Chapter 6

Case Study

A case study involving the specification and refinement of an Event-B model is presented.
This chapter describes how the techniques presented in the previous chapters may be
used in practice. Throughout the case study, some design rules for Event-B are presented.
These rules are specialisations of Event-B techniques already presented. These rules were
suggested by the needs of the case study, but are general enough to be useful in other

cases.

6.1 Introduction

Case studies can be described as a process or record of research in which detailed con-
sideration is given to the development of a particular matter over a period of time. They
have two main purposes: the explanation and description of the application of a par-
ticular technique (illustration purposes) and to validate the usefulness of the technique
in a variety of systems (validation purpose). The described case study fulfils the first
purpose: modelling a complex system from an abstraction to a more concrete model.
Consequently the number of events, variables and proof obligations increase in a way
that the model starts becoming hard to manage. Therefore a suitable solution at this
stage is to use our decomposition technique. This procedure is repeatedly applied to
the rest of the refinements. The application of decomposition in simple, abstract cases
has very little or no real advantage. As aforementioned in Section. 4.4, the point of
decomposition (correct abstraction level) is important, since if it is done too early, the
sub-component might be too abstract and will not be able to be refined (without know-
ing more about the other sub-systems); if the system is decomposed too late, it will not
benefit from the approach anymore. Therefore the application of decomposition only

occurs after several refinements as expected.

The second purpose of case studies is usually achieved through the development of

different models that represent different kind of systems. Their application allows the

121

122 Chapter 6 Case Study

assessment of techniques, their suitability, advantages and disadvantages when applied
in different manners. Besides the case study in this chapter, the presented techniques

have already been used for different systems:

e Flash System Development [62, 60]: use of shared event composition and decom-

position.

e Decomposition of a Spacecraft System [73]: use of shared event decomposition.

e Development of a Cruise Control System [190]: use of shared event composition

and decomposition.

e Development of a Pipeline System [56, 12]: use of shared event composition and

decomposition.

e Development of Parallel Programs [90]: use of shared variable decomposition over

shared data accessed by different components.

e Development of a Multi-directional Communication Channel [163]: use of generic

instantiation.

Here, a safety-critical metro system case study is developed. This version is a simplified
version of a real system but tackles points where there the model becomes complex and
where the presented techniques are suitable: stepwise incrementation of the complexity
of the system being modelled, sub-components communication, stepwise addition of
requirements at each refinement level, refinement of decomposed sub-components. We
develop a metro system model introducing several details including notion of tracks,
switches, several safety measures and doors functionality among others. If the presented
techniques were not used, the metro system model would be extremely complex and hard
to manage after the inclusion of all the requirements due to the high number of variables,
events, properties to be added and proof obligations to be discharged. Decomposition
and generic instantiation alleviate that issue by introducing modularity and reusing

existing sub-components allowing further manageable refinements to be reached.

The metro doors requirements are based on real requirements. The case study is devel-
oped in the Rodin platform using the developed tools whenever possible. We use the
shared event composition/decomposition and generic instantiation. The metro system
can be seen as a distributed system. Nevertheless the modelling style suggested can be

applied to a more general use.

Chapter 6 Case Study 123

6.2 Overview of the safety-critical metro system

The safety-critical metro system case study describes a formal approach for the devel-

opment of embedded controllers for a metro system?.

Butler [44] makes a description
of embedded controllers for a railway using classical B. The railway system is based
on the french train system and it was subject of study as part of the european project
MATISSE [121]. Our starting point is based on that work but applied to a metro sys-
tem. That work goes as far as our first decomposition originating three sub-components.
We augment that work by refining each sub-component, introducing further details and
more requirements to the model. Moreover in the end we instantiate emergency and

service doors for the metro system.

The metro system is characterised by trains, tracks circuits (also called sections or
CDV: Circuit De Voie, in French) and a communication entity that allows the interaction
between trains and tracks. The trains circulate in sections and before a train enters or
leaves a section, a permission notification must be received. In case of a hazard situation,
trains receive a notification to brake. The track is responsible for controlling the sections,
changing switch directions (switch is a special track that can be divergent or convergent

as seen in Fig. 6.1) and sending signalling messages to the trains.

B % e
s - s

(a) Divergent Switch (b) Convergent Switch

FiGURE 6.1: Different types of Switches: divergent and convergent

Figure 6.2 shows a schematic representation of the metro system decomposed into three
sub-components. Initially the metro system is modelled as a whole. Global properties
are introduced and proved to be preserved throughout refinement steps. The abstract
model is refined in three levels (MetroSystem_M0 to MetroSystem_M3) before we apply
the first decomposition. We follow a general top-down guideline to apply decomposition:
Stage 1 : Model system abstractly, expressing all the relevant global system properties.
Stage 2 : Refine the abstract model to fit the decomposition (preparation step).

Stage 3 : Apply decomposition.

Stage 4 : Develop independently the decomposed parts.

! A version of this model is available online at http://eprints.ecs.soton.ac.uk/23135/
“Image extracted from [44]

124 Chapter 6 Case Study

For instance, Stage 1 is expressed by refinements MetroSystem_MO0 to MetroSystem_Ma3.
MetroSystem_MS3 is also used as the preparation step before the decomposition corre-
sponding to Stage 2. The model is decomposed into three parts: Track, Train and
Middleware as described in Stage 3. This step allows further refinements of the indi-
vidual sub-components corresponding to Stage 4. The following decompositions follow

a similar pattern.

TRACK TRAINS
EnterSection
ChangeSwitchDiv Brake ——
ChangeSwitchCnv LeaveSection
SendTrainMsg Check
AcceptMsg DeliverMsg
COMMS

Fi1GURE 6.2: Components of metro system

An overview of the entire development can be seen in Fig. 6.3. After the first decompo-
sition, sub-components can be further refined. Train global properties are introduced in
Train leading to several refinements until Train_MJ4 is reached. Train_M/ is decomposed
into LeaderCarriage and Carriage. We are interested in refining the sub-component cor-
responding to carriages in order to introduce doors requirements. These requirements
are extracted from real requirements for metro carriage doors.Carriage is refined and
decomposed until it fits in a generic model GCDoor corresponding to a Generic Carriage
Door development as seen in Fig. 6.4. We then instantiate GCDoor into two instances:
EmergencyDoors and ServiceDoors benefiting from the refinements in the pattern. We

describe in more detail each of the development steps in the following sections.

6.3 Abstract Model: MetroSystem_MO

We model a system constituted by trains that circulate in tracks. The tracks are di-
vided into smaller parts called sections. The most important (safety) global property
introduced at this stage states that two trains cannot be in the same section at the same

time (which would mean that the trains had clashed).

We need to ensure some properties regarding the routes (set of track sections):

e Route sections are all connected: sections should be all connect and cannot have

empty spaces between them.

Chapter 6 Case Study 125

MetroSystem_MO0

decomposes decomposes
decomposes
Train | | Middleware | | Track
Treﬁnes : :
Treﬁnes
| Leader Carriage| | Carriage |

i | EmergencyDoor | :: | ServiceDoor | !

i i

i Treﬁnes i : Treﬁnes i

! I 1

! it !

FI1GURE 6.3: Overall view of the safety-critical metro system development

decomposes decomposes
| Leader Carriage | | Carriage |
H Treﬁnes
:

Carriage_M1

- i
Trehnes : Treﬁnes i | Treﬁnes !
. ! o |
| EmergencyDoor_M2| |- | ServiceDoor_M2 | | \ GCDoor_M2 ;
\ A ——— _ ’
T 'Instance ~ - Instance Pattern

FIGURE 6.4: Carriage Refinement Diagram and Door Instantiation

126 Chapter 6 Case Study

e There are no loops in the route sections: sections cannot be connected to each

other and cannot introduce loops.

These properties can be preserved if we represent the routes as a transitive closure
relation. We use the no-loop property proposed by Abrial [9] applied to model a tree
structured file system in Event-B [61]: a context is defined and this property is proved
over track section relations and functions. The reason we choose this formulation, instead
of transitive closure which is generally used is to make the model simpler and easier to
prove. Context TransitiveClosureCtx containing the transitive closure property can

be seen in Fig. 6.5.

context TransitiveClosureCtx

constants cdvrel
tcl
cdvfn

sets CDV

axioms
@axml cdvrel = CDV < CDV
@axm2 cdvfn = CDV -+ CDV
@axm3 tcl € cdvrel — cdvrel
@axm4 Vr-(recdvrel = r c tcl(r))
@axm5 Vr-(recdvrel =r;tcl(r) c tcl(r))
@axmb6 VYr,t-(recdvrel A rct A r;tct = tcl(r)ct)
theorem @thml cdvfn c cdvrel
theorem @thm2 Vr-recdvrel = tcl(r) = r v (r;tcl(r))

theorem @thm3 Vt-tecdvfna(Vs-sct~[s]=s=g)=tcl(t)n(CDV < id)=o
theorem @thm4 tcl(e) = o
end

FIGURE 6.5: Context TransitiveClosureCtz

Set C' DV represents all the track sections in our model. Constant tcl which is a transitive
closure, it is defined as a total function mapped from CDV < CDV to CDV < CDV.
Giving r € CDV « CDV, the transitive closure of r is the least x satisfying =z =
rUr;x [61]. Difficult transitive closure proofs in machines are avoided by using theorems
such as theorem thmd3 shown in Fig. 6.5: for s C C'DV and t as a partial function
CDV +CDV, s C t~![s] means that s contains a loop in the ¢ relationship. Hence, this
states that the only such set that can exist is the empty set and thus the ¢ structure
cannot have loops. This theorem has been proved using the interactive prover of Rodin.

The strategy to prove this theorem is to use proof by contradiction [61].

We define the environment of the case study (static part) with context MetroSystem_C0
that extends TransitiveClosureCtz as seen in Fig. 6.6. Set TRAIN represent all the

trains in our model. Several track properties are described in the axioms:

e The constant net represents the total possible connectivity of sections (all possible
routes subject to the switches positions) defined as relation CDV <> CDV (axml).

No circularity is allowed as described by axm2. Moreover, the no loop property

Chapter 6 Case Study 127

context MetroSystem CO extends TransitiveClosureCtx

constants aig_cdv
net
div_aig_cdv
cnv_aig_cdv
next®

sets TRAIN

axioms
@axml net € CDV < CDV
@axm2 net n(CDV < id)=o
@axm3 aig_cdv c CDV
@axm4 div_aig_cdv ¢ aig_cdv
@axm5 cnv_aig_cdv ¢ aig_cdv
@axm6 div_aig_cdv n cnv_aig_cdv = o
@axm7 finite(net)
@axm8 (aig_cdv x aig_cdv) n net = o
@axm9 Vcc-(cc € (CDV\aig_cdv) = card(net[{cc}]) =1 A card(net~[{cc}])=1)

@axml0 Ycc-(cc € aig_cdv = ((card(net[{cc}])s2 A card(net~[{cc}])=sl) v (
card(net[{cc}]) =1 A card(net~[{cc}])=2)))

@axmll tcl(net)nid=o
theorem @thml tcl(net) = net u (net;tcl(net))

end

FIGURE 6.6: Context MetroSystem_C0

for net is expressed by axiom axmll. Theorems thml states that net preserves

transitive closure.

e Switches (aiguillages in French) are sections (axm3) that cannot be connected
to each others (azm6). They are represented by aig_cdv divided into two kinds:
div_aig_cdv for divergence switches and cnv_aig_cdv for convergent switches. More-
over switches have at most two predecessors and one successor or one predecessor

and two successors (azxm10).

e Non-switches have at most one successor and at most one predecessor (axm9).

Besides the global property described before defined by invariant inv13 in Fig. 6.7(a),

some other properties of the system are added:

1. The trains (variable ¢trns) circulate in tracks. The current route based on current
positions of switches is defined by next: a partial injection CDV - CDV. next
is a subset of net (invl) preserving the transitive closure property as described
by theorem thml,thm2 and does not have loops (thm3). Sections occupied by
trains are represented by variable occp. These sections also preserve the transitive

closure property as seen by thmd4.

2. A train occupies at least one section and the section corresponding to the beginning
and end of the train is represented by variables occpA and ocepZ respectively. Note
that next does not indicate the direction that a train is moving in: the direction
can be occpA to ocepZ or ocepZ to ocepA. These two variables point to the same

section if the train only occupies one section (inv1l).

128 Chapter 6 Case Study

The system proceeds as follows: trains modelled in the system circulate by entering and
leaving sections (events enterC'DV and leaveCDV in Fig. 6.7(b)), ensuring that the
next section is not occupied (grd9 in enterC'DV') and updating all the sections occupied
by the train (actl and act2 in both events). At this abstract level, event modifyTrain
modifies a train defining the set of occupied sections for a train ¢. A train changes speed,
brakes or stops braking in events changeSpeed, brake and stopBraking. When event
brake occurs, train ¢ is added to a set of braking trains (variable braking). Variable
next represents the current connectivity of the trail based on the positions of switches.
The current connectivity can be updated by changing convergent/divergent switches in

events switchChangeDiv and switchChangeCnuv as seen in Fig. 6.7(b).

6.4 First Refinement: MetroSystem M1

MetroSystem_M1 refines MetroSystem_MO0, incorporating the communication layer and
an emergency button for each train. The communication work as follows: a message is
sent from the tracks, stored in a buffer and read in the recipient train. The properties

to be preserved for this refinement are:

1. Messages are exchanged between trains and tracks. If a train intends to move to
an occupied section, track sends a message negating the access to that section and
the train should brake.

2. As part of the safety requirements, all trains have an emergency button.

3. While the emergency button is enabled, the train continues braking and cannot

speed up.

Now the system proceeds as follows: trains that enter and leave sections must take
into account the messages sent by the tracks. Therefore events corresponding to enter
and leaving section need to be strengthened to preserve this property. The requirement
concerning the space required for the train to halt is a simplification of a real metro
system and could require adjustments to replicate the real behaviour (for instance the
occupied sections of a train could be defined as the sum of the sections directly occupied
by the train and the sections indirectly occupied by the same train that correspond to the
sections required for the train to halt). Nevertheless in real systems, trains can have in-
built a way to detect the required space to break. For instance in Communication Based

Train Control (CBTC [97, 72]) systems, that is called the stopping distance downstream.

