U-GDL: A Decentralised Algorithm on DCOPs

with Uncertainty*

R. Stranders, F. M. Delle Fave, A. Rogers and N. R. Jennings

November 30, 2011

*This paper was originally presented at the AAMAS 2011 workshop on Optimisation
on Multi-agent systems (Optmas 2011) on the 3 May 2011

U-GDL: A decentralised algorithm for DCOPs with uncertainty

R. Stranders, F. M. Delle Fave, A. Rogers & N. R. Jennings
University Of Southampton
{rs2,fmdf08r,acr,nrj} @ecs.soton.ac.uk

Abstract

In this paper, we introduce DCOPs with uncertainty (U-
DCOPs), a novel generalisation of the canonical DCOP
framework where the outcomes of local functions are rep-
resented by random variables, and the global objective is to
maximise the expectation of an arbitrary utility function (that
represents the agents’ risk-profile) applied over the sum of
these local functions. We then develop U-GDL, a novel de-
centralised algorithm derived from Generalised Distributive
Law (GDL) that optimally solves U-DCOPs. A key property
of U-GDL that we show is necessary for optimality is that it
keeps track of multiple non-dominated alternatives, and only
discards those that are dominated (i.e. local partial solutions
that can never turn into an expected global maximum regard-
less of the realisation of the random variables). As a direct
consequence, we show that applying a standard DCOP algo-
rithm to U-DCOP can result in arbitrarily poor solutions. We
empirically evaluate U-GDL to determine its computational
overhead and bandwidth requirements compared to a stan-
dard DCOP algorithm.

Introduction

The challenge of coordinating systems composed of large
numbers of autonomous agents has become a key focus of
current artificial intelligence research. Example application
domains include disaster management, where search and
rescue robots are deployed to locate and retrieve casualties,
and the Smart Grid, where the use of agents to control the
flow of power within electricity networks is being explored.
In many such settings, it is imperative that this coordina-
tion takes place in a decentralised fashion, so as to preclude
the existence of a single point of failure. Thus, these coor-
dination problems are often represented as distributed con-
straint optimisation problems (DCOPs) (Modi et al., 2005)
in which the agents’ collective goal is to maximise a global
objective function that can be factorised into a sum of lo-
cal functions that represent the local interactions between
agents. They can then be efficiently solved by a wide range
of algorithms (Modi et al., 2005; Fitzpatrick and Meertens,
2003; Maheswaran, Pearce, and Tambe, 2005), including
those based on the Generalised Distributive Law (GDL) (Aji
and McEliece, 2000), such as max-sum (Rogers et al., 2011)
and DPOP (Petcu and Faltings, 2005).

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, in doing so, it is implicitly assumed that the
value of the local functions that compose the global ob-
jective function are known with certainty and can be rep-
resented as scalar quantities. In reality, this is unlikely to
be the case, since uncertainty is endemic within most inter-
esting application domains. For example, within the rescue
robots domain, the effectiveness of any coordinated decision
will depend on a host of imprecisely known factors such as
the exact location of the casualties, their condition, and local
environmental conditions. Similarly, the power flow within
an electricity grid depends on the aggregate behaviour of
millions of consumers and can never be known with cer-
tainty. Thus, it is more realistic to consider that the value of
these local functions are also uncertain, and hence, must be
represented by probability distributions over possible values.

Now, at first sight, this does not appear to present a prob-
lem since it might be thought that we could simply repre-
sent the expected, or mean, value of these local functions as
scalars, and proceed as before. However, in doing so, we
would be implicitly assuming that the decision process is
risk neutral. In contrast, there is an extensive literature on
decision making under uncertainty that indicates that prefer-
ences over outcomes should be determined by a utility func-
tion which encodes the agents’ risk profile (Levy, 2006) —
the willingness of agents to expose themselves to uncertain
outcomes in the prospect of a higher reward. This utility
function is often non-linear, meaning that the decision pro-
cess is either risk averse or risk seeking. For example, robots
tasked with extracting casualties might act cautiously and
prefer certain, but possibly less highly valued, outcomes,
over uncertain ones. In contrast, a second team with the ob-
jective of mapping the area might exhibit a more risk seeking
behaviour.

