
Chapter 6

Case Study

A case study involving the specification and refinement of an Event-B model is presented.

This chapter describes how the techniques presented in the previous chapters may be

used in practice. Throughout the case study, some design rules for Event-B are presented.

These rules are specialisations of Event-B techniques already presented. These rules were

suggested by the needs of the case study, but are general enough to be useful in other

cases.

6.1 Introduction

Case studies can be described as a process or record of research in which detailed con-

sideration is given to the development of a particular matter over a period of time. They

have two main purposes: the explanation and description of the application of a par-

ticular technique (illustration purposes) and to validate the usefulness of the technique

in a variety of systems (validation purpose). The described case study fulfils the first

purpose: modelling a complex system from an abstraction to a more concrete model.

Consequently the number of events, variables and proof obligations increase in a way

that the model starts becoming hard to manage. Therefore a suitable solution at this

stage is to use our decomposition technique. This procedure is repeatedly applied to

the rest of the refinements. The application of decomposition in simple, abstract cases

has very little or no real advantage. As aforementioned in Section. 4.4, the point of

decomposition (correct abstraction level) is important, since if it is done too early, the

sub-component might be too abstract and will not be able to be refined (without know-

ing more about the other sub-systems); if the system is decomposed too late, it will not

benefit from the approach anymore. Therefore the application of decomposition only

occurs after several refinements as expected.

The second purpose of case studies is usually achieved through the development of

di↵erent models that represent di↵erent kind of systems. Their application allows the

121

122 Chapter 6 Case Study

assessment of techniques, their suitability, advantages and disadvantages when applied

in di↵erent manners. Besides the case study in this chapter, the presented techniques

have already been used for di↵erent systems:

• Flash System Development [62, 60]: use of shared event composition and decom-

position.

• Decomposition of a Spacecraft System [73]: use of shared event decomposition.

• Development of a Cruise Control System [190]: use of shared event composition

and decomposition.

• Development of a Pipeline System [56, 12]: use of shared event composition and

decomposition.

• Development of Parallel Programs [90]: use of shared variable decomposition over

shared data accessed by di↵erent components.

• Development of a Multi-directional Communication Channel [163]: use of generic

instantiation.

Here, a safety-critical metro system case study is developed. This version is a simplified

version of a real system but tackles points where there the model becomes complex and

where the presented techniques are suitable: stepwise incrementation of the complexity

of the system being modelled, sub-components communication, stepwise addition of

requirements at each refinement level, refinement of decomposed sub-components. We

develop a metro system model introducing several details including notion of tracks,

switches, several safety measures and doors functionality among others. If the presented

techniques were not used, the metro system model would be extremely complex and hard

to manage after the inclusion of all the requirements due to the high number of variables,

events, properties to be added and proof obligations to be discharged. Decomposition

and generic instantiation alleviate that issue by introducing modularity and reusing

existing sub-components allowing further manageable refinements to be reached.

The metro doors requirements are based on real requirements. The case study is devel-

oped in the Rodin platform using the developed tools whenever possible. We use the

shared event composition/decomposition and generic instantiation. The metro system

can be seen as a distributed system. Nevertheless the modelling style suggested can be

applied to a more general use.

Chapter 6 Case Study 123

6.2 Overview of the safety-critical metro system

The safety-critical metro system case study describes a formal approach for the devel-

opment of embedded controllers for a metro system1. Butler [44] makes a description

of embedded controllers for a railway using classical B. The railway system is based

on the french train system and it was subject of study as part of the european project

MATISSE [121]. Our starting point is based on that work but applied to a metro sys-

tem. That work goes as far as our first decomposition originating three sub-components.

We augment that work by refining each sub-component, introducing further details and

more requirements to the model. Moreover in the end we instantiate emergency and

service doors for the metro system.

The metro system is characterised by trains, tracks circuits (also called sections or

CDV:Circuit De Voie, in French) and a communication entity that allows the interaction

between trains and tracks. The trains circulate in sections and before a train enters or

leaves a section, a permission notification must be received. In case of a hazard situation,

trains receive a notification to brake. The track is responsible for controlling the sections,

changing switch directions (switch is a special track that can be divergent or convergent

as seen in Fig. 6.1) and sending signalling messages to the trains.

(a) Divergent Switch (b) Convergent Switch

Figure 6.1: Di↵erent types of Switches: divergent and convergent

Figure 6.22 shows a schematic representation of the metro system decomposed into three

sub-components. Initially the metro system is modelled as a whole. Global properties

are introduced and proved to be preserved throughout refinement steps. The abstract

model is refined in three levels (MetroSystem M0 to MetroSystem M3) before we apply

the first decomposition. We follow a general top-down guideline to apply decomposition:

Stage 1 : Model system abstractly, expressing all the relevant global system properties.

Stage 2 : Refine the abstract model to fit the decomposition (preparation step).

Stage 3 : Apply decomposition.

Stage 4 : Develop independently the decomposed parts.

1A version of this model is available online at http://eprints.ecs.soton.ac.uk/23135/

2Image extracted from [44]

124 Chapter 6 Case Study

For instance, Stage 1 is expressed by refinements MetroSystem M0 to MetroSystem M3.

MetroSystem M3 is also used as the preparation step before the decomposition corre-

sponding to Stage 2. The model is decomposed into three parts: Track, Train and

Middleware as described in Stage 3. This step allows further refinements of the indi-

vidual sub-components corresponding to Stage 4. The following decompositions follow

a similar pattern.

 AcceptMsg DeliverMsg

ChangeSwitchDiv

ChangeSwitchCnv

EnterSection

LeaveSection

SendTrainMsg

COMMS

TRACK TRAINS

Check

Brake

Figure 6.2: Components of metro system

An overview of the entire development can be seen in Fig. 6.3. After the first decompo-

sition, sub-components can be further refined. Train global properties are introduced in

Train leading to several refinements until Train M4 is reached. Train M4 is decomposed

into LeaderCarriage and Carriage. We are interested in refining the sub-component cor-

responding to carriages in order to introduce doors requirements. These requirements

are extracted from real requirements for metro carriage doors.Carriage is refined and

decomposed until it fits in a generic model GCDoor corresponding to a Generic Carriage

Door development as seen in Fig. 6.4. We then instantiate GCDoor into two instances:

EmergencyDoors and ServiceDoors benefiting from the refinements in the pattern. We

describe in more detail each of the development steps in the following sections.

6.3 Abstract Model: MetroSystem M0

We model a system constituted by trains that circulate in tracks. The tracks are di-

vided into smaller parts called sections. The most important (safety) global property

introduced at this stage states that two trains cannot be in the same section at the same

time (which would mean that the trains had clashed).

We need to ensure some properties regarding the routes (set of track sections):

• Route sections are all connected: sections should be all connect and cannot have

empty spaces between them.

Chapter 6 Case Study 125

Figure 6.3: Overall view of the safety-critical metro system development

Figure 6.4: Carriage Refinement Diagram and Door Instantiation

126 Chapter 6 Case Study

• There are no loops in the route sections: sections cannot be connected to each

other and cannot introduce loops.

These properties can be preserved if we represent the routes as a transitive closure

relation. We use the no-loop property proposed by Abrial [9] applied to model a tree

structured file system in Event-B [61]: a context is defined and this property is proved

over track section relations and functions. The reason we choose this formulation, instead

of transitive closure which is generally used is to make the model simpler and easier to

prove. Context TransitiveClosureCtx containing the transitive closure property can

be seen in Fig. 6.5.

context TransitiveClosureCtx

constants cdvrel // type of relation on sections
 tcl // transitive closure of an cdvrel
 cdvfn // type of function on sections */

sets CDV // Track Sections

axioms
 @axm1 cdvrel = CDV ! CDV
 @axm2 cdvfn = CDV " CDV
 @axm3 tcl # cdvrel $ cdvrel
 @axm4 %r·(r#cdvrel & r ' tcl(r)) // r included in tcl(r)
 @axm5 %r·(r#cdvrel &r;tcl(r) ' tcl(r)) // unfolding included in tcl(r)
 @axm6 %r,t·(r#cdvrel (r't (r;t't & tcl(r)'t) // tcl(r) is least
 theorem @thm1 cdvfn ' cdvrel
 theorem @thm2 %r·r#cdvrel & tcl(r) = r) (r;tcl(r)) // tcl(r) is a fixed
point
 theorem @thm3 %t·t#cdvfn((%s·s't*[s]&s=+)&tcl(t),(CDV - id)=+
theorem @thm4 tcl(+) = +
end
!

Figure 6.5: Context TransitiveClosureCtx

Set CDV represents all the track sections in our model. Constant tcl which is a transitive

closure, it is defined as a total function mapped from CDV $ CDV to CDV $ CDV .

Giving r 2 CDV $ CDV , the transitive closure of r is the least x satisfying x =

r[r; x [61]. Di�cult transitive closure proofs in machines are avoided by using theorems

such as theorem thm3 shown in Fig. 6.5: for s ✓ CDV and t as a partial function

CDV 7!CDV , s ✓ t�1[s] means that s contains a loop in the t relationship. Hence, this

states that the only such set that can exist is the empty set and thus the t structure

cannot have loops. This theorem has been proved using the interactive prover of Rodin.

The strategy to prove this theorem is to use proof by contradiction [61].

We define the environment of the case study (static part) with context MetroSystem C0

that extends TransitiveClosureCtx as seen in Fig. 6.6. Set TRAIN represent all the

trains in our model. Several track properties are described in the axioms:

• The constant net represents the total possible connectivity of sections (all possible

routes subject to the switches positions) defined as relation CDV $CDV (axm1).

