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Abstract. We develop a new approach to the construction of state vectors for linear time-
invariant systems described by higher-order differential equations. The basic observation is that
the concatenation of two solutions of higher-order differential equations results in another (weak)
solution once their remainder terms resulting from (repeated) integration by parts match. These
remainder terms can be computed in a simple and efficient manner by making use of the calculus
of bilinear differential forms and two-variable polynomial matrices. Factorization of the resulting
two-variable polynomial matrix defines a state map, as well as a state map for the adjoint system.
Minimality of these state maps is characterized. The theory is applied to three classes of systems
with additional structure, namely self-adjoint Hamiltonian, conservative port-Hamiltonian, and time-
reversible systems. For the first two classes it is shown how the factorization leading to a (minimal)
state map is equivalent to the factorization of another two-variable polynomial matrix, which is
immediately derived from the external system characterization, and defines a symplectic, respectively,
symmetric, bilinear form on the minimal state space.
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1. Introduction. The notion of state is central in systems and control theory.
Control strategies such as optimal control are based on the current relevant informa-
tion about the system captured by its state, and state space models often turn out to
be analytically and computationally most advantageous. Thus questions arise of how
to construct a (minimal) state and how to “realize” an input-output behavior by a set
of first-order differential equations in the, yet to be defined, state variables. Further-
more, there is a clear interest per se in understanding the relation between system
properties at the external—input and output—level, and at the internal—state—level.

In this paper we take a fresh look at the problem of determining a (minimal) state
for systems described by linear higher-order differential equations,

(1.1) P

(
d

dt

)
y(t) = Q

(
d

dt

)
u(t), y(t) ∈ Y := R

p, u(t) ∈ U := R
m,

or more generally, without distinguishing between inputs u and outputs y and letting
w := [ yu ], q := p+m,

(1.2) R

(
d

dt

)
w(t) = 0, w(t) ∈ W := R

q .
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2416 ARJAN VAN DER SCHAFT AND PAOLO RAPISARDA

In all of these equations, P
(

d
dt

)
, Q

(
d
dt

)
, and R

(
d
dt

)
describe linear (higher-order)

differential operators, or, equivalently, P (ξ), Q(ξ), and R(ξ) are polynomial matrices
of appropriate dimensions in the indeterminate ξ.

It is well known [11, 14] that for an observable input-state-output system

(1.3)

d

dt
x = Ax+Bu, x(t) ∈ Rn, u(t) ∈ Rm,

y = Cx+Du, y(t) ∈ Rp,

the state x can be written as a linear combination of the outputs and inputs and their
derivatives, i.e., x = Xy

(
d
dt

)
y + Xu

(
d
dt

)
u for certain linear differential operators

Xy

(
d
dt

)
, Xu

(
d
dt

)
, or, more compactly,

(1.4) x = X

(
d

dt

)
w

for some n× q polynomial matrix X(ξ). We will call (1.4) a state map.
The first, and most basic, question we want to address in this paper is the possibil-

ity of a “canonical” construction of a state map based on the higher-order description
(1.1) or (1.2). Indeed, while there are various methods for coming up with state space
representations (1.3) for system (1.1) or (1.2), they are mostly algorithmically ori-
ented and do not provide an intrinsic link between the differential operator X( d

dt) (or

Xy

(
d
dt

)
and Xu

(
d
dt

)
) describing the state map and the differential operator R

(
d
dt

)
(respectively, P

(
d
dt

)
and Q

(
d
dt

)
) describing the original higher-order linear system.

In this paper we will show that, indeed, such a canonical construction can be given,
and it is reliant upon a very classical notion, namely integration by parts. In fact,
it will be shown in section 2 that state maps can be constructed by factorization
of a two-variable polynomial matrix corresponding to the remainders in performing
repeated integration by parts to (1.1) or (1.2).

Besides its intrinsic value, this new approach to constructing state maps offers a
number of important advantages. First of all, because the state map is directly based
on the differential operator R

(
d
dt

)
describing the external (input-output) behavior of

the system, it is easy to translate properties of the external behavior of the system
into its internal (state) behavior. This will be illustrated in section 4, where it will
be shown how two versions of external Hamiltonian behavior, namely self-adjoint
Hamiltonian systems and conservative port-Hamiltonian systems, directly translate
into internal behavior. In particular, we will show how the external behavior in
both cases explicitly defines an internal structure on the state space defined by the
canonical state map construction developed in section 2. In the first case (self-adjoint
Hamiltonian systems) this is the symplectic structure on this state space, while in the
second case (conservative port-Hamiltonian systems) this is the explicitly constructed
internal energy function. We also show how the property of time-reversibility of the
external behavior immediately translates into the explicit construction of an involution
on the canonically defined state. In [25] we have applied the same methodology to
the relation between external and internal system decompositions. Compared to the
existing literature on these and related subjects, a main novelty of the approach taken
in this paper is that for the derivation of, e.g., the symplectic structure or internal
energy we do not rely on the state space isomorphism theorem for minimal systems
(guaranteeing the existence of such objects), but instead we explicitly construct such
objects on the canonically defined state space.
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Surprisingly enough, our canonical state map construction also yields a canonical
state map for the adjoint system. In fact, while one of the two terms in the factor-
ization of the two-variable polynomial matrix corresponding to the remainders yields
the state map for the original system, the other defines a state map for the adjoint
system. These connections and their consequences (e.g., for uncontrollable systems)
are explored in section 3.

Another advantage of our approach, to be explored in future work, is its potential
for generalizations to systems described by (higher-order) linear PDEs, or even to
nonlinear systems. Indeed, because our approach is based on the fundamental notion
of integration by parts, it is in principle extendable to much more general situations
than linear time-invariant ODEs.

Finally, we remark that the canonical state map construction developed in this
paper also yields a new, and transparent, algorithm to effectively compute state maps
and eventually state space realizations. The consequences of this algorithm for state
space realization theory will be detailed in a future paper.

1.1. Mathematical background and notation. The main mathematical
tools employed in this paper concern the correspondence between linear differen-
tial operators and polynomial matrices, and that between bilinear differential forms
(scalar-valued bilinear differential operators) and two-variable polynomial matrices.
For additional background concerning the former correspondence, see [14]; about the
latter correspondence, we refer the reader to [27].

Throughout the paper, Rp×q[ξ] will denote the space of real p × q polynomial
matrices in the indeterminate ξ, while Rp×q[ζ, η] will denote the space of real p × q
polynomial matrices in the indeterminates ζ and η. RT (ξ), respectively, ΦT (ζ, η), will
denote the transpose of R(ξ) ∈ Rp×q[ξ], respectively, of Φ(ζ, η) ∈ Rp×q[ζ, η].

2. State maps from integration by parts.

2.1. The notion of state. Consider the system of linear higher-order differen-
tial equations

(2.1) R

(
d

dt

)
w(t) = 0, w(t) ∈ W := R

q ,

where R(ξ) = R0 + R1ξ
1 + · · · + RNξN ∈ Rp×q[ξ]. Denote the space of locally

integrable trajectories from R to Rq by Lloc
1 (R,Rq). Recall that w ∈ Lloc

1 (R,Rq) is a
weak solution of (2.1) if

(2.2)

∫ ∞

−∞
wT (t)RT

(
− d

dt

)
ϕ(t)dt = 0

for all C∞ test functions ϕ : R → Rp with compact support. The set of weak solutions
of (2.1), also called the behavior B, is defined as (see, e.g., [10, 14, 17])

(2.3) B := {w : R → R
q | w ∈ Lloc

1 (R,Rq) and (2.1) is satisfied weakly}.
In behavioral system theory (see, e.g., [14, 17]), the following transparent definition
of state has been developed. Consider two solutions w1, w2 ∈ B, and define the
concatenation of w1 and w2 at time 0 as the time-function

(2.4) (w1 ∧0 w2) (t) :=

{
w1(t), t < 0,

w2(t), t ≥ 0,
t ∈ R.
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2418 ARJAN VAN DER SCHAFT AND PAOLO RAPISARDA

We say that w1, w2 ∈ B are equivalent at time 0, denoted as w1 ∼0 w2, if for all w ∈ B,
(2.5) w1 ∧0 w ∈ B ⇔ w2 ∧0 w ∈ B .

Thus equivalent trajectories admit the same continuations starting from time t = 0.
Remark 2.1. In the context of linear systems (as in this paper), this is equivalent

to requiring that w1 ∧0 w and w2 ∧0 w ∈ B for some w ∈ B. Furthermore, in this
case, since w2 ∧0 w2 ∈ B, it follows that w1 ∼0 w2 if and only w1 ∧0 w2 ∈ B. Because
of the symmetry of this last condition, it also means that equivalence of w1, w2 ∈ B
at t = 0 amounts to w1 and w2 having the same precursors. (Note that for nonlinear
systems these equivalences in general do not hold; see [22] for some initial ideas about
the construction of state maps in this case.)