Existing DCOP algorithms fall short of dealing with un-
certainty because they are incapable of representing uncer-
tain outcomes (Rogers et al., 2011; Petcu and Faltings, 2005;
Modi et al., 2005; Fitzpatrick and Meertens, 2003; Mah-
eswaran, Pearce, and Tambe, 2005) or are only capable of
maximising expected outcome without taking into account
the specific risk profile of the agents (Léauté and Faltings,
2009; Jain et al., 2009; Taylor et al., 2010; Atlas and Decker,
2010). Indeed, as we demonstrate in this paper, applying ex-
isting DCOP algorithms to settings with uncertain outcomes
and non-neutral risk profiles can cause them to perform ar-
bitrarily poorly.

Thus, to address this shortcoming, in this paper we first in-
troduce DCOPs with uncertainty (U-DCOPs), a novel gener-
alisation of the canonical DCOP framework that represents
the outcomes of the local functions as random variables (dis-
tributed according to a given probability density function),
where the global objective is to maximise the expectation of
an arbitary utility function (that represents the agents’ risk-
profile) applied over the sum of these local functions. We
then develop U-GDL, a novel, decentralised, algorithm that
optimally solves U-DCOPs derived from the Generalised
Distributive Law (GDL) (Aji and McEliece, 2000) by ex-
tending the semantics of its max and + operators to random
variables rather than scalars. In doing so, the + operator
becomes the convolution operator, while the max operator
now ranks random variables based on their expected util-
ity. A key property of U-GDL that we show is necessary for
optimality, is that it keeps track of multiple non-dominated
alternatives, and only discards those that are dominated (i.e.
local partial solutions that can never turn into an expected
global maximum regardless of the realisation of the random
variables). As a direct consequence, applying a standard
DCOP algorithm to U-DCOP is shown to be provably sub-
optimal. We empirically evaluate our algorithm and demon-
strate that maintaining and communicating these multiple
non-dominated alternatives results in an increase in compu-
tational overhead and bandwidth requirements of at most a
factor of 5 compared to the standard GDL algorithm, which
can perform arbitrarily poorly.

In more detail, we advance the state of the art as follows:

o We formally describe U-DCOPs, a novel formalism that
subsumes canonical DCOPs and generalises them to
the setting where the value of local functions are non-
deterministic, and the agents’ objective is to maximise an
arbitrary utility function that ranks uncertain global out-
comes.

e We present a formalism for deriving dominance con-
ditions for discarding partial solutions that can never
achieve global optimality. In the absence of a closed form
condition, we introduce two types of conditions for dom-
inance: sufficient and necessary. The former is guaran-
teed to preserve the optimal solutions, while possibly also
maintaining sub-optimal ones. The latter might discard
non-dominated solutions but is guaranteed to eliminate
dominated ones. We demonstrate that applying a stan-
dard DCOP to solve a U-DCOP is equivalent to using a
necessary rule.

e We develop U-GDL, the first decentralised algorithm to
solve U-DCOPs. We demonstrate that, in conjunction
with a sufficient (i.e. weaker) condition, U-GDL achieves
optimality with an additional cost in terms of computation
and communication overhead, while a necessary condi-
tion has no optimality guarantee.

o We empirically evaluate U-GDL and show that it achieves
optimality at a cost that is at most a factor 5 greater in
terms of computational overhead and bandwidth respec-
tively compared to applying a standard DCOP algorithm
(which is incapable of optimally solving U-DCOPs).

The remainder of this paper is organised as follows. First,

we formally define DCOP with uncertainty. Then we dis-
cuss the GDL algorithm and present our U-GDL algorithm.
Finally, we empirically evaluate U-GDL and conclude.