The messages are represented by variables tmsgs that stores the messages (buffer) sent
from the tracks and permit that receives the message in the train, expressing property

1. At this level, the messages are just boolean values assessing if a train can move to the

Chapter 6 Case Study

129

machine MetroSystem MO sees MetroSystem CO

variables next

trns
occp
occpA
occpZ
braking speed

invariants
@invl next ¢ net
@inv2 next € CDV »» CDV
@inv3 trns ¢ TRAIN
@inv4 occp € CDV < trns

@inv5 occpA € trns — CDV

@inve Vtt-(ttetrns = occpA(tt) € occp~[{tt}])

@inv7 occpZ € trns — CDV

@inv8 Vtt-(ttetrns = occpZ(tt) € occp~[{tt}])

@inv9 braking ¢ trns

@inv10 speed € trns — N

@invll Vtt-ttetrns A card(occp~[{tt}])>1 = occpA(tt) # occpZ(tt)
@inv12 finite(occp~)

@invl3 Vtl,t2-tletrns A t2etrns A tI#t2 = occp~[{tI}]noccp~[{t2}]1=0
theorem @thml next € cdvfn

theorem @thm2 tcl(next) = next u (next;tcl(next))

theorem @thm3 (Vs-scnext~[s]=>s=g)=tcl(next)n(CDV < id)=e

theorem @thm4 Vtt,s-ttetrns A s ¢ nexteoccp~[{tt}] = tcl(s) = s u

(s;tel(s))

(a) Variables, invariants in MetroSystem_M0

any tI
where

@grd3
@grd4

@grd7
@grds

@grd9
then
@actl
@act2
end

where
@grdl
@grd2
@grd3
@grd4
@grd5

then
@actl
@act2
end

event enterCDV
cl c2

tl € trns

cl e CDV

c2 € CDV
speed(t1)>0

cl = occpZ(tl)
cledom(next)

c2 = next(occpZ(tl))

event brake

any tI event addTrain
where any t oc

@grdl t1 € TRAIN where

@grd2 tletrns\braking @grdl t € TRAIN\trns
then @grd2 oc € CDV

@actl braking=brakingu {t1} @grd3 oc & dom(occp)

end then

event stopBraking

Ytt-ttetrns A card((occp v {c2 » tI})~[{tt}])>1 any tI @act3

c2 ¢ dom(occp)

occpZ(tl) = c2

occp=occp u { c2 » tI}

event leaveCDV
any tl cl c2

tl € trns
cl e CDV
c2 e CDV
speed(t1)>0
cledom(next)

trns=trns u{t}
speed(t)=0
occpA(t) = oc

= (occpZe{tl » c2})(tt) # occpA(tt) where @act4 occpZ(t) = oc
@grdl t1 e TRAIN @act5 ocep = occp u {owt}
@grd2 tlebraking end
then
@actl braking=braking\{t1} event modifyTrain
end any t ocA oc
where
event switchChangeDiv @grdl ocAedom(next)
any ac cl c2 @yrd2 t e trns
where @grd3 oc ¢ CDV
@grdl ac € div_aig_cdv @grd4 ocA € oc
@grd2 cl1 e CDV @grd5 oc n dom(occp)=@
@yrd3 c2 e CDV @grd6 finite(oc)
@rd8 c2 e ran (next) @grd7 occpZ(t)edom(next)
@grd4 (ac » cl) e next @grd8 card(oc)=0 =»0cA = occpZ(t)
@grd5 (ac » c2) € net @grd9 card(oc)z1

cl=occpA(tl)
c2=next(clI)
occpA(tl)#occpZ(tl)

@grd6 cl # c2

= occpZ(t) # ocA A next(occpZ(t))eoc

@grd7 ac & dom(occp) @grd10 next(ocA)eoc
c2 e (occp\{cIptI})~[{tI}] then then

9
@grd10 Vtt-ttetrns A card(((occp \ {cI » tI}))~[{tt}])>1 @actl next = next < {ac » c2} @actl

= (occpA<{tl » c2})(tt)=occpZ(tt) end @act2

occpA(tl)=c2
occp = occp\{cl»tI}

event changeSpeed

end
event switchChangeCnv
any ac cl c2
where
@grdl ac € cnv_aig_cdv
@grd2 cl € CDV

any tl sl @grd3 c2 € CDV

where @grd8 c2 & dom (next)
@grdl t1 € trns @grd4 (cl » ac) € next
@grd2 s1 €N @grd5 (c2 » ac) € net
@grd3 tle braking = sl<speed(tI) @grdé clI # c2

then @grd7 ac & dom (occp)
@actl speed(tl) = s1 then

end @actl next = ({cl}enext) v {c2 » ac}
end

occpA(t) = ocA
occp = occp U (ocx{t})

(b) Events of MetroSystem_MO0

FIGURE 6.7: Variables, invariant and events of MetroSystem_M0

130 Chapter 6 Case Study

following section (check if the section is free): if TRUE the train can move; if FALSE the
next section is occupied and the train should brake. New event sendTrainM sg models
the message sending. The reception of messages is modelled in event recvTrainM sg
where the message is stored in permit before tmsgs is reset. The guards of event
brake are strengthened to allow a train to brake when permit(t) = FALSE or when
the emergency button is activated (guard grd3 in Fig. 6.8(b)). Property 2 is expressed
by adding variable emergency_button. The activation/deactivation of the emergency
button occurs in the new event toggle EmergencyButton. Property 3 is expressed by
guard grd3 in event stopBraking: a train can only stop braking if the emergency button

is not enabled.

machine MetroSystem M1 refines MetroSystem M0 sees MetroSystem CO

variables next trns occp occpA occpZ
braking speed
tmsgs permit emergency button

invariants
@invl tmsgs € trns — P(BOOL)
@inv2 permit € trns — BOOL
@inv3 emergency button € trns — BOOL

(a) Variables and invariants in MetroSystem_M1

event brake refines brake event sendTrainMsg
any tI any tl
where where
@grdl tl1 e TRAIN @grdl tI e trns
@grd2 tletrns\braking @grd2 tmsgs(tl) = o
@grd3 permit(tl) = FALSE then
v emergency_button(tI)=TRUE @actl tmsgs(tl)= {bool(
then occpZ(tl)edom(next)
@actl braking=braking u {t1} Anext(occpZ(tl)) e dom(occp))}
end end

event stopBraking refines stopBraking event recvTrainMsg

any tl any tI bb event toggleEmergencyButton
where where any t value
@yrd1l tI e TRAIN @rdl tI e trns where
@grd2 tlebraking @grd2 bb € tmsgs(tl) @guard t € trns
@grd3 emergency button(tl) = FALSE then @guardl value € BOOL
then @actl permit(tl) = bb then
@actl braking=braking\{tI} @act2 tmsgs(tl) = & @actl emergency button(t)= value
end end end

(b) Some events of MetroSystem_M1

FIGURE 6.8: Excerpt of MetroSystem_M1

6.5 Second Refinement: MetroSystem M2

In this refinement, we introduce train doors and platforms where the trains can stop to
load/unload. When stopped, a train can open its doors. The properties to be preserved

are:

1. If a train door is opened, then the train is stopped. In contrast, if the train is

moving, then its doors are closed.

Chapter 6 Case Study 131

2. If a train door is opened, that either means that the train is in a platform or there

was an emergency and the train had to stop suddenly.

3. A train door cannot be allocated to different trains.

We consider that platforms are represented by single sections. A train is in a platform
if one of the occupied sections correspond to a platform. Doors are introduced as illus-
trated in Fig. 6.9(a) by sets DOOR and their states are represented by DOOR_STATE.
Variables door and door_state represent the train doors and their current states as seen
in Fig. 6.9(b): all trains have allocated a subset of doors (inv2). Several invariants are
introduced to preserve the desired properties: property 1 is defined by invariants inv4
and inwb; property 2 is defined by invariant inv7; property 3 is stated by inv3; theorem

thm1 is used for proving purposes (if no doors are open, then all doors are closed).

To preserve inv5, the guards of changeSpeed (in Fig. 6.8(b)) are strengthened by
grd4 ensuring that whilst the train is moving, the train doors are closed. Also events
that model entering and leaving sections are affected, with the introduction of a sim-
ilar guard (grdll in leaveC'DV). Adding/removing train doors is modelled in events
addDoorTrain and removeDoorTrain respectively: to add/remove a door, the respec-
tive train must be stopped. If the train is stopped and either one of the occupied sections
corresponds to a platform or the emergency button is activated (guard grd3), doors can
be opened as seen in event openDoor. For safety reasons, event toggle EmergencyButton
is strengthened by guard grd3 to activate the emergency button whenever doors are open

and the train is not in a platform.

6.6 Third Refinement and First Decomposition: MetroSys-
tem_M3

This refinement does not introduce new details to the model. It corresponds to the prepa-
ration step before the decomposition. We want to implement a three way shared event
decomposition and therefore we need to separate the variables that will be allocated to
each sub-component. In particular for exchanged messages between the sub-components,
the protocol will work as follows: messages are sent from Track and stored in the Mid-
dleware. After receiving the message, the Middleware forwards it to the corresponding
Train. Train reads the message and processes it according to the content. This protocol
allows a separation between Train and Track with the Middleware working as a bridge

between these two sub-components.

The decomposition follows the steps described in Sect. 5.5. Variables are distributed
according to Fig. 6.10. To avoid constraints during the decomposition process, predi-
cates and assignments containing variables that belong to different sub-components are

rearranged in this refinement step.

132

Chapter 6 Case Study

context MetroSystem C1 extends MetroSystem CO
constants OPEN CLOSED PLATFORM
sets DOOR_STATE DOOR
axioms
@axml partition(DOOR _STATE, {OPEN}, {CLOSED})

@axm2 PLATFORM c CDV
end

machine MetroSystem M2 refines MetroSystem M1 sees MetroSystem Cl
variables next trns occp occpA occpZ

braking speed tmsgs permit

door door_state emergency button

invariants
@invl door_state € DOOR — DOOR_STATE
@inv2 door € trns — P(DOOR)
@inv3 Vt1,t2-t1 € dom(door) A t2 € dom(door) A tI1 #t2
= door(tl) n door(t2) = o
Vt-t € dom(door) =>(3d-dcdoor(t) A door state[d]={OPEN}
= speed(t)=0)
Vt-t € dom(door) A speed(t) > 0
= door(t) c door state~[{CLOSED}]
Vt,d-t € dom(door) A d € door(t) A PLATFORM n occp~[{t}]=a
= door_state(d) € {OPEN, CLOSED}
Vt-t € dom(door) A door(t) n door_state~[{OPEN}] # &
= PLATFORM n occp~[{t}]#& v emergency button(t) = TRUE
theorem @thml Vt-t € dom(door) A door(t) n door_state~[{OPEN}] =¢
= door(t)cdoor_state~[{CLOSED}]

@inv4

@inv5

@invé

@inv7

(a) Context MetroSystem_C1

(b) Variables, invariants in MetroSystem_M2

event toggleEmergencyButton
refines toggleEmergencyButton
any t value
where
@grdl t e dom(door)
@grd2 value € BOOL
@grd3 door(t) n door state~[{OPEN}] # &
A PLATFORM n occp~[{t}]=2
= value = TRUE
then
@actl emergency button(t)= value
end

event openDoor
any t ds
where
@grdl t e dom(door)
@grd2 speed(t) = 0
@grd3 occp~[{t}] n PLATFORM # o
v emergency_button(t) = TRUE
ds ¢ door(t)
3d- deds=door_state(d)=CLOSED
dsze

@grd4
@grd5
@grdé
then
@actl
end

event closeDoor

any t ds

where
@grdl t e dom(door)
@grd2 speed(t) = 0
@grd3 ds ¢ door(t)
@grd4 door_state[ds]={OPEN}
@grd5 ds#e

then

end

door_state= door state < (dsx{OPEN})end

@actl door_state= door_state < (dsx{CLOSED})

event addDoorTrain event leaveCDV refines leaveCDV

any td any tI cl c2
where where
@grdl t € trns @grdl t1 € dom(door)
@grd2 d ¢ DOOR @grd2 c1 e CDV
@grd3 Vtr-tredom(door) A tret @grd3 c2 e CDV
A door(tr)#e=>dndoor(tr)=s @grd4 speed(t1)>0
@rd5 speed(t)=0 @grd5 cledom(next)
@grd7 dndoor(t)=e @grd6 cl=occpA(tl)
then @grd7 cZ=ne?t§;1) e
- @grd8 occpA(tl)#occpZ(t.
eactl door(t)=door(t)ud @grdo c2 e (occp\{cIvtI})~[{t1}]

@act2 door_state=

@grdlo Vtt-ttet
door_states(dx{CLOSED}) . . s

A card(((occp \ {cI» tI1}))~[{tt}])>1
= (occpA<{tl » c2})(tt)#occpZ(tt)
@grdll door(tl)ndoor_state~[{OPEN}]=2
@grdl2 permit(tI)=TRUE

end

event removeDoorTrain

any t d then
where @actl occpA(tl)=c2
@grdl t e dom(door) @act2 occp = (occp\{cIptI})
@grd2 d ¢ DOOR end
@grd3 d ¢ door(t)
@grd4 door state[d]={CLOSED} event changeSpeed refines changeSpeed
@grd5 speed(t)=0 any t1 sl
then where
@actl door(t) = door(t)\d Egrdl t1 e dom(door)

sl eN
tle braking = sl<speed(tl)

@grd3
@grd4

door(tl)ndoor state~[{OPEN}]=o
then
@actl speed(tl) = sl
end

(c) Some events of MetroSystem_M2

FIGURE 6.9: Excerpt of MetroSystem_M2

Chapter 6 Case Study 133

MetroSystem_M3

Ivariables

trns speed permit braking
next occp occpA occpZ
tmsgs emergency_button
door door_state

Y
decompose
decompose
decompose
Track Train Middleware
variables variables variables
next occp occpA occpZ trns speed permit braking tinsgs
door door_state

FIGURE 6.10: MetroSystem_M3 (shared event) decomposed into Track, Train and
Middleware

Some guards need to be rewritten in the refined events. For instance, guard grd10
in event leaveC DV needs to be rewritten in order not to include both variables trns

(sub-component Train) and ocep (sub-component Track). Therefore it is changed from:

Vtt-tt € trns A card((occp U {2 — t1}) 1[{tt}]) > 1 = (occpZ < {t1 — c2})(tt) # occpA(tt)
to:

vtt-tt € dom(ocepZ) A card((occp U {c2 — t1})~H[{tt}]) > 1= (occpZ <+ {t1 — c2})(tt) # occpA(tt) (Fig. 6.11).

Both predicates represent the same property since trns corresponds to the domain
of variable ocepZ (see inv7 in Fig. 6.7(a)). In Fig. 6.11, the original guard grd3 in
toggle EmergencyButton is rewritten to separate variables occp and door. In this case,
an additional parameter occpTrns representing the variable ocep is added (grd4). This
additional parameter will represent the value passing between the resulting decomposed
events: parameter occpTrns is written the value of occp and afterwards it is read in
guard grd3. Similarly guard grd4 in event openDoor must not include variables occp

and emergency_button and consequently parameter occpTrns is added.

Sub-components Train, Track and Middleware are described in the following sec-
tions. The composed machine corresponding to the defined decomposition can be seen

in Fig. 6.12 where it is illustrated how the original events are decomposed.