Let X(ξ) ∈ Rn×q[ξ]. Then the differential operator

X

(
d

dt

)
: Lloc

1 (R,Rq) → Lloc

1 (R,Rn),

w �→ x := X

(
d

dt

)
w

is said to be a state map [17] for the system (2.1), with set of solutions B defined in
(2.3), if for all w1, w2 ∈ B and corresponding xi := X

(
d
dt

)
wi, i = 1, 2, the following

property (the state property) holds:[
x1(0) = x2(0)

]
and

[
x1, x2 continuous at t = 0

]
=⇒ [

w1 ∼0 w2

]
.(2.6)

If (2.6) holds, then the vector x contains all the information necessary to conclude
whether any two trajectories in B admit the same continuation at time t = 0. For
this reason the vector x(0) = X

(
d
dt

)
w(0) is called a state of the system at1 time

0 corresponding to the time-function w, and X = Rn is called a state space for the
system. If n is minimal among all the state vector dimensions, then the state map is
called a minimal state map. We then call n the McMillan degree of the system.

2.2. Integration by parts and bilinear differential forms. Our starting
point for obtaining state maps is the basic integration by parts formula. Take any N -

times differentiable functions w : R → Rq and ϕ : R → Rp and denote w(i) := di

dtiw,

ϕ(i) := di

dtiϕ, i ∈ N. For each pair of time instants t1 ≤ t2, repeated integration by
parts yields

(2.7)

∫ t2

t1

wT (t)RT

(
− d

dt

)
ϕ(t)dt =

∫ t2

t1

ϕT (t)R

(
d

dt

)
w(t)dt +BΠ(ϕ,w)|t2t1 ,

where we call the expression BΠ(ϕ,w)(t) the remainder, which has the form

(2.8) BΠ(ϕ,w)(t) =
[
ϕT (t) ϕ(1)T (t) · · · ϕ(N−1)T (t)

]
Π̃

⎡
⎢⎢⎢⎣

w(t)

w(1)(t)
...

w(N−1)(t)

⎤
⎥⎥⎥⎦ ,

for some constant matrix Π̃ of dimension Np×Nq.

1Of course, by time-invariance, x(t) = X( d
dt
) w(t) defines a state of the system at any time t.
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The differential version of the integration by parts formula (2.7) (obtained by
dividing (2.7) by t2 − t1 and letting t1 tend to t2 = t) is

(2.9) wT (t)RT

(
− d

dt

)
ϕ(t)− ϕT (t)R

(
d

dt

)
w(t) =

d

dt
BΠ(ϕ,w)(t).

Both sides of this equality define a bilinear differential operator form or, briefly, bi-
linear differential form (BDF), i.e., a bilinear functional of two trajectories and of a
finite number of their derivatives. Formally, a BDF BΦ as defined in [27] is a bilinear
map BΦ : C∞(R,Rp)× C∞(R,Rq) → C∞(R,R) involving two vector-valued functions
and a finite set of their time-derivatives, that is, at any time t,

(2.10) BΦ(ϕ,w)(t) =

M−1∑
k,l=0

[
dk

dtk
ϕ(t)

]T
Φk,l

dl

dtl
w(t)

for certain constant p × q matrices Φk,l, k, l = 0, . . . ,M − 1. The matrix Φ̃ whose
(k, l)th block is the matrix Φk,l for k, l = 0, . . . ,M − 1, is called the coefficient matrix
of the bilinear differential form BΦ. It follows that the coefficient matrix of the
bilinear differential form BΠ corresponding to the remainder is precisely the matrix
Π̃ as defined in (2.8).

Remark 2.2. For a scalar polynomial or a square polynomial matrix R(ξ) the
formulas (2.7) and (2.9) are classically referred to as Green’s, respectively, Lagrange’s,
identity, while the matrix Π̃ for a scalar R(ξ) is called the bilinear concomitant; see
[10].

There is a useful one-to-one correspondence between the bilinear differential form
BΦ in (2.10) and the two-variable polynomial matrix Φ(ζ, η) defined as

(2.11) Φ(ζ, η) :=

M−1∑
k,l=0

Φk,lζ
kηl .

The crucial observation (see [3, 27]) is that for any bilinear differential form BΦ the
bilinear differential form corresponding to its time-derivative, defined as

(2.12)

BΨ(ϕ,w)(t) :=
d

dt
(BΦ(ϕ,w)) (t)

=

M−1∑
k,l=0

[
dk+1

dtk+1
ϕ(t)

]T
Φk,l

dl

dtl
w(t) +

[
dk

dtk
ϕ(t)

]T
Φk,l

dl+1

dtl+1
w(t),

corresponds, by the product rule of differentiation, to the two-variable polynomial
matrix

(2.13) Ψ(ζ, η) = (ζ + η)Φ(ζ, η).

As a consequence, the differential version of the integration by parts formula (2.9) has
associated with it the two-variable polynomial matrix equality

(2.14) R(−ζ)−R(η) = (ζ + η)Π(ζ, η).

From this formula it follows how the two-variable polynomial matrix Π(ζ, η) and its
coefficient matrix Π̃ (corresponding to the remainder) can be most easily computed:
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since the two-variable polynomial matrix R(−ζ) − R(η) is zero for ζ + η = 0, it
directly follows that R(−ζ)−R(η) contains a factor ζ+ η, and thus we can define the
two-variable polynomial matrix Π(ζ, η) as

(2.15) Π(ζ, η) :=
R(−ζ)−R(η)

ζ + η
.

2.3. State maps from factorization. It turns out that state maps for a system
R( d

dt )w = 0 can be computed from a factorization of the two-variable polynomial
matrix Π(ζ, η) into a product of single-variable polynomial matrices. Before showing
this, we recall how factorizations of the coefficient matrix of a bilinear differential form
correspond to factorizations of the two-variable polynomial matrix corresponding to
it. This is summarized in the following proposition.

Proposition 2.3. Let Φ ∈ Rp×q[ζ, η], and let Φ̃ be its coefficient matrix. Then
the following two statements are equivalent:

1. There exist real matrices F̃ , G̃ with n rows such that

Φ̃ = F̃T G̃.

2. There exist polynomial matrices F ∈ Rn×p[ξ], G ∈ Rn×q[ξ] with coefficient
matrices F̃ , G̃, i.e.,

F (ξ) = F̃

⎡
⎢⎣
Ip
ξIp
...

⎤
⎥⎦ and G(ξ) = G̃

⎡
⎢⎣
Iq
ξIq
...

⎤
⎥⎦ ,

such that

Φ(ζ, η) = FT (ζ)G(η) .

Proof. This follows from the discussion on page 1709 of [27].
Factorizations such as those of Proposition 2.3, which, moreover, correspond to

the minimal value n = rank(Φ̃), are called minimal (or canonical as in [27]). Note
that the matrices F̃ and G̃ involved in a minimal factorization of Φ̃ are of full row
rank.

Minimal factorizations are not unique; however, using standard linear algebra
arguments, the following proposition can be easily verified.

Proposition 2.4. Given a minimal factorization Φ̃ = F̃T G̃, every other minimal
factorization Φ̃ = F̃ ′T G̃′ can be obtained from it by premultiplication of F̃ and G̃ by a
nonsingular n×n matrix S, respectively, S−T . In view of Proposition 2.3 this implies
that Φ(ζ, η) = FT (ζ)G(η) = F ′T (ζ)G′(η) with F ′(ξ) := SF (ξ), G′(ξ) := S−TG(ξ).

Any factorization Π(ζ, η) = Y T (ζ)X(η) of the two-variable polynomial matrix
Π(ζ, η) corresponding to the remainder leads from (2.14) to the matrix polynomial
equality

(2.16) R(−ζ)−R(η) = (ζ + η)Y T (ζ)X(η)

and to the corresponding bilinear differential form equality expanding (2.9),

(2.17)

wT (t)RT

(
− d

dt

)
ϕ(t) − ϕT (t)R

(
d

dt

)
w(t)

=
d

dt

[(
Y

(
d

dt

)
ϕ(t)

)T

X

(
d

dt

)
w(t)

]
,
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which immediately leads to the construction of a state map, as the following result
states.

Theorem 2.5. For any factorization Π(ζ, η) = Y T (ζ)X(η), the map

w �→ x := X

(
d

dt

)
w

is a state map.

Proof. We begin by proving the following result.