DCOPs with Uncertainty

A DCOP with uncertainty (U-DCOP) extends the (canon-
ical) DCOP. We first give a formalisation of the canoni-
cal problem. A DCOP is a tuple (x,D,F), where x =
{z1,...,2,} is the set of variables, D = {D;,...,D,}
is a set of discrete and finite domains from which vari-
ables with corresponding indices take their values, and F =
{f1,--., fm} is a set of value functions defined over local
scope x; C x, which assigns a value to each assignment of
variables in x;. Thus if x; = {z(1),...,2(,)}, the arity of
fiis r; and its signature is f; : D1y X ... x D,y — R. The
objective of a DCOP is to find a variable assignment x* that
maximises the global value:

m
x* = argmax 3 fi(x;) (1)
X =1

A U-DCORP is a tuple (x, D, F, U), where the value func-
tions F are non-deterministic. As a result, instead of being
scalar, the local value of an assignment of x; returned by
fi is a random variable V;. That is to say, V; ~ fi(x;),
or, equivalently, the probability distribution function (pdf)
of V; is given by p(V;) = f;(Vi|x;). Thus, the global value
V = 2111 V; is now also a random variable, whose pdf is
the convolution of the pdfs of the individual V;. Thus, each
global assignment to x results in a (possibly) different dis-
tribution of V.

Now, unlike the scalar values in Equation 1, the uncer-
tain outcomes modelled by these distributions are not readily
comparable. However, there exists a vast literature (Levy,
2006) about selecting between uncertain outcomes, and in
many settings it is recognised that simply maximising ex-
pected value is not prudent. Rather, the actual shape of the
distributions must be taken into account. For instance, in
many application domains, as described in the introduction,
it is common that decision makers are risk averse; they pre-
fer certain outcomes over uncertain ones. Therefore, a utility
function U : R — R is needed that ranks different outcomes
based on the decision makers’ preference. In general, these
utility functions are non-decreasing, i.e. more value is pre-
ferred over less. For example, in disaster response, the utility
increases with the number of civilians saved, but disaster re-
sponders might prefer a smaller (in expectation) but highly
certain number of saved civilians over a better (in expecta-
tion) but highly uncertain (thus risky) outcome. In light of
this, the objective of a U-DCOP is to maximise expected
utility rather than expected value:

(5

It is important to note that, since Equation 2 cannot be ex-
pressed as a sum of factors, a U-DCOP cannot be expressed

as a DCOI, because m gel’leral.
i=1

)

x* = argmax
X

Y EUWV)#E (3)
=1

o | @ | oI itk |y | pus

o " o I o

10 | 152 || 19 | 17* || —4 2
52 0110 | 122 || 13 | 132 | —4 0
15 | 72| 5 [242 || 20| 25% || =11 | —5
2 | 42| 2 | 32 4 | 52 -3 | -1

w o=
[o¢]
)

== o O

= O = O

Table 1: The function payoffs of Example 1.

bl fi

fa @ fa

(a) (b)

Figure 1: (a) The constraint network of Example 1 (b) the
constraint network made acyclic by merging variables.

Hence, a U-DCOP cannot be solved by standard DCOP
methods by simply defining f;(x;) = E[U(V;)]. The fol-
lowing example illustrates this important fact.

Example 1 Consider a U-DCOP with x = ({z1,22}, D =
{{0,1},{0,1}}, and F = {f1(z1,x2), fa(x1,22)}. Fur-
thermore let U(v) be a function such thar E[U(V)] =
wy — oy, where uy and 0‘2/ are the mean and standard
deviation of V. The payoffs of functions F are shown in
Table 1. The last two columns represent the left-hand and
right-hand side of Equation 3, i.e. the sum of the expected
utilities (SEU) and the expectation of the utility of the sum
of the variables (EUS).

As can be concluded from this table, the solution to this
U-DCOP is x1 = x2 = 0 (see last column). Note that
simply maximising SEU, rather than EUS, results in an a
suboptimal expected utility (—3 instead of 2). Thus, using a
canonical DCOP algorithm results in sub-optimality.

