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Abstract

Subspace-based methods are popular for analysis of two-dimensional data that can be mod-
eled by sums of polynomially modulated exponential (or “polynomial-exponential”) functions.
In this paper we touch some problems concerning rank properties of Hankel-block-Hankel ma-
trices, which are used in subspace-based methods. We review the correspondence between
polynomial-exponential functions and zero-dimensional ideals. Then we demonstrate the use-
fulness of this correspondence for the problems being considered.
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1 Introduction

In many problems of 2D data analysis the input data is a two-dimensional function f : R2 7→
R(C) measured on a uniform rectangular grid (a digital image is a standard example here). We
consider the ubiquitous case when the data is composed into an Nx × Ny matrix of values F =

(fm,n)
Nx−1,Ny−1
m,n=0 , which will be called here 2D data array (or simply 2D array).

The most common task of data analysis is to decompose the input 2D array into sum

F = F(S) + F(N)

of a signal component F(S) and a noise component F(N) (not necessarily unstructured or random).
This decomposition can be motivated by the nature of data (i.e. there is a well-grounded model
for the origin of the data) or the input data is being approximated by signals from a certain model
class.

An important class of signals is the class of polynomially modulated exponential functions

N
2
0 → C (where N0

def
= N ∪ {0})

f (S)
m,n =

r
∑

k=1

qk(m,n)λm
k µn

k , (1)

where λk, µk ∈ C, and qk(m,n) are some complex polynomials. This class of signals is common to
various problems such as parameters estimation in radar imaging [3] or analysis of textured images
[6].

Along with classical approaches, non-parametric subspace-based methods recently received much
attention [2, 3, 6]. These methods are based on embedding of the data into a structured (Hankel-
block-Hankel) matrix, which has low rank when the noise is absent (F(N) = 0). In presence of noise
the signal/noise decomposition can be achieved by approximating a Hankel-block-Hankel matrix
with a matrix of low rank (for example, via the SVD).

The Hankel-block-Hankel matrix is generated by a pair of parameters (window sizes). Arrays of
form (1) have maximal rank for a range of so-called admissible window sizes. In this paper we review
correspondence between arrays of form (1) and polynomial ideals, we use this correspondence for
determining the range of admissible window sizes, thus extending the results of [2].
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2 Hankel-block-Hankel matrices and polynomial ideals

In this section we first introduce Hankel-block-Hankel matrices, then proceed to infinite arrays of
finite rank and finally describe properties of arrays of finite rank using the language of polynomial
ideals.

2.1 Hankel-block-Hankel matrices

Let us consider in detail the construction of a Hankel-block-Hankel matrix from the input array
F. Given a pair of parameters (Lx, Ly), 1 ≤ Lx ≤ Nx, 1 ≤ Ly ≤ Ny (window sizes), we define the
following submatrices

F
(Lx,Ly)
k,l

def
=







fk,l . . . fk,l+Ly−1

...
. . .

...
fk+Lx−1,l . . . fk+Lx−1,l+Ly−1






, (2)

where 0 ≤ k < Kx, 0 ≤ l < Ky and Kx
def
= Nx −Lx +1, Ky

def
= Ny −Ly +1. Then we compose the

matrix

W = [W1 : . . . : WKxKy
],

from the vectorizations of (Lx, Ly)-submatrices, i.e.

W1+k+lKx
= vec(F

(Lx,Ly)
k,l ) for 0 ≤ k < Kx, 0 ≤ l < Ky, (3)

where

vec(amn)
M,N
m,n=1

def
= (a11, . . . , aM1; a12, . . . , aM2; . . . ; a1N , . . . , aMN )T ∈ C

MN .

The matrix W is called Hankel-block-Hankel since it is a block Hankel matrix [2], i.e. it can be
represented in the form:

W = W
(Lx,Ly)(F) =

















H0 H1 H2 . . . HKy−1

H1 H2 H3 . . . HKy

H2 H3 . .
.

. .
. ...

...
... . .

.
. .

. ...
HLy−1 HLy

. . . . . . HNy−1

















, (4)

and, in addition, each block is a Hankel matrix

Hn
def
=











f0,n f1,n . . . fKx−1,n

f1,n f2,n . . . fKx,n

...
...

. . .
...

fLx−1,n fLx,n . . . fNx−1,n











. (5)

The rank of the Hankel-block-Hankel matrix W
(Lx,Ly) is equal to the dimension of the space

L(Lx,Ly)(F)
def
= span({F

(Lx,Ly)
k,l }

Kx−1,Ky−1
k,l=0 ).