6.6.1 Machine Track

Machine Track contains the properties concerning the sections in the metro system.
Events corresponding to entering, leaving tracks and changing switch positions are part
of this sub-component resulting from the variables allocation for this sub-component:

next, ocep, occpA and ocepZ. Event sendTrainMsg is also added since the messages are

134

Chapter 6 Case Study

event toggleEmergencyButton

refines toggleEmergencyButton
any t value occpTrns
where

@grdl t € dom(door)

value € BOOL

door(t) n door_state~[{OPEN}] # &

A PLATFORM n occpTrns=e

= value = TRUE
@grd4 occpTrns = occp~[{t}]

then

@actl emergency button(t)= value

end

event openDoor refines openDoor
any t occpTrns ds
where
@grdl t e dom(door)
12 speed(t) =0
3 occpTrns = occp~[{t}]

event leaveCDV refines leaveCDV
any t1 cl c2
where
agrdl t1 e dom(door)
cl € CDV
3 c2 e CDV
speed(t1)>0
5 cledom(next)
cl=occpA(tl)
7 c2=next(cl)
8 occpA(tl)#occpZ(tl)
c2 € (occp\{cIpti})~[{tI}]
@grd10 Vtt-ttedom(occpZ)
A card(((occp \ {cI» tI1}))~[{tt}])>1
= (occpA<{tl » c2})(tt)#occpZ(tt)
@grd1l door(tIl)ndoor_ state~[{OPEN}]=o
3 permit(t1)=TRUE

@c

th

t1 occpA(tl)=c2
2 occp = (occp\{cI»ti})

occpTrns n PLATFORM # o end
v emergency_button(t) = TRUE

ds ¢ door(t)

3d- deds=door_state(d)=CLOSED

7 ds#e

door_state= door_state < (dsx{OPEN})

FIGURE 6.11: Preparation step before decomposition of MetroSystem_M3

sent from the tracks as seen in Fig. 6.13. The original events toggle EmergencyButton
and openDoor require occp in their guards. Consequently part of these original events

are included in this sub-component.

Note that the invariants defining the variables may change: in MetroSystem_M1 variable
ocep is defined as occp € CDV > trns (inv4 in Fig. 6.7(a)); in Track is occp € CDV +
TRAIN (which is the same as theorem typing occp : occp € P(CDV x TRAIN) in
Fig. 6.13). This is a consequence of the variable partition since ¢rns is not part of
Track and therefore the occp relation is updated with trns’s type: TRAIN (cf. inv3 in
Fig. 6.7(a)). Variables occpA and occpZ are subject to the same procedure where the
original invariant is a total function trns—C DV and in the sub-component both become
P(TRAIN xCDV'). The sub-components invariants are derived from the different initial
abstract models (cf. their labels in Fig. 6.13). Invariants that only restrain the sub-
component variables are automatically included although additional ones can be added

manually.

6.6.2 Machine Train

Machine Train models the trains in the metro system. Trains entering/leaving a sec-
tion, modelled by events enterC'DV and leaveCDV are part of this sub-component,
in spite of the decomposed events do not execute any actions (see Fig. 6.14(b)). The
interaction with sub-component Track occurs through parameters t1, ¢l and ¢2 (see
events Track.leaveCDV in Fig. 6.13). Variables door and door_state are part of this
sub-component and consequently the events that modify these variables: openDoor and
closeDoor. Moreover, since the emergency button is part of a train, the respective vari-
able emergencyButton (and the modification event toggle EmergencyButton) is also

included in this sub-component. Event recvTrainMsg receives messages sent to the

Chapter 6 Case Study 135

COMPOSED MACHINE MetroSystem_M3_cmp
REFINES MetroSystem-M3

INCLUDES
Track Train Middleware
EVENTS

addTrain refines addTrain

Combines Events Train.addTrain || Middleware.addTrain ||Track.addTrain
modifyTrain refines modifyTrain

Combines Events Train.modifyTrain || Track.modifyTrain
sendTrainMsg refines sendTrainMsg

Combines Events Track.sendTrainMsg || Middleware.send TrainMsg
recvTrainMsg refines recvTrainMsg

Combines Events Train.recvTrainMsg || Middleware.recvTrainMsg
changeSpeed refines changeSpeed

Combines Events Train. changeSpeed
brake refines brake

Combines Events Train.brake
stopBraking refines stopBraking

Combines Events Train.stopBraking
enterCDV refines enterCDV

Combines Events Train.enterCDV || Track.enterCDV
leaveCDV refines leaveCDV

Combines Events Train.leaveCDV || Track.leaveCDV
openDoor refines openDoor

Combines Events Train.openDoor || Track.openDoor
closeDoor refines closeDoor

Combines Events Train.closeDoor
toggleEmergencyButton refines toggleEmergencyButton

Combines Events Train.toggleEmergencyButton || Track.toggleEmergencyButton
addDoorTrain refines addDoorTrain

Combines Events Train.addDoorTrain
removeDoorTrain refines removeDoorTrain

Combines Events Train.removeDoorTrain
switchChangeDiv refines switchChangeDiv

Combines Events Track.switchChangeDiv
switchChangeCnv refines switchChangeCnv

Combines Events Track.switchChangeCnv

END

FI1GURE 6.12: Composed machine tool view corresponding to MetroSystem_M3 decom-
position

trains and the content is stored in the variable permit. Although variable permit is set
based on the content of the messages exchanged between Train and Track, that variable
is read by trains. This is the reason why it is allocated to this sub-component. The
events that change the speed of the train are also included in this sub-component: brake,

stopBraking, changeSpeed due to variables speed and braking as depicted in Fig. 6.14.

6.6.3 Machine Middleware

Finally the communication layer in modelled by Middleware as seen in Fig. 6.15. Mid-
dleware bridges Track and Trains, by receiving messages (sendTrainMsg) from the

tracks and delivering to the trains (recoTrainM sg). Variable tmsgs is used as a buffer.

Benefiting from the monotonicity of the shared event approach, the resulting sub-

components can be further refined. Following Fig. 6.3, Train is refined as described

136 Chapter 6 Case Study

machine Track sees MetroSystem C1

event openDoor

variables next occp occpA occpZ
any t occpTrns ds

invariants

theorem @typing occpZ occpZ € P(TRAIN x CDV)
theorem @typing occp occp € P(CDV x TRAIN)
theorem @typing next next € P(CDV x CDV)
theorem @typing occpA occpA € P(TRAIN x CDV)
@VetroSystem MO invl next c net

etroSystem _MO_inv2 next € CDV » CDV
@MetroSystem MO_inv12 finite(occp~)

event sendTrainMsg
any tI1 bb
where
@typing t1 t1 € TRAIN
yping bb bb € BOOL
@grd3 bb = bool (occpZ(tl)edom(next)
A next(occpZ(tl))¢dom(occp))

end

event enterCDV
any tl cl c2
where
@typing t1 t1 € TRAIN
@grd2 cl € CDV

where
@typing t t € TRAIN
typing occpTrns occpTrns € P(CDV)
typing ds ds € P(DOOR)
grd3 occpTrns = occp~[{t}]
@grd7 ds#e
end

event leaveCDV

any tl cl c2

where

@typing t1 t1 € TRAIN

rd2 cI € CDV

d3 c2 e CDV

@grd5 cledom(next)

@grd6 cl=occpA(tl)

@grd7 c2=next(cl)

@grd8 occpA(tl)zoccpZ(tl)

@grd9 c2 € (occp\{cI»tI})~[{tI}]

@grd10 Vtt- ttedom(occpZ)
A card(((occp \ {cI » tI}))~[{tt}])>1
= (occpA<{tl » c2})(tt)#occpZ(tt)

then
@actl occpA(tl)=c2
@act2 occp = (occp\{cIptl})

A card((occp u {c2 » tI})~[{tt}])>1
= (occpZe{tl » c2})(tt) # occpA(tt)

@grd3 c2 e CDV

@grd5 clI = occpZ(tl) end

@grd6 cledom(next) event toggleEmergencyButton
@grd7 c2 = next(occpZ(tl)) any t value occpTrns
@grds Vtt-ttedom(occpZ) where

@typing t t € TRAIN
@typing occpTrns occpTrns € P(CDV)

@grd9 c2edom(occp) @grd2 value e BOOL
then @grd4 occpTrns = occp~[{t}]
@actl occpZ(tl) = c2 end
@act2 occp=occp u { c2 p tI}
end

FIGURE 6.13: Excerpt of Track
in the following section.

6.7 Refinement of Train: Train_M1

In Train_M1, carriages are introduced as parts of a train. Each carriage has an individual
alarm that when activated, triggers the train alarm (enables the emergency button of
the train). Each train has a limited number of carriages. Each carriage has a set of
doors and the sum of carriage doors corresponds to the doors of a train. The properties

to be preserved are:

1. There is a limit to the number (MAX _NUMBER CARRIAGE) of carriages per

train.

2. Whenever a carriage alarm is activated, then the emergency button of that same

train is activated.

3. The sum of carriage doors corresponds to the doors of a train.

The definition of these requirements require the introduction of some static elements
like a carrier set CARRIAGE, constants MAX_ NUMBER_CARRIAGE and
DOOR_CARRIAGE (function between DOOR and CARRIAGE). The latter is defined

as a constant because the number of doors in a carriage does not change. Context

Chapter 6 Case Study 137

machine Train sees MetroSystem C1
variables trns speed permit braking emergency button door_state door

invariants
theorem
theorem
theorem
theorem
theorem
theorem @typing
theorem @typing
@MetroSystem MO
@MetroSystem MO
@MetroSystem Mo

trns trns e P(TRAIN)

door state door_state € P(DOOR x DOOR_STATE)
braking braking € P(TRAIN)

speed speed € P(TRAIN x Z)

permit permit € P(TRAIN x BOOL)

door door € P(TRAIN x P(DOOR))

emergency button emergency_button € P(TRAIN x BOOL)
inv3 trns c TRAIN

inv9 braking ¢ trns

inv1l® speed € trns — N

@typing
@typing
@typing
@typing
@typing

@VetroSystem M1 inv2 permit € trns — BOOL
@VetroSystem M1 inv7 emergency button € trns — BOOL
@MetroSystem M2 invl door_state € DOOR — DOOR_STATE
@VetroSystem M2 _inv2 door € trns — P(DOOR)

Vti,t2-t1 € dom(door) A t2 € dom(door) A t1 #t2 = door(tl) n door(t2) = o
@VetroSystem M2 inv4 Yt-t € dom(door) =>(3d-dcdoor(t) A door state[d]={OPEN} = speed(t)=0)
@VetroSystem M2 inv5 Yt-t € dom(door) A speed(t) > 0 = door(t) c door_state~[{CLOSED}]
theorem @MetroSystem M2 thml Vt-t € dom(door) A door(t) n door state~[{OPEN}] =g

= door(t)cdoor state~[{CLOSED}]

@Met roSystenﬁle inv3

(a) Variables and invariants in Train

event openboor event addDoorTrain

event recvTrainMsg
any tI bb
where
@typing tl t1 € TRAIN
@typing bb bb € BOOL
then
@act2 permit(tl)=bb
end

event changeSpeed
any tl1 sl
where
@typing t1 t1 € TRAIN
@typing sl s1 e Z
sleN
t1 € dom(door)

@actl
end

speed (t1) = sl

event brake
any t1
where
@typing t1 tI € TRAIN
tl e trns\braking
t1 € dom(emergency button)
permit(tl) = FALSE
v emergency_button(t1)=TRUE

braking = braking v {tI}

t1 € braking = sI < speed (tI)
door(tI) n door_state~[{OPEN}] =2 :nz

any t occpTrns ds

any td
where where
@typing t ¢ & TRAIN Gtyping_d d e P(DOOR)
@typing occpTrns occpTrns € P(CDV) /:T/HHJ t t e TRAIN
@typing ds ds € P(DOOR) ;(;)vij] 15 trns
rdl t e dom(door) -
DOOR

rd2 speed(t) = 0
occpTrns n PLATFORM = o
v emergency button(t) = TRUE

ds ¢ door(t)

@grd2 d ¢
@grd3 Ytr-tredom(door) A tret

A door(tr)#e = dndoor(tr)=e
speed(t)=0

@grd4

@grds

event removeDoorTrain
event closeDoor

t ds e
m e where
@typing t t e TRAIN rtigim [11 LZ: ﬁl(!l:\i?lk)
@typing_ds ds € P(DOOR) @yrdl t e dom(door)
@rdl t e dom(door) Ggrd2 d € DOOR
@grd2 speed(t) = 0 43 de door(t)

@grd3 ds ¢ door(t)

@grd4 door_state[ds]={OPEN}

@grd5 dsze

then

@actl door_state= door state < (dsx{CLOSED})

@grd4 door_state[d]={CLOSED}
@grd5 speed(t)=0
then
@actl door(t) = door(t)\d

end
event leaveCDV

any tl cl c2

where

@typing t1 t1 € TRAIN

event toggleEmergencyButton
any t value occpTrns
where

Gtyping t t e TRAIN H e donfdoor)
@typing occpTrns occpTrns € P(CDV) cle
c2 € CDV

@grdl t e dom(door)

@grd2 value € BOOL

@grd3 door(t) n door state~[{OPEN}] = &
A PLATFORM n occpTrns=g
= value = TRUE

4 speed(tl1)>0

@grdl2 permit(tI)=TRUE
end
then
@actl emergency button(t)= value
end

3d- deds=door_state(d)=CLOSED thigr1m7 dndoor(t)=o

dseo @actl door(t)=door(t)ud

door state= door state < (dsx{OPEN}) @act2 door state=door state<(dx{CLOSED})
- - end

@grd1l door(tl)ndoor state~[{OPEN}]=2

(b) Some events of Train

FIGURE 6.14: Excerpt of Train

Train_C2 is depicted in Fig. 6.16(a). Several variables are added such as train_carriage
relating carriages with trains and carriage_alarm that is a total function between
CARRIAGE and BOOL, illustrated in Fig. 6.16(b). Property 1 is expressed by invari-
ant inv6 stating that trains have a maximum of MAX_NUMBER_CARRIAGE carriages.
Property 2 is defined in inv7 as seen in Fig. 6.16(b). Events activateEmergencyCarriage-
Button and deactivateEmergency TrainButton refine abstract event toggle EmergencyBut-
ton: the first event enables a carriage alarm and consequently enables the emergency

button of the train; the later occurs when the emergency button of a train is active

138 Chapter 6 Case Study

machine Middleware sees MetroSystem Cl

variables tmsgs

invariants event recvTrainMsg
theorem @typing tmsgs tmsgs € P(TRAIN x P(BOOL)) any tl bb
where
events @typing t1 t1 € TRAIN
event INITIALISATION @typing bb bb e BOOL
then @grdl t1 € dom(tmsgs)
@actl tmsgs = @ @grd2 bb € tmsgs(tl)
end then
@actl tmsgs(tl)=o
event sendTrainMsg end
any tl bb
where event addTrain
@typing tl t1 € TRAIN any t oc
ityping bb bb e BOOL where
@grdl t1 e dom(tmsgs) @typing t t € TRAIN
@grd2 tmsgs(tl)=e @grdl oc € CDV
then then
@actl tmsgs(tl) = {bb} @act6 tmsgs(t)=g
end end

FIGURE 6.15: Machine Middleware

and corresponds to the deactivation of the last enabled carriage alarm which results in
deactivating the emergency button; a new event deactivate EmergencyCarriage Button
is added to model the deactivation of a carriage alarm when there is still another alarm
enabled for the same train (guards grd4 and grd5). The allocation and removal of
carriages (events allocateCarriage Train and removeCarriage Train) refine addDoorTrain
and removeDoorTrain respectively. In these two events, the parameter d representing
a set of doors, is replaced in the witness section by the doors of the added/removed
carriage: d = DOOR_.CARRIAGE~'[{c}]. We continue the refinement of Train in the

following section.