No circularity is allowed as described by axm2. Moreover, the no loop property

Chapter 6 Case Study 127

context MetroSystem_C0 extends TransitiveClosureCtx

constants aig_cdv // Switches
 net // Total connectivity of sections */
 div_aig_cdv // divergent switches 1->2
 cnv_aig_cdv // convergent switches 2->1
 next0

sets TRAIN

axioms
 @axm1 net ! CDV " CDV // net represents the connectivity between track sections /*
 @axm2 net #(CDV $ id)=% // no cdv is connected to itself
 @axm3 aig_cdv & CDV // aig_cdv is a subset of CDV representing cdv that are switches
 @axm4 div_aig_cdv & aig_cdv // div_aig_cdv ! aig_cdv
 @axm5 cnv_aig_cdv & aig_cdv
 @axm6 div_aig_cdv # cnv_aig_cdv = %
 @axm7 finite(net) // explicite declaration to simplify the proving
 @axm8 (aig_cdv ' aig_cdv) # net = % // switches are not directly connected
 @axm9 (cc·(cc ! (CDV)aig_cdv) * card(net[{cc}]) +1 , card(net-[{cc}])+1) // non
switch cdv has at most one successor and at most one predecessor
 @axm10 (cc·(cc ! aig_cdv * ((card(net[{cc}])+2 , card(net-[{cc}])+1) . (
card(net[{cc}]) +1 , card(net-[{cc}])+2))) // switch cdv has at most two predecessors
and one successor or one predecessor and two successors
 @axm11 tcl(net)#id=% // No-loop property
 theorem @thm1 tcl(net) = net / (net;tcl(net))// the transitive closure of net is
equal to net " net;tcl(net)
end
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Figure 6.6: Context MetroSystem C0

for net is expressed by axiom axm11. Theorems thm1 states that net preserves

transitive closure.

• Switches (aiguillages in French) are sections (axm3) that cannot be connected

to each others (axm6). They are represented by aig cdv divided into two kinds:

div aig cdv for divergence switches and cnv aig cdv for convergent switches. More-

over switches have at most two predecessors and one successor or one predecessor

and two successors (axm10).

• Non-switches have at most one successor and at most one predecessor (axm9).

Besides the global property described before defined by invariant inv13 in Fig. 6.7(a),

some other properties of the system are added:

1. The trains (variable trns) circulate in tracks. The current route based on current

positions of switches is defined by next: a partial injection CDV 7⇢ CDV . next

is a subset of net (inv1) preserving the transitive closure property as described

by theorem thm1,thm2 and does not have loops (thm3). Sections occupied by

trains are represented by variable occp. These sections also preserve the transitive

closure property as seen by thm4.

2. A train occupies at least one section and the section corresponding to the beginning

and end of the train is represented by variables occpA and occpZ respectively. Note

that next does not indicate the direction that a train is moving in: the direction

can be occpA to occpZ or occpZ to occpA. These two variables point to the same

section if the train only occupies one section (inv11).

128 Chapter 6 Case Study

The system proceeds as follows: trains modelled in the system circulate by entering and

leaving sections (events enterCDV and leaveCDV in Fig. 6.7(b)), ensuring that the

next section is not occupied (grd9 in enterCDV) and updating all the sections occupied

by the train (act1 and act2 in both events). At this abstract level, event modifyTrain

modifies a train defining the set of occupied sections for a train t. A train changes speed,

brakes or stops braking in events changeSpeed, brake and stopBraking. When event

brake occurs, train t is added to a set of braking trains (variable braking). Variable

next represents the current connectivity of the trail based on the positions of switches.

The current connectivity can be updated by changing convergent/divergent switches in

events switchChangeDiv and switchChangeCnv as seen in Fig. 6.7(b).

6.4 First Refinement: MetroSystem M1

MetroSystem M1 refines MetroSystem M0, incorporating the communication layer and

an emergency button for each train. The communication work as follows: a message is

sent from the tracks, stored in a bu↵er and read in the recipient train. The properties

to be preserved for this refinement are:

1. Messages are exchanged between trains and tracks. If a train intends to move to

an occupied section, track sends a message negating the access to that section and

the train should brake.

2. As part of the safety requirements, all trains have an emergency button.

3. While the emergency button is enabled, the train continues braking and cannot

speed up.

Now the system proceeds as follows: trains that enter and leave sections must take

into account the messages sent by the tracks. Therefore events corresponding to enter

and leaving section need to be strengthened to preserve this property. The requirement

concerning the space required for the train to halt is a simplification of a real metro

system and could require adjustments to replicate the real behaviour (for instance the

occupied sections of a train could be defined as the sum of the sections directly occupied

by the train and the sections indirectly occupied by the same train that correspond to the

sections required for the train to halt). Nevertheless in real systems, trains can have in-

built a way to detect the required space to break. For instance in Communication Based

Train Control (CBTC [97, 72]) systems, that is called the stopping distance downstream.

The messages are represented by variables tmsgs that stores the messages (bu↵er) sent

from the tracks and permit that receives the message in the train, expressing property

1. At this level, the messages are just boolean values assessing if a train can move to the

Chapter 6 Case Study 129

machine MetroSystem_M0 sees MetroSystem_C0

variables next // Currrent connectivity based on switch positions
 trns // Set of trains on network
 occp // Occupancy function for section
 occpA // Initial cdv occupied by train
 occpZ // Final cdv occupied by train
 braking speed

invariants
 @inv1 next ! net
 @inv2 next " CDV # CDV
 @inv3 trns ! TRAIN
 @inv4 occp " CDV $ trns
 @inv5 occpA " trns % CDV
 @inv6 &tt·(tt"trns ' occpA(tt) " occp([{tt}])
 @inv7 occpZ " trns % CDV
 @inv8 &tt·(tt"trns ' occpZ(tt) " occp([{tt}])
 @inv9 braking ! trns
 @inv10 speed " trns %)
 @inv11 &tt·tt"trns * card(occp([{tt}])>1 ' occpA(tt) + occpZ(tt)
 @inv12 finite(occp()
 @inv13 &t1,t2·t1"trns * t2"trns * t1+t2 ' occp([{t1}],occp([{t2}]=-
 theorem @thm1 next " cdvfn
 theorem @thm2 tcl(next) = next . (next;tcl(next)) // tcl(next) is a fixed
point
 theorem @thm3 (&s·s!next([s]'s=-)'tcl(next),(CDV / id)=- // next has no
loops
 theorem @thm4 &tt,s·tt"trns * s ! next0occp([{tt}] ' tcl(s) = s .
(s;tcl(s))

events
 event INITIALISATION
 then
 @act1 next 1 next0
 @act2 trns 1 -
 @act3 occp 1 -
 @act4 occpA 1 -
 @act5 occpZ 1 - // occpZ ! "
 @act6 braking 1 -
 @act7 speed 1 -
 end

(a) Variables, invariants in MetroSystem M0

 event enterCDV

 any t1 c1 c2

 where

 @grd1 t1 ! trns

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 speed(t1)>0

 @grd5 c1 = occpZ(t1)

 @grd6 c1!dom(next)

 @grd7 c2 = next(occpZ(t1))

 @grd8 "tt·tt!trns # card((occp $ {c2 % t1})&[{tt}])>1

 ' (occpZ({t1 % c2})(tt)) occpA(tt)

 @grd9 c2 * dom(occp)

 then

 @act1 occpZ(t1) + c2

 @act2 occp+occp $ { c2 % t1}

 end

 event leaveCDV

 any t1 c1 c2

 where

 @grd1 t1 ! trns

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 speed(t1)>0

 @grd5 c1!dom(next)

 @grd6 c1=occpA(t1)

 @grd7 c2=next(c1)

 @grd8 occpA(t1))occpZ(t1)

 @grd9 c2 ! (occp,{c1%t1})&[{t1}]

 @grd10 "tt·tt!trns # card(((occp , {c1 % t1}))&[{tt}])>1

 ' (occpA({t1 % c2})(tt))occpZ(tt)

 then

 @act1 occpA(t1)+c2

 @act2 occp + occp,{c1%t1}

 end

 event changeSpeed

 any t1 s1

 where

 @grd1 t1 ! trns

 @grd2 s1 ! -

 @grd3 t1! braking ' s1<speed(t1)

 then

 @act1 speed(t1) + s1

 end

 event brake

 any t1

 where

 @grd1 t1 ! TRAIN

 @grd2 t1!trns"braking

 then

 @act1 braking#braking$ {t1}

 end

 event stopBraking

 any t1

 where

 @grd1 t1 ! TRAIN

 @grd2 t1!braking

 then

 @act1 braking#braking"{t1}

 end

 event switchChangeDiv

 any ac c1 c2

 where

 @grd1 ac ! div_aig_cdv

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd8 c2 % ran (next)

 @grd4 (ac & c1) ! next

 @grd5 (ac & c2) ! net

 @grd6 c1 ' c2

 @grd7 ac % dom(occp)

 then

 @act1 next # next ({ac & c2}

 end

 event switchChangeCnv

 any ac c1 c2

 where

 @grd1 ac ! cnv_aig_cdv

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd8 c2 % dom (next)

 @grd4 (c1 & ac) ! next

 @grd5 (c2 & ac) ! net

 @grd6 c1 ' c2

 @grd7 ac % dom (occp)

 then

 @act1 next # ({c1})next) $ {c2 & ac}

 end

 event addTrain

 any t oc

 where

 @grd1 t ! TRAIN"trns

 @grd2 oc ! CDV

 @grd3 oc # dom(occp)

 then

 @act1 trns$trns %{t}

 @act2 speed(t)$0

 @act3 occpA(t) $ oc

 @act4 occpZ(t) $ oc

 @act5 occp $ occp % {oc&t}

 end

 event modifyTrain

 any t ocA oc

 where

 @grd1 ocA!dom(next)

 @grd2 t ! trns

 @grd3 oc ' CDV

 @grd4 ocA ! oc

 @grd5 oc (dom(occp)=)

 @grd6 finite(oc)

 @grd7 occpZ(t)!dom(next)

 @grd8 card(oc)=0 *ocA = occpZ(t)

 @grd9 card(oc)+1

 * occpZ(t) , ocA - next(occpZ(t))!oc

 @grd10 next(ocA)#oc

 then

 @act1 occpA(t) $ ocA

 @act2 occp $ occp % (oc.{t})

 end

end
!