Lemma 2.6. Let Π(ζ, η) = Y T (ζ)X(η) be a factorization. Then for any w1, w2 ∈
B it holds that

(2.18)

[
X

(
d

dt

)
w1(0) = X

(
d

dt

)
w2(0)

]
=⇒ [w1 ∼0 w2].

Furthermore, if Π(ζ, η) = Y T (ζ)X(η) is a minimal factorization, then also the con-
verse implication of (2.18) holds.

Proof. We first consider C∞ trajectories w1, w2, w ∈ B. By definition, w1∧0w ∈ B
if and only if

∫ ∞

−∞
(w1 ∧ w)T (t)RT

(
− d

dt

)
ϕ(t)dt = 0

for all C∞ test functions ϕ with compact support; an analogous expression holds
for w2. Integrating by parts on the two intervals (−∞, 0) and (0,∞) and using
R
(

d
dt

)
w1(t) = 0 for t < 0 and R

(
d
dt

)
w2(t) = 0 for t ≥ 0 yields that this holds if and

only if

(
Y

(
d

dt

)
ϕ(0)

)T

X

(
d

dt

)
w1(0) =

(
Y

(
d

dt

)
ϕ(0)

)T

X

(
d

dt

)
w(0)

for all C∞ test functions ϕ with compact support. The same holds for the concatena-
tion of w2 and w. Thus w1 ∼0 w2 if and only if

(2.19)

(
Y

(
d

dt

)
ϕ(0)

)T

X

(
d

dt

)
w1(0) =

(
Y

(
d

dt

)
ϕ(0)

)T

X

(
d

dt

)
w2(0)

for all ϕ.

Hence X
(

d
dt

)
w1(0) = X

(
d
dt

)
w2(0) implies w1 ∼0 w2, thus proving (2.18). Fur-

thermore, in the case of Π(ζ, η) = Y T (ζ)X(η) is a minimal factorization, then given
the arbitrariness of ϕ and the injectivity of Ỹ T , it follows that if wi ∈ B, i = 1, 2, and
(2.19) holds, then also X

(
d
dt

)
w1(0) = X

(
d
dt

)
w2(0), and consequently the converse

implication of (2.18) holds. Since the subset of C∞ trajectories in B is dense in B
(in the sense of Lloc

1 (R,Rq)) (cf. Corollary 2.4.12 in [14]), the result of the lemma
follows.

To complete the proof of Theorem 2.5, observe that the differential operator
X

(
d
dt

)
obtained from any factorization of Π is such that for all w ∈ B the trajectory

X
(

d
dt

)
w is continuous, since X

(
d
dt

)
w is a linear combination of expressions obtained

by integrating by parts an Lloc
1 (R,Rq) function, and is consequently an absolutely

continuous time-function; see page 1062 of [17] for details.
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Remark 2.7. It is a matter of straightforward verification to check that the
coefficient matrix Π̃ of Π(ζ, η) equals

(2.20) Π̃ =

⎡
⎢⎢⎢⎢⎢⎣

−R1 −R2 · · · −RN−1 −RN

R2 R3 · · · RN 0
...

... . .
. ...

...
(−1)N−1RN−1 (−1)N−1RN 0 · · · 0

(−1)NRN 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

(which in the scalar case is classically known as the bilinear concomitant [10]). Up to
minus signs, this corresponds to the expression obtained by applying the shift-and-
cut map on the matrix R(ξ) (see section 5 of [17]), which we now briefly recall. Any
rational function q(ξ) ∈ R(ξ) can be uniquely written as the sum of a polynomial
pq(ξ) and of a strictly proper rational function sq(ξ). Now define

( )+ : R(ξ) → R[ξ],

q(ξ) �→ (q(ξ))+ := pq(ξ).

The shift-and-cut map σ+ : R[ξ] → R[ξ] is defined as

σ+(p(ξ)) := (ξ−1p(ξ))+,

and its definition is extended to polynomial matrices in a componentwise manner.
Observe that if R(ξ) = R0 +R1ξ+ · · ·+RNξN , then σ+(R(ξ)) = R1 + · · ·+RLξ

N−1,
while the second iterate of σ+, denoted σ2

+, takes the value σ2
+(R(ξ)) = R2 + · · · +

RNξN−2, and similar expressions hold for the kth iterate. It follows from the results
of section 6 of [17] that the polynomial matrix

(2.21)

⎡
⎢⎢⎢⎣

σ+(R(ξ))
σ2
+(R(ξ))

...

σN−1
+ (R(ξ))

⎤
⎥⎥⎥⎦

induces a (in general, nonminimal) state map forR( d
dt )w = 0. Note that the coefficient

matrix of (2.21) is equal to (2.20) up to minus signs, and thus corresponds to an X̃
in a (in general, nonminimal) factorization Π̃ =: Ỹ T X̃, with Ỹ an identity matrix up
to minus signs. Hence the derivation of Π(ζ, η) and its coefficient matrix Π̃ can be
regarded as a direct and intrinsic “integration by parts” and “BDF” interpretation
of the state map construction procedure of [17]. See also [9] for a discussion of the
concepts of state and state map from a more algebraic point of view.

Specialization of Theorem 2.5 to input-output systems (1.1) yields the following.
Corollary 2.8. Consider the input-output system (1.1). Define polynomial

matrices Xy(ξ), Xu(ξ) such that

(2.22) P (−ζ)−P (η) = (ζ+ η)Y T (ζ)Xy(η), −Q(−ζ)+Q(η) = (ζ+ η)Y T (ζ)Xu(η)

for some polynomial matrix Y (ξ) (such matrices Xy(ξ), Xu(ξ), and Y (ξ) always exist);
then

(2.23) x = Xy

(
d

dt

)
y +Xu

(
d

dt

)
u

defines a state map.
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2.4. Minimality. In this subsection we address the question of which conditions
ensure that the state maps obtained by integration by parts are minimal.

Proposition 2.9. Consider R(−ζ) − R(η) = (ζ + η)Π(ζ, η), and let Π(ζ, η) =
Y T (ζ)X(η) be a factorization. Then the state map x = X

(
d
dt

)
w, x(t) ∈ Rn, is

minimal if and only if there does not exist a nonzero f ∈ R
1×n such that

(2.24) fX(ξ) = h(ξ)R(ξ)

for some h ∈ R1×p[ξ].
Proof. (Only if) Suppose x = X

(
d
dt

)
w is minimal and there exists a nonzero

f ∈ R1×n such that (2.24) holds. Then the image of the state map x = X
(

d
dt

)
w

given by

(2.25) V :=

{
v ∈ R

n | ∃ w ∈ B such that X

(
d

dt

)
w(0) = v

}

is annihilated by f ; that is, fv = 0 for all v ∈ V . Thus the state map is not surjective,
contradicting minimality.

(If) The fact that there does not exist a nonzero f ∈ R1×n such that (2.24) holds
implies that the factorization Y T (ζ)X(η) is minimal. Indeed, suppose Y T (ζ)X(η) is
not minimal; then there exists a nonzero f ∈ R1×n such fX(ξ) = 0. Hence by Lemma
2.6,

(2.26)

[
X

(
d

dt

)
w1(0) = X

(
d

dt

)
w2(0)

]
⇐⇒ [w1 ∼0 w2].

Thus the only thing left to be proved for minimality of the state map x = X
(

d
dt

)
w is

that it is surjective; that is, V defined in (2.25) is equal to Rn. However, if dimV < n,
then there exists a nonzero constant vector f ∈ R1×n such that the differential oper-
ator (fX)

(
d
dt

)
is zero restricted to B, or, equivalently, such that fX(ξ) = h(ξ)R(ξ)

for some h ∈ R1×p[ξ].
Example 2.10. Consider an input-output system (1.1) without differentiations on

u,

P

(
d

dt

)
y = u.

Computation of a state map is performed by the factorization[
P (−ζ) −Im

]− [
P (η) −Im

]
=

[
P (−ζ)− P (η) 0m

]
=

[
Y T (ζ)Xy(η) 0m

]
.

In this case, when the factorization is minimal then also the state map x = Xy(
d
dt )y

is minimal. Indeed, suppose the state map x = Xy(
d
dt)y is not minimal. Then by

Proposition 2.9 there would exist a nonzero constant vector f ∈ R1×n such that

f
[
Xy(ξ) 0

]
= h(ξ)

[
P (ξ) −Im

]
for some h ∈ R

1×m[ξ]. However, by the form of this equation we necessarily have
h = 0, which in turn implies by minimality of the factorization that f = 0.

