =0,
: (18)
In this section we consider methods of optimization of aorzi B 0
functions that exploit the algebraic structure of the peobbnd O (2L, 2m) =0,
allow to find a global minimum. also called a&omplete intersection system

For multivariate system of equations it is possible that the
3.1 Overview of optimization methods system has infinite number of solutions. Most multivariate
solvers deal with the case of finite number of solutions and we

SDP relaxations Problem (9) or each subproblem of (13) carfonsider only this case. The number of complex solutins

be reduced to minimization of a rational functi&%, zeRM E)%rbdn:jh[e;eg)gesqpssmle local minima) is bounded by the Bezo

subject to polynomial constrain€(Z) > 0, 1< k < s. This M
problem is equivalent to minimization over the set of Borel N< ”degqi). (29)
measures i=
. , Resultant-based methodsThese methods are based on multi-
minimize /Q(Z)du, subject to variate resultants. They reduce the solution to univapatg-
RM nomial equations, however they are applicable only for smal
degrees or sparse polynomials (see for example [5]). Oyr pol
/ H(Z)du =1, /Ck(z)d“ >0, nomials are usually dense and have large degrees, so we do not
RM RM consider these methods.

This problem can be expressed as a generalized moment pr @tftelz—Mqlle:c m?ttrrl]x methg_dstThesfethmeth?dsfatrhe basc:fi on
lem and solved by semidefinite programming (SDP) relaxatio € Toflowing fact. the coordinales of In€ roots of the S

of fixed order that involves a truncated generalized momeffluations coincide with the eigenvaluesnafitiplication ma-
Matrix trices A,, corresponding to joint eigenspaces of the matrices.

The multiplication matrices are representation of muiltgtion
It is known that the relaxations converge to a global minimurby variablesz, in a basis of the residue ring[X]/.# of the
[9], however the speed of convergence is not guaranteed. Qgeal of the system. The problem therefore reduces to finding
timization of a rational function is implemented in packagenultiplication matrices and computing their joint eigeasgs.
GloptiPoly [11]. See [7, Ch. 2] for more details.

where the minimum corresponds to an atomic measure [1:&[‘;

The residue rin@R[X]/.# has dimension equal fd (the num-
"ber of complex solutions), and the matrices are sphirseN
matrices. In addition, to obtain the multiplication ma#iscone
needs to calculate a Grobner basis. Having a Grobner blasis, t
Consider first the STLS problem (12) for a fixétl Since matrices can be calculated using, for example, the ApCoCoA
fn(X) is a rational function with no singularities, the localpackage [15].

Systems of polynomial equationsThe second, more general
approach consists of finding stationary points of the castfu
tion as solutions of polynomial systems of equations.



Triangular systems and rational univariate representatio Let us first calculate the total degree of the involved polyiro
One can try to find an equivalent to (18) triangular system  als. The polynomial matrix (R) consists of quadratic polyno-
0i(z1) =0 mials, and therefore

0o(z1,22) =0 degde(I'(R)) < 2nd.
The degree of the numerator is also boundedny, 8ince
: degadjT(R)) <2(nd—1)
) _ g_M(Zl""’_Z'V') =0 ) and deg(R) = 1. The degree bounds are almost always at-
and sequentially eliminate variables, solving at each gtdy-  tained.
nomial equations in one variable. However, this procedsire i i i )
numerically inaccurate and is being replaced by the rationklence, the degrees of polynomial equations (18) is boungled b

univariate representation approach of [4]. 4nd — 1 The total number of solutions is bounded (@nd —

_ _ _ 1)9 for the STLS problem.
Both approaches require computation of a Grobner basis. Ef-
ficient computations with Grobner bases, in their turn, ineo 4. EXAMPLES
linear algebra computations withx N matrices. State of art al- '
gorithm for the above approaches are implemented as pagkage S
for Maple [17]. 9% Identification of autonomous systems

Subdivision methods Note that we are interested to find only SLRA of a Hankel matrix withm = r +1 rows and rank
real roots of a polynomial system in a bounded baxby] x reduction by 1 is equivalent to identification of an autonao