(b) Events of MetroSystem M0

Figure 6.7: Variables, invariant and events of MetroSystem M0

130 Chapter 6 Case Study

following section (check if the section is free): if TRUE the train can move; if FALSE the

next section is occupied and the train should brake. New event sendTrainMsg models

the message sending. The reception of messages is modelled in event recvTrainMsg

where the message is stored in permit before tmsgs is reset. The guards of event

brake are strengthened to allow a train to brake when permit(t) = FALSE or when

the emergency button is activated (guard grd3 in Fig. 6.8(b)). Property 2 is expressed

by adding variable emergency button. The activation/deactivation of the emergency

button occurs in the new event toggleEmergencyButton. Property 3 is expressed by

guard grd3 in event stopBraking: a train can only stop braking if the emergency button

is not enabled.

machine MetroSystem_M1 refines MetroSystem_M0 sees MetroSystem_C0

variables next trns occp occpA occpZ

 braking speed

 tmsgs permit emergency_button

invariants

 @inv1 tmsgs ! trns " #(BOOL)

 @inv2 permit ! trns " BOOL

 @inv3 emergency_button ! trns " BOOL

events

 event INITIALISATION

 then

 @act1 next $ next0

 @act2 trns $ %

 @act3 occp $ %

 @act4 occpA $ %

 @act5 occpZ $ %

 @act6 braking $ %

 @act7 speed $ %

 @act8 tmsgs $ %

 @act9 permit $ %

 @act12 emergency_button $ %

 end

 event enterCDV refines enterCDV

 any t1 c1 c2

 where

 @grd1 t1 ! trns

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 speed(t1)>0

 @grd5 c1 = occpZ(t1)

 @grd6 c1!dom(next)

 @grd7 c2 = next(occpZ(t1))

 @grd8 &tt·tt!trns ' card((occp ({c2) t1})*[{tt}])>1

 + (occpZ,{t1) c2})(tt) - occpA(tt)

 @grd9 c2 . dom(occp)

 @grd10 permit(t1)=TRUE

 then

 @act1 occpZ(t1) $ c2

 @act2 occp$occp ({ c2) t1}

 end

 event leaveCDV refines leaveCDV

 any t1 c1 c2

(a) Variables and invariants in MetroSystem M1

 event brake refines brake

 any t1

 where

 @grd1 t1 ! TRAIN

 @grd2 t1!trns"braking

 @grd3 permit(t1) = FALSE

 # emergency_button(t1)=TRUE

 then

 @act1 braking$braking % {t1}

 end

 event stopBraking refines stopBraking

 any t1

 where

 @grd1 t1 ! TRAIN

 @grd2 t1!braking

 @grd3 emergency_button(t1) = FALSE

 then

 @act1 braking$braking"{t1}

 end

 event sendTrainMsg

 any t1

 where

 @grd1 t1 ! trns

 @grd2 tmsgs(t1) = &

 then

 @act1 tmsgs(t1)$ {bool(

 occpZ(t1)!dom(next)

 'next(occpZ(t1)) (dom(occp))}

 end

 event recvTrainMsg

 any t1 bb

 where

 @grd1 t1 ! trns

 @grd2 bb ! tmsgs(t1)

 then

 @act1 permit(t1) $ bb

 @act2 tmsgs(t1) $ &

 end

 event switchChangeDiv refines switchChangeDiv

 any ac c1 c2

 where

 @grd1 ac ! div_aig_cdv

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 (ac) c1) ! next

 @grd5 (ac) c2) ! net

 @grd6 c2 (ran (next)

 @grd7 c1 * c2

 @grd8 ac (dom (occp)

 then

 @act1 next $ next + {ac) c2}

 end

 event switchChangeCnv refines switchChangeCnv

 any ac c1 c2

event sendTrainMsg

 any t1

 where

 @grd1 t1 ! trns

 @grd2 tmsgs(t1) = "

 then

 @act1 tmsgs(t1)# {bool(

 occpZ(t1)!dom(next)

 $next(occpZ(t1)) % dom(occp))}

 end

event recvTrainMsg

 any t1 bb

 where

 @grd1 t1 ! trns

 @grd2 bb ! tmsgs(t1)

 then

 @act1 permit(t1) # bb

 @act2 tmsgs(t1) # "

 end

 event toggleEmergencyButton

 any t value

 where

 @guard t ! trns

 @guard1 value ! BOOL

 then

 @act1 emergency_button(t)# value

 end

 event addTrain extends addTrain

 then

 @act6 tmsgs(t)#"

 @act7 permit(t)#FALSE

 @act8 emergency_button(t)#FALSE

 end

 event modifyTrain extends modifyTrain

 end

end
!

event sendTrainMsg

 any t1

 where

 @grd1 t1 ! trns

 @grd2 tmsgs(t1) = "

 then

 @act1 tmsgs(t1)# {bool(

 occpZ(t1)!dom(next)

 $next(occpZ(t1)) % dom(occp))}

 end

event recvTrainMsg

 any t1 bb

 where

 @grd1 t1 ! trns

 @grd2 bb ! tmsgs(t1)

 then

 @act1 permit(t1) # bb

 @act2 tmsgs(t1) # "

 end

 event toggleEmergencyButton

 any t value

 where

 @guard t ! trns

 @guard1 value ! BOOL

 then

 @act1 emergency_button(t)# value

 end

 event addTrain extends addTrain

 then

 @act6 tmsgs(t)#"

 @act7 permit(t)#FALSE

 @act8 emergency_button(t)#FALSE

 end

 event modifyTrain extends modifyTrain

 end

end
!

(b) Some events of MetroSystem M1

Figure 6.8: Excerpt of MetroSystem M1

6.5 Second Refinement: MetroSystem M2

In this refinement, we introduce train doors and platforms where the trains can stop to

load/unload. When stopped, a train can open its doors. The properties to be preserved

are:

1. If a train door is opened, then the train is stopped. In contrast, if the train is

moving, then its doors are closed.

Chapter 6 Case Study 131

2. If a train door is opened, that either means that the train is in a platform or there

was an emergency and the train had to stop suddenly.

3. A train door cannot be allocated to di↵erent trains.

We consider that platforms are represented by single sections. A train is in a platform

if one of the occupied sections correspond to a platform. Doors are introduced as illus-

trated in Fig. 6.9(a) by sets DOOR and their states are represented by DOOR STATE.

Variables door and door state represent the train doors and their current states as seen

in Fig. 6.9(b): all trains have allocated a subset of doors (inv2). Several invariants are

introduced to preserve the desired properties: property 1 is defined by invariants inv4

and inv5; property 2 is defined by invariant inv7; property 3 is stated by inv3; theorem

thm1 is used for proving purposes (if no doors are open, then all doors are closed).

To preserve inv5, the guards of changeSpeed (in Fig. 6.8(b)) are strengthened by

grd4 ensuring that whilst the train is moving, the train doors are closed. Also events

that model entering and leaving sections are a↵ected, with the introduction of a sim-

ilar guard (grd11 in leaveCDV). Adding/removing train doors is modelled in events

addDoorTrain and removeDoorTrain respectively: to add/remove a door, the respec-

tive train must be stopped. If the train is stopped and either one of the occupied sections

corresponds to a platform or the emergency button is activated (guard grd3), doors can

be opened as seen in event openDoor. For safety reasons, event toggleEmergencyButton

is strengthened by guard grd3 to activate the emergency button whenever doors are open

and the train is not in a platform.

6.6 Third Refinement and First Decomposition: MetroSys-

tem M3

This refinement does not introduce new details to the model. It corresponds to the prepa-

ration step before the decomposition. We want to implement a three way shared event

decomposition and therefore we need to separate the variables that will be allocated to

each sub-component. In particular for exchanged messages between the sub-components,

the protocol will work as follows: messages are sent from Track and stored in the Mid-

dleware. After receiving the message, the Middleware forwards it to the corresponding

Train. Train reads the message and processes it according to the content. This protocol

allows a separation between Train and Track with the Middleware working as a bridge

between these two sub-components.

The decomposition follows the steps described in Sect. 5.5. Variables are distributed

according to Fig. 6.10. To avoid constraints during the decomposition process, predi-

cates and assignments containing variables that belong to di↵erent sub-components are

rearranged in this refinement step.