6.8 Second Refinement of Train: Train_ M2

In this refinement of Train, carriages requirements are added. We specify carriage
doors instead of the more abstract train doors. As a consequence, variable doors is
data refined and disappears. Each train contains two cabin carriages (type A) and two
ordinary carriages (type B) allocated as follows: A+B+B-+A. Only one of the two cabin
carriages is set to be the leader carriage controlling the set of carriages and the moving
direction. Trains have states defining if they are in maintenance or if they are being
driven manually or automatically. More safety requirements are introduced: if the speed
of a train exceeds the safety maximum speed, the emergency brake for that train must
be activated. The abstract event representing the change of speed is refined by several
concrete events and includes the behaviour of the system when a train is above the

maximum speed. The properties to be preserved in this refinement are:

1. If a train is not in maintenance, then it must have the correct number of carriages
and the leader carriage must be defined already. Consequently, this is a condition

to be verified before the train can change speed.

Chapter 6 Case Study 139

machine Train_M1 refines Train sees Train_Cl

variables trns speed permit braking door_state door emergency button

context Train Cl extends MetroSystem C1 X .
train_carriage carriage_alarm

constants MAX_NUMBER_CARRIAGE

DOOR_CARRIAGE invariants

@invl finite(trns)

@inv2 carriage_alarm € CARRIAGE — BOOL
@inv3 train_carriage € CARRIAGE -+ trns
@inv4 finite(train_carriage)

sets CARRIAGE

axioms
@axml MAX_NUMBER CARRIAGE € N1 @inv5 finite(dom(train_carriage))
xm2 DOOR CARRIAGE € DOOR—CARRIAGE @invé Vt-t € trns = card(train_carriage~[{t}])<MAX_NUMBER_CARRIAGE

@axm3 Yc-ceran(DOOR_CARRIAGE) @inv7 3Ac-(c € dom(train_carriage) A carriage_alarm(c) = TRUE

=DOOR_CARRIAGE~[{c}]=o & c € dom(train_carriage) A emergency button(train_carriage(c))= TRUE)
end - @inv8 Vt-tedom(door) = door(t)=DOOR_CARRIAGE~[train_carriage~[{t}]]
(a) Context Train_C1 (b) Variables and Invariants of Train_M1

event activateEmergencyCarriageButton
refines toggleEmergencyButton
any c occpTrns

where
@grdl occpTrns € P(CDV) event alocateCarriageTrain refines addDoorTrain
@rd2 c e dom(train_carriage) any c t
@grd3 carriage alarm(c) = FALSE where

with @grdl ¢ € CARRIAGE\dom(train_carriage)
@value valge = TRL]E @grd2 carriage_alarm[{c}]= {FALSE}

thfdelnt = train_carriage(c) @grd3 Vtr-tredom(door) A tr#t A door(tr)#e

= ~ tr)=
@actl carriage_alarm(c) = TRUE Qqrdd t EDtOS:S_CARRIAGE [{c}Indoor(tn=e
@act2 emergency_button(train_carriage(c)) = TRUE ggrdB emergency button(t) = FALSE
end s 3 o

@grd6 finite(train carriage~[{t}])
@grd7 card(dom(train_carriage > {t}))

event deactivateEmergencyCarriageButton
<MAX_NUMBER_CARRIAGE

any ¢
where @grd8 speed(t)=0
@grdl ¢ e dom(train carriage) @grd9 DOOR_CARRIAGE~[{c}] n door(t)=¢
@grd2 emergency_button(train_carriage(c)) = TRUE with
@grd3 carriage alarm(c) = TRUE @d d=(DOOR_CARRIAGE~[{c}])
@grd4 {c} # (dom(carriage alarm > {TRUE}) then
n train_carriage~[{train_carriage(c)}]) @actl train_carriage(c)= t
@grd5 card(train_carriages{train_carriage(c)})>1 @act2 door(t)=door(t) u DOOR_CARRIAGE~[{c}]
then @act3 door_states=
@actl carriage_alarm(c)= FALSE door_state<(DOOR_CARRIAGE~[{c}]x{CLOSED})
end end
event deactivateEmergencyTrainButton event removeCarriageTrain refines removeDoorTrain
refines toggleEmergencyButton any c t
any c occpTrns where
where

@grdl t e dom(door)

@grd2 c»t € train_carriage

@grd3 carriage alarm(c) = FALSE
@grd4 emergency button(t) = FALSE
@grd5 speed(t)=0

@grd6 DOOR_CARRIAGE~[{c}]lcdoor(t)
@grd7 DOOR_CARRIAGE~[{c}]#e

@grdl occpTrns € P(CDV)
@grd2 c € dom(train_carriage)
@grd3 emergency_button(train_carriage(c)) = TRUE
@grd4 carriage alarm(c) = TRUE
@grd5 {c} = (dom(carriage_alarm > {TRUE})

n train_carriage~[{train_carriage(c)}])
@grd6 door(train_carriage(c))ndoor state~[{OPEN}] = &

with @grd8 door state[DOOR_CARRIAGE~[{c}]]={CLOSED}
@value value = FALSE with
@t t = train_carriage(c) @ d = (DOOR_CARRIAGE~[{c}])
then then
@actl carriage alarm(c)= FALSE @actl train_carriage = {c}<train_carriage
@act2 emergency button(train carriage(c)) = FALSE @act2 door(t)=door(t)\DOOR_CARRIAGE~[{c}]
end end

(c) Some events of Train_M1

FIGURE 6.16: Excerpt of machine Train_M1

2. If a train is in maintenance, then it must be stopped.

3. If the speed of a train exceeds the maximum speed, the emergency brake must be

activated.

Figure 6.17(a) illustrates two new carrier sets: SIDE corresponding to which side a car-
riage door or a platform is located (constants LEFT or RIGHT) and TRAIN _STATE
that defines the state of a train (MAINTENANCE, MANUAL or AUTOMATIC).
There are some new constants added as well: CABIN _CARRIAGLE defined as a sub-

140 Chapter 6 Case Study

set of CARRIAGE, NUMBER CABIN _CARRIAGE defining the number of cabin
carriages allowed per train, DOOR_SIDE defined as a total function between DOOR
and SIDE representing which side a door is located, MAX _SPEFED defining the up-
per speed limit for running a train before the activation of the emergency brake and
PLATFORM _SIDE defining the side of a platform.

Figure 6.17 shows Train_M2 where several new variables are introduced: leader_carriage
defining the leader carriage for a train (inv6), trns_state defining the state of a train
(inv8), emergency_brake that defines which trains have the emergency brake activated
(inv1l) and carriage_door_state defining the state of the carriage doors (inv15). More-
over door_train_carriage defines the train doors based on the carriages (inv2, inv3 and
invd) and each door belongs to at most one train (inv4) although a train can have
several doors (inv2). This variable refines door that disappears in this refinement level,
plus some gluing invariants: invl, invb and theorem thm2 state that the range of door

for a train ¢ is the same as the range of door_train_carriage as long as t has doors.

Property 1 is expressed by inv9. Property 2 is expressed by invl0 and property 3
by invl2. invl3 and invl4 state that the doors in the domain of door_state are the
same as the ones in carriage_door_state and therefore their state must match. Theorem
thml relates the carriages doors with variables door_train_carriage and train_carriage.
Theorem thm3 states that the domain of carriage_door_state is a subset of the domain

of door_state since both variables refer to the same set of doors.

New events are added defining the allocating of a leader carriage to a train (event
allocate LeaderCabinCarriageTrain in Fig. 6.17(c)). This event is enabled only if the
train is in maintenance (grd5), already has the required number of carriages (grd6)
but does not have a leader carriage yet (grd7). To deallocate the leader carriage in
event deallocateLeaderCabinCarriagelrain, the train must be in maintenance. A
train change state in event modifyTrain: to change to MAINTENANCE, the train
must be stopped (grd2); for the other states, the number of cabin carriages must be
NUMBER CABIN CARRIAGE and a leading carriage have to be allocated already
(grd3). Abstract event changeSpeed is refined by four events: two to increase the
speed (increaseSpeed and increaseMaxSpeed in Fig. 6.17(c)) and two to reduce the
speed (reduceSpeed and reduceMaxzSpeed). If the speed of a train is increasing in a
way that is superior to MAX_SPFEED, event increaseM axSpeed is enabled and if it
occurs, the emergency_brake is activated. If the current speed of a train is superior to
MAX SPEED but the new speed is decreasing in a way that is inferior to the maximum

speed then the emergency_brake can be deactivated (event reduceMaxSpeed).

Chapter 6 Case Study

141

context Train C2 extends Train C1

constants CABIN_CARRIAGE NUMBER_CABIN_CARRIAGE
LEFT RIGHT DOOR_SIDE PLATFORM_SIDE
MAINTENANCE MANUAL AUTOMATIC MAX_SPEED

sets SIDE TRAIN_STATE

axioms

@axml CABIN_CARRIAGE c CARRIAGE

@axm2 NUMBER_CABIN_CARRIAGE e N1

@axm3 DOOR_SIDE € DOOR — SIDE

@axm4 partition(SIDE, {LEFT}, {RIGHT})

@axm5 partition(TRAIN_STATE, {MAINTENANCE},

{MANUAL}, {AUTOMATIC})

@axm6 MAX_SPEED e N1

@axm7 PLATFORM_SIDE € PLATFORM — SIDE

@axm8 finite(CABIN_CARRIAGE)

@axm9 PLATFORM #g

@axm10 CABIN_CARRIAGE#g

@axmll CABIN_CARRIAGEc ran(DOOR_CARRIAGE)
end

(a) Context Train_C2

variables trns speed permit braking door_state emergency button train_carriage carriage_alarm
leader_carriage trns_state emergency brake carriage door_state door_train_carriage

invariants

@invl Yt-te dom(door_train_carriage) = t € dom(door) A door(t) = door_ train carriage[{t}] A door(t)#e
@inv2 door_train_carriage € trns < DOOR
@inv3 door_train_carriage = (DOOR_CARRIAGE;train_carriage)~
@inv4 door train_carriage~e DOOR -+ trns
@inv5 VYt-te dom(door) A door(t)#e = door(t) = door_train_carriage[{t}]
@inv6 leader_carriage € trns -» CABIN_CARRIAGE
@inv7 finite(leader carriage)
@inv8 trns_state € trns — TRAIN_STATE
@inv9 Vt,c-teran(train_carriage) A trns_state(t)#MAINTENANCE A ¢ = train_carriage~[{t}]

A finite(CABIN_CARRIAGE) A t e dom(leader carriage)

= card(cnCABIN_CARRIAGE)=NUMBER_CABIN_CARRIAGE A leader carriage(t) € c
@inv10 Yt-tetrns A trns_state(t)=MAINTENANCE = speed(t)=0
@invll emergency_brake ctrns
@inv12 Yt-((tetrns A speed(t)>MAX_SPEED) = t € emergency brake)
@invl3 carriage_door state € DOOR_CARRIAGE — DOOR_STATE
@invl4 Vd-d € dom(door_state) A door_state(d)=0PEN = carriage _door_state(a»DOOR_CARRIAGE (d))=0PEN
@inv15 Vd-dedom(door state)adoor state(d)=CLOSED = carriage_door state(ad»DOOR_CARRIAGE (d))=CLOSED
theorem @thml Vc-ceran(DOOR_CARRIAGE) A cedom(train_carriage)

= DOOR_CARRIAGE~[{c}]cdoor_ train_carriage[{train_carriage(c)}]
theorem @thm2 Vc:c e dom(train_carriage) A door(train_carriage(c)) n door_state~[{OPEN}]=o
A door(train_carriage(c))#e = DOOR_CARRIAGE~[{c}]cdoor(train_carriage(c))
A DOOR_CARRIAGE~[{c}] n door_state~[{OPEN}]=2

theorem @thm3 dom(dom(carriage door_state)) ¢ dom(door_state)

(b) Variables and Invariants

where

event increaseMaxSpeed refines changeSpeed
any tI sl

@grdl sI eN

@grd2 t1 e dom(door_train_carriage)\braking
@grd3 trns_state(tl) # MAINTENANCE

@grd4 sI > MAX_SPEED

@grd5 speed(tl)<sl event allocatelLeaderCabinCarriageTrain
@grd6 tI ¢ emergency brake any ¢
@grd7 speed(tl)s MAX_SPEED where
@grd8 door_train_carriage[{tI}] @grdl ¢ € dom(train_carriage)
n door_state~[{OPEN}] =g @grd2 finite(train_carriage~[{train_carriage(c)}])
@grd9 door_train_carriage[{tI}]=o @grd3 ¢ € CABIN_CARRIAGE
@grdl0 permit(tI)=TRUE @grd4 c € dom(train_carriage > {train_carriage(c)})
then @grd5 trns_state(train_carriage(c))=MAINTENANCE
@actl speed (tl1) = s1 @grd6 card(dom(train_carriage » {train_carriage(c)}))
@act2 emergency brake =emergency brake v {tI} =MAX_NUMBER_CARRIAGE
end @grd7 train_carriage(c) € dom(leader carriage)
then
event modifyTrain refines modifyTrain @actl leader carriage(train_carriage(c)) = ¢
any t state end
where
@grdl t € trns event deallocatelLeaderCabinCarriageTrain
@grd2 state = MAINTENANCE = speed(t)=0 any t
@grd3 card(train_carriage~[{t}InCABIN_CARRIAGE) where
=NUMBER_CABIN_CARRIAGE @grdl t € dom(leader carriage)
A t € dom(leader_carriage) @grd2 finite(train_carriage~[{t}])
A leader carriage(t) € train_carriage~[{t}] @grd3 trns_state(t)=MAINTENANCE
@grd4 state € TRAIN_STATE @grd4 card(dom(train_carriage > {t}))
@grd5 state # trns_state(t) =MAX_NUMBER_CARRIAGE
then then
@actl trns_state(t)=state @actl leader carriage = {t}<leader carriage
end end

(¢) Some events of Train_M2

FIGURE 6.17: Excerpt of machine Train_M2

142 Chapter 6 Case Study

6.9 Third Refinement of Train: Train M3

As a continuation of the refinement of the train doors by carriage, we data refine vari-
able door_state. The opening doors event needs to be strengthened to specify which
doors to open when a train is stopped in a platform. Figure 6.18 shows an excerpt of
Train_M3. Some additional properties related to the allocation of the leader carriage
are defined: when a train has already allocated a leader carriage, then it has the cor-
rect number of carriages (inv2) and the leader carriage belongs to the set of carriage
of that train (inv3). These two invariants could have been included in the previous
refinement. Nevertheless due to the high number of proof obligations already existing
in the previous refinement, they were added later. Variable door _state disappears being
refined by door_carriage_state and gluing invariants invl and thm2. Theorem thml
is added to help with the proofs: the carriage doors of a train ¢ are the same as the
doors defined by the constant DOOR_CARRIAGE restricted to the carriages. Some
existing events are strengthened in this refinement to be consistent with the invariants
as illustrated in Fig. 6.18(b). Due to inv2, event allocateLeaderCabinCarriageT rain
needs to be strengthened by adding guard grd8: this event is only enabled if the number
of carriages for that train is equal to NUMBER_CABIN_CARRIAGE. Also events
allocateCarriageTrain and removeCarriageTrain require an additional guard (grd4
and grdl1 respectively) stating that the events are only enabled if train ¢ does not have
a leader carriage yet. Therefore we reinforce some ordering in the events: first car-
riages are allocated/removed; after the leader carriage can be allocated. Refined event
openDoors is strengthened with the inclusion of guard grd8: the set of carriage doors

ds that are opened are located in the same side as the plat form.