It follows from the proof of Proposition 2.9 that minimality of the factorization
is a necessary condition for minimality of the state map. However, in general it is
not sufficient. A simple class of counterexamples is provided by taking R(ξ) to be
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a unimodular polynomial matrix, that is, R(ξ) square and detR(ξ) = c, for some
nonzero constant c. Then it is clear that the minimal dimension (McMillan degree) of
the corresponding system is zero. (In fact, the behavior B is {0}.) However, if R(ξ)
is not itself a constant matrix, then Π̃ will be different from zero, and thus have rank
> 0.

On the other hand, a sufficient (but not necessary) condition for minimality of
the state map can be derived as follows. We first recall (see, e.g., [11]) the definition
of a row-reduced polynomial matrix. For the ith row of a polynomial matrix R(ξ), we
define the row-degree di as the highest power of ξ appearing in that row. The leading
row-coefficient matrix Rhr of R(ξ) is defined as the constant matrix, whose ith row
consists of the coefficients of ξdi in the corresponding entry of R(ξ). The polynomial
matrix R(ξ) is called row-reduced if Rhr has full row-rank.

Proposition 2.11. Consider the system R
(

d
dt

)
w = 0, with R row-reduced. Let

Π(ζ, η) = Y T (ζ)X(η) be a minimal factorization; then x = X
(

d
dt

)
w is a minimal

state map.
Proof. Recall from the proof of Proposition 2.9 that, in the case of a minimal

factorization, minimality of the state map x = X
(

d
dt

)
w with x ∈ Rn is equivalent

to the subspace V defined in (2.25) having dimension n (equal to the rank of the
coefficient matrix Π̃). First, consider the case when the coefficient matrix of X in
the factorization consists of the linearly independent rows of the matrix (2.20); the
general case will follow in a straightforward manner.

Assume by contradiction that dim V < n. Then there exists a nonzero constant
vector f ∈ R1×n such that fX(ξ) = h(ξ)R(ξ) for some h ∈ R1×p[ξ]. We are going
to prove that necessarily h(ξ) equals zero. Then fX(ξ) = 0, and by minimality of
the factorization Π(ζ, η) = Y T (ζ)X(η) it follows that f = 0, which yields the desired
contradiction.

Denote the row-degrees of R(ξ) by di, i = 1, . . . , p, and without loss of generality,
assume that d1 = d2 = · · · = dg1 > dg1+1 ≥ · · · ≥ dgp . Note that R being row-reduced
is equivalent to the predictable degree property (see [11, p. 387]): for every row-vector
h(ξ) we have

deg(h(ξ)R(ξ)) = max
i = 1, . . . , p

hi �= 0

{deg(hi(ξ)) + di} .

Note also that every row of X(ξ) has degree less than d1, the maximum degree of any
row in R. Then conclude from fX(ξ) = h(ξ)R(ξ) and the predictable degree property
that hi(ξ) = 0, i = 1, . . . , g1.

Now let hi(ξ) = 0, g1 + 1 ≤ i ≤ g, and hg+1(ξ) �= 0. The predictable degree
property implies that the highest power of ξ in h(ξ)R(ξ) is higher than or equal to
dg+1. It follows then from fX(ξ) = h(ξ)R(ξ) that at least one of the components
of f corresponding to the rows of X of degree larger than or equal to dg+1 must be
nonzero. It follows from (2.20) that the rows of X of degree larger than or equal
to dg+1 necessarily correspond to some of the first g rows of R. Consequently, the
highest coefficient vector of fX(ξ) is a linear combination of the highest coefficient
vectors of some of the first g rows of R.

On the other hand, from fX(ξ) = h(ξ)R(ξ) and hi(ξ) = 0 for i = 1, . . . , g
it follows that the highest coefficient of h(ξ)R(ξ), and consequently of fX(ξ), is a
linear combination of the last p − g rows of R. However, this implies that a linear
combination of the first g rows from the highest-coefficient matrix of R equals a linear
combination of its last p − g rows. By row-reducedness, we conclude that this is
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possible if and only if all of the coefficients of the linear combination equal zero.
From this it follows that hi(ξ) = 0 for all 1 ≤ i ≤ p, leading by minimality of the
factorization to f = 0.

In order to prove the case of a general X arising from a minimal factorization, use
the fact that any other matrix whose row span equals that of Φ̃ must differ from the
matrix X considered in the previous argument by premultiplication by a nonsingular
matrix. This concludes the proof.

Remark 2.12. Recall (see, e.g., [11, 14]) that any polynomial matrix R(ξ) can be
transformed into a row-reduced matrix while not changing the behavior defined by it.
First of all, for any R(ξ) we can find a unimodular matrix U(ξ) such that U(ξ)R(ξ) =
[R

′(ξ)
0

] with R′(ξ) full row-rank. Then the behavior defined by R
(

d
dt

)
w = 0 is the

same as that defined by R′ ( d
dt

)
w = 0. Furthermore, for any full-row rank polynomial

matrix R′(ξ) there exists a unimodular matrix U ′(ξ) such that U ′(ξ)R′(ξ) is row-
reduced. Again, since premultiplication with a unimodular matrix does not change
the behavior, the result follows.

Corollary 2.13. If R is row-reduced, then the McMillan degree of R( d
dt )w = 0

equals the rank n of the coefficient matrix Π̃ of Π(ζ, η) in (2.15).
Remark 2.14. The result of Corollary 2.13 provides an alternative way of com-

puting the McMillan degree of a system given in kernel representation R
(

d
dt

)
w = 0,

as compared to the standard way of computing the maximal degree of the nonzero
minors of the polynomial matrix R. It also implies that in general (without the as-
sumption of row-reducedness) the rank of Π̃ is greater than or equal to the McMillan
degree.2

We illustrate the above theory with a simple example.

Example 2.15. Consider the (uncontrollable) system d2

dt2w1 = d
dtw2, with corre-

sponding R(ξ) =
[
ξ2 −ξ

]
. Compute

R(−ζ)−R(η) =
[
ζ2 ζ

]− [
η2 −η

]
= (ζ + η)

[
ζ − η 1

]
.

A (minimal) factorization of Π(ζ, η) :=
[
ζ − η 1

]
can be obtained by (trivially in

this case) factorizing its coefficient matrix

Π̃ =

[
0 1 −1 0
1 0 0 0

]
=

[
1 0
0 1

] [
0 1 −1 0
1 0 0 0

]
,

leading to the factorization

Π(ζ, η) =
[
ζ − η 1

]
=

[
1 ζ

] [−η 1
1 0

]
=: Y T (ζ)X(η).

It follows that a state map is given by[
x1

x2

]
=

[− d
dt 1
1 0

] [
w1

w2

]
=

[− d
dtw1 + w2

w1

]
,

which is minimal since R(ξ) is row-reduced. (Indeed, the rank of the coefficient matrix
Π̃, which is 2, equals the McMillan degree of the system.)

2An alternative, seemingly unrelated, way of computing the McMillan degree for controllable
systems is based on the computation of the rank of the (generalized) Bézoutian (cf. [1]), which can
be defined (see [27]) using the two-variable polynomial matrix R(ζ)M(−η), where w = M( d

dt
)� is an

image representation of the system. Since R(ζ)M(ζ) = 0, it follows that we can write R(ζ)M(−η) =
(ζ + η)Ψ(ζ, η), where the coefficient matrix of Ψ is the Bézoutian matrix.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2426 ARJAN VAN DER SCHAFT AND PAOLO RAPISARDA

2.5. First-order models. In this subsection we will directly show that the state
x = X

(
d
dt

)
w as obtained from a factorization Π(ζ, η) = Y T (ζ)X(η) satisfies a set

of linear first-order differential-algebraic equations (in accordance with the intuitive
notion of state). This follows from the basic formula (2.17). Indeed, for any ordinary
solution w ∈ B, and thus R

(
d
dt

)
w = 0, this formula yields (by applying the product

rule of differentiation to the right-hand side)

(2.27)

(
Y

(
d

dt

)
ϕ

)T
d

dt
x = −

(
d

dt

[
Y

(
d

dt

)
ϕ

])T

x+ wT

(
RT

(
− d

dt

)
ϕ

)

for all ϕ. Denote Y (ξ) = Y0 + Y0ξ + · · · + YN−1ξ
N−1. Then this expression can be

written explicitly as

(2.28)

[
ϕT ϕ(1)T · · · ϕ(N−1)T

]
⎡
⎢⎢⎣

Y T
0
...

Y T
N−1

⎤
⎥⎥⎦ d

dt
x

= − [
ϕ(1)T ϕ(2)T · · · ϕ(N)T

]
⎡
⎢⎢⎣

Y T
0
...

Y T
N−1

⎤
⎥⎥⎦x

+
[
ϕT ϕ(1)T · · · ϕ(N)T

]
⎡
⎢⎢⎢⎢⎣

R0

−R1

...