2.2 Arrays of finite rank

Consider an infinite 2D-array with complex entries F = (fm,n)
+∞

m,n=0 ∈ C
N

2

0 , where C
N

2

0 denotes
the space of infinite arrays. The (k, l)-shift of the array F is defined as the infinite subarray

starting from element (k, l): Fk,l
def
= (fm+k,n+l)

+∞

m,n=0. The space of shifts is, by definition,

L(F)
def
= span({Fk,l}

+∞

k,l=0) ⊆ C
N

2

0 . The dimension r(F)
def
= dimL(F) is also called linear com-

plexity elsewhere [1].
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Consider the space spanned by finite windows as well. Let F
(Lx,Ly)
k,l

def
= (fm+k,n+l)

Lx−1,Ly−1
m=0,n=0

denote an Lx × Ly submatrix of the infinite array F and define the (Lx, Ly)−trajectory space

L(Lx,Ly)(F) = span({F
(Lx,Ly)
k,l }+∞

k,l=0).

The following trivial lemma relates the (Lx, Ly)-trajectory space of windows with the space of
shifts.

Lemma 1

dimL(Lx,Ly)(F) = dim{Fk,l}
Lx−1,Ly−1
k,l=0

Immediately, one can derive correspondence between dimensions of L(Lx,Ly)(F) and L(F).

Proposition 1 ([5, Proposition 10] or [6, Proposition 4.1.1]) Let F be an infinite array.

• dimL(F) < +∞ if and only if dimL(Lx,Ly)(F) < C for any (Lx, Ly) ∈ N
2, where C < +∞

is some constant.

• If dimL(F) = d < +∞, then there exist Lx0, Ly0, such that dimL(Lx,Ly)(F) = d if Lx ≥ Lx0

and Ly ≥ Ly0.

Let us call arrays, which satisfy conditions of Proposition (1) arrays of finite rank [5]. They are
called k-linear recurrent sequences elsewhere [1].

2.3 Arrays of finite rank and zero-dimensional ideals

Next, we describe arrays of finite rank using the language of polynomial ideals (for more details
see [5]). Consider the space of complex polynomials C[x, y] and the dual space (space of linear

functionals) C
∗[x, y]

def
= Hom(C[x, y],C), which is isomorphic to the space C

N
2

0 of infinite arrays.

Indeed, each array F corresponds to the functional ℓ(F) defined by ℓ(F)(xmyn)
def
= fm,n, and vice

versa.
The space C

∗[x, y] is a (left) C[x, y]-module, where the multiplication p(x, y) · ℓ, ℓ ∈ C
∗[x, y],

p ∈ C[x, y] is canonically defined as (p · ℓ)(q)
def
= ℓ(p · q). This operation can be better represented

through the shifts of the corresponding array. For a polynomial p(x, y) =
∑

(α,β)∈N2

0

a(α,β)x
αyβ ∈

C[x, y] and an infinite array F ∈ C
N

2

0 we introduce an operation of multiplication:

p · F =
+∞
∑

α,β=0

a(α,β)Fα,β . (6)

Evidently, ℓ(p·F) = p · ℓ(F). The space of shifts L(F) of an array F then is a submodule of CN
2

0 :
〈F〉C[x,y] ∼= 〈ℓ(F)〉C[x,y] ⊂ C

∗[x, y].
For a set of infinite arrays S we introduce the notion of annihilator of S:

I(S)
def
= {p ∈ C[x, y] : pG = 0 ∀G ∈ S} .

Clearly, annihilator is a polynomial ideal. The following theorem characterizes arrays of finite rank

through their annihilator, defined as I(F)
def
= I({F}) = I(L(F))

Theorem 1 ([5, Corollary 2]) dimL(F) < +∞ if and only if I(F) is zero-dimensional.

Moreover, the set of zeros Z(I)
def
= {(x, y) ∈ C

2 : p(x, y) = 0 for all p ∈ I} of annihilator ideal gives
an explicit form of the array of finite rank.

Theorem 2 ([5, Proposition 7] or [6, Corollary 2.2.2]) An array F is of finite rank if and

only if it has representation (1) where Z(I(F)) = {(λ1, µ1), . . . , (λr, µr)}.
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3 Admissible window sizes

In this section we demonstrate how the behavior of the rank of Hankel-block-Hankel matrix for
finite subarray of array of finite rank can be expressed through the set of admissible window sizes
of the infinite array. Finally, we prove the bounds for the infinite array.