6.10 Fourth Refinement of Train and Second Decomposi-
ton: Train_M}/

The fourth refinement of Train corresponds to the preparation step before the decom-
position. Context Train_C4, illustrated in Fig. 6.19(a), introduces an enumerated car-
rier set TRAIN _MOVING_STATE defining the moving state of a train: MOVING,
NOT_READY (not ready to move) and NEUTRAL (not moving but ready to move).
We use additional control variables to help in the separation of aspects resulting in
adding variables ready_train and train_doors_closed. Both are total functions between
trns and BOOL (invl and inv2 in Fig. 6.19(b)). ready_train defines trains that are
ready to move or moving (which therefore have a leader carriage and the correct number
of carriages to move (inv3)); train_doors_closed defines trains that have all their doors
closed (inv4). These variables are somehow redundant and are mainly added as a prepa-
ration for the shared event decomposition: they will be allocated to LeaderCarriage and

represent a combination of states defined by Carriage variables. They also simplify

Chapter 6 Case Study 143

machine Train_M3 refines Train_M2 sees Train_C2

variables trns speed permit braking emergency button train_carriage carriage_alarm leader_carriage
trns_state emergency brake carriage door state door train_carriage

invariants
@invl Yd,ds-d € dom(door_state) A ds € DOOR_STATE A carriage door_state(d»DOOR_CARRIAGE (d))=ds < door_state(d)=ds
@inv2 Vt-tetrns A t € dom(leader_carriage) A card(train_carriage~[{t}])=MAX_NUMBER_CARRIAGE
A card(train_carriage~[{t}]nCABIN_CARRIAGE)=NUMBER_CABIN_CARRIAGE
@inv3 Vt-tetrns A t € dom(leader_carriage) = leader_carriage(t) € train_carriage~[{t}]
theorem @thml Vt-tedom(door train_carriage) = door_train_carriage[{t}]=DOOR_CARRIAGE~[train_carriage~[{t}]]
theorem @thm2 Vd,ds-d c dom(door_state) A ds € DOOR_STATE A carriage door state[dxDOOR_CARRIAGE[d]]={ds}
<door state[d]={ds}

(a) Variables and invariants

event openDoors refines openDoors
any t occpTrns platform ds
where

event allocatelLeaderCabinCarriageTrain
refines allocatelLeaderCabinCarriageTrain

any ¢

where
@grdl ¢ € dom(train_carriage)
finite(train_carriage~[{train_carriage(c)}])
c € CABIN_CARRIAGE
4 ¢ € dom(train_carriage > {train_carriage(c)})
trns_state(train_carriage(c))=MAINTENANCE

card(train_carriage~[{train_carriage(c)}])
=MAX_NUMBER_CARRIAGE DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}

train carriage(c) e dom(leader carriage) g ds ¢ DOOR_CARRIAGE~[train_carriage~[{t}]]

card(trainicarriage~[{train7carr1age(c)}]nCABIN_CARRIAGE)@U'dTO Vd- deds

=NUMBER CABIN CARRIAGE =>carriage door_state[{d}<DOOR_CARRIAGE]={CLOSED
N - @grdll ds#o

t € TRAIN
G occpTrns € P(CDV)
rd3 platform € PLATFORM
4 platform € (occpTrns n PLATFORM)
t € dom((DOOR_CARRIAGE;train_carriage)~)
speed(t) = 0
({platform} # @) v emergency button(t) = TRUE

then
@actl leader carriage(train carriage(c)) = ¢ then
end @actl carriage door_state= carriage_door_state
< ((ds<DOOR_CARRIAGE)x{0OPEN})
event allocateCarriageTrain refines allocateCarriageTrain end
::Zr: ‘ event removeCarriageTrain refines removeCarriageTrain
@yrdl ¢ € CARRIAGE\dom(train_carriage) any ct

carriage_alarm[{c}]= {FALSE} where] ‘
@grd3 Vtr-tr e dom(door_train_carriage) A tr#t @grdl t e dum(dooritra}nicarrlage)

= DOOR_CARRIAGE~[{c}]ndoor train carriage[{tr}]=o rd2 ot € train carriage

t e trns\dom(leader carriage) rd3 carriage_alarm(c) = FALSE

5 emergency button(t) = FALSE rd4 emergency button(t) = FALSE

finite(train carriage~[{t}]) rd5 trns_state(t)=MAINTENANCE
card(dom(train_carriage > {t}))<MAX_NUMBER_CARRIAGE @grd6 speed(t)=0

speed(t)=0 @grd7 carriage door_state[DOOR_CARRIAGE>{c}]={CLOSED}
9 DOOR_CARRIAGE~[{c}] n door train carriage[{t}]=o @grd8 Vd-deDOOR_CARRIAGE~[{c}]

@grdl0 trns state(t)=MAINTENANCE = t = door_train_carriage~(d)
then @grd9 c € ran(DOOR_CARRIAGE)

t1 train carriage(c)= t @grd10 DOOR_CARRIAGE~[{c}]cdoor_train_carriage[{t}]

@act2 door_train_carriage = door_train_carriage ©grdll t & dom(leader carriage)
U ({f} x DOOR_CARRIAGE-[{c}]) then
@act3 carriage_door_state= carriage_door_state @actl train_carriage = {c}<train carriage
< ((DOOR_CARRIAGE>{c})x{CLOSED}) @act2 door_train_carriage = door_train_carriage
- >DOOR_CARRIAGE~[{c}]

end

(b) Refinement of some events in Train_M3

FIGURE 6.18: Excerpt of machine Train_-M3

the event splitting by replacing predicates that contain variables related to carriages.
For instance, in Fig. 6.19(c) guard grd8 of event increaseMaxzSpeed replaces guard
grd8 in the abstract event (Fig. 6.17(c)): this event does not need to refer to variable
door_train_carriage since it is only required to ensure that all the train doors are closed
when a train increases its speed (train_doors_closed(t1) = TRUE). The consequence of
adding these variables is that they need to be consistent throughout the events. For in-
stance, act2 needs to be added to the actions of deallocate LeaderCabinCarriageTrain
when a leader carriage is deallocated from a train which implies that the train is no
longer ready to move (Fig. 6.19(c)). Therefore these control variables should be added
with care in particular when it is intended to further refine the resulting sub-events after
an event decomposition. Invariants invb and inv6 are gluing invariants resulting from
the added variables: the first states that if a train has its doors opened, then the train

must be stopped; the second states that if a train is ready, then the set of carriages for

144 Chapter 6 Case Study

that train is not empty. All other events are updated reflecting the introduction of the

new variables.

context Train C4 extends Train (2
constants MOVING NOT_READY NEUTRAL
sets TRAIN_MOVING_STATE

axioms

@axml partition(TRAIN_MOVING_STATE, {MOVING}, {NOT_READY}, {NEUTRAL})
end

(a) Context Train_C4

machine Train_M4 refines Train_ M3 sees Train_C4

variables trns speed permit braking emergency button train_carriage
carriage_alarm leader_carriage trns_state emergency brake
carriage_door_state door_train_carriage ready train train_doors_closed

invariants
@invl ready train € trns — BOOL
@inv2 train_doors_closed € trns — BOOL
@inv3 Vt-tedom(ready train) A ready train(t) = TRUE = tetrns
A card(train_carriage~[{t}])=MAX_NUMBER_CARRIAGE
A card(train carriage~[{t}]1nCABIN_CARRIAGE)
=NUMBER_CABIN_CARRIAGE
t € dom(leader carriage)
@inv4 Vt-tedom(train_doors_closed)
A train_doors_closed(t) = TRUE
= (Vd-d edoor_train_carriage[{t}]
= carriage_door_state(drDOOR_CARRIAGE (d))#0PEN)
@inv5 Vt-tedom(train_doors_closed)
A train_doors_closed(t) = FALSE = speed(t) = 0
@inv6 Vt-tedom(ready train) A ready train(t) = TRUE
= DOOR_CARRIAGE>train_carriage~[{t}]#e

>

(b) Variables and invariants

event increaseMaxSpeed refines increaseMaxSpeed

any t1 sl

where
@grdl sI eN
@grd2 tlI e trns
@grd3 tl1 e braking
@grd4 trns_state(tl) # MAINTENANCE event deallocatelLeaderCabinCarriageTrain
@grd5 s1 >7MAX_SPEED refines deallocatelLeaderCabinCarriageTrain
@grd6 speed(tl)<sl any t lc
@grd7 tl e emergency brake where
@grd8 speed(tl)s MAX_SPEED @grdl t e dom(leader carriage)
@rd9 train doors closed(tI) = TRUE @grd2 finite(train_carriage~[{t}])
@grd10 permit(tI)=TRUE @yrd3 trns_state(t)=MAINTENANCE
@rdll speed(tl)>0 @grd4 card(dom(train_carriage > {t}))=MAX_NUMBER_CARRIAGE
@rd12 ready_train(tl) = TRUE @grds lc = leader carriage

then then
@actl speed (tI) = sl @actl leader_carriage = {t}<leader_carriage
@act2 emergency brake = emergency brake u {tI} @act2 ready_train(t) = FALSE

end end

(c) Refinement of some events in Train_M/

FIGURE 6.19: Excerpt of machine Train_M}

Now we are ready to proceed to the next decomposition as described in Fig. 6.3. We want

to separate the aspects related to carriages from the aspects related to leader carriages:

Leader Carriage: Allocates the leader carriage, controls the speed of the train, modi-
fies the state of the train, receives the messages sent from the central, handles the

emergency button of the train.

Carriage: Add and removes carriages, opens and closes carriage doors, handles the

carriage alarm.

Chapter 6 Case Study 145

The decomposition is summarised in Table 6.1 (equivalent to view of Fig. 6.12 with the

addition of the variable partition):

LeaderCarriage Carriage
Variables | trns, permit, braking, emergency_button carriage_alarm,leader_carriage
trns_state, speed, emergency_brake carriage_door_state, door_train_carriage
ready_train, train_doors_closed train_carriage
Events openDoors, close Doors openDoors, close Doors
activate EmergencyCarriage Button activate EmergencyCarriage Button
deactivate EmergencyCarriage Button deactivate EmergencyCarriage Button
deactivate Emergencylrain Button deactivate EmergencyTrain Button
allocate LeaderCabinCarriageTrain allocate LeaderCabinCarriageTrain
deallocateLeaderCabinCarriageTrain deallocate LeaderCabinCarriageTrain
allocateCarriageTrain allocateCarriageT rain
modi fyTrain, removeCarriagelrain modi fyTrain, removeCarriageT rain
increaseSpeed, increase M axSpeed
reduceSpeed, reduce M axSpeed
recvTrainM sg, brake, stopBraking
addT'rain, enterCDV,leaveC DV

TABLE 6.1: Decomposition summary of Train_M/

6.10.1 Machine LeaderCarriage

Machine LeaderCarriage contains the variables that are not related to the carriages
(Fig. 6.20(a)). Some events are only included in this sub-component: events dealing
with the speed changes, entering and leaving sections, receiving messages and adding

trains. All the other events are shared between the two sub-components.

6.10.2 Machine Carriage

The variables related to carriages are included in sub-component Carriage (Fig. 6.20(b)).
All the events of Carriage result from splitting the original events as described in Ta-
ble. 6.1. We are interested in adding more details about the carriage doors, therefore we

further refine Carriage.

6.10.3 Refinement of Carriage and Decomposition: Carriage M1

This refinement is a preparation step before the next decomposition. We intend to
use an existing generic development of carriage doors as a pattern and apply a generic
instantiation to our model. We use the shared event decomposition to adjust our current
model to fit the first machine of the pattern. Carriage_M1 refines Carriage and after is
decomposed in a way that one of the resulting sub-components fits the generic model of

carriage doors. The generic model is described in Sect. 6.11.

Two variables are introduced in this refinement, representing the carriage doors (carriage_door)

and their respective state (carriage_ds) as seen in Fig. 6.21(a). The last variable is used

146 Chapter 6 Case Study

machine LeaderCarriage sees LeaderCarriage CO

variables trns speed permit braking emergency button trns_state
emergency brake ready train train_doors closed

invariants
theorem @typing train doors closed train_doors_closed € P(TRAIN x BOOL)
@Train MetroSystem MO inv3 trns ¢ TRAIN
@Train MetroSystem MO inv9 braking ¢ trns
@Train_MetroSystem MO inv10 speed € trns — N
@Train MetroSystem M1 inv2 permit € trns — BOOL
@Train MetroSystem M1 inv3 emergency button € trns — BOOL

@Train M1 invl finite(trns)
@Train M2 inv8 trns_state € trns — TRAIN_STATE
@Train M2 inv10 Vt-tetrns A trns_state(t)=MAINTENANCE = speed(t)=0

@Train M2 invll emergency brake ctrns

@Train M2 inv12 Vt-((tetrns A speed(t)>MAX_SPEED) = t € emergency_brake)

@Train M4 invl4 ready train € trns — BOOL

@Train M4 inv16 train_doors closed € trns — BOOL

@Train M4 inv18 Vt-tedom(train_doors closed) A train_doors_closed(t) = FALSE
= speed(t) = 0

theorem @WD Train M4 inv6 Vt-tedom(ready train)=>ready traineTRAIN -+ BOOL

(a) sub-component LeaderCarriage

machine Carriage sees Carriage (O

variables train_carriage carriage_alarm leader_carriage carriage_door_state
door_train_carriage

invariants
theorem @typing leader carriage leader_carriage € P(TRAIN x CARRIAGE)
theorem @typing door train carriage door train carriage € P(TRAIN x DOOR)
theorem @typing train carriage train_carriage € P(CARRIAGE x TRAIN)

theorem @typing carriage alarm carriage _alarm € P(CARRIAGE x BOOL
@Train M1 inv2 carriage alarm € CARRIAGE — BOOL
@Train M1 inv4 finite(train_carriage)
@Train M1 inv5 finite(dom(train_carriage))
@Train M2 inv3 door train carriage = (DOOR_CARRIAGE;train_carriage)~
@Train M2 inv7 finite(leader_carriage)
@Train M2 inv13 carriage_door_state € DOOR_CARRIAGE — DOOR_STATE
theorem @Train M2 thml Vc-ceran(DOOR_CARRIAGE) A cedom(train_carriage)
= DOOR_CARRIAGE~[{c}]cdoor_ train_carriage[{train_carriage(c)}]
theorem @Train M3 thml Vt-tedom(door_train_carriage)
= door_train_carriage[{t}]=DOOR_CARRIAGE~[train_carriage~[{t}]]

(b) sub-component Carriage

FIGURE 6.20: Variables and invariants of LeaderCarriage and Carriage

to data refine carriage_door_state that disappears. The gluing invariant for this data
refinement is expressed by inv4: the state of all the doors in carriage_ds match the state
of the same door in carriage_door_state. As a result, some events need to be refined to
fit the new variables. For instance, in Fig. 6.21(b), actl in event openDoors updates
variable carriage_ds instead of the abstract variable carriage_door_state. Also when
carriage doors are allocated, both new variables are assigned as seen in actions act3 and

actd of event allocateCarriageTrain (similar for removeCarriageTrain).