(−1)NRN

⎤
⎥⎥⎥⎥⎦w

for all row vectors
[
ϕT ϕ(1)T · · · ϕ(N)T

]
, or more compactly,

(2.29)
[
ϕT · · · ϕ(N)T

]
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

Y T
0
...

Y T
N−1

0

⎤
⎥⎥⎥⎥⎦

d

dt
x+

⎡
⎢⎢⎢⎢⎣

0
Y T
0
...

Y T
N−1

⎤
⎥⎥⎥⎥⎦x+

⎡
⎢⎢⎢⎢⎣

−R0

R1

...

−(−1)NRN

⎤
⎥⎥⎥⎥⎦w

⎞
⎟⎟⎟⎟⎠ = 0.

From the arbitrariness of the test function ϕ, and hence the arbitrariness of the row
vector

[
ϕT ϕ(1)T · · · ϕ(N)T

]
, it thus follows that

(2.30)

⎡
⎢⎢⎢⎢⎣

Y T
0
...

Y T
N−1

0

⎤
⎥⎥⎥⎥⎦

d

dt
x+

⎡
⎢⎢⎢⎢⎣

0
Y T
0
...

Y T
N−1

⎤
⎥⎥⎥⎥⎦x+

⎡
⎢⎢⎢⎢⎣

−R0

R1

...

−(−1)NRN

⎤
⎥⎥⎥⎥⎦w = 0.

Note that (2.30) constitutes a state representation of the differential-algebraic form
E d

dtx + Fx + Gw = 0. If the factorization Π(ζ, η) = Y T (ζ)X(η) is chosen to be
minimal, then ⎡

⎢⎢⎣
Y T
0
...

Y T
N−1

⎤
⎥⎥⎦
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has full column rank, and thus has a left inverse L. Premultiplying (2.30) by [ L 0
0 Ip ]

then yields the equivalent representation

(2.31)

d

dt
x = −L

⎡
⎢⎢⎢⎢⎣

0
Y T
0
...

Y T
N−2

⎤
⎥⎥⎥⎥⎦x+ L

⎡
⎢⎢⎢⎢⎣

R0

−R1

...

(−1)N−1RN−1

⎤
⎥⎥⎥⎥⎦w,

0 = −Y T
N−1x+ (−1)NRNw.

This is a representation of the form d
dtx = Fx+Gw, 0 = Hx +Kw, often called an

output nulling representation. Evidently, different factorizations of Π̃ yield different
state maps and consequently different state equations (2.30), (2.31); in a future paper
we will further explore the resulting state space realizations.

2.6. State maps for image representations. A linear system in image rep-
resentation3 is given by higher-order differential equations of the form

(2.32) w = M

(
d

dt

)
� ,

where � ∈ Lloc
1 (R,Rk) denotes a vector function of auxiliary, or latent, variables, and

M(ξ) is an q × k polynomial matrix. Note that (2.32) defines two behaviors: the full
behavior,

(2.33) Bfull := {(w, �) ∈ Lloc

1 (R,R(q+k) | (2.32) holds weakly},

and the external behavior,

(2.34) Bext := {w ∈ Lloc

1 (R,Rq) | ∃� ∈ Lloc

1 (R,Rk) such that (2.32) holds weakly}.

Systems in image representation will naturally come up in sections 3 and 4. It is well
known [14] that any system R

(
d
dt

)
w = 0 with behavior B can be written in image

representation (2.32) (in the sense that Bext = B) if and only if it is controllable (in the
behavioral sense), or equivalently, the polynomial matrix R(s), s ∈ C, has constant
rank. Thus systems in image representation are necessarily controllable.

The construction of a state map for the full behavior Bfull directly follows from the
construction of state maps for systems given in kernel representation (2.1) as above.
Indeed, the full behavior is given as the set of weak solutions (in w and �)

(2.35)

[
Iq −M

(
d

dt

)][
w
�

]
= 0.

Thus a state map can be constructed by factorizing the two-variable polynomial ma-
trix Π(ζ, η) defined as

(ζ + η)Π(ζ, η) :=
[
Iq −M(−ζ)

]− [
Iq −M(η)

]
=

[
0q −M(−ζ) +M(η)

]
.(2.36)

3Correspondingly, (2.1) is often referred to as a kernel representation.
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Obviously, any factorization of Π(ζ, η) is of the form

(2.37) Π(ζ, η) = Y T
M (ζ)

[
0q XM (η)

]
,

where Y T
M (ζ)XM (η) is a factorization of ΠM (ζ, η), defined by (ζ + η)ΠM (ζ, η) :=

−M(−ζ) +M(η). In particular, the state map for the full behavior is a function of
only the latent variables �.

Somewhat contrary to the case of kernel representations, minimality of this state
map simply corresponds to minimality of the factorization ΠM (ζ, η) = Y T

M (ζ)XM (η),
as is formulated in the next proposition.

Proposition 2.16. Consider the full behavior of the image representation (2.32).
Any factorization

(2.38) ΠM (ζ, η) =
−M(−ζ) +M(η)

ζ + η
= Y T

M (ζ)XM (η)

defines a state map x = XM ( d
dt)� for the full behavior, which is minimal if and only

if the factorization is minimal.
Proof. The only thing left to be proved is the “if” part concerning minimality. This

follows, however, from similar reasoning as in Example 2.10. Indeed, consider a mini-
mal factorization ΠM (ζ, η) = Y T

M (ζ)XM (η), yielding a state mapX(ξ) =
[
0 XM (ξ)

]
,

where 0 is an n × q zero-matrix. Suppose this state map is not minimal. Then, by
Proposition 2.9, there would exist a nonzero constant vector f ∈ R1×n such that

f
[
0 XM (ξ)

]
= h(ξ)

[
Iq −M(ξ)

]
for some h ∈ R1×q[ξ]. However, by the form of this equation it follows that we
necessarily have h = 0, which in turn implies by minimality of the factorization the
contradiction f = 0.

State maps for the external behavior Bext can be directly obtained from state maps
for the full behavior Bfull once the latent variables � can be expressed in the external
variables w. It is well known (see [14]) that for every image representation (2.32)
we can replace the polynomial matrix M(ξ) by a polynomial matrix M ′(ξ) such that
M ′(s) has full column-rank for all s ∈ C, while not changing the external behavior
of the image representation.4 For such a, possibly adapted, image representation we
have the following.

Proposition 2.17. Consider (2.32), where M(s) has full column-rank for all
s ∈ C, and consider the full (2.33) and external (2.34) behaviors associated with
(2.32). Then

[(w1, �1) ∼0 (w2, �2) in (2.33) ] ⇐⇒ [w1 ∼0 w2 in (2.34) ] .

Let L(ξ) be such that

L(ξ)M(ξ) = I,

and let x = XM ( d
dt)� be a (minimal) state map for the full behavior Bfull. Then

x = XM ( d
dt)L(

d
dt )w is a (minimal) state map for the external behavior Bext. In

particular, the McMillan degrees of the full and the external behaviors are equal.

4Such an image representation is called observable, since the latent variables � are uniquely
determined by the external variables w. Indeed, since M ′(s) has constant rank for all s ∈ C, there
exists a polynomial matrix L(ξ) such that L(ξ)M ′(ξ) = I, and hence � = L( d

dt
)M ′( d

dt
)� = L( d

dt
)w.
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Proof. The implication ⇒ is obvious. In order to prove the converse implication,
observe that the latent variable trajectory � is uniquely determined by w:

[(w1, �1), (w2, �2) ∈ Bfull] and [w1 = w2] =⇒ [�1 = �2] .

Now assume that w1, w2 ∈ Bext are infinitely differentiable trajectories which are
equivalent at zero in the external behavior, i.e., w1 ∧0 w2 ∈ Bext. Let � be the latent
variable corresponding to w1 ∧0 w2, i.e., (w1 ∧0 w2, �) ∈ Bfull. Proceed now as in the
proof of Lemma 2.6 and integrate by parts along (w1∧0w2, �) on (−∞, 0) and (0,+∞),
obtaining algebraic conditions on � and its derivatives on the left and the right of zero.
Now apply observability to conclude that the restriction of � to (−∞, 0) coincides with
�1, the latent variable trajectory such that w1 = R

(
d
dt

)
�1, and that the restriction of

� to (0,+∞) coincides with �2, the latent variable trajectory such that w2 = R
(

d
dt

)
�2.

Consequently, the algebraic conditions on � and its derivatives on the left and the right
of zero can be written in terms of �1, respectively, �2. These conditions are readily
seen to be the same as the concatenability conditions for the full trajectories (w1, �1)
and (w2, �2) obtained by integration by parts on the full trajectories. The rest of the
claims follow immediately.