.- [am, bm]. For this particular case one can exploit propertiegnear-time-invariantsystem of order less than or equa[18)].
of Bernstein polynomials to efficiently locate real zero8][1 A Hankel matrix is defined by

The complexity of the algorithm depends on the number P1 P2 -+ Pn
of coefficients in the Bernstein representation, which can b P2 P3 - Pnt1
bounded by(degq;))M for a single polynomiaty. The Bern- SP)=1. . . )
stein subdivision algorithms are implemented in the paekag Co '
SYNAPS [16]. Pm e Prp
wherenp, = m+n— 1. The matrices§ in (1) are given by
Homotopy continuation This method is based on considering 1, ifj+k=1—]
a homotopy from a simpler system to the system which is to be (S)ijk { o J (22)
solved, and tracking the solutions. In general, this is aefiyer 0, if j+k#1-i.

heuristic method and there is no guarantee of obtainindpall t

roots Due to the constraint, > nd, only rank reduction by one is

. . possible, and therefoe= 1, andR=[ry ... ry|". Then
All the complex solutions are tracked, therefore the coxipte

depends orN. This method is implemented in the package M2 = fm O - 0
PHCpack [3]. T

p [ ] G(R) — O rrz 'm . , (23)
Perturbed systems For large degree of polynomials the com- R -0
putation of the Grobner basis may become infeasible. Int[6] i O~ 0 rpry-rm
is proposed to solve a perturbed system already in a form ofigof full row rank for R with rankR= 1 (i.e.R # 0). Hence
Grobner basis f(R) and fn (X) are rational functions without singularities.

+1 _
AZ? +0u(z,...,2m) =0 Our running example is witlnm = 3 rows and varying,. We

(20) denoteX = [x1 X;] and consider three permutation maps

AZI\DA+l+qM(Zlv"'aZM):O [Xj_ X2 71]“1:[X1 X2 71],
whereD = maxdegy;. This method is motivated by the problem X1 %o —1 1Mo =1—1 %1 X
of minimization of a polynomiaH(Z) of degree &8, where ba e M2 = L%,
the perturbation of the system of equations is equivalent to X1 X2 =1 Mg =[x —1 X,
perturbing a polynomial itself which exhaust all possible row spaces of full row rank 1
Ha(Z) := A (Z92+ ...+ 22 1 H(2). (21) 3 matrices. By Theorem 4 it is sufficient to find minima of

The global minimum oH (X) can be approximated by global functionsfn, in the box[—1, 1] x [~1,1}.

minima ofH, (X) whenA — 0 (see [6]). (1) Case of multiple local minima Consider a time series
We were not able to find a perturbation of a rational function Pk =S+ &, & i..d.N(O,0)

that leads to a system of the form (20). However, we may 3\ k-1 or(k—1) (24)
perturb the system (17), hoping that the roots of the peetlirb S = <_> i <7> ks

system (20) do not diverge too far. 4 6

with np = 12. In this cas& = 10 and polynomials have degree
Complexity of the methods As we discussed, the complexity 40, which leads to 1600 possible solutions of the polynomial
of the polynomial system solving usually depends on the nunsystem. This makes the computation of the Grobner bases
ber of complex solutions. prohibitive. Therefore, we compare the approaches thadgettre



homotopy continuation, Bernstein subdivision, SDP refiaxe

and perturbed system. 15 ‘ ; Q ;
For the choicer = 0.35, the 2-norm of the noisg is more than 6 /

two times higher than the variance of the siggabhnd multiple 1KJ o
local minima of the cost function are likely to exist. We cinles #
a particular realisation, and also introduce rounding. 05