132 Chapter 6 Case Study

MetroSystem_C1

context MetroSystem_C1 extends MetroSystem_C0

constants OPEN CLOSED PLATFORM

sets DOOR_STATE DOOR

axioms

 @axm1 partition(DOOR_STATE, {OPEN}, {CLOSED})

 @axm2 PLATFORM ! CDV

end

Page 1

(a) Context MetroSystem C1

machine MetroSystem_M2 refines MetroSystem_M1 sees MetroSystem_C1

variables next trns occp occpA occpZ

 braking speed tmsgs permit

 door door_state emergency_button

invariants

 @inv1 door_state ! DOOR " DOOR_STATE

 @inv2 door ! trns " #(DOOR)

 @inv3 $t1,t2·t1 ! dom(door) % t2 ! dom(door) % t1 &t2

 ' door(t1) (door(t2) =)

 @inv4 $t·t ! dom(door) '(*d·d+door(t) % door_state[d]={OPEN}

 ' speed(t)=0)

 @inv5 $t·t ! dom(door) % speed(t) > 0

 ' door(t) + door_state,[{CLOSED}]

 @inv6 $t,d·t ! dom(door) % d ! door(t) % PLATFORM (occp,[{t}]&)

 ' door_state(d) ! {OPEN, CLOSED}

 @inv7 $t·t ! dom(door) % door(t) (door_state,[{OPEN}] &)

 ' PLATFORM (occp,[{t}]&) - emergency_button(t) = TRUE

 theorem @thm1 $t·t ! dom(door) % door(t) (door_state,[{OPEN}] =)

 ' door(t)+door_state,[{CLOSED}]

events

 event INITIALISATION extends INITIALISATION

 then

 @act13 door .)

 @act14 door_state . DOOR / {CLOSED}

 end

 event enterCDV refines enterCDV

 any t1

 /* Start occupying the successor of occpZ, i.e.,

 change from

 ... -> 0 -> t1 -> ... -> t1 -> 0 -> 0 -> ...

 to

 ... -> 0 -> t1 -> ... -> t1 -> t1 -> 0 -> ... */

 c1 c2

 where

 @grd1 t1 ! trns

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 speed(t1)>0

 @grd5 c1 = occpZ(t1)

 @grd6 c1!dom(next)

 @grd7 c2 = next(occpZ(t1)) // card(occp![{t1}])>1 "

next(occpZ(t1)) # occpA(t1)

 @grd8 $tt·tt!trns % card((occp 0 {c2 1 t1}),[{tt}])>1 '

(b) Variables, invariants in MetroSystem M2

 event toggleEmergencyButton

 refines toggleEmergencyButton

 any t value

 where

 @grd1 t ! dom(door)

 @grd2 value ! BOOL

 @grd3 door(t) " door_state#[{OPEN}] $ %

 & PLATFORM " occp#[{t}]=%

 ' value = TRUE

 then

 @act1 emergency_button(t)(value

 end

 event openDoor

 any t ds

 where

 @grd1 t ! dom(door)

 @grd2 speed(t) = 0

 @grd3 occp#[{t}] " PLATFORM $ %

) emergency_button(t) = TRUE

 @grd4 ds * door(t)

 @grd5 +d·d!ds'door_state(d)=CLOSED

 @grd6 ds$%

 then

 @act1 door_state(door_state , (ds-{OPEN})

 end

 event closeDoor

 any t ds

 where

 @grd1 t ! dom(door)

 @grd2 speed(t) = 0

 @grd3 ds * door(t)

 @grd4 door_state[ds]={OPEN}

 @grd5 ds$%

 then

 @act1 door_state(door_state , (ds-{CLOSED})

 end

 event addDoorTrain

 any t d

 where

 @grd1 t ! trns

 @grd2 d " DOOR

 @grd3 #tr·tr!dom(door) $ tr%t

 $ door(tr)%&'d(door(tr)=&

 @grd5 speed(t)=0

 @grd7 d(door(t)=&

 then

 @act1 door(t))door(t)*d

 @act2 door_state)

 door_state+(d,{CLOSED})

 end

 event removeDoorTrain

 any t d

 where

 @grd1 t ! dom(door)

 @grd2 d " DOOR

 @grd3 d " door(t)

 @grd4 door_state[d]={CLOSED}

 @grd5 speed(t)=0

 then

 @act1 door(t)) door(t)-d

 end

 event addTrain extends addTrain

 then

 @act9 door(t))&

 end

 event modifyTrain extends modifyTrain

 end

end
!

 event leaveCDV refines leaveCDV
 any t1 c1 c2

 where

 @grd1 t1 ! dom(door)

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 speed(t1)>0

 @grd5 c1!dom(next)

 @grd6 c1=occpA(t1)

 @grd7 c2=next(c1)

 @grd8 occpA(t1)"occpZ(t1)

 @grd9 c2 ! (occp#{c1$t1})%[{t1}]

 @grd10 &tt·tt!trns

 ' card(((occp # {c1 $ t1}))%[{tt}])>1

 ((occpA){t1 $ c2})(tt)"occpZ(tt)

 @grd11 door(t1)*door_state%[{OPEN}]=+

 @grd12 permit(t1)=TRUE

 then

 @act1 occpA(t1),c2

 @act2 occp , (occp#{c1$t1})

 end

 event changeSpeed refines changeSpeed

 any t1 s1

 where

 @grd1 t1 ! dom(door)

 @grd2 s1 ! -

 @grd3 t1! braking (s1<speed(t1)

 @grd4 door(t1)*door_state%[{OPEN}]=+

 then

 @act1 speed(t1) , s1

 end

 event brake refines brake

 any t1

 where

 @grd1 t1 ! TRAIN

 @grd2 t1!trns#braking

 @grd3 permit(t1) = FALSE . emergency_button(t1)=TRUE

 then

 @act1 braking,braking / {t1}

 end

 event stopBraking refines stopBraking

 any t1

 where

 @grd1 t1 ! TRAIN

 @grd2 t1!braking

 @grd3 emergency_button(t1) = FALSE

 then

 @act1 braking,braking#{t1}

 end

 event sendTrainMsg extends sendTrainMsg

 end

 event recvTrainMsg extends recvTrainMsg

 end

(c) Some events of MetroSystem M2

Figure 6.9: Excerpt of MetroSystem M2

Chapter 6 Case Study 133

Figure 6.10: MetroSystem M3 (shared event) decomposed into Track, Train and
Middleware

Some guards need to be rewritten in the refined events. For instance, guard grd10

in event leaveCDV needs to be rewritten in order not to include both variables trns

(sub-component Train) and occp (sub-component Track). Therefore it is changed from:

8tt·tt 2 trns ^ card((occp [{c2 7! t1})

�1
[{tt}]) > 1) (occpZ �� {t1 7! c2})(tt) 6= occpA(tt)

to:

8tt·tt 2 dom(occpZ)^ card((occp [{c2 7! t1})

�1
[{tt}]) > 1) (occpZ��{t1 7! c2})(tt) 6= occpA(tt) (Fig. 6.11).

Both predicates represent the same property since trns corresponds to the domain

of variable occpZ (see inv7 in Fig. 6.7(a)). In Fig. 6.11, the original guard grd3 in

toggleEmergencyButton is rewritten to separate variables occp and door. In this case,

an additional parameter occpTrns representing the variable occp is added (grd4). This

additional parameter will represent the value passing between the resulting decomposed

events: parameter occpTrns is written the value of occp and afterwards it is read in

guard grd3. Similarly guard grd4 in event openDoor must not include variables occp

and emergency button and consequently parameter occpTrns is added.

Sub-components Train, Track and Middleware are described in the following sec-

tions. The composed machine corresponding to the defined decomposition can be seen

in Fig. 6.12 where it is illustrated how the original events are decomposed.

6.6.1 Machine Track

Machine Track contains the properties concerning the sections in the metro system.

Events corresponding to entering, leaving tracks and changing switch positions are part

of this sub-component resulting from the variables allocation for this sub-component:

next, occp, occpA and occpZ. Event sendTrainMsg is also added since the messages are

134 Chapter 6 Case Study

event toggleEmergencyButton

refines toggleEmergencyButton

 any t value occpTrns

 where

 @grd1 t ! dom(door)

 @grd2 value ! BOOL

 @grd3 door(t) " door_state#[{OPEN}] $ %

 & PLATFORM " occpTrns=%

 ' value = TRUE

 @grd4 occpTrns = occp#[{t}]

 then

 @act1 emergency_button(t)(value

 end

 event openDoor refines openDoor

 any t occpTrns ds

 where

 @grd1 t ! dom(door)

 @grd2 speed(t) = 0

 @grd3 occpTrns = occp#[{t}]

 @grd4 occpTrns " PLATFORM $ %

) emergency_button(t) = TRUE

 @grd5 ds * door(t)

 @grd6 +d·d!ds'door_state(d)=CLOSED

 @grd7 ds$%

 then

 @act1 door_state(door_state , (ds-{OPEN})

 end

 event closeDoor refines closeDoor

 any t ds

 where

 @grd1 t ! dom(door)

 @grd2 speed(t) = 0

 @grd3 ds * door(t)

 @grd4 door_state[ds]={OPEN}

 then

 @act1 door_state! door_state , (ds-{CLOSED})

 end

 event addDoorTrain extends addDoorTrain

 end

 event removeDoorTrain extends removeDoorTrain

 end

end
!

 event leaveCDV refines leaveCDV

 any t1 c1 c2

 where

 @grd1 t1 ! dom(door)

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 speed(t1)>0

 @grd5 c1!dom(next)

 @grd6 c1=occpA(t1)

 @grd7 c2=next(c1)

 @grd8 occpA(t1)"occpZ(t1)

 @grd9 c2 ! (occp#{c1$t1})%[{t1}]

 @grd10 &tt·tt!dom(occpZ)

 ' card(((occp # {c1 $ t1}))%[{tt}])>1

 ((occpA){t1 $ c2})(tt)"occpZ(tt)

 @grd11 door(t1)*door_state%[{OPEN}]=+

 @grd13 permit(t1)=TRUE

 then

 @act1 occpA(t1),c2

 @act2 occp , (occp#{c1$t1})

 end

 event switchChangeDiv refines switchChangeDiv

 any ac c1 c2

 where

 @grd1 ac!div_aig_cdv

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 (ac ! c1) ! next

 @grd5 (ac ! c2) ! net

 @grd6 c2 " ran (next) // Added for helping the proving. Confirms that

section(CDV) c2 is not the end connected of any other section

 @grd7 c1 " c2

 @grd8 ac " dom (occp)

 then

 @act1 next " next) {ac ! c2}

 end

 event switchChangeCnv refines switchChangeCnv

 any ac c1 c2

 where

 @grd1 ac ! cnv_aig_cdv

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 c2 " dom (next)

 @grd5 c1 ! ac ! next

 @grd6 c2 ! ac ! net

 @grd7 c1 " c2

 @grd8 ac " dom (occp)

 then

 @act1 next " (({c1}#next) - {c2 ! ac})

 end

Figure 6.11: Preparation step before decomposition of MetroSystem M3

sent from the tracks as seen in Fig. 6.13. The original events toggleEmergencyButton

and openDoor require occp in their guards. Consequently part of these original events

are included in this sub-component.