Remark 2.18. One implication in the result of Proposition 2.17 is straightforward:
if two trajectories are concatenable in the full behavior, then their projections on the
external variables are concatenable in the external behavior. The converse implication
is interesting since it shows that if two trajectories are concatenable at time t = 0
in the external behavior, then the full trajectories corresponding to them are also
concatenable at zero, producing an admissible full trajectory. (Note that this is in
general not true for general representations involving latent variables, as discussed in
section 7 of [17].)

3. Adjoint systems. Consider again the basic integration by parts formula
(2.9). For any C∞ function w ∈ B it holds that R

(
d
dt

)
w = 0, and thus we obtain

from (2.9) the equality

(3.1) wT (t)RT

(
− d

dt

)
ϕ(t) =

d

dt
BΠ(ϕ,w)(t).

This formula is used to define (see also [6]) the adjoint system as the system given in
image representation as

(3.2) wa = RT

(
− d

dt

)
ϕ,

where wa(t) belongs to W∗ = Rq, the dual space of W . This leads to the following
relation between the trajectories of the original system R

(
d
dt

)
w = 0 and those of its

adjoint system (3.2):

(3.3) wTwa =
d

dt
BΠ(ϕ,w).

Since the adjoint system is given in image representation, it is automatically control-
lable.

Remark 3.1. It can be seen that (3.3) uniquely defines the adjoint system in the
following sense. Suppose there exists a trajectory w′

a such that for some other bilinear
differential form BΠ′(ϕ,w),

(3.4) wTw′
a =

d

dt
BΠ′(ϕ,w)
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for all w ∈ B. Then, following an argument in [10], by subtracting (3.4) from (3.3) it
follows that

(3.5) wT (w − w′
a) =

d

dt
[BΠ(ϕ,w) −BΠ′(ϕ,w)]

for all w ∈ B. Since the left-hand side does not depend on the derivative of
Nth order w(N) this implies that BΠ(ϕ,w) − B′

Π(ϕ,w) does not depend on w(N−1).
However, since the left-hand side also does not depend on w(N−1), this implies that
BΠ(ϕ,w) − BΠ′(ϕ,w) also does not depend on w(N−2). This argument may be re-
peated to show that the bilinear differential form BΠ(ϕ,w) − BΠ′(ϕ,w) does not
depend on w(N−1), w(N−2), . . . , w, and hence (by linearity and arbitrariness of ϕ) is
equal to zero. It follows that wa = w′

a, and thus the set of trajectories of the adjoint
system is uniquely defined by (3.3).

Remark 3.2. The above definition differs from the classical definition of the
adjoint system as in, e.g., [10]. In fact, for a system of differential equations R

(
d
dt

)
w =

0, where R(ξ) is assumed to be a square polynomial matrix, the adjoint system is
classically defined as the set of differential equations RT

(− d
dt

)
ϕ = 0 in the vector

ϕ.
As shown in Theorem 2.5, the right-factor of a factorization Π(ζ, η) = Y T (ζ)X(η)

defines a state map for the system R
(

d
dt

)
w = 0. It turns out that the left-factor Y (ξ)

is associated with a state map for the full behavior of the adjoint system.
Theorem 3.3. Let Π(ζ, η) be defined as in (2.11), and let Π(ζ, η) = Y T (ζ)X(η)

be a factorization. Then the map xa := Y
(

d
dt

)
ϕ acting on the latent variable ϕ is a

state map for the full behavior.
Proof. The claim follows in a straightforward manner from the argument used in

the proof of Proposition 2.17.
Remark 3.4. In section 2 we defined state maps as differential operators that act

on the external variables of a system, thus producing a state vector. When considering
representations involving latent variables, it is also possible (see section 7 of [17]) to
define state maps also as acting on the full trajectories to produce state variables for
the external behavior. In this broader sense, the state map xa := Y

(
d
dt

)
ϕ defined

in Theorem 3.3 acting on the latent variable ϕ is a state map also for the external
behavior of (3.2), for the same reason mentioned at the beginning of Remark 2.18.

From (3.3) we conclude that the state xa = Y
(

d
dt

)
ϕ of the adjoint system satisfies

(see also [27, eq. (10.3)] or [6, eq. (2.6)])

(3.6) wT
a w =

d

dt
xT
a x.

It is important to note that the adjoint system is fully determined by the controllable
part of the system R

(
d
dt

)
w = 0, which is defined as follows. First, without loss of

generality we may assume that R(ξ) has full row-rank; cf. Remark 2.12. Next, any
full row-rank matrix R(ξ) can be factorized as

(3.7) R(ξ) = P (ξ)Rc(ξ),

where Rc(s) has full row-rank for all s ∈ C, and P (ξ) is a square polynomial matrix
such that detP (ξ) is different from the zero-polynomial (see, e.g., [14]). Then

(3.8) Bc :=

{
w ∈ Lloc

1 (R,Rq) | w is a weak solution of Rc

(
d

dt

)
w(t) = 0

}
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obviously satisfies Bc ⊂ B and constitutes the controllable part of the system. Since
P is nonsingular, the differential operator PT

(− d
dt

)
is surjective (cf. [14]), and con-

sequently the time-functions ϕc := PT
(− d

dt

)
ϕ are arbitrary time-functions, so that

the adjoint system is also given as

(3.9) wa = RT
c

(
− d

dt

)[
PT

(
− d

dt

)
ϕ

]
= RT

c

(
− d

dt

)
ϕc,

which is indeed involving only the controllable part of the system. Since Rc(s) is
surjective for all s ∈ C, application of Proposition 2.17 yields the following corollary.

Corollary 3.5. Consider the adjoint system given in image representation,

(3.10) wa = RT
c

(
− d

dt

)
ϕc.

Let Lc(ξ) be such that

Lc(ξ)R
T
c (−ξ) = I,

and let x = Yc(
d
dt )ϕc be a (minimal) state map for the full behavior Bfull of the adjoint

system. Then x = Yc(
d
dt )Lc(

d
dt)w is a (minimal) state map for the external behavior

Bext of the adjoint system. In particular, the McMillan degrees of the full and the
external behaviors of the adjoint system are equal.

As a consequence we can derive the following behavioral characterization of the
adjoint system, extending the one given in [13, 27] for controllable systems.

Proposition 3.6. Consider the system R
(

d
dt

)
w = 0. Then the external behavior

Ba of the adjoint system (3.2) equals
(3.11){

wa ∈ Lloc

1 (R,Rq)

∣∣∣∣
∫ ∞

−∞
wT

a (t)w(t)dt = 0 ∀w ∈ Bc with compact support

}

=

{
wa ∈ Lloc

1 (R,Rq)

∣∣∣∣
∫ ∞

−∞
wT

a (t)w(t)dt = 0 ∀w ∈ B with compact support

}
.

Proof. Without loss of generality R(ξ) = P (ξ)Rc(ξ) is given as in (3.7). Since
Rc(

d
dt )w = 0 is a controllable system, it has been shown in [13, 27] that the behavior

Ba of the adjoint system (3.5) equals the expression in the first line of (3.11). On the
other hand, all trajectories of compact support in B are actually (cf. [14]) contained
in Bc, and hence the result follows.

4. State maps for Hamiltonian and time-reversible systems. Throughout
subsections 4.1 and 4.2 we consider controllable systems R

(
d
dt

)
w = 0, or equivalently,

in image representation w = M
(

d
dt

)
�, where imM(s)= kerR(s), s ∈ C, and, without

loss of generality, M(s) has full column-rank for all s ∈ C.
Suppose that W = Rq is given as W = U × U∗ for some linear space U := Rm

(hence q = 2m). Such a space W = U × U∗ is endowed with two canonical non-
degenerate bilinear forms. The first is the skew-symmetric bilinear form defined by

(4.1) [(u1, y1), (u2, y2)] := 〈y1|u2〉 − 〈y2|u1〉

for u1, u2 ∈ U , and y1, y2 ∈ U∗, where 〈· | ·〉 denotes the duality product between
U and its dual U∗. This is nothing else than the standard symplectic form given in
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matrix representation by

(4.2) Je =

[
0m Im
−Im 0m

]
.

The second canonical bilinear form on W = U × U∗ is the symmetric bilinear form
defined by

(4.3) 〈(u1, y1), (u2, y2)〉 := 〈y1|u2〉+ 〈y2|u1〉,
which has the matrix representation

(4.4) Qe =

[
0m Im
Im 0m

]
.

Both canonical forms give rise to a definition of a Hamiltonian system: the first is that
of a self-adjoint Hamiltonian system (closely related to the input-output Hamiltonian
systems introduced in [2, 5] and further studied, e.g., in [18, 19]), and the second is
that of a (conservative) port-Hamiltonian system (as introduced in [7, 12, 23]). In both
cases we will show how the state map construction developed in section 2 translates
into the explicit construction of a symplectic, respectively, energy quadratic, form on
the state space.