The Generalised Distributive Law

A canonical DCOP can be solved in a decentralised fashion
by passing messages across the vertices of a constraint net-
work representation of the DCOP. In such a network, value
functions and variables are represented as vertices, and an
edge exists between f; and x; iff x; € x;, i.e. variable x; is
a parameter of function f;. Figure 1(a) shows the constraint
network representation of the DCOP from Example 1. Many
such message passing algorithms exist (Modi et al., 2005;
Fitzpatrick and Meertens, 2003; Maheswaran, Pearce, and
Tambe, 2005), of which the Generalised Distributive Law
(GDL) algorithm is the most general (Aji and McEliece,
2000). GDL uses two operators, @ for combining values
and ® for selecting values from a set, and exploits the dis-
tributive property of & over ® to reduce the amount of com-
putation required to solve a DCOP. For the standard DCOP,
these operators are max and + respectively (see Equation
1). Therefore, in the remainder of this paper, we use max
and + instead of & and ®.

Z/J*)I(d) = //LI—>.7(d) =

OPTA(XJ = d)

Figure 2: The values exchanged between x 7 and f7 in mes-
sages v and p equals the maximum summed function value
in components A and B

Now, it is well known that applying the GDL algorithm
to acyclic constraint networks results in optimal solutions
(Aji and McEliece, 2000). For solving DCOPs that are rep-
resented by cyclic networks there exists a variety of ap-
proaches (Rogers et al.,, 2011; Petcu and Faltings, 2005;
Dechter, 2003). In this paper, we employ a simple method
to transform a constraint network into an acyclic graph that
is easy to decentralise. It is important to note that this choice
does not impact the generality of our algorithm, and that U-
GDL can be used in conjunction with any of the aforemen-
tioned (more sophisticated) methods.

In more detail, this method proceeds by iteratively merg-
ing two variables x;, z; until the network is acyclic. Merg-
ing variables involves substituting them by a new variable
Ty;,53» whose domain is the Cartesian product of D; and
Dj, that is connected to all functions f adjacent to x; and
x;. Merging can occur recursively, i.e. merged variables can
also be merged. Functions connected to the same pair of
(merged) variables are added to preserve acyclicity. Figure
1b shows the constraint network obtained by merging vari-
ables in the cyclic network in Figure 1a. More formally, we
denote a merged variable as x 7, where 7 = {j1,...,Jk}
is the set of indices of variables contained in x . The do-
main of each merged variable x 7 is then defined as Dy =
Dj, x --- x Dj,. In a similar fashion we define a merged
function as f7, where Z = {iy, ..., .} represents the set of
indices of functions that were merged into f7. Each merged
function f7 is then defined as the sum of all such functions
(i.e. fz = >, .7 fi). Finally, the scope merged function fz
is the union of the scopes of functions f; : i € 7.

Now, in order to optimally solve a DCOP, these two types
of nodes exchange messages based on the following equa-
tions (Aji and McEliece, 2000):

Message from variable x 7 to function f7:

hy—-z(Xgnz) = max [>

Um—gZmng)| @
Meadj(T)\Z

Message from function f7 to variable x 7:

ving(xzng) = max |fr(xz)+ > pvoz(xnn)
A Neadi(T\T
®)
Here, adj(n) returns the vertices adjacent to n. When

the algorithm has converged, these messages are functions

of a single merged variable x 7 that represent the maximum
aggregate function values OPTa and O PTg possible over
components A and B of the constraint network formed by
removing the edge between f7 and x 7 (see Figure 2). This is
a direct consequence of the following key principle of GDL:

Principle 1 Because max distributes over +, such that
max(z,y)+z = max(z+z,y+z), the maximum of the sum
of the two components A and B is the global maximum. For-

mally, let FA = {fays--s fa,, } and Fs = {fo,s---, fo., }
be the functions in components A and B respectively. Then:

max i fi(xi)
i=1

am bm
= max Z fi(x:) + max Z fi(xi) (6)

i:a1 i:bl

Therefore, when the GDL algorithm has converged!, each
variable can compute its marginal function U s as follows:

Us(xg)= >,

Meadj(J)

Vm—g(Xmng) = mafol (xi)

x\xz7

N
For each state d € Dy, Us(d) is equal to the maximum
value that the global objective function can attain if x 7 = d.
It is important to note that the GDL algorithm cannot
readily be used to solve U-DCOPS (i.e. by defining the func-
tions such that f;(x;) = E[U(V;)]), as Example 1 shows.

Therefore, we need a new algorithm.

The U-GDL Algorithm

Having formulated the GDL algorithm, we now extend it to
solve U-DCOPs. To do this, we need to define the max and
+ operators for random variables, rather than scalar vari-
ables. Thus, the 4 operator should now perform the addition
of two random variables. For two random variables X and
Y distributed according to pdfs f and g, the pdf of X +Y is
given by the convolution of f and g:

(f*9)(x / f(x — a)gla)da ®)

Not all classes of pdfs are closed under convolution. How-
ever, the convolution of two Gaussians always results in
another Gaussian, and thus in order to keep the exposition
clear, we use them in the remainder of the paper. We note
that approximate methods may be used (such as sampling)
to represent arbitrary pdfs.

Defining the max operator is less trivial. This is be-
cause if we simply define max(X,Y) = X iff E[U(X)] >
E[U(Y)], Principle 1 no longer holds because + does not
distribute over max, i.e. E[U(X)]|+E[U(Z)] > E[U(Y)]+
ElU(Z) ¢ ElU(X+Z)| > E[U(Y +Z)], unless U is lin-
ear. Therefore, to solve U-DCOPs, the max operator should
distribute over convolution, and select the maximal elements
from a set of random variables based on their expected util-
ity (Equation 2). More formally, given a binary dominance
relation > that ranks random variables, and a set of random

!Convergence requires a number of messages equal to twice the
diameter of the resulting acyclic constraint network.

variables P, X € max(P) iff VY € P : X = Y. Now,
relation > needs to be chosen to ensure Principle 1 holds.?

In order for these requirements to be satisfied, the >~ needs
to exhibit the following property:

Property 1 For any random variable Z :

XY X+Z2=-Y+Z
SEUX+2)>EUY+2)])

It can be shown that it is impossible to determine whether
X » Y without knowing the shape of the pdf of Z and U (v),
but specific conditions can be derived for classes of pdfs and
utility functions. In general, however, it can be shown that
> is a partial order, as the following example illustrates:

Example 2 Let U(x) be the utility function from Example
1. Then, X = Y iff ux + pz — /0% + 0% > py + piz —

/0% + 0% for any uz,07 € R. Algebraic manipulation
shows that this inequality holds iff:

px — py > max(0,0x — oy) (10)

To see why > is a partial order, consider X ~ ./\/’(O7 52) and
Y ~ N(27,35%). Clearly, the inequality in Equation 10
does not hold, so X % Y (or vice versa). To see why this is
true, consider Zy ~ N(0,0), BE[U(X+Z;)] = -5 > —8 =
E[UY + Z1)], but for Zs ~ N(0,12%), E[U(X + Z2)] =
—13 < =10 = E[U(Y + Z5)]. Thus, discarding Y because
E[U(X)] > E[U(Y)] can result in sub-optimality.

This partial order implies that instead of containing a sin-
gle pdf, the messages v7_, 7(«;) and 7z (2;) (Equations
4 and 5) need to carry sets of non-dominated pdfs. Here,
domination is formally defined as:

Definition 1 (Dominance under U) A random variable X
dominates Y (denoted as X > Y) iff for any pdf p(Z) of
random variable Z, E[U(X + Z)] > E[U(Y + Z)], with
strict inequality for at least one p(Z).