Comparing with the generic model of carriage doors, the relevant events to fit the instan-
tiation are openDoors, close Doors, allocateCarriageTrain and removeCarriagelrain.
Not by coincidence, these events manipulate variables carriage_ds and carriage_door
that will instantiate generic variables generic_door_state and generic_door respectively.

The decomposition summary is described in Table 6.2.

6.10.4 Machine Carriagelnterface

Machine Carriagelnterface contains the variables that are not related to the carriage

doors. This machine handles the activation/deactivation of the carriage alarm, the deac-

Chapter 6 Case Study

147

machine Carriage M1 refines Carriage sees Carriage CO
variables carriage_alarm leader_carriage train_carriage carriage_door carriage_ds door_train_carriage

invariants
@invl carriage _door ¢ DOOR
@inv2 carriage_ds e carriage_door — DOOR_STATE
@inv3 Vc-cedom(train_carriage) = DOOR_CARRIAGE~[{c}]ccarriage_door
@inv4 Yd, c-dscedom(carriage_door_state) A d € dom(carriage_ds) A deran(door_train_carriage)
=>carriage_ds(d)=carriage_door_state(d»c)
@inv5 door_train_carriage~eDOOR -+ TRAIN
@inv6 Yd-deran(door_train_carriage) = d € carriage_door

(a) Variables and invariants

event allocateCarriageTrain refines allocateCarriageTrain

event openDoors refines openDoors
any t occpTrns platform ds
where
@typing platform platform € CDV

any c tds

where
@typing t t € TRAIN
@typing ¢ ¢ € CARRIAGE

@yrdl ¢ € CARRIAGE\dom(train carriage)

@grd2 carriage_alarm[{c}]= {FALSE}

@grd3 t € dom(door_train_carriage)

@grd4 Ytr-tr € dom(door_train_carriage) A tr#t

@typing ds ds € P(DOOR)

@grdl t € TRAIN

@grd2 occpTrns € P(CDV)

@grd3 platform € PLATFORM

@grd4 platform € (occpTrns n PLATFORM)

@grd5 t e dom((DOOR_CARRIAGE;train_carriage)~)
@grd6 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}
@grd7 ds c DOOR_CARRIAGE~[train_carriage~[{t}]]
@grd8 ds ¢ dom(carriage_ds)

@grd9 carriage_ds[ds]={CLOSED}

@grd5 finite(train_carriage~[{t}])

@grd7 DOOR_CARRIAGE~[{c}] n door_train_carriage[{t}]=e
@grd8 tedom(leader_carriage)
@rd9 ds = DOOR_CARRIAGE~[{c}]

then @grd10 dsndom(carriage_ds)=o
@actl carriage ds=carriage ds< (dsx{OPEN}) then
end @actl train_carriage(c)= t

@act2 door_train_carriage = door_train_carriage
u ({t} x DOOR_CARRIAGE~[{c}])

@act3 carriage_door = carriage_door u ds

@act4 carriage ds = carriage ds u (dsx{CLOSED})

event closeDoors refines closeDoors

any t ds closed cds

where
@typing closed closed € BOOL end
@typing ds ds € P(DOOR)
@grdl t € TRAIN
@grd2 t e dom(((train carriage~);(DOOR_CARRIAGE~)))
@grd3 ds ¢ ((train_carriage~); (DOOR_CARRIAGE~))[{t}]
@grd4 cds = carriage_ds
@grd5 (3d-deDOOR_CARRIAGE~[train_carriage~[{t}]]\ds

A cds(d)#CLOSED) < closed = FALSE

@grd6 ds c dom(carriage ds)
@grd7 carriage_ds[ds]={OPEN}

event removeCarriageTrain refines removeCarriageTrain
any c tds
where
@typing t t € TRAIN
@typing ¢ ¢ € CARRIAGE
@grdl t € dom(door_train_carriage)
@grd2 c»t e train_carriage
@grd3 carriage_alarm(c) = FALSE

then @grdl6 t € dom(door_train_carriage)
@act2 carriage ds=carriage ds < (dsx{CLOSED}) @grd10 Vd-deDOOR_CARRIAGE-~[{c}]
end = t = door_train_carriage~(d)

@yrd1ll ¢ € ran(DOOR_CARRIAGE)
@grdl2 t & dom(leader_carriage)
@grd13 ds = DOOR_CARRIAGE~[{c}]
@grdl4 dsccarriage_door
@grd15 carriage ds[DOOR_CARRIAGE~[{c}]] = {CLOSED}
then
@actl train_carriage = {c}<train_carriage
@act2 door_train_carriage =
door_train_carriage »DOOR_CARRIAGE~[{c}]
@act3 carriage_door = carriage_door \ ds
@act4 carriage_ds = ds<carriage_ds
end

= DOOR_CARRIAGE~[{c}]ndoor train_carriage[{tr}]=go

@rd6 card(dom(train_carriage > {t}))<MAX_NUMBER_CARRIAGI

(b) Refinement of some events in Carriage_M1

FicURE 6.21: Excerpt of machine Carriage M1

tivation of the emergency button and the allocation/deallocation of the leader cabin car-

riage. Events openDoors, closeDoors, allocateCarriageTrain and removeCarriageT rain

are shared with CarriageDoor.

6.10.5 Machine CarriageDoor

CarriageDoors contains the variables related to carriage doors and the events resulting

from splitting the original events as described in Table 6.2. The resulting sub-events can

be seen in Fig. 6.22.

148

Chapter 6 Case Study

Carriagelnterface

CarriageDoor

Variables

carriage_alarm, leader_carriage
train_carriage, door_train_carriage

carriage_doors, carriage_ds

Events

openDoors, close Doors
allocateCarriagelrain
removeCarriageTrain
activate EmergencyCarriage Button
deactivate EmergencyCarriage Button
deactivate EmergencyTrainButton
allocate LeaderCabinCarriageTrain
deallocate LeaderCabinCarriageTrain
modifyTrain

openDoors, close Doors
allocateCarriageTrain
removeCarriageTrain

TABLE 6.2: Decomposition summary of Carriage_M1

event openDoors

where

@grd1 t € TRAIN

then
end
event closeDoors

any t ds closed cds
where

@grd1 t € TRAIN

then

end

any t occpTrns platform ds

@grd2 occpTrns € P(CDV)

@grd3 platform € PLATFORM

@grd4 platform € (occpTrns n PLATFORM)
@grd7 DOOR_SIDE[ds]={PLATFORM_SIDE (platform)} then
@grd11 ds = dom(carriage_ds)
@grd12 carriage_ds[ds]={CLOSED}

@typing_cds cds € P(DOOR x DOOR_STATE)
@typing_closed closed € BOOL
@typing_ds ds € P(DOOR)

@gd13 cds = carriage_ds
@grd11 ds = dom(carriage_ds) then
@grd12 carriage_ds[ds]={OPEN}

any ctds

@typing_platform platform € CDV where
@typing_ds ds € P(DOOR)

end

@act?2 carriage_ds=carriage_ds (dsx{OPEN})
event removeCarriageTrain

any ctds
where

@typing_ds ds € P(DOOR)

@typing_t t € TRAIN

@typing_c ¢ € CARRIAGE

@grd11 ¢ € ran(DOOR_CARRIAGE)

@grd13 ds = DOOR_CARRIAGE~[{c}]

@grd14 dsecarriage_door

@grd15 carriage_ds[DOOR_CARRIAGE~[{c}]] = {CLOSED}

event allocateCarriageTrain

@typing_ds ds € P(DOOR)

@typing_t t € TRAIN

@typing_c ¢ € CARRIAGE

@grd14 ds = DOOR_CARRIAGE~[{c}]
@grd15 dsndom(carriage_ds)=2

@act3 carriage_door = carriage_door u ds
@act4 carriage_ds = carriage_ds u (dsx{CLOSED})

@act3 carriage_door = carriage_door \ ds
@act4 carriage_ds = ds<carriage_ds
@act?2 carriage_ds=carriage_ds (dsx{CLOSED}) end

FIGURE 6.22: Events of sub-component CarriageDoors

There are two kind of carriage doors: emergency doors and service doors. We intend to

instantiate twice the generic doors development, one per kind of door (the developments

are similar for both kind of doors). Specific details for each kind of door are added

as additional refinements later on. We describe the generic model and afterwards the

instantiation.

6.11 Generic Model: GCDoor

The generic model for the carriage doors is based in three refinements: GCDoor M0,

GCDoor_M1 and GCDoor_M2. In each refinement step, more requirements and details

are introduced.

Chapter 6 Case Study 149

6.11.1 Abstract machine GCDoor_MO0O

We start by adding the carriage doors and respective states. Four events model carriage

doors. The properties to be preserved are:

1. Doors can be added or removed.

2. Doors can be in an opening or closing state. Doors can only be open if the train

is in a platform.

3. When adding/removing doors, they are closed by default for safety reasons.

The static part of the generic development is initially divided in two parts: context
GCDoor_C0 for the doors and context GCTrack_C0 for the tracks as seen in Fig. 6.23.

context GCDoor CO extends GCTrack_ CO

constants GEN_DOOR_CARRIAGE context GCTrack €O

DOOR_SIDE

OPEN CLOSED constants RIGHT PLATFORM LEFT PLATFORM_SIDE

sets DOOR DOOR_STATE sets SIDE TRACK

GEN_CARRIAGE axioms

@axml PLATFORM c TRACK

@axm2 partition(SIDE, {LEFT}, {RIGHT})
@axm3 PLATFORM_SIDE € PLATFORM — SIDE

end

axioms
@axml partition(DOOR_STATE, {OPEN}, {CLOSED})

2 GEN_DOOR_CARRIAGE € DOOR — GEN_CARRIAGE

DOOR_SIDE € DOOR — SIDE

end (b) Context GCTrack-CO
(a) Context GCDoor_CO

n3

FIGURE 6.23: Generic contexts

Context GCDoor_C0 contains sets DOOR, DOOR_STATFE and GEN_DOOR_CARRIAGE,
representing carriage doors, defining if a door is opened or closed and defining the car-
riages to which a door belongs to, respectively. Context GCTrack_C0 contains sets
SIDE and TRACK, defining the side (LEFT or RIGHT) of a door or platform
and each section of the track, respectively. Machine GCDoor_M0 contains variables
generic_door and generic_door_state. The invariants of this abstraction are quite weak

since we just add the type variables as can be seen in Fig. 6.24(a).

Property 1 is expressed by events addDoor and removeDoor. Property 2 is expressed by
variable generic_door_state and events openDoors and closeDoors. Event openDoors is
only enabled if the set of doors ds is closed and if the parameter occpT'rns, corresponding
to the sections occupied by the carriage, intersects a platform. Doors are removed in
event removeDoor, if they are CLOSED confirming property 3. Next section describes

the refinement of this machine.

150 Chapter 6 Case Study

event closeDoors

any ds

where

@grd ds ¢ DOOR

rdl ds ¢ dom(generic_door state)
rd2 generic_door_state[ds]={OPEN}
@grd3 ds #e
then

@actl generic_door state=generic_door state

< (dsx{CLOSED})

machine GCDoor_MO sees GCDoor CO
variables generic door generic_door state end
invariants

@invl generic_door ¢ DOOR
@inv2 generic_door state € generic_door — DOOR_STATE

event addDoor
any ds ¢
where
@grdl ds n generic_door = @
@grd2 ds # &
@grd3 ds = GEN_DOOR_CARRIAGE~[{c}]
then
@actl generic_door = generic_door v ds

event openDoors
any ds platform occpTrns
where

@grd ds ¢ DOOR

@grdl ds ¢ dom(generic_door state)
@grd2 generic_door state[ds]={CLOSED}
@grd3 platform € PLATFORM

@act2 generic_door_state = generic_door state
u (dsx{CLOSED})
end

@grd4 platform € (occpTrns n PLATFORM)
@grd5 ds #o

@grd6 DOOR_SIDE[ds]1={PLATFORM_SIDE(platform} event removeDoor

then any ds ¢
where

@actl generic_door state=generic_door state < (dsx{OPEN}) ds € generic_door

ds # o
rd3 generic_door_state[ds]={CLOSED}
4 ds = GEN_DOOR_CARRIAGE~[{c}]

(a) Variables, invariants and event openDoors

generic_door = generic_door \ ds
generic_door state =
ds<generic_door_state

end

(b) Some events in GCDoors_M0O

FIGURE 6.24: Machine GCDoors_M0

6.11.2 Second refinement of GCDoor: GCDoor_M1

In this refinement more details are introduced about the possible behaviour of the doors.

The properties to be preserved are:

1. The actions involving the doors may result from commands sent from the central
door control. These commands have a type (OPEN_RIGHT_DOORS,
OPEN_LEFT_DOORS, CLOSE_RIGHT _DOORS, CLOSE_LEFT_DOORS,
ISOLATE_DOORS, REMOVE_ISOLATION_DOORS), astate (START, FAIL,
SUCCESS and EXECUTED) and a target (set of doors).

2. After the doors are closed, they must be locked for the train to move.

3. If a door is open, then an opening device was used: MANUAL_PLATFORM if
opened manually in a platform, MANUAL_INTERN AL if opened inside the car-
riage manually and AUTOMATIC CENTRAL _DOOR if opened automatically

from the central control.
4. Doors can get obstructed when closed automatically (people/object obstruction).

If an obstruction is detected then it should be tried to close the doors again.