Note that the invariants defining the variables may change: in MetroSystem M1 variable

occp is defined as occp 2 CDV $ trns (inv4 in Fig. 6.7(a)); in Track is occp 2 CDV $
TRAIN (which is the same as theorem typing occp : occp 2 P(CDV ⇥ TRAIN) in

Fig. 6.13). This is a consequence of the variable partition since trns is not part of

Track and therefore the occp relation is updated with trns ’s type: TRAIN (cf. inv3 in

Fig. 6.7(a)). Variables occpA and occpZ are subject to the same procedure where the

original invariant is a total function trns!CDV and in the sub-component both become

P(TRAIN⇥CDV). The sub-components invariants are derived from the di↵erent initial

abstract models (cf. their labels in Fig. 6.13). Invariants that only restrain the sub-

component variables are automatically included although additional ones can be added

manually.

6.6.2 Machine Train

Machine Train models the trains in the metro system. Trains entering/leaving a sec-

tion, modelled by events enterCDV and leaveCDV are part of this sub-component,

in spite of the decomposed events do not execute any actions (see Fig. 6.14(b)). The

interaction with sub-component Track occurs through parameters t1, c1 and c2 (see

events Track.leaveCDV in Fig. 6.13). Variables door and door state are part of this

sub-component and consequently the events that modify these variables: openDoor and

closeDoor. Moreover, since the emergency button is part of a train, the respective vari-

able emergencyButton (and the modification event toggleEmergencyButton) is also

included in this sub-component. Event recvTrainMsg receives messages sent to the

Chapter 6 Case Study 135

COMPOSED MACHINE MetroSystem M3 cmp

REFINES MetroSystem M3

INCLUDES
Track Train Middleware

EVENTS
addTrain refines addTrain

Combines Events Train.addTrain k Middleware.addTrain kTrack.addTrain

modifyTrain refines modifyTrain

Combines Events Train.modifyTrain kTrack.modifyTrain

sendTrainMsg refines sendTrainMsg

Combines Events Track.sendTrainMsg k Middleware.sendTrainMsg

recvTrainMsg refines recvTrainMsg

Combines Events Train.recvTrainMsg k Middleware.recvTrainMsg

changeSpeed refines changeSpeed

Combines Events Train. changeSpeed

brake refines brake

Combines Events Train.brake

stopBraking refines stopBraking

Combines Events Train.stopBraking

enterCDV refines enterCDV

Combines Events Train.enterCDV k Track.enterCDV

leaveCDV refines leaveCDV

Combines Events Train.leaveCDV k Track.leaveCDV

openDoor refines openDoor

Combines Events Train.openDoor k Track.openDoor

closeDoor refines closeDoor

Combines Events Train.closeDoor

toggleEmergencyButton refines toggleEmergencyButton

Combines Events Train.toggleEmergencyButton k Track.toggleEmergencyButton

addDoorTrain refines addDoorTrain

Combines Events Train.addDoorTrain

removeDoorTrain refines removeDoorTrain

Combines Events Train.removeDoorTrain

switchChangeDiv refines switchChangeDiv

Combines Events Track.switchChangeDiv

switchChangeCnv refines switchChangeCnv

Combines Events Track.switchChangeCnv

END

Figure 6.12: Composed machine tool view corresponding to MetroSystem M3 decom-
position

trains and the content is stored in the variable permit. Although variable permit is set

based on the content of the messages exchanged between Train and Track, that variable

is read by trains. This is the reason why it is allocated to this sub-component. The

events that change the speed of the train are also included in this sub-component: brake,

stopBraking, changeSpeed due to variables speed and braking as depicted in Fig. 6.14.

6.6.3 Machine Middleware

Finally the communication layer in modelled by Middleware as seen in Fig. 6.15. Mid-

dleware bridges Track and Trains, by receiving messages (sendTrainMsg) from the

tracks and delivering to the trains (recvTrainMsg). Variable tmsgs is used as a bu↵er.

Benefiting from the monotonicity of the shared event approach, the resulting sub-

components can be further refined. Following Fig. 6.3, Train is refined as described

136 Chapter 6 Case Study

machine Track sees MetroSystem_C1

variables next occp occpA occpZ

invariants

 theorem @typing_occpZ occpZ ! !(TRAIN " CDV)

 theorem @typing_occp occp ! !(CDV " TRAIN)

 theorem @typing_next next ! !(CDV " CDV)

 theorem @typing_occpA occpA ! !(TRAIN " CDV)

 @MetroSystem_M0_inv1 next # net

 @MetroSystem_M0_inv2 next ! CDV ! CDV

 @MetroSystem_M0_inv12 finite(occp$)

 event sendTrainMsg

 any t1 bb

 where

 @typing_t1 t1 ! TRAIN

 @typing_bb bb ! BOOL

 @grd3 bb = bool (occpZ(t1)!dom(next)

 % next(occpZ(t1))"dom(occp))

 end

events

 event INITIALISATION

 then

 @act6 next " #

 @act7 occp " #

 @act8 occpA " #

 @act9 occpZ " #

 end

 event enterCDV

 any t1 c1 c2

 where

 @typing_t1 t1 ! TRAIN

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd5 c1 = occpZ(t1)

 @grd6 c1!dom(next)

 @grd7 c2 = next(occpZ(t1))

 @grd8 "tt·tt!dom(occpZ)

 # card((occp $ {c2 % t1})&[{tt}])>1

 ' (occpZ({t1 % c2})(tt)) occpA(tt)

 @grd9 c2*dom(occp)

 then

 @act1 occpZ(t1) + c2

 @act2 occp+occp $ { c2 % t1}

 end

 event leaveCDV

 any t1 c1 c2

 where

 @typing_t1 t1 ! TRAIN

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd5 c1!dom(next)

 @grd6 c1=occpA(t1)

 @grd7 c2=next(c1)

 @grd8 occpA(t1))occpZ(t1)

 @grd9 c2 ! (occp,{c1%t1})&[{t1}]

 @grd10 "tt·tt!dom(occpZ)

 # card(((occp , {c1 % t1}))&[{tt}])>1

 ' (occpA({t1 % c2})(tt))occpZ(tt)

 then

 @act1 occpA(t1)+c2

 @act2 occp + (occp,{c1%t1})

 end

 event switchChangeDiv

 any ac c1 c2

 where

 @typing_ac ac ! CDV

 @grd1 ac!div_aig_cdv

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 (ac ! c1) ! next

 @grd5 (ac ! c2) ! net

 @grd6 c2 " ran (next)

 @grd7 c1) c2

 @grd8 ac " dom (occp)

 then

 @act1 next " next ({ac ! c2}

 event switchChangeCnv

 any ac c1 c2

 where

 @typing_ac ac ! CDV

 @grd1 ac ! cnv_aig_cdv

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 c2 " dom (next)

 @grd5 c1 ! ac ! next

 @grd6 c2 ! ac ! net

 @grd7 c1 ! c2

 @grd8 ac " dom (occp)

 then

 @act1 next " (({c1}#next) " {c2 ! ac})

 end

event openDoor

 any t occpTrns ds

 where

 @typing_t t # TRAIN

 @typing_occpTrns occpTrns # $(CDV)

 @typing_ds ds # $(DOOR)

 @grd3 occpTrns = occp%[{t}]

 @grd7 ds!&

 end

 event toggleEmergencyButton

 any t value occpTrns

 where

 @typing_t t # TRAIN

 @typing_occpTrns occpTrns # $(CDV)

 @grd2 value # BOOL

 @grd4 occpTrns = occp%[{t}]

 end

end

!

 event enterCDV

 any t1 c1 c2

 where

 @typing_t1 t1 ! TRAIN

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd5 c1 = occpZ(t1)

 @grd6 c1!dom(next)

 @grd7 c2 = next(occpZ(t1))

 @grd8 "tt·tt!dom(occpZ)

 # card((occp $ {c2 % t1})&[{tt}])>1

 ' (occpZ({t1 % c2})(tt)) occpA(tt)

 @grd9 c2*dom(occp)

 then

 @act1 occpZ(t1) + c2

 @act2 occp+occp $ { c2 % t1}

 end

 event leaveCDV

 any t1 c1 c2

 where

 @typing_t1 t1 ! TRAIN

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd5 c1!dom(next)

 @grd6 c1=occpA(t1)

 @grd7 c2=next(c1)

 @grd8 occpA(t1))occpZ(t1)

 @grd9 c2 ! (occp,{c1%t1})&[{t1}]

 @grd10 "tt·tt!dom(occpZ)

 # card(((occp , {c1 % t1}))&[{tt}])>1

 ' (occpA({t1 % c2})(tt))occpZ(tt)

 then

 @act1 occpA(t1)+c2

 @act2 occp + (occp,{c1%t1})

 end

 event switchChangeDiv

 any ac c1 c2

 where

 @typing_ac ac ! CDV

 @grd1 ac!div_aig_cdv

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 (ac ! c1) ! next

 @grd5 (ac ! c2) ! net

 @grd6 c2 " ran (next)

 @grd7 c1) c2

 @grd8 ac " dom (occp)

 then

 @act1 next " next ({ac ! c2}

 event switchChangeCnv

 any ac c1 c2

 where

 @typing_ac ac ! CDV

 @grd1 ac ! cnv_aig_cdv

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 c2 " dom (next)

 @grd5 c1 ! ac ! next

 @grd6 c2 ! ac ! net

 @grd7 c1 ! c2

 @grd8 ac " dom (occp)

 then

 @act1 next " (({c1}#next) " {c2 ! ac})

 end

event openDoor

 any t occpTrns ds

 where

 @typing_t t # TRAIN

 @typing_occpTrns occpTrns # $(CDV)

 @typing_ds ds # $(DOOR)

 @grd3 occpTrns = occp%[{t}]

 @grd7 ds!&

 end

 event toggleEmergencyButton

 any t value occpTrns

 where

 @typing_t t # TRAIN

 @typing_occpTrns occpTrns # $(CDV)

 @grd2 value # BOOL

 @grd4 occpTrns = occp%[{t}]

 end

end

!