4.1. Self-adjoint Hamiltonian systems. The skew-symmetric bilinear form
[·, ·] with matrix representation Je on W = R2m gives rise to the following skew-
symmetric bilinear form on the set C(R,R2m) of piecewise right-continuous functions5

w : R → R2m with compact support:

(4.5) [[w1, w2]] :=

∫ ∞

−∞
wT

1 (t)Jew2(t)dt.

This is again a nondegenerate form, in the sense that if [[w1, w2]] = 0 for all compact
support w1 (resp., w2), then w2 = 0 (resp., w1 = 0). Thus it defines a symplectic
form on C(R,R2m). Recall that a subspace L of a linear space V with symplectic form
ω is called Lagrangian if L = L⊥, where ⊥ denotes the orthogonal complement with
respect to the symplectic form ω. Equivalently, L is Lagrangian if ω is zero when
restricted to L, and moreover L is maximal with respect to this property. This leads
to the following behavioral definition of a self-adjoint Hamiltonian system as initially
developed in [6, 19, 20, 21].

Definition 4.1. The behavior B defines a self-adjoint Hamiltonian system if B
is a Lagrangian subspace with respect to the symplectic form [[·, ·]] defined in (4.5) on
C(R,R2m).

Hence the system w = M
(

d
dt

)
� is self-adjoint Hamiltonian if

(4.6)

∫ ∞

−∞
wT

1 (t)Jew2(t)dt =

∫ ∞

−∞

(
M

(
d

dt

)
�1(t)

)T

JeM

(
d

dt

)
�2(t) = 0

for all smooth �1, �2 of compact support, and furthermore the system is maximal with
regard to this property. It follows from [19, 6] (see also [27, Theorem 3.1] for similar

5Note that we have replaced the function class Lloc
1 (R,Rq), as used up to now in the definition

of behaviors, by the smaller class of piecewise right-continuous functions—the reason being that we
need the expressions (4.5) to be well defined.
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developments) that w = M
(

d
dt

)
� is self-adjoint Hamiltonian if and only if

(4.7) MT (−s)JeM(s) = 0, dim im M(s) = m

(
=

1

2
dimW

)
∀ s ∈ C.

The equality (4.7) means that MT (ζ)JeM(η) is zero whenever ζ+ η = 0. Hence (4.7)
is equivalent to the existence of a two-variable polynomial matrix Φ(ζ, η) such that

(4.8) MT (ζ)JeM(η) = (ζ + η)Φ(ζ, η).

Since by (4.8) we have that Φ(ζ, η) = −ΦT (η, ζ), the coefficient matrix Φ̃ of Φ(ζ, η) is
skew-symmetric, and consequently it admits a factorization Φ̃ = Z̃TJiZ̃ for some full
row-rank matrix Z̃ and some nonsingular skew-symmetric n×n matrix Ji, where n is
necessarily even-dimensional. This factorization of Φ̃ induces a minimal factorization

(4.9) Φ(ζ, η) = ZT (ζ)JiZ(η), Ji = −JT
i .

Theorem 4.2. Let w = M
(

d
dt

)
� with external behavior B be a self-adjoint

Hamiltonian system. Consider the minimal factorization (4.9). Then x = Z
(

d
dt

)
�

is a minimal state map as in section 2, with McMillan degree equal to n (even).
Furthermore, for every wi = M

(
d
dt

)
�i ∈ B with associated state trajectories xi :=

Z
(

d
dt

)
�i, i = 1, 2, it holds that

(4.10)
d

dt
xT
1 Jix2 = wT

1 Jew2.

Proof. Start again from the minimal state map construction for the system w =
M( d

dt)�, based on the two-variable polynomial matrix equality

−M(−ζ) +M(η) = (ζ + η)ΠM (ζ, η)

and a minimal factorization ΠM (ζ, η) = Y T
M (ζ)XM (η) (see subsection 2.6). Substitu-

tion of M(η) = M(−ζ)+(ζ+η)ΠM (ζ, η) in (4.8) leads to (since M(ζ)T JeM(−ζ) = 0)

(ζ + η)MT (ζ)JeΠM (ζ, η) = (ζ + η)Φ(ζ, η),

and hence

(4.11) MT (ζ)JeΠM (ζ, η) = Φ(ζ, η).

Substituting (4.9) in (4.11) and equating the powers of ζ and η in the resulting
equation

MT (ζ)JeY
T
M (ζ)XM (η) = ZT (ζ)JiZ(η),

it follows that (up to premultiplication by an invertible matrix; cf. Proposition 2.4)
XM (η) = Z(η). Consequently, x = Z

(
d
dt

)
� is a minimal state map for the full

behavior of w = M
(

d
dt

)
�.

In order to prove the last part, combine (4.8) and (4.9) into

(4.12) MT (ζ)JeM(η) = (ζ + η)Φ(ζ, η) = (ζ + η)ZT (ζ)JiZ(η).

The time-domain translation of this equality is that for every wi = M
(

d
dt

)
�i and

corresponding state trajectories xi = Z
(

d
dt

)
�i, i = 1, 2, the equality (4.10) holds.
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Example 4.3. Consider the case q = 2, with the system given by p( d
dt )y = q( d

dt)u,
where p(ξ) and q(ξ) are coprime polynomials, with image representation

[
u
y

]
=

[
p( d

dt)

q( d
dt)

]
�.

This defines a self-adjoint Hamiltonian system if and only if for all s ∈ C

−p(−s)q(s) + q(−s)p(s) = 0.

A minimal state map is obtained by a minimal factorization6 (cf. (4.11) and (4.9))

−p(ζ)q(η) + q(ζ)p(η) = (ζ + η)Φ(ζ, η) = (ζ + η)ZT (ζ)JiZ(η),

where Ji is a skew-symmetric matrix of full-rank. For instance, p(s) = s2 and q(s) = 1
lead to the minimal factorization

−ζ2 + η2 = (ζ + η)(−ζ + η) =
[
1 ζ

] [ 0 1
−1 0

] [
1
η

]
,

defining the minimal state map

x =

[
1
d
dt

]
l =

[
0 1
0 d

dt

] [
u
y

]
.

Remark 4.4. An input-output system given in transfer matrix format y(s) =
G(s)u(s), u ∈ U , y ∈ U∗, is self-adjoint Hamiltonian if and only if

(4.13) G(s) = GT (−s).

This is the starting point taken in [5, 19, 18], where the internal symplectic form Ji
is obtained as a consequence of the state space isomorphism theorem, contrary to the
explicit construction of Ji in (4.9); see also [21, 20] for related results.

Remark 4.5. The terminology “self-adjoint Hamiltonian” can be understood as
follows. Consider the controllable behavior B on W with symplectic form Je, together
with its adjoint system behavior Ba. Then Je induces an invertible map (denoted by
the same symbol) Je : W → W∗, and B is self-adjoint Hamiltonian if and only if (see
also [6, 19])

(4.14) JeB = Ba.

Furthermore, the symplectic form Ji induces an invertible map Ji : X → X ∗. Com-
paring (4.10) with the basic formula (3.6) for the adjoint system, we have the cor-
respondence wa = Jew, xa = Jix. Hence, the full behavior Bfull of a self-adjoint
Hamiltonian system satisfies

(4.15)

[
Je 0
0 Ji

]
Bfull = (Ba)full.

6Note that Φ(ζ, η) is close to (although different from!) the classical Bézoutian of the polynomials
p(ξ), q(ξ).
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4.2. Conservative port-Hamiltonian systems. The nondegenerate bilinear
form Qe defined in (4.4) gives rise to the following symmetric bilinear form on the
set C(R,R2m) of piecewise right-continuous functions w : R → R2m with compact
support:

(4.16) 〈〈w1, w2〉〉 :=
∫ ∞

−∞
wT

1 (t)Qew2(t)dt.

This is again a nondegenerate form. A subspace D of the space of locally integrable
functions w : R → U × U∗ of compact support is called a Dirac structure if D =
D⊥⊥, where ⊥⊥ denotes the orthogonal complement with respect to the form 〈〈·, ·〉〉.
Equivalently, D is a Dirac structure if 〈〈·, ·〉〉 is zero restricted to D, and moreover
D is maximal with respect to this property. We arrive at the following behavioral
characterization of a conservative linear port-Hamiltonian system explored in [24],
based on the concept of a state space port-Hamiltonian system originating in [23, 12,
7].