To understand dominance in terms of Figure 2, suppose
Z is an optimal (but unknown) value in component B, and
suppose there are two alternative values X and Y in compo-
nent A. Then, Y can be safely discarded by variable x 7 if
X > Y. This is because Y + Z can never lead to a global
optimum of Equation 2, regardless of Z.

Unfortunately, there does not always exist a closed form
expression for the integrals that need to be evaluated to de-
termine dominance for a given pair of utility function and
class of pdf. In such cases, recourse can be taken to a dif-
ferent logical condition, of which two types can be distin-
guished: sufficient and necessary ones.

Definition 2 (Sufficient Condition for Dominance)
A condition C' that imposes relation ¢ is called sufficient
fX>=cY=X>Y.

2Compare this to the max and + operators on R. Here, max
distributes over + because of the implicit > relation used by max
to select the maximal element from a set P C R. However, if >
were chosen such that = > y if the decimal part of x is greater than
that of y, max no longer distributes over +.

A sufficient condition is guaranteed to keep all non-
dominated random variables, but is not necessarily capable
of filtering out all dominated random variables.?> Therefore,
by applying a sufficient condition it is guaranteed that the
optimal (i.e. non-dominated) random variable is preserved,
and consequently, global optimality is guaranteed. However,
it might happen that too many pdfs are propagated in mes-
sages v and y, i.e. those that can never maximise Equation
2. An example of a sufficient condition for the utility func-
tion in Example 2 is C: ux > puy A ox < oy (with strict
inequality in at least one clause). Clearly, this condition is
weaker than Equation 10 because for X ~ AN(0,5%) and
Y ~ N(—2,4?), we have that X > Y butnot X =¢ Y.

Definition 3 (Necessary Condition for Dominance)
A condition C that imposes relation ¢ is called necessary
fX>=Y=X>»cY.

A necessary condition is guaranteed to discard all domi-
nated random variables, but might filter out non-dominated
ones as well. Thus, using a necessary condition, it is possi-
ble to lose optimality. An example of a necessary condition
is ux —ox > py — oy, which imposes a total order. Using
this condition is equivalent to applying a canonical DCOP
method to maximise the left-hand side of Equation 3.

Definition 4 (Optimal Condition for Dominance under U)
A condition C' that imposes relation ¢ is called optimal if
it is both necessary and sufficient.

Since we derived the condition in Equation 10 on the
premise that E[U(X + Z)] > E[U(Y + Z)], it is optimal by
definition. An optimal condition propagates the smallest set
of pdfs without discarding non-dominated random variables.

The key difference between a sufficient and a necessary
rule is that the former is guaranteed to lead to optimal so-
lutions, but also requires larger messages and more com-
putation, while the latter does not guarantee optimality, but
is computationally less expensive. We empirically demon-
strate this in the next section.

After the U-GDL algorithm has converged, each merged
variable computes the marginal function using Equation 7,
which now contains the set of non-dominated pdfs for every
variable state. Then, the optimal variable state can be ob-
tained by computing the expected utility for each of these:

x%7 =argmax | max FE[U(V
TNy vetria)l

After this, the final stage of the GDL algorithm, value
propagation, can proceed as in Petcu and Faltings (2005).

Experiments

As discussed in the previous section, the behaviour of U-
GDL varies depending on whether an optimal, sufficient or
necessary condition is used. Moreover, while U-GDL is op-
timal when used with an optimal or sufficient condition, it
not possible to theoretically determine the impact on the ex-
ecution time of the algorithm, or the communication require-
ments. Thus, we need to resort to empirical evaluation. In

3For example false is a sufficient condition.

addition, we compare the U-GDL algorithm with the stan-
dard GDL algorithm that maximises the left-hand side of
Equation 3, which is equivalent to solving a U-DCOP with
the necessary condition X >¢ Y < E[U(X)] > E[U(Y)].
As Example 1 illustrates, this can result in sub-optimality.
This allows us to analyse the performance of U-GDL, which
explicitly takes uncertainty and the agents’ risk profiles into
account, against a canonical approach, that does not.