Figure 6.13: Excerpt of Track
in the following section.

6.7 Refinement of Train: Train M1

In Train M1, carriages are introduced as parts of a train. Each carriage has an individual

alarm that when activated, triggers the train alarm (enables the emergency button of

the train). Each train has a limited number of carriages. Each carriage has a set of

doors and the sum of carriage doors corresponds to the doors of a train. The properties

to be preserved are:

1. There is a limit to the number (MAX NUMBER CARRIAGE) of carriages per

train.

2. Whenever a carriage alarm is activated, then the emergency button of that same

train is activated.

3. The sum of carriage doors corresponds to the doors of a train.

The definition of these requirements require the introduction of some static elements

like a carrier set CARRIAGE, constants MAX NUMBER CARRIAGE and

DOOR CARRIAGE (function between DOOR and CARRIAGE). The latter is defined

as a constant because the number of doors in a carriage does not change. Context

Chapter 6 Case Study 137

machine Train sees MetroSystem_C1

variables trns speed permit braking emergency_button door_state door

invariants

 theorem @typing_trns trns ! "(TRAIN)

 theorem @typing_door_state door_state ! "(DOOR # DOOR_STATE)

 theorem @typing_braking braking ! "(TRAIN)

 theorem @typing_speed speed ! "(TRAIN # $)

 theorem @typing_permit permit ! "(TRAIN # BOOL)

 theorem @typing_door door ! "(TRAIN # "(DOOR))

 theorem @typing_emergency_button emergency_button ! "(TRAIN # BOOL)

 @MetroSystem_M0_inv3 trns % TRAIN

 @MetroSystem_M0_inv9 braking % trns

 @MetroSystem_M0_inv10 speed ! trns & '

 @MetroSystem_M1_inv2 permit ! trns & BOOL

 @MetroSystem_M1_inv7 emergency_button ! trns & BOOL

 @MetroSystem_M2_inv1 door_state ! DOOR & DOOR_STATE

 @MetroSystem_M2_inv2 door ! trns & "(DOOR)

 @MetroSystem_M2_inv3 (t1,t2·t1 ! dom(door)) t2 ! dom(door)) t1 *t2 + door(t1) , door(t2) = -

 @MetroSystem_M2_inv4 (t·t ! dom(door) +(.d·d%door(t)) door_state[d]={OPEN} + speed(t)=0)

 @MetroSystem_M2_inv5 (t·t ! dom(door)) speed(t) > 0 + door(t) % door_state/[{CLOSED}]

 theorem @MetroSystem_M2_thm1 (t·t ! dom(door)) door(t) , door_state/[{OPEN}] =-

 + door(t)%door_state/[{CLOSED}]

events

 event INITIALISATION

 then

 @act2 trns 0 -

 @act3 speed 0 -

 @act4 permit 0 -

 @act5 braking 0 -

 @act10 door 0-

 @act11 emergency_button 0 -

 @act12 door_state 0 DOOR # {CLOSED}

 end

 event recvTrainMsg

 any t1 bb

 where

 @typing_t1 t1 ! TRAIN

(a) Variables and invariants in Train

 event recvTrainMsg

 any t1 bb

 where

 @typing_t1 t1 ! TRAIN

 @typing_bb bb ! BOOL

 then

 @act2 permit(t1)"bb

 end

 event changeSpeed

 any t1 s1

 where

 @typing_t1 t1 ! TRAIN

 @typing_s1 s1 ! #

 @grd1 s1 ! $

 @grd2 t1 ! dom(door)

 @grd3 t1 ! braking % s1 < speed (t1)

 @grd4 door(t1) & door_state'[{OPEN}] =(

 then

 @act1 speed (t1) " s1

 end

 event brake

 any t1

 where

 @typing_t1 t1 ! TRAIN

 @grd1 t1 ! trns)braking

 @grd2 t1 ! dom(emergency_button)

 @grd3 permit(t1) = FALSE

 * emergency_button(t1)=TRUE

 then

 @act1 braking " braking + {t1}

 end

event leaveCDV

 any t1 c1 c2

 where

 @typing_t1 t1 ! TRAIN

 @grd1 t1 ! dom(door)

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 speed(t1)>0

 @grd11 door(t1)&door_state'[{OPEN}]=(

 @grd12 permit(t1)=TRUE

 end

 event stopBraking

 any t1

 where

 @grd1 t1 ! TRAIN

 @grd2 t1!braking

 @grd3 emergency_button(t1) = FALSE

 then

 @act1 braking"braking){t1}

 end

 event enterCDV

 any t1 c1 c2

 event leaveCDV

 any t1 c1 c2

 where

 @typing_t1 t1 ! TRAIN

 @grd1 t1 ! dom(door)

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 speed(t1)>0

 @grd11 door(t1)"door_state#[{OPEN}]=$

 @grd12 permit(t1)=TRUE

 end

 event openDoor

 any t occpTrns ds

 where

 @typing_t t ! TRAIN

 @typing_occpTrns occpTrns ! %(CDV)

 @typing_ds ds ! %(DOOR)

 @grd1 t ! dom(door)

 @grd2 speed(t) = 0

 @grd4 occpTrns " PLATFORM & $

 ' emergency_button(t) = TRUE

 @grd5 ds (door(t)

 @grd6)d·d!ds*door_state(d)=CLOSED

 @grd7 ds&$

 then

 @act1 door_state+ door_state , (ds-{OPEN})

 end

 event closeDoor

 any t ds

 where

 @typing_t t ! TRAIN

 @typing_ds ds ! %(DOOR)

 @grd1 t ! dom(door)

 @grd2 speed(t) = 0

 @grd3 ds (door(t)

 @grd4 door_state[ds]={OPEN}

 @grd5 ds&$

 then

 @act1 door_state+ door_state , (ds-{CLOSED})

 end

 event toggleEmergencyButton

 any t value occpTrns

 where

 @typing_t t ! TRAIN

 @typing_occpTrns occpTrns ! %(CDV)

 @grd1 t ! dom(door)

 @grd2 value ! BOOL

 @grd3 door(t) " door_state#[{OPEN}] & $

 . PLATFORM " occpTrns=$

 * value = TRUE

 then

 @act1 emergency_button(t)+ value

 end

 event addDoorTrain

 any t d

event addDoorTrain

 any t d

 where

 @typing_d d ! "(DOOR)

 @typing_t t ! TRAIN

 @grd1 t ! trns

 @grd2 d # DOOR

 @grd3 $tr·tr!dom(door) % tr&t

 % door(tr)&' (d)door(tr)='

 @grd5 speed(t)=0

 @grd7 d)door(t)='

 then

 @act1 door(t)*door(t)+d

 @act2 door_state*door_state,(d-{CLOSED})

 end

 event removeDoorTrain

 any t d

 where

 @typing_d d ! "(DOOR)

 @typing_t t ! TRAIN

 @grd1 t ! dom(door)

 @grd2 d # DOOR

 @grd3 d # door(t)

 @grd4 door_state[d]={CLOSED}

 @grd5 speed(t)=0

 then

 @act1 door(t) * door(t).d

 end

 event addTrain

 any t oc

 where

 @typing_t t ! TRAIN

 @guard t ! TRAIN.trns

 @grd1 oc ! CDV

 then

 @act1 trns*trns +{t}

 @act2 speed(t)*0

 @act7 permit(t)*FALSE

 @act8 emergency_button(t)*FALSE

 @act9 door(t)*'

 end

 event modifyTrain

 any t ocA oc

 where

 @typing_ocA ocA ! CDV

 @typing_oc oc ! "(CDV)

 @typing_t t ! TRAIN

 @grd2 t ! trns

 @grd3 oc # CDV

 @grd4 ocA ! oc

 @grd6 finite(oc)

 @grd10 speed(t)=0

 end

end
!

 event recvTrainMsg

 any t1 bb

 where

 @typing_t1 t1 ! TRAIN

 @typing_bb bb ! BOOL

 then

 @act2 permit(t1)"bb

 end

 event changeSpeed

 any t1 s1

 where

 @typing_t1 t1 ! TRAIN

 @typing_s1 s1 ! #

 @grd1 s1 ! $

 @grd2 t1 ! dom(door)

 @grd3 t1 ! braking % s1 < speed (t1)