Definition 4.6. A behavior B defines a conservative port-Hamiltonian system
if B is a Dirac structure with respect to the form 〈〈·, ·〉〉 on the space C(R,R2m).

Hence the system w = M
(

d
dt

)
� is conservative port-Hamiltonian if

(4.17)

∫ ∞

−∞
wT

1 (t)Qew2(t)dt =

∫ ∞

−∞

(
M

(
d

dt

)
�1(t)

)T

QeM

(
d

dt

)
�2(t) = 0

for all �1, �2 with compact support, and furthermore the system is maximal with regard
to this property. It follows that w = M

(
d
dt

)
� is conservative port-Hamiltonian if and

only if for all s ∈ C

(4.18) MT (−s)QeM(s) = 0, dimM(s) = m

(
=

1

2
dimW

)
.

As before, this is equivalent to the existence of a two-variable polynomial matrix
Ψ(ζ, η) such that

(4.19) MT (ζ)QeM(η) = (ζ + η)Ψ(ζ, η).

Since Ψ(ζ, η) = ΨT (η, ζ), it follows that the coefficient matrix Ψ̃ is symmetric, and
consequently Ψ(ζ, η) can be minimally factorized as

(4.20) Ψ(ζ, η) = ZT (ζ)QiZ(η), Qi = QT
i ,

for some n× 2m polynomial matrix Z(ξ) and some symmetric n× n full-rank matrix
Qi. We obtain the following theorem which parallels Theorem 4.2.

Theorem 4.7. Let w = M
(

d
dt

)
� with behavior B be a conservative port-Hamiltonian

system. Consider the minimal factorization (4.20). Then x = Z
(

d
dt

)
� is a minimal

state map as in section 2, with McMillan degree equal to n. Furthermore, for every
wi = M

(
d
dt

)
�i ∈ B with associated state trajectories xi := Z

(
d
dt

)
�i, i = 1, 2, it holds

that

(4.21)
d

dt
xT
1 Qix2 = wT

1 Qew2.

Proof. The proof is completely analogous to the proof of Theorem 4.2. Consider
the equality −M(−ζ) +M(η) = (ζ + η)ΠM (ζ, η). Substitution of M(η) = M(−ζ) +
(ζ + η)ΠM (ζ, η) in (4.19) leads to

(4.22) MT (ζ)QeΠM (ζ, η) = Ψ(ζ, η).
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Substitution of (4.20) and a minimal factorization ΠM (ζ, η) = Y T
M (ζ)XM (η) in (4.22)

then yields

MT (ζ)QeY
T
M (ζ)XM (η) = ZT (ζ)QiZ(η).

Hence, up to premultiplication by an invertible matrix, XM (η) = Z(η), and thus
x = Z

(
d
dt

)
� is a minimal state map for the full behavior Bfull. Finally, combine (4.19)

and (4.20) to conclude that

(4.23) MT (ζ)QeM(η) = (ζ + η)Ψ(ζ, η) = (ζ + η)ZT (ζ)QiZ(η),

which implies that for every wi = M
(

d
dt

)
�i ∈ B = Bext and xi = Z

(
d
dt

)
�i, i = 1, 2,

the equality (4.21) holds.
Remark 4.8. The quadratic form 1

2x
TQix defines the internal energy of the

system, while 1
2w

TQew corresponds to the supply rate of the system. In fact, for
w = [ yu ] we have 1

2w
TQew = 1

2 (y
Tu + uT y) = uT y, which is the standard passivity

supply rate. Thus (4.21) amounts to the conservation of energy

(4.24)
d

dt

1

2
xTQix = uT y,

which is the usual definition of a lossless system in case Qi > 0. In fact, an input-
output system given in transfer matrix format y(s) = G(s)u(s), u ∈ U , y ∈ U∗, is
conservative port-Hamiltonian if and only if

(4.25) G(s) = −GT (−s).

This is the starting point taken in [23, 12], where the existence of the internal sym-
metric form Qi is derived from the state space isomorphism theorem. In the current
treatment, however, Qi is explicitly constructed using (4.20). Among others, this has
the advantage that the signature of Qi can be directly determined; in particular it
can be immediately verified if Qi is positive-definite.

4.3. Time-reversible systems. In this subsection we investigate the structure
of state maps and the resulting state spaces for time-reversible systems. Let Ve :
Rq → Rq be a linear involution, i.e., V 2

e = Iq. Define the time-reversal operator
R : Lloc

1 (R,Rq) → Lloc
1 (R,Rq) corresponding to Ve as

(4.26) (Rw)(t) := Vew(−t), t ∈ R,

for any w ∈ Lloc
1 (R,Rq). Then a behavior B is called time-reversible if it is invariant

under R, that is,

(4.27) R (B) = B.
The following result was obtained in [8].

Proposition 4.9. Every time-reversible behavior B described by a set of higher-
order linear differential equations can be represented as R

(
d
dt

)
w = 0 with R(ξ) satis-

fying

(4.28) R(−ξ)Ve = SR(ξ)

for some signature matrix S, that is, a diagonal matrix

S =

[
Ip1 0
0 −Ip2

]
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with p1 + p2 = p. Conversely, if R(ξ) satisfies (4.28), then the system R( d
dt)w = 0 is

time-reversible.
Our main result is that the property (4.28) translates into the following property

of state maps obtained from factorization of Π(ζ, η).
Proposition 4.10. Consider a time-reversible system R

(
d
dt

)
w = 0 with R(ξ)

satisfying (4.28). Consider any state map x = X( d
dt )w, with x ∈ Rn, obtained from

a minimal factorization Π(ζ, η) = Y T (ζ)X(η), where as before R(−ζ)−R(η) = (ζ +
η)Π(ζ, η). Then there exists a nonsingular map Vi : Rn → Rn which is again an
involution, that is, V 2

i = In, such that

(4.29) X(ξ)Ve = ViX(−ξ) .

Proof. By (4.28),

(R(−ζ)−R(η))Ve = S(R(ζ)−R(−η)),

and hence

(ζ + η)Π(ζ, η)Ve = −(ζ + η)SΠ(−ζ,−η)

or, equivalently,

Π(ζ, η)Ve = −SΠ(−ζ,−η).

Thus for a minimal factorization Π(ζ, η) = Y T (ζ)X(η) we obtain from Proposition
2.4 that there exists a unique Vi such that X(ξ)Ve = ViX(−ξ). This furthermore
implies

X(ξ) = X(ξ)VeVe = ViX(−ξ)Ve = ViViX(ξ) ,

and hence V 2
i = In.

The same result for minimal state space realizations of a transfer matrix G(s)
satisfying the time-reversibility condition G(s) = G(−s) (corresponding to Ve = I)
was already obtained, using the state-space isomorphism theorem, in [26]. Various
extensions can be found in [8]. The contribution of the above proposition is that
the existence of the internal involution Vi is directly inferred from the properties
of the (not necessarily minimal!) state map x = X( d

dt )w obtained from a minimal
factorization of Π(ζ, η).

5. Conclusions. In this paper we have developed a novel approach to the con-
struction of state variables for systems described by sets of higher-order linear dif-
ferential equations. By starting from the characterization of state as an equivalence
relation among solutions, state maps are directly constructed by repeated “integra-
tion by parts,” using the calculus of bilinear differential forms and factorization of
two-variable polynomial matrices, also relating to the adjoint system. We have ap-
plied our approach to Hamiltonian and time-reversible systems, yielding canonical
structures on their state space in a constructive way. The basic idea underlying the
proposed construction, that is, “integration by parts” and Lagrange’s identity, seems
sufficiently general to be extendable to other system classes, such as time-varying lin-
ear systems and systems of linear PDEs, as well as nonlinear systems. More specific
research questions include the construction of state maps for uncontrollable Hamilto-
nian systems, making use of their behavioral characterization obtained in [16], as well
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as the characterization of the set of storage functions of (uncontrollable) dissipative
systems, continuing the work of [27]. Furthermore, in a future paper we will apply
the state map construction to state space realization theory, building upon the results
obtained in section 2.5.
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J. P. Gauthier, and I. Kupka, eds., Birkhaüser Boston, Boston, MA, 1991, pp. 393–403.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STATE MAPS FROM INTEGRATION BY PARTS 2439

[22] A. J. van der Schaft, Representing a nonlinear input-output differential equation as an input-
state-output system, in Open Problems in Mathematical Systems Control and Theory,
V. Blondel, E. D. Sontag, M. Vidyasagar, and J. C.Willems, eds., Comm. Control Engrg.
Ser., Springer, London, 1999, pp. 171–176.

[23] A. J. van der Schaft and B. M. Maschke, The Hamiltonian formulation of energy conserving
physical systems with external ports, Archiv für Elektronik und Übertragungstechnik, 49
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