Experimental Setup

To evaluate the performance of the U-GDL algorithm we
apply it to randomly generated (connected) constraint net-
works, with a varying number of variables n with three states
each. The number m of functions is controlled by parame-
ter § € [0,1]. For § = 1 there exists a pairwise constraint
function between all pairs of variables (m = (g)), while for
6 = 0, the constraint network is a tree (thus, m = n — 1).

For each pair of variable assignments, the value assigned
by a function is a normally distributed random variable
whose p and o2 are drawn from the intervals [—1, 1] and
[0, 02,,..] with uniform probability. We varied 02, between
1 and 10 to determine the effect of increasing levels of un-
certainty on the difference between the optimal solution and
the solution found by a canonical DCOP method.

We run the U-GDL algorithm considering the utility func-
tion defined in Example 1 and three dominance conditions:

Optimal: X>Y<& wx — wy > max(O,aX — Uy)
Sufficient: yx > puy Nox <oy =X > Y

Necessary: X ~ Y = ux —ox > py — oy. This is
equivalent to a the standard GDL algorithm (or indeed any
canonical DCOP algorithm) that maximises the sum of
expected utilities (left-hand side of Equation 3).

For each of the 200 randomly generated problem instances
we measure the solution quality, the average message size,
and the required computation time for each dominance con-
dition. The discussion of dominance conditions in the previ-
ous section gives rise to the following hypothesis:

Hypothesis 1 A sufficient condition for dominance results
in an optimal solution, but requires larger messages and
more computation than an optimal or necessary condition.
A standard DCOP algorithm (i.e. a necessary condition) re-
sults in suboptimal solution quality.

Results

The results are shown in Figure 3. These results support
Hypothesis 1: U-GDL in combination with a sufficient and
an optimal condition result in optimality (Figure 3a), while
the standard GDL algorithm that maximises the sum of ex-
pected utilities, does not. We found that the difference
between the optimal and necessary conditions increases as

*We show results for 6 = 0 and § = 0.4 only, because for
0 > 0.4, the constraint graphs often collapsed into a single merged
variable, leading to completely centralised problems. This problem
can be mitigated by using more a sophisticated method for creating
acyclic graphs (which is not our primary aim here). Furthermore,
we found no significant difference in solution quality for different
levels of 4, so only those for 6 = 0 are shown.

6 T T T
— Sufficient and OptimTI — Optimal
Necessary - - -Sufficient
a 1%L Necessary

Expected Global Utility
N

Floating Point Values
=
o

0 10 20 30 40 50 0 10
Number of Variables

(a) Solution quality

20
Number of

(b) Message size

— Optimal
- - - -Sufficient
g Necessary
~ 6| !
§ 10 5=04 =
=] -
- g -
S 3 .
o] ol)
210%
£
Q
S s o
2| 0
. . . 107 . . .
30 40 50 0 10 30 40 50

20
Variables Number of Variables

(c) Runtime

Figure 3: Empirical results. Errorbars indicate the 95% confidence intervals.

we increased o2, (results not shown due to space restric-
tions), with a mean absolute difference of 0.97 (£0.12) for
o2.. = 1and 2.82 (£0.32) for 02, = 10 (for n = 50).
Thus, as expected, a standard DCOP algorithm performs
worse as uncertainty increases. However, Figure 3b shows
that this optimality comes at a cost of a roughly fivefold in-
crease in message size for the optimal condition (at n = 40),
and a hundredfold increase for the sufficient condition (at
n = 50). This means that messages carry 5 or 100 times
as many pdfs than the standard GDL algorithm, which only
carries one pdf per domain element. As a result of keeping
track of an increased number of non-dominated alternatives,
the runtime of the optimal and sufficient conditions grows by
a factor of 5 and 330 respectively (Figure 3c). However, at
less than 14 seconds and 15 minutes shared among 50 agents
respectively, the runtime of both the optimal and sufficient
conditions remains well within the capabilities of even low-
powered embedded agents. Consequently, we have demon-
strated the viability of the optimal U-GDL algorithm as com-
pared to the state of the art GDL algorithm, which can per-
form arbitrarily poorly.