 @grd4 door(t1) & door_state'[{OPEN}] =(

 then

 @act1 speed (t1) " s1

 end

 event brake

 any t1

 where

 @typing_t1 t1 ! TRAIN

 @grd1 t1 ! trns)braking

 @grd2 t1 ! dom(emergency_button)

 @grd3 permit(t1) = FALSE

 * emergency_button(t1)=TRUE

 then

 @act1 braking " braking + {t1}

 end

event leaveCDV

 any t1 c1 c2

 where

 @typing_t1 t1 ! TRAIN

 @grd1 t1 ! dom(door)

 @grd2 c1 ! CDV

 @grd3 c2 ! CDV

 @grd4 speed(t1)>0

 @grd11 door(t1)&door_state'[{OPEN}]=(

 @grd12 permit(t1)=TRUE

 end

 event stopBraking

 any t1

 where

 @grd1 t1 ! TRAIN

 @grd2 t1!braking

 @grd3 emergency_button(t1) = FALSE

 then

 @act1 braking"braking){t1}

 end

 event enterCDV

 any t1 c1 c2

(b) Some events of Train

Figure 6.14: Excerpt of Train

Train C2 is depicted in Fig. 6.16(a). Several variables are added such as train carriage

relating carriages with trains and carriage alarm that is a total function between

CARRIAGE and BOOL, illustrated in Fig. 6.16(b). Property 1 is expressed by invari-

ant inv6 stating that trains have a maximum of MAX NUMBER CARRIAGE carriages.

Property 2 is defined in inv7 as seen in Fig. 6.16(b). Events activateEmergencyCarriage-

Button and deactivateEmergencyTrainButton refine abstract event toggleEmergencyBut-

ton: the first event enables a carriage alarm and consequently enables the emergency

button of the train; the later occurs when the emergency button of a train is active

138 Chapter 6 Case Study

machine Middleware sees MetroSystem_C1

variables tmsgs

invariants

 theorem @typing_tmsgs tmsgs ! "(TRAIN # "(BOOL))

events

 event INITIALISATION

 then

 @act1 tmsgs $ %

 end

 event sendTrainMsg

 any t1 bb

 where

 @typing_t1 t1 ! TRAIN

 @typing_bb bb ! BOOL

 @grd1 t1 ! dom(tmsgs)

 @grd2 tmsgs(t1)=%

 then

 @act1 tmsgs(t1) $ {bb}

 end

 event recvTrainMsg

 any t1 bb

 where

 @typing_t1 t1 ! TRAIN

 @typing_bb bb ! BOOL

 @grd1 t1 ! dom(tmsgs)

 @grd2 bb ! tmsgs(t1)

 then

 @act1 tmsgs(t1)$%

 end

 event addTrain

 any t oc

 where

 @typing_t t ! TRAIN

 @grd1 oc ! CDV

 then

 @act6 tmsgs(t)$%

 end

end

!

machine Middleware sees MetroSystem_C1

variables tmsgs

invariants

 theorem @typing_tmsgs tmsgs ! "(TRAIN # "(BOOL))

events

 event INITIALISATION

 then

 @act1 tmsgs $ %

 end

 event sendTrainMsg

 any t1 bb

 where

 @typing_t1 t1 ! TRAIN

 @typing_bb bb ! BOOL

 @grd1 t1 ! dom(tmsgs)

 @grd2 tmsgs(t1)=%

 then

 @act1 tmsgs(t1) $ {bb}

 end

 event recvTrainMsg

 any t1 bb

 where

 @typing_t1 t1 ! TRAIN

 @typing_bb bb ! BOOL

 @grd1 t1 ! dom(tmsgs)

 @grd2 bb ! tmsgs(t1)

 then

 @act1 tmsgs(t1)$%

 end

 event addTrain

 any t oc

 where

 @typing_t t ! TRAIN

 @grd1 oc ! CDV

 then

 @act6 tmsgs(t)$%

 end

end

!

Figure 6.15: Machine Middleware

and corresponds to the deactivation of the last enabled carriage alarm which results in

deactivating the emergency button; a new event deactivateEmergencyCarriageButton

is added to model the deactivation of a carriage alarm when there is still another alarm

enabled for the same train (guards grd4 and grd5). The allocation and removal of

carriages (events allocateCarriageTrain and removeCarriageTrain) refine addDoorTrain

and removeDoorTrain respectively. In these two events, the parameter d representing

a set of doors, is replaced in the witness section by the doors of the added/removed

carriage: d = DOOR CARRIAGE�1[{c}]. We continue the refinement of Train in the

following section.

6.8 Second Refinement of Train: Train M2

In this refinement of Train, carriages requirements are added. We specify carriage

doors instead of the more abstract train doors. As a consequence, variable doors is

data refined and disappears. Each train contains two cabin carriages (type A) and two

ordinary carriages (type B) allocated as follows: A+B+B+A. Only one of the two cabin

carriages is set to be the leader carriage controlling the set of carriages and the moving

direction. Trains have states defining if they are in maintenance or if they are being

driven manually or automatically. More safety requirements are introduced: if the speed

of a train exceeds the safety maximum speed, the emergency brake for that train must

be activated. The abstract event representing the change of speed is refined by several

concrete events and includes the behaviour of the system when a train is above the

maximum speed. The properties to be preserved in this refinement are:

1. If a train is not in maintenance, then it must have the correct number of carriages

and the leader carriage must be defined already. Consequently, this is a condition

to be verified before the train can change speed.

Chapter 6 Case Study 139

context Train_C1 extends MetroSystem_C1

constants MAX_NUMBER_CARRIAGE

 DOOR_CARRIAGE

sets CARRIAGE

axioms

 @axm1 MAX_NUMBER_CARRIAGE ! "1

 @axm2 DOOR_CARRIAGE ! DOOR#CARRIAGE

 @axm3 $c·c!ran(DOOR_CARRIAGE)

 %DOOR_CARRIAGE&[{c}]'(

end
!

(a) Context Train C1

machine Train_M1 refines Train sees Train_C1

variables trns speed permit braking door_state door emergency_button

 train_carriage carriage_alarm

invariants

 @inv1 finite(trns)

 @inv2 carriage_alarm ! CARRIAGE " BOOL

 @inv3 train_carriage ! CARRIAGE # trns

 @inv4 finite(train_carriage)

 @inv5 finite(dom(train_carriage))

 @inv6 $t·t ! trns % card(train_carriage&[{t}])'MAX_NUMBER_CARRIAGE

 @inv7 (c·(c ! dom(train_carriage)) carriage_alarm(c) = TRUE

 * c ! dom(train_carriage)) emergency_button(train_carriage(c))= TRUE)

 @inv8 $t·t!dom(door) % door(t)=DOOR_CARRIAGE&[train_carriage&[{t}]]

events

 event INITIALISATION

 then

 @act1 trns + ,

 @act2 speed + ,

 @act3 permit + ,

 @act4 braking + ,

 @act5 door +,

 @act6 door_state + DOOR - {CLOSED}

 @act7 carriage_alarm+ CARRIAGE - {FALSE}

 @act8 train_carriage + ,

 @act9 emergency_button + ,

 end

 event recvTrainMsg refines recvTrainMsg

 any t1 bb

 where

 @typing_t1 t1 ! trns

 @typing_bb bb ! BOOL

 then

 @act2 permit(t1)+bb

 end

 event changeSpeed refines changeSpeed

 any t1 s1

 where

 @grd1 t1 ! TRAIN

 @grd2 s1 ! .

 @grd3 s1 ! /

 @grd4 t1 ! dom(door)

 @grd5 t1 ! braking % s1 < speed (t1)

 @grd6 door(t1) 0 door_state&[{OPEN}] =,

 @grd7 door(t1)1,

 then

 @act1 speed (t1) + s1

 end

 event brake extends brake

 end

 event stopBraking refines stopBraking

 any t1

 where

(b) Variables and Invariants of Train M1

 event activateEmergencyCarriageButton

 refines toggleEmergencyButton

 any c occpTrns

 where

 @grd1 occpTrns ! "(CDV)

 @grd2 c ! dom(train_carriage)

 @grd3 carriage_alarm(c) = FALSE

 with

 @value value = TRUE

 @t t = train_carriage(c)

 then

 @act1 carriage_alarm(c) # TRUE

 @act2 emergency_button(train_carriage(c)) # TRUE

 end

 event deactivateEmergencyCarriageButton

 any c

 where

 @grd1 c ! dom(train_carriage)

 @grd2 emergency_button(train_carriage(c)) = TRUE

 @grd3 carriage_alarm(c) = TRUE

 @grd4 {c} $ (dom(carriage_alarm % {TRUE})

 & train_carriage'[{train_carriage(c)}])

 @grd5 card(train_carriage%{train_carriage(c)})>1

 then

 @act1 carriage_alarm(c)# FALSE

 end

 event deactivateEmergencyTrainButton

 refines toggleEmergencyButton

 any c occpTrns

 where

 @grd1 occpTrns ! "(CDV)

 @grd2 c ! dom(train_carriage)

 @grd3 emergency_button(train_carriage(c)) = TRUE

 @grd4 carriage_alarm(c) = TRUE

 @grd5 {c} = (dom(carriage_alarm % {TRUE})

 & train_carriage'[{train_carriage(c)}])

 @grd6 door(train_carriage(c))&door_state'[{OPEN}] = (

 with

 @value value = FALSE

 @t t = train_carriage(c)

 then

 @act1 carriage_alarm(c)# FALSE

 @act2 emergency_button(train_carriage(c)) # FALSE

 end

 event alocateCarriageTrain refines addDoorTrain

 any c t

 where

 @grd1 c ! CARRIAGE)dom(train_carriage)