The context used in this refinement (GCDoor_C1) extends the existing one as seen in

Fig. 6.25(a). Abstract events are refined to include the properties defined above. Some

Chapter 6 Case Study 151

context GCDoor C1 extends GCDoor CO

constants MANUAL_PLATFORM MANUAL_INTERNAL AUTOMATIC_CENTRAL_DOOR START FAIL SUCCESS EXECUTED
OPEN_RIGHT_DOORS OPEN_LEFT_DOORS CLOSE_RIGHT_DOORS CLOSE_LEFT_DOORS ISOLATE_DOORS REMOVE_ISOLATION_DOORS

sets OPENING_DEVICE COMMAND_STATE COMMAND_TYPE COMMAND

axioms

@axml partition(OPENING_DEVICE, {MANUAL_PLATFORM}, {MANUAL_INTERNAL}, {AUTOMATIC_CENTRAL_DOOR})

@axm2 partition(COMMAND_STATE, {START}, {FAIL}, {SUCCESS},{EXECUTED})

@axm3 partition(COMMAND_TYPE, {OPEN_RIGHT_DOORS}, {OPEN_LEFT_DOORS}, {CLOSE_RIGHT_DOORS},
{CLOSE_LEFT_DOORS}, {ISOLATE_DOORS}, {REMOVE_ISOLATION_DOORS})

end

(a) Context GCDoors_C1

machine GCDoor M1 refines GCDoor M0 sees GCDoor C1

variables generic door generic door state locked doors door opening device obstructed door command
command_doors command_type command_state

invariants
@invl locked_doors c DOOR
@inv2 Vd-delocked _doors A d € dom(generic_door state) = generic_door_state(d)e{OPEN}
@inv3 door_opening device € generic_door - OPENING_DEVICE
@inv4 Yd-degeneric_door A generic_door state(d)=0PEN =>dedom(door opening device)
@inv5 obstructed door ¢ dom(generic_door_state)
@invé command ¢ COMMAND
@inv7 command_type € command — COMMAND_TYPE
@inv8 command_state € command — COMMAND_STATE
@inv9 command_doors € command — P(generic_door)
@inv10 Vdos-doseran(command_doors) = dos #g
@invll Vd,opDev-d € generic_door A opDev € OPENING_DEVICE A (d»opDev)edoor_opening device
A opDev=AUTOMATIC_CENTRAL_DOOR (3cmd-cmdecommand A d € command_doors(cmd))

(b) Variables, invariants

FIGURE 6.25: Excerpt of machine GCDoors_-M1

new invariants are added as seen in Fig. 6.25(b). Property 1 is defined by new variables
command, command_type, command_state and command_doors (see invariants inv6
to inv9). Property 2 is defined by invariant inv2 (if a door is locked, then the door
is not opened) and events lockDoor/unlockDoor. Property 3 is defined by variables
door_opening_device, inv3 and invll (if a door is opened automatically, then a com-
mand has been issued to do so). Property 4 is defined by variable obstructed_door, invb
and events doorlsObstructed and closeObstructedDoor. The system works as follows:
doors can be opened/closed manually or automatically. To open/close a door automati-
cally, a command must be issued from the central door control defining which doors are
affected (for instance, to open a door automatically, event commandOpenDoors needs
to occur). A command starts with state START which can lead to a successful result
(SUCCESS) or failure (FAIL). Either way, it finishes with state EXECUTED. Ab-
stract event otherCommandDoors refers to commands not defined in this refinement. If
a door gets obstructed when being closed automatically (event doorIsObstructed) then
event closeObstructedDoor models a successful attempt to close an obstructed door.

Otherwise, it needs to be closed manually.

The system works as follows: doors can be opened/closed manually or automatically. If
it is done automatically, a command sent from the central door control is issued defin-
ing which doors are affected (for instance, event commandOpenDoors, illustrated in
Fig. 6.26, issues a command to open a set of doors automatically). Event otherCommandDoors
is left abstract the enough in order to refer to commands not defined in this refinement.

If a door gets obstructed when closing automatically (event doorlsObstructed) then

152

Chapter 6 Case Study

event commandOpenDoors
any doors cmd cmd_type
where
@rd doors c generic_door
@grdl generic door state[doors]={CLOSED}
@grd2 cmd_type
{OPEN_RIGHT_DOORS,0PEN_LEFT_DOORS}
cmd € COMMAND\ command
doors #o

m

@grd3
@grd4
then
@actl
@act2
@act3
@act4
end

command_state(cmd)=START
command_doors (cmd)=doors
command = command u {cmd}
command_type(cmd)=cmd_type

event otherCommandDoors
any doors cmd cmd_type
where
@grd doors c generic_door

@yrdl cmd type € COMMAND_TYPE

@grd3 cmd € COMMAND\command

@grd4 doors #o

then

@actl command state(cmd)=START

@act2 command_doors(cmd)=doors

@act3 command = command u {cmd}

@act4 command_type(cmd)=cmd_type
end

event doorIsObstructed
any ds cmd
where
@grd ds ¢
@grdl
@grd2
@grd3

DOOR\ (locked_doors u obstructed door)

ds c dom(generic_door_state)

cmd € command

command_type (cmd)

€ {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}
@grd4 command_state(cmd)e{START,FAIL}
@grd5 ds ¢ command_doors (cmd)
@grd6 ds #o
@grd7 generic_door_state[ds]={OPEN}

then

@actl obstructed door = obstructed door u ds
@act2 command_state(cmd)=FAIL

end

event openDoorAutomatically
refines openDoors
any ds cmd
where
@grd ds c generic_door\locked doors
@grdl ds ¢ dom(generic_door state)
@yrd2 generic_door_ state[ds]={CLOSED}
@grd3 cmd € command
@grd4 command_type(cmd) €
{OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}
@grd5 command_state(cmd)=START
@grd6 ds ¢ command_doors (cmd)
@grd7 ds #o
then
@actl generic_door_state=
generic_door_state < (dsx{OPEN})
@act2 door_opening device := door_opening_device
< (dsx{AUTOMATIC_CENTRAL_DOOR})
end

event lockDoor
any d
where
@grd d e generic_door\locked _doors
@grdl generic_door_state(d)=CLOSED
then
@actl locked_doors=locked_doors v {d}
end

event unlockDoor
any d
where
@grdl d € generic_door
@grd2 d e locked_doors
then
@actl locked doors=locked doors \ {d}
end

event closeObstructedDoor

refines closeDoors

any ds cmd st

where

@grd ds c obstructed door

@grdl ds c dom(generic_door_state)

rd2 cmd € command

@grd3 command_type(cmd)e

{CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}

@grd4 command_state(cmd)=FAIL

@grd5 ds ¢ command_doors(cmd)

@grd6 ds #e

@grd7 generic_door_state[ds]={OPEN}

@grd8 st e {SUCCESS,FAIL}

@grd9 st = SUCCESS < command doors(cmd)\ds=¢
v generic_door_state[command_doors(cmd)\ds]
={CLOSED}

then
@actl generic_door_state=
generic_door_state<(dsx{CLOSED})
@act2 obstructed door = obstructed _door \ ds
@act3 command_state(cmd)=st
end

FIGURE 6.26: Some events in

GCDoors_M1

event closeObstructedDoor models a successful attempt to close an obstructed door.

Otherwise, it needs to be closed manually.

6.12 Third refinement of GCDoor:

GCDoor_M2

In the third refinement, malfunctioning doors can be isolated and in that case, they

ignore the commands issued by the central command.

Isolated doors can be either

opened or closed. After the execution of a command, the corresponding state is updated

according to the success/failure of the command. The properties to be preserved are:

Chapter 6 Case Study 153

1. Doors can be isolated (independently of the respective door state) in case of mal-

function or safety reasons.
2. If a command is successful, it means that the command already occurred.

3. Two commands cannot have the same door as target except if the command has

already been executed.

4. If a door is obstructed, then it must be in a state corresponding to OPEN.

The properties to be preserved are mainly defined as invariants. Property 1 is de-
fined by new variable isolated_door, invl, inv6 and events commandlsolationDoors,
isolate Door and removelsolatedDoor as seen in Fig. 6.27(b). Property 2 is defined by
several invariants depending on the command: inv2 for opening doors, inv3 for closing
doors, inv4 to isolate doors, inv5 to lift the isolation from a door. Property 3 is defined

by inv7 and the last property by invS.

An excerpt of GCDoors_M2 is depicted in Fig. 6.27. New event commandl solationDoors
models a command to add/remove doors from isolation refining the abstract event
otherCommandDoors. After this command is issued, the actual execution (or not) of
the command dictates the command state at refined event updatelsolationCmdState.
A command log is created corresponding to the end of the command’s task in event
executeLogCmdState. Other commands could be added in a similar manner but we
restrict to these commands for now. The state update of other commands (opening and

closing doors) follows the same behaviour as the isolation one.

This model has three refinement layers with all the proof obligations discharged. We
instantiate this model, benefiting from the discharged proof obligations and refinements

to model emergency and service doors.

6.13 Instantiation of Generic Carriage Door

We use the GCDoor development as a pattern to model emergency and service doors.
The instantiation is similar for both kind of doors: specific details for each type of door
are added later. We abstract ourselves from these details and focus in the instantiation

of one of the doors: emergency doors.

The pattern context is defined by contexts GCDoor_C0 (and context GCTrack_C0)
in Fig. 6.23 and GCDoor_C1 in Fig. 6.25(a). The parameterisation context seen by
the instance results from the context seen by the abstract machine CarriageDoors as
illustrated in Fig. 6.28(a). CarriageDoors_C0 does not contain all the sets and constants

that need to be instantiated. Therefore CarriageDoors_C1 is created based on the
pattern context GCDoor_C1 (Fig. 6.28(b)).

154 Chapter 6 Case Study

machine GCDoor_M2 refines GCDoor_M1 sees GCDoor Cl

variables generic_door generic_door_state isolated door locked_doors door_opening_device obstructed door
command command_doors command_type command state

invariants
@invl isolated_door c DOOR
@inv2 Ycmd,d- cmd € command A command_type(cmd)e{OPEN_RIGHT_DOORS,0PEN_LEFT_DOORS}
Ad € DOORAd € command_doors(cmd)Aacommand_state(cmd)=SUCCESS A d & isolated door=> generic_door state(d)=OPEN
@inv3 Ycmd,d- cmd € command A command_type(cmd)e{CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}
A d € DOOR A d € command_doors(cmd)acommand state(cmd)=SUCCESSAd & isolated door=> generic door state(d)=CLOSEL
@inv4 VYcmd,d-cmd € command A command_type(cmd)=ISOLATE_DOORS A d € DOOR
A d € command_doors(cmd) A command state(cmd)=SUCCESS => de isolated_door
@inv5 VYcmd,d-cmd € command A command_type(cmd)=REMOVE_ISOLATION_DOORS
A d € DOOR A d € command_doors(cmd) A command_state(cmd)=SUCCESS = de isolated door
@inv6 Vd-deisolated door A d € dom(generic door state)=> generic door state(d)e{OPEN, CLOSED}
@inv7 Ycmdl, cmd2- cmdlecommand A cmd2ecommand A cmdI#cmd2
A command_state(cmd1)#EXECUTED A command_state(cmd2)#EXECUTED =>command_doors(cmdI)ncommand doors(cmd2)=¢
@inv8 Vd-deobstructed door = generic_door state(d)=0PEN

(a) Variables, invariants

event commandIsolationDoors refines otherCommandDoors event executedLogCmdState refines updateCmdState
any doors cmd cmd type any cmd
where where
@grd doors c generic_door @guard3 cmd € command
@rdl cmd_type € {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS} @uardl command_state(cmd)e{FAIL,SUCCESS}
@yrd2 cmd € COMMAND\command with
@grd3 VYcmd1- cmdlecommand @state state = EXECUTED
A command_state(cmd1)#EXECUTED then
=>doorsncommand_doors (cmdl)=¢ @actl command_state(cmd)=EXECUTED
@grd4 doors #o end

@grd5 cmd type
@yrd6 cmd type

ISOLATE_DOORS & (doorsnisolated_door = &)
REMOVE_ISOLATION_DOORS < isolated door#e event isolateDoor

A doorsnisolated_doorze any d cmd
then where

@actl command_state(cmd)=START @grd d € generic_door\isolated_door

@act2 command_doors(cmd)=doors 3 cmd € command

@act3 command = command u {cmd} command_state(cmd)=START

@act4 command_type(cmd)=cmd type 3 d € command_doors(cmd)
end 4 command_type(cmd) = ISOLATE_DOORS
generic_door_state(d)e{OPEN, CLOSED}

N

event updateIsolationCmdState refines updateCmdState

any state cmd isolated _door= isolated door u {d}

where
@grd cmd € command
@rdl state e COMMAND_STATE\{START,EXECUTED} event removeIsolatedDoor
@grd2 command_state(cmd)=START any d cmd
@grd3 command_type (cmd) where

€ {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS} @grd d e isolated door
@grd4 (command_type(cmd) = ISOLATE_DOORS cmd € command
A (3d-decommand doors(cmd) A d eisolated door)) d € command_doors(cmd)
v (command_type(cmd) = REMOVE_ISOLATION_DOORS 4 command_type(cmd) = REMOVE_ISOLATION_DOORS
A (3d-decommand_doors(cmd) A d €isolated_door)) command_state(cmd)=START
& state = FAIL generic_door state(d)e{OPEN, CLOSED}
then
@actl command_state(cmd)=state
end

isolated_door= isolated door \ {d}

(b) Some events in GCDoor_-M2

FIGURE 6.27: Excerpt of machine GCDoor M2

Following the steps suggested in Sect. 3.5.2, we create the instantiation refinement for
emergency carriage doors as seen in Fig. 6.29. As expected, the generic sets and con-
stants are replaced by the instance sets existing in contexts CarriageDoors-C0 and
CarriageDoors_C1. Moreover, generic variables are renamed to fit the instance and be
a refinement of abstract machine CarriageDoors. The same happens to generic events

addDoor and removeDoor.

Comparing the abstract machine of the pattern GCDoor_ M0 and the last refinement of
our initial development CarriageDoors, we realise that they are similar but not a perfect
match. CarriageDoors events contains some additional parameters and guards result-
ing from the previous refinements. For instance, event closeDoors in CarriageDoors

(Fig. 6.30(b)) contains an additional parameter cds compared to event closeDoors in

Chapter 6 Case Study 155

context CarriageDoor CO

constants PLATFORM DOOR_SIDE PLATFORM_SIDE CLOSED OPEN
DOOR_CARRIAGE

sets DOOR DOOR_STATE CDV SIDE CARRIAGE

axioms
aMe

troSystem C1 axml partition(DOOR_STATE, {OPEN}, {CLOSED})
roSystem C1 axm2 PLATFORM c CDV
in C1 axm2 DOOR_CARRIAGE € DOOR — CARRIAGE
rain_C1_axm3 Yc-ceran(DOOR_CARRIAGE)=DOOR_CARRIAGE~[{c}]=o
in C2 axm4 DOOR_SIDE € DOOR — SIDE

@Train C2 axm5 PLATFORM_SIDE € PLATFORM — SIDE

@Train C2 axm6 PLATFORM #g
end

(a) Context CarriageDoors_C0

context CarriageDoor Cl extends CarriageDoor CO

constants MANUAL_PLATFORM MANUAL_INTERNAL AUTOMATIC_CENTRAL_DOOR
START FAIL SUCCESS EXECUTED OPEN_RIGHT_DOORS OPEN_LEFT_DOORS
CLOSE_RIGHT_DOORS CLOSE_LEFT_DOORS ISOLATE_DOORS REMOVE_ISOLATION_DOORS

sets OPEN_DEV COMD_ST COMD_TYPE COMD

axioms
@axml partition(OPEN_DEV, {MANUAL_PLATFORM}, {MANUAL_INTERNAL},
{AUTOMATIC_CENTRAL_DOOR})
partition(COMD_ST, {START}, {FAIL}, {SUCCESS},{EXECUTED})
partition(COMD_TYPE,{OPEN_RIGHT_DOORS},{OPEN_LEFT_DOORS},
{CLOSE_RIGHT_DOORS}, {CLOSE_LEFT_DOORS},{ISOLATE_DOORS},
{REMOVE_ISOLATION_DOORS})

2
3

end

(b) Context CarriageDoors_C1

FIGURE 6.28: Parameterisation context CarriageDoors_-C0O plus additional context
CarriageDoors_C1

INSTANTIATED REFINEMENT IEmergencyDoor_M2
INSTANTIATES GCDoors_M2 VIA GCDoor_C0 GCDoor_C1
REFINES CarriageDoors /* abstract machine */
SEES CarriageDoors_C0 CarriageDoors_C1 /* instance contexts */
REPLACE
SETS GEN_CARRIAGE := CARRIAGE DOOR := DOOR
DOOR_STATE := DOOR_STATE SIDE :=SIDE
OPENING_DEVICE := OPEN_DEV COMMAND_STATE := COMD_ST
COMMAND :=COMD COMMANDITYPE :=COMDTYPE
CONSTANTS GEN_DOOR_CARRIAGE := DOOR_CARRIAGE
OPEN := OPEN PLATFORM := PLATFORM
CLOSED :=CLOSED PLATFORM_SIDE := PLATFORM_SIDE

RENAME /*rename variables, events and params®/
VARIABLES generic_doors := carriage_doors generic_door_state := carriage_ds
EVENTS addDoor := allocateCarriageTrain removeDoor := removeCarriageTrain
END

FIGURE 6.29: Instantiated Refinement IEmergencyDoor M2

GCDoor-M0 (Fig. 6.30(a)). Some customisation is tolerable in the generic event to en-
sure that the instantiation of GCDoor_M0.close Doors refines CarriageDoors.close Doors

by adding a parameter that match cds and respective guard grd13.