Conclusions

We developed U-GDL, a novel algorithm for solving U-
DCOPs, a generalisation of canonical DCOPs in which the
agents’ goal is to maximise the expectation of an arbitrary
utility function. U-GDL extends GDL by redefining the
(max, +) algebra to the setting where payoffs are random
variables rather than scalars. Within this new setting, the
former operator now filters partial solutions that can never
achieve global optimality, using so-called dominance con-
ditions. We showed that these conditions can be classified
into three categories—optimal, sufficient and necessary. We
demonstrate that an optimal condition has the lowest com-
putation and communication overhead for achieving opti-
mality, but does not always have a closed form expression.
In such cases, a sufficient or necessary condition can be
used. The former achieves optimality at the cost of a higher
communication and computation overhead, while the sec-
ond incurs lower costs but sacrifices optimality. Finally,
we benchmarked U-GDL against a standard DCOP algo-
rithm (which we showed is equivalent to using U-GDL with
a necessary condition) and demonstrate that the former in-
curs an increase in computational overhead and bandwidth

requirements of at most a factor 5 and guarantees optimality
whereas the latter can perform arbitrarily poorly. For future
work, we intend to investigate the setting where the proba-
bilities distributions over the outcomes are not known a pri-
ori. In this setting, which effectively models a multi-armed
bandit with factorisable payoffs, the agents have to trade-off
exploration against exploitation.

References

Aji, S. M., and McEliece, R. J. 2000. The Generalized Distributive
Law. IEEE Trans. Inf. Theory 46(2):325-343.

Atlas, J., and Decker, K. 2010. Coordination for uncertain out-
comes using distributed neighbor exchange. In AAMAS 2010,
1047-1054.

Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.

Fitzpatrick, S., and Meertens, L. 2003. Distributed coordination
through anarchic optimization. In Distributed Sensor Networks.
Kluwer Academic Publishers. 257-295.

Jain, M.; Taylor, M.; Tambe, M.; and Yokoo, M. 2009. Dcops
meet the realworld: Exploring unknown reward matrices with
applications to mobile sensor networks. In IJCAI 2009, 181—
186.

Léauté, T., and Faltings, B. 2009. E[DPOP]: Distributed con-
straint optimization under stochastic uncertainty using collabo-
rative sampling. In IJCAI 2009 Distributed Constraint Reason-
ing Workshop (DCR’09), 87-101.

Levy, H. 2006. Stochastic Dominance: Investment Decision Mak-
ing with Uncertainty. Springer.

Maheswaran, R. JI.; Pearce, J.; and Tambe, M. 2005. A family of
graphical-game-based algorithms for distributed constraint opti-
mization problems. In Coordination of Large-Scale Multiagent
Systems. Springer-Verlag. 127-146.

Modi, P. J.; Shen, W. M.; Tambe, M.; and Yokoo, M. 2005. Adopt:
Asynchronous distributed constraint optimization with quality
guarantees. Artif. Intell. 161(1-2):149-180.

Petcu, A., and Faltings, B. 2005. DPOP: A scalable method for
multiagent constraint optimization. In ZJCAI 2005, 266 — 271.

Rogers, A.; Farinelli, A.; Stranders, R.; and Jennings, N. R. 2011.
Bounded approximate decentralised coordination via the max-
sum algorithm. Artif. Intell. 175(2).

Taylor, M.; Jain, M.; Jin, Y.; Yokoo, M.; and Tambe, M. 2010.
When should there be a ”"Me” in "Team”?: Distributed multi-

agent optimization under uncertainty. In AAMAS 2010, 109-
116.