pY =[-0.14,1,0.21,-0.42,0.255 —0.62,

0.315-0.1,-0.2,-0.21,0.8350.005 . @ #
Experiments show that the global minimum is attainedffgr 0S¢ o
in [-1,1] x [-1,1]. Table 1 demonstrates the performance of 4
the methods fop(Y. -1f @ —
Table 1. Performance of the methods in Example 1. = = o5 s o5 ; s
Method Time (s) | Solution f(R)
SDP, ort 55.6 failed 1.45585 . . (1) . .
SDP,u 10| 19 failed 145293 Fig. 1. Cost function forp'”, stationary points found by
SDP, u, 20| 19.3 failed 1.45672 SYNAPS and PHCPack for the 0r|g|nal system (X), and
SDP, b, 10| 4.2 (-0.83663, -0.96014)| 1.45290 stationary points found by SYNAPS for the perturbed sys-
PHCPack | 3739 (-0.83661, -0.96015) 1.45290 tem withA = 4000 (+) andA = 10° (box)
Perturbed | >4-10° | (-0.20134, 0.13092) | 1.45536
SBDV <1 (-0.83661, -0.96015) 1.45290 @ _ i B B B
STLS <0.01 (-0.83661, -0.96015)| 1.45290 P =[-0.051 0.570 0.478 ~0.075 ~0.348 —0.166

0.040, 0.068 0.052 0.049, —0.071 0.171, 0.074

T

e SDR, denotes the GloptiPoly method with the order of —0.115 -0.001, -0.021, —0.012 —0.014, 0.063
relaxationn. The tolerance of the underlying SDP solvewith np = 19. In this caseé = 17 and polynomials have degree
(SeDuMi) is set to 10°. “ort” corresponds to problem at most 68, which leads to 4624 possible solutions. But in
(9), “u” — to subproblem (12) for fixedl, “b” — to  this case we add noise withh = 0.1 to ensure that the cost
subproblem of (13) with box constraints (domain boundeflinction has exactly one local minimum. The results are show
by polynomial inequalities < 1 andy” < 1). If the in Table 2.
method fails to extract the solution, an upper bound on

the minimum value is displayed. Table 2. Performance of the methods in Example 2.
e Perturbed stands for the solution of (20) by Rational
Univariate Representation implementation in Maglds Method | Sec. | Solution f(R)
taken to be 4000. (For comparison, the maximal absolute SDR.17 | 84 failed failed
SDP, 24 46.5 failed failed

value of the polynomials’ coefficients in the unperturbed

. . - . SDP, b, 17| 26.1 failed failed
csj)éstreeng |3509)9828~ 1P and is attained at the monomial of PHCPack | 28830 | (0.74802 087727)| 0.74087
'?h I. licati . for — 4000 i SBDV <3 (-0.55547, 0.63950)| 0.07822
e multiplication matrices even for = are Ill- STLS <001 | (-0.55548, 0.63951) 0.07822

conditioned. (The maximal absolute value of the coeffi-
cients of multiplication matrices is. 8851- 10'6.)

e For PHCpack and SBDV (Bernstein subdivision solveriGloptiPoly fails to find the global minimum, reporting “nume
the global minimum is computed by selecting the smallestal problems”. PHCPack also fails to find the global minimum
value of the cost function in the bdx1,1] x [—1,1]. possibly due to large number of complex solutions. The Bern-

e STLS denotes the solution of STLS problem by a locasdtein subdivision solver happened to find the solution with a
optimization method [18] started from unstructured lowgood accuracy, as well as all stationary points in the bo& (se
rank approximation. Fig. 2).

GloptiPoly with default order of relaxation (SDP, 10) andiwi
increased order (SDP, 20) fails to extract the solution rigling
of domain helps in this case, whereas solving problem (9)
fails as well. SYNAPS and PHCPack find the same solution, ) o
however the perturbed system approach fails to find the trireformulating the structured low-rank approximation o
minimum because it is close to the boundary of the box. as a rational function minimization problem and deriving it

i i _optimality conditions, we used polynomial algebra paclsage
On Fig. 1 on can see that PHCPack and SYNAPS identifinq al| local and global minima. Unfortunately, using thi®p
correctly all stationary points. The roots of the perturbgstem  cequre, the current state-of-the-art packages one cae soly
remain unchanged in the vicinity of 0, but are more likely tastryctured low-rank approximation problem of small dimen-
move or disappear if they are close to the boundary of the boxjon, say less than 20 structure parameters. Our expesment

also showed that for rational function optimization praoble

(2) Case of single local minimumpr= 19  Consider the time methods that consider only real solutions of the polynomial
series (24) system are more efficient.

5. CONCLUSIONS
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