The customisation can be realised by a (shared event) composition of event

GCDoor_M0.closeDoors with another event that introduces the additional parameter
cds and guard cds = carriage_ds. The monotonicity of the shared event composition
allows the composed pattern to be instantiated as initially desired. Another option is

to introduce an additional step: the last machine of the refinement chain before the

156 Chapter 6 Case Study

event closeDoors event closeDoors
any ds any ds cds
where where
@grd ds ¢ DOOR @typing cds cds € P(DOOR x DOOR_STATE)
jrd1 ds ¢ dom(generic_door state) @typing ds ds € P(DOOR)
@grd2 generic_door state[ds]={OPEN} @grdll ds ¢ dom(carriage_ds)
@grd3 ds #e @grd12 carriage_ds[ds]={OPEN}
then @grdl3 cds = carriage_ds
@actl generic_door_ state=generic_door state then
< (dsx{CLOSED}) @act2 carriage_ds=carriage ds < (dsx{CLOSED})
end end
(a) Event GCDoor_MO0.closeDoors (b) Event CarriageDoors.closeDoors

event closeDoors refines closeDoors
any ds
where
@typing ds ds € P(DOOR)
@grdll ds c dom(carriage_ds)
@grd12 carriage_ds[ds]={OPEN}
with
@cds cds = carriage_ds
@t t € TRAIN
@closed closed € BOOL
then
@act2 carriage_ds=carriage ds < (dsx{CLOSED})
end

(c) Event CarriageDoorsInst_MO0.closeDoors

FicURrE 6.30: Event closeDoors in the pattern and instance; they differ in the param-
eters, guards and witnesses

instantiation (in our case study, machine CarriageDoors) is refined. The resulting re-
finement machine (CarriageDoorsInst_MO0) refines the first instantiation machine (i.e.
CarriageDoors T CarriageDoorsInst_ M0 = EmergencyDoors_M0) “customising”
the instantiation. Therefore the additional parameters (and respective guards) can dis-
appear by means of witnesses as can be seen in Fig. 6.30(c). Ideally we aim to have a
syntactic match (after instantiation) between the pattern and the initial instantiantion.

Nevertheless a valid refinement is enough to apply the instantiation.

An instance machine EmergencyDoor_M2 (Fig. 6.31) is similar to GC Door_M2 apart
from the replacements and renaming applied in IEmergencyDoor_M2 (cf. Figs. 6.27,
Fig. 6.29 and Fig. 6.31). That machine can be further refined (and decomposed) intro-
ducing the specific details related to emergency doors. The instantiation of the service

doors follows the same steps.

Statistics: In Table 6.3, we describe the statistics of the development in terms of vari-
ables, events and proof obligations (and how many POs were automatically discharged
by the theorem prover of the Rodin platform) for each refinement step. Almost 3/4 of

the proof obligations are automatically discharged.

This case study was carried out under the following conditions:

e Rodin v2.1

e Shared Event Composition plug-in v1.3.1

Chapter 6 Case Study 157

machine EmergencyDoors_M2 refines EmergencyDoors_M1 sees CarriageDoors_C1

variables carriage_door carriage_ds isolated_door locked_doors door_opening_device obstructed_door
command command_doors command_type command_state

invariants
@inv1 isolated_door « DOOR
@inv2 Yemd,d- cmd € command A command_type(cmd)€{OPEN_RIGHT_DOORS,0PEN_LEFT_DOORS}
A d€DOOR A d € command_doors(cmd) A command_state(cmd)=SUCCESS
A d € isolated_door= carriage_ds(d)=OPEN
@inv3 Yemd,d- cmd € command A command_type(cmd)€{CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}
A d€DOOR A d € command_doors(cmd) A command_state(cmd)=SUCCESS
A d ¢ isolated_door= carriage_ds(d)=CLOSED
@inv4 Yd- deisolated_door A d € dom(carriage_ds)- carriage_ds(d)€{OPEN, CLOSED}
@inv5 Yemd1,ecmdZ2- emd1€command A cmd2€command A cmd1=cmd2
A command_state(cmd1)=EXECUTED
A command_state(cmd2)=EXECUTED =command_doors(cmd7)ncommand_doors(cmd2)=o
@inv6 Yemd,d- cmd € command A command_type(cmd)=ISOLATE_DOORS A d € DOOR
A d € command_doors(cmd) A command_state(cmd)=SUCCESS = d€ isolated_door
@inv7 Yemd,d- cmd € command A command_type(cmd)=REMOVE_ISOLATION_DOORS
A d € DOOR A d € command_doors(cmd) A command_state(cmd)=SUCCESS - d¢ isolated_door
@inv8 Yd- deobstructed_door = carriage_ds(d)=0OPEN

(a) Variables, invariants

event commandisolationDoors refines otherCommandDoors event executedLogCmdState refines updateCmdState
any doors cmd cmd_type any cmd
where where
@guard doors < carriage_door @guard3 cmd € command
@guard1 cmd_type @guard1 command_state(cmd)€{FAIL,SUCCESS}
€ {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS} with
@guard3 cmd € COMD\command @state state = EXECUTED
@guard4 Yemd1 - cmdT€command then
A command_state(cmd7)=EXECUTED @act1 command_state(cmd)=EXECUTED
=doorsncommand_doors(cmd)=o end
@grd4 doors =2
@grd5 cmd_type = ISOLATE_DOORS « (doorsnisolated_door = @)
@grd6 cmd_type = REMOVE_ISOLATION_DOORS « isolated_door=2 event isolateDoor
A doorsnisolated_door=2 any d cmd
then where
@act] command_state(cmd)=START @guard d € carriage_door\isolated_door
@act2 command_doors(cmd)=doors @guard1 cmd € command
@act3 command = command u {cmd} @guard2 command_state(cmd)=START
@act4 command_type(cmd)=cmd_type @guard3 d € command_doors(cmd)
end @guard4 command_type(cmd) = ISOLATE_DOORS
@guard5 carriage_ds(d)E{OPEN, CLOSED}
event updatelsolationCmdState refines updateCmdState then
any state cmd @act isolated_door:= isolated_door u {d}
where end
@guard3 cmd € command
@guard state € COMD_ST\{START,EXECUTED} event removelsolatedDoor
@guard1 command_state(cmd)=START any d cmd
@guard5 command_type(cmd) where
€ {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS} @guard d € isolated_door
@grd3 (command_type(cmd) = ISOLATE_DOORS @guard1 cmd € command
A (3d - decommand_doors(cmd) A d gisolated_door)) @guard3 d € command_doors(cmd)
v (command_type(cmd) = REMOVE_ISOLATION_DOORS @guard4 command_type(cmd) = REMOVE_ISOLATION_DOORS
A (3d - deEcommand_doors(cmd) A d €Eisolated_door)) @guard2 command_state(cmd)=START
« state = FAIL @guard5 carriage_ds(d)E{OPEN, CLOSED}
then then
@act1 command_state(cmd)=state @act1 isolated_door= isolated_door \ {d}
end end

(b) Some events in EmergencyDoor_M2

FIGURE 6.31: Excerpt of instantiated machine EmergencyDoor_M2

Model Decomposition plug-in v1.2.1

Instantiation was done manually (currently tool support is not available).

ProB v2.1.2

Camille Text Editor 2.0.1

Although we are interested mainly interested in safety properties, the model checker
ProB [141] proved to be very useful as a complementary tool during the development

of this case study. In some stages of the development, all the proof obligations were

158 Chapter 6 Case Study

Variables | Events | ProofObligations/Auto
TransitiveClosureCtx — — 10/10
MetroSystem_CO0 — — 5/3
MetroSystem_C1 — — 0/0
MetroSystem_MO 7 10 75/64
MetroSystem_M1 10 13 17/17
MetroSystem_M2 12 17 78/57
MetroSystem_M3 12 17 24/22
Track 4 10 0/0
Train 7 14 0/0
Middleware 1 4 0/0
Train_M1 9 16 74/52
Train_M2 13 21 155/79
Train_M3 12 21 65/24
Train_M4 14 21 119/89
LeaderCarriage 9 21 0/0
Carriage 5 11 0/0
Carriage_M1 6 11 28/21
Carriagelnterface 4 11 0/0
CarriageDoors 2 5 0/0
CarriageDoorsInst_MO0 2 5 2/1
GCDoor_M0 2 5 6/6
GCDoor_M1 9 15 81/80
GCDoor_M2 10 22 170/153
Total 909/678(74.6%)

TABLE 6.3: Statistics of the metro system case study
discharged but with ProB we discovered that the system was deadlocked due to some
missing detail. In large developments, these situations possibly occur more frequently.
Therefore we suggest discharging the proof obligations to ensure the safety properties
are preserved and run the ProB model checker to confirm that the system actually is

free from deadlocks.

6.14 Discussion: Conclusions and Lessons Learned

We modelled a metro system case study, starting by proving its global properties through
several refinement steps. Afterwards, due to an architectural decision and to alleviate
the problem of modelling and handling a large system in one single machine, the system
is decomposed in three sub-components. We further refine one of the resulting sub-
components (Train), introducing several details in four refinements levels. Then again,
due to the number of proof obligations, to achieve separation of aspects and to ease the
further developments, we decompose it into two sub-components: LeaderCarriage and
Carriage. Since we are interested in modelling carriage doors, sub-component Carriage
is refined and afterwards decomposed originating sub-component CarriageDoors. Ben-
efiting from an existing generic development for carriage doors GCDoor, we consider
this development as a pattern and instantiate two kind of carriage doors: service and
emergency doors. Although the instantiation is similar for both types of doors, the
resulting instances can be further refined independently. Using generic instantiation, we
avoid having to prove the proof obligations regarding the pattern GCDoor: GCDoor_M0),
GCDoor-M1 and GCDoor_M2 (in the overall 257 POs). This figure only considers the

instantiation of emergency doors (the instantiation of service doors would imply twice

Chapter 6 Case Study 159

the number of POs).

From the experience of other developments involving a large number of refinements lev-
els or refinements with large models, the development tools reach a point where it is not
possible to edit the model due to the high amount of resources required to do it (or it
is done very slowly). The decomposition is a possible solution that alleviates this issue
by splitting the model into more tool manageable dimensions. Following a top-down
approach, developed models become more complex in each refinement step. Neverthe-
less by applying decomposition, we alleviate the consequences of such complexity by
separating concerns (architecture approach), decreasing the number of events and vari-
ables per sub-component which results in models that are more manageable from a tool
point of view. Moreover, for each refinement, the properties (added as requirements)
are preserved. Using generic instantiation, we avoid proving the pattern proof obliga-
tions GCDoor. Therefore we reach our goal of reusing existing developments as much as
possible and discharge as little proof obligations as possible. Even the interactive proofs
were relatively easy to discharge once the correct tactic was discovered. This task would
be more difficult without the decomposition due to the elevated number of hypotheses
to considered for each PO. Nevertheless we believe that the effort of discharging proof
obligations could be minimised by having a way to reuse tactics. In particular when the

same steps are followed to discharge similar POs.

In a combination of refinement and instantiation, we learned that the abstract machine
and the abstract pattern do not necessarily match perfectly. In particular, some extra
guards and parameters may exist resulting from previous refinements in the instance.
Nevertheless the generic model can still be reused. We can (shared event) compose the
pattern with another machine in a way that the resulting events include the additional
parameters and guards to guarantee a valid refinement. Another interesting conclusion is
that throughout an instantiation, it is possible not to use all the generic events. A subset
of generic events can be instantiated in opposition to instantiate all. This a consequence
of the event refinements that only depend on abstract and concrete events. Nevertheless
this only applies for safety properties. If we are interested in liveness properties, the

exclusion of a generic event may result in a system deadlock.

With this case study we aim to illustrate the application of decomposition and generic
instantiation as techniques to help the development of formal models. Following these
techniques, the development is structured in a way that simplifies the model by sepa-
rating concerns and aspects and decreases the number of proof obligations to be dis-
charged. Although we use Event-B, these techniques are generic enough to suit other
formal notations and other case studies. Formal methods has been widely used to val-
idate requirements of real systems. The systems are formally described and properties
are checked to be preserved whenever a system transition occurs. Usually this result
in complex models with several properties to be preserved, therefore structuring and

reusability are pursued to facilitate the development. Lutz [114] describes the reuse of

160 Chapter 6 Case Study

formal methods when analysing the requirements and designing the software between
two spacecrafts’ formal models. Stepney et al. [177, 178] propose patterns to be applied
to formal methods in system engineering. Using the Z notation, several patterns (and
anti-patterns) are identified and catalogued to fit particular kind of models. These pat-
terns introduce structure to the models and aim to aid formal model developers to choose
the best approach to model a system, using some examples. Although the patterns are
expressed for Z, they are generic enough to be applied to other notations. Comparing
with the development of our case study, the instantiation of service and emergency doors
corresponds to the Z promotion, where a global system is specified in terms of multiple
instances of local states and operations. Although there is not an explicit separation of
local and global states in our case study, service and emergency doors states are con-
nected to the state of CarriageDoor and we even use decomposition, instantiation and
refactoring (called meaning preservation refactoring steps in Z promotion) to fit into a
specific pattern. [177] suggests template support and architecture patterns to be sup-
ported by tools, something that currently does not happen. We have a similar viewpoint
and we would like to address this issue in the future. Templates could be customised
according to the modeller’s needs and selected from an existing list, perhaps categorised

as suggested in [177].

Butler [44] uses the shared event approach in classical B to decompose a railway system
into three sub-components: Train, Track and Communication. The system is modelled
and reasoned as a whole in an event-based approach, both the physical system and
the desired control behaviour. Our case study follows a similar methodology applied
to a metro system following the same shared event style. Moreover we introduce more
requirements regarding the trains and the carriage doors, expressed through the use of

decomposition and generic instantiation.