3.1 Rank of Hankel-block-Hankel matrix and admissible window sizes

Definition 1 Let F be an array of finite rank, dimL(F) = d < +∞.
The set of admissible window sizes is defined as:

M(F)
def
= {(Lx, Ly) ∈ N

2 : dimL(Lx,Ly)(F) = d} ⊂ N
2,

each pair (Lx, Ly) ∈ M(F) is called admissible window sizes.

By Lemma 1 dimL(α,β)(F) ≤ dimL(δ,γ)(F) if α ≤ δ and β ≤ γ. By Proposition 1, M(F) is
closed with respect to taking greater by partial order elements. Let us write this observation in a
compact form.

Remark 3.1 The set {xαyβ}(α,β)∈M(F) is a monomial ideal.

Now we are ready to go back to the finite array and rank of Hankel-block-Hankel matrices. Let

F = (fm,n)
Nx−1,Ny−1
m,n=0 be the Nx ×Ny subarray of F , dimL(F) = d.

Proposition 2 ([6, Corollary 4.2.4]) The set of admissible window sizes for F can be found as

M(F)
def
= {(Lx, Ly) ∈ N

2 : rankW(Lx,Ly)(F) = d} = M(F) ∩ ((Nx + 1, Ny + 1)−M(F)).

On Fig. 1 a sample set of admissible window sizes for a finite array is shown.

Figure 1: Set of admissible window sizes

3.2 Main results

Proposition 1 states only the existence of a subset of M(F) (a monomial subideal). For instance,
if dimL(F) = d, it is easy to show that (d, d) + N

2
0 ⊂ M(F), where for a set B ⊂ N

2
0 addition is

defined as B+ (k, l)
def
= {(α, β) ∈ N

2
0 : (α− k, β − l) ∈ B}.

For a finite set of indices A ⊂ N
2
0 denote

Bx(A)
def
= 1 +min{α : (A− (α, 0)) ∩ N

2
0 = ∅},

By(A)
def
= 1 +min{β : (A− (0, β)) ∩ N

2
0 = ∅}.

Let also LT≺(I) ⊂ N
2
0 denote the set of degrees of leading terms of the ideal I, with respect to the

ordering ≺.

Theorem 3 ([6, Theorem 4.2.1]) Let Gx = N
2
0 \ LTy≻x(I) and Gy = N

2
0 \ LTx≻y(I).

Then

(Bx(Gx),By(Gx)), (Bx(Gy),By(Gy)) ∈ M(F)
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and for all (Lx, Ly) ∈ M(F) the following inequalities hold

Ly ≥ By(Gx), Lx ≥ Bx(Gy).

Note that the bounds for admissible window sizes in the case of sum of (not modulated) complex
exponents were first proved in [2, Theorem 1]. Let us formulate the bounds from [2] as a simple
corollary of Theorem 3. We provide here the proof to show its simplicity and because the proof in
[6] was incorrect.

Corollary 1 ([6, Corollary 4.2.3]) Let

fm,n = c1λ
m
1 µn

1 + . . .+ crλ
m
r µn

r , (7)

where cl 6= 0 and pairs (λl, µl) are different. Denote by dx and dy the number of different val-

ues among λ1, . . . , λr and µ1, . . . , µr correspondingly. Denote mx and my the maximal multiplic-

ity of the same value among λ1, . . . , λr and µ1, . . . , µr. Then (Bx(Gx),By(Gx)) = (dx,mx) and

(Bx(Gy),By(Gy)) = (my, dy).

Proof.
Let us prove, for instance, the first equality. Let λ1, . . . , λk be different numbers. Let also
r1, . . . , rk ∈ N, r1 ≤ . . . ≤ rk, r1 + . . .+ rk = r, and the pairs exponents in (7) be

{ (λk, µk,1), . . . , (λk, µk,rk),
...

(λ1, µ1,1), . . . , (λ1, µ1,r1)} ⊂ C
2.

By [4, Theorem 1], we have

Gx = { (0, 0), . . . , (0, rk − 1),
(1, 0), . . . , (1, rk−1 − 1),

...
(k − 1, 0), . . . , (k − 1, r1 − 1)}.

It is left to note that k = dx and rk = mx. �
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