 @grd2 carriage_alarm[{c}]= {FALSE}

 @grd4 *tr·tr!dom(door) + tr$t + door(tr)$(, DOOR_CARRIAGE'[{c}]&door(tr)=(

 @grd5 t ! trns

 @grd6 emergency_button(t) = FALSE

 @grd7 finite(train_carriage'[{t}])

 @grd8 card(dom(train_carriage % {t}))<MAX_NUMBER_CARRIAGE

 @grd9 speed(t)=0

 @grd10 DOOR_CARRIAGE'[{c}] & door(t)=(// @grd11 t ! dom(door) "

 event alocateCarriageTrain refines addDoorTrain

 any c t

 where

 @grd1 c ! CARRIAGE"dom(train_carriage)

 @grd2 carriage_alarm[{c}]= {FALSE}

 @grd3 #tr·tr!dom(door) $ tr%t $ door(tr)%&

 ' DOOR_CARRIAGE([{c}])door(tr)=&

 @grd4 t ! trns

 @grd5 emergency_button(t) = FALSE

 @grd6 finite(train_carriage([{t}])

 @grd7 card(dom(train_carriage * {t}))

 <MAX_NUMBER_CARRIAGE

 @grd8 speed(t)=0

 @grd9 DOOR_CARRIAGE([{c}]) door(t)=&

 with

 @d d=(DOOR_CARRIAGE([{c}])

 then

 @act1 train_carriage(c)+ t

 @act2 door(t)+door(t) , DOOR_CARRIAGE([{c}]

 @act3 door_state+

 door_state-(DOOR_CARRIAGE([{c}].{CLOSED})

 end

 event removeCarriageTrain refines removeDoorTrain

 any c t

 where

 @grd1 t ! dom(door)

 @grd2 c/t ! train_carriage

 @grd3 carriage_alarm(c) = FALSE

 @grd4 emergency_button(t) = FALSE

 @grd5 speed(t)=0

 @grd6 DOOR_CARRIAGE([{c}]0door(t)

 @grd7 DOOR_CARRIAGE([{c}]%&

 @grd8 door_state[DOOR_CARRIAGE([{c}]]={CLOSED}

 with

 @d d = (DOOR_CARRIAGE([{c}])

 then

 @act1 train_carriage + {c}1train_carriage

 @act2 door(t)+door(t)"DOOR_CARRIAGE([{c}]

 end

 event addTrain extends addTrain

 end

 event modifyTrain extends modifyTrain

 end

end
!

(c) Some events of Train M1

Figure 6.16: Excerpt of machine Train M1

2. If a train is in maintenance, then it must be stopped.

3. If the speed of a train exceeds the maximum speed, the emergency brake must be

activated.

Figure 6.17(a) illustrates two new carrier sets: SIDE corresponding to which side a car-

riage door or a platform is located (constants LEFT or RIGHT) and TRAIN STATE

that defines the state of a train (MAINTENANCE, MANUAL or AUTOMATIC).

There are some new constants added as well: CABIN CARRIAGE defined as a sub-

140 Chapter 6 Case Study

set of CARRIAGE, NUMBER CABIN CARRIAGE defining the number of cabin

carriages allowed per train, DOOR SIDE defined as a total function between DOOR

and SIDE representing which side a door is located, MAX SPEED defining the up-

per speed limit for running a train before the activation of the emergency brake and

PLATFORM SIDE defining the side of a platform.

Figure 6.17 shows Train M2 where several new variables are introduced: leader carriage

defining the leader carriage for a train (inv6), trns state defining the state of a train

(inv8), emergency brake that defines which trains have the emergency brake activated

(inv11) and carriage door state defining the state of the carriage doors (inv15). More-

over door train carriage defines the train doors based on the carriages (inv2, inv3 and

inv4) and each door belongs to at most one train (inv4) although a train can have

several doors (inv2). This variable refines door that disappears in this refinement level,

plus some gluing invariants: inv1, inv5 and theorem thm2 state that the range of door

for a train t is the same as the range of door train carriage as long as t has doors.

Property 1 is expressed by inv9. Property 2 is expressed by inv10 and property 3

by inv12. inv13 and inv14 state that the doors in the domain of door state are the

same as the ones in carriage door state and therefore their state must match. Theorem

thm1 relates the carriages doors with variables door train carriage and train carriage.

Theorem thm3 states that the domain of carriage door state is a subset of the domain

of door state since both variables refer to the same set of doors.

New events are added defining the allocating of a leader carriage to a train (event

allocateLeaderCabinCarriageTrain in Fig. 6.17(c)). This event is enabled only if the

train is in maintenance (grd5), already has the required number of carriages (grd6)

but does not have a leader carriage yet (grd7). To deallocate the leader carriage in

event deallocateLeaderCabinCarriageTrain, the train must be in maintenance. A

train change state in event modifyTrain: to change to MAINTENANCE, the train

must be stopped (grd2); for the other states, the number of cabin carriages must be

NUMBER CABIN CARRIAGE and a leading carriage have to be allocated already

(grd3). Abstract event changeSpeed is refined by four events: two to increase the

speed (increaseSpeed and increaseMaxSpeed in Fig. 6.17(c)) and two to reduce the

speed (reduceSpeed and reduceMaxSpeed). If the speed of a train is increasing in a

way that is superior to MAX SPEED, event increaseMaxSpeed is enabled and if it

occurs, the emergency brake is activated. If the current speed of a train is superior to

MAX SPEED but the new speed is decreasing in a way that is inferior to the maximum

speed then the emergency brake can be deactivated (event reduceMaxSpeed).

Chapter 6 Case Study 141

context Train_C2 extends Train_C1

constants CABIN_CARRIAGE NUMBER_CABIN_CARRIAGE

 LEFT RIGHT DOOR_SIDE PLATFORM_SIDE

 MAINTENANCE MANUAL AUTOMATIC MAX_SPEED

sets SIDE TRAIN_STATE

axioms

 @axm1 CABIN_CARRIAGE ! CARRIAGE

 @axm2 NUMBER_CABIN_CARRIAGE " #1

 @axm3 DOOR_SIDE " DOOR $ SIDE

 @axm4 partition(SIDE, {LEFT}, {RIGHT})

 @axm5 partition(TRAIN_STATE, {MAINTENANCE},

 {MANUAL},{AUTOMATIC})

 @axm6 MAX_SPEED " #1

 @axm7 PLATFORM_SIDE " PLATFORM $ SIDE

 @axm8 finite(CABIN_CARRIAGE)

 @axm9 PLATFORM %&

 @axm10 CABIN_CARRIAGE%&

 @axm11 CABIN_CARRIAGE! ran(DOOR_CARRIAGE)

end
!

(a) Context Train C2

machine Train_M2

/* Introduction of more details about doors in the carriages.

 Doors of a train is defined by the doors of each carriage that is part of that train

 Each train contains two cabin carriages (A) and two ordinary carriages (B): A+B+B+A.

 From the cabin carriages, only one is the leaderCarriage (all trains have a leaderCarriage when not in

maintenance)

 if the speed of a train is superior MAX_SPEED, then the emergency brake for that train should be

activated

 Based on the requirements sent by Dinho (Aryldo Russo) for Door System. */

 refines Train_M1 sees Train_C2

variables trns speed permit braking door_state emergency_button train_carriage carriage_alarm

leader_carriage trns_state emergency_brake carriage_door_state door_train_carriage

invariants

 @inv1 !t·t" dom(door_train_carriage) # t " dom(door) $ door(t) = door_train_carriage[{t}] $ door(t)%&

 @inv2 door_train_carriage " trns ' DOOR

 @inv3 door_train_carriage = (DOOR_CARRIAGE;train_carriage)(

 @inv4 door_train_carriage(" DOOR) trns

 @inv5 !t·t" dom(door) $ door(t)%& # door(t) = door_train_carriage[{t}]

 @inv6 leader_carriage " trns) CABIN_CARRIAGE

 @inv7 finite(leader_carriage)

 @inv8 trns_state " trns * TRAIN_STATE

 @inv9 !t,c·t"ran(train_carriage) $ trns_state(t)%MAINTENANCE $ c = train_carriage([{t}]

 $ finite(CABIN_CARRIAGE) $ t " dom(leader_carriage)

 # card(c+CABIN_CARRIAGE)=NUMBER_CABIN_CARRIAGE $ leader_carriage(t) " c

 @inv10 !t·t"trns $ trns_state(t)=MAINTENANCE # speed(t)=0

 @inv11 emergency_brake ,trns

 @inv12 !t·((t"trns $ speed(t)>MAX_SPEED) # t " emergency_brake)

 @inv13 carriage_door_state " DOOR_CARRIAGE * DOOR_STATE

 @inv14 !d·d " dom(door_state) $ door_state(d)=OPEN # carriage_door_state(d-DOOR_CARRIAGE(d))=OPEN

 @inv15 !d·d"dom(door_state)$door_state(d)=CLOSED # carriage_door_state(d-DOOR_CARRIAGE(d))=CLOSED

 theorem @thm1 !c·c"ran(DOOR_CARRIAGE) $ c"dom(train_carriage)

 # DOOR_CARRIAGE([{c}],door_train_carriage[{train_carriage(c)}]

 theorem @thm2 !c·c " dom(train_carriage) $ door(train_carriage(c)) + door_state([{OPEN}]=&

 $ door(train_carriage(c))%& # DOOR_CARRIAGE([{c}],door(train_carriage(c))

 $ DOOR_CARRIAGE([{c}] + door_state([{OPEN}]=&

 theorem @thm3 dom(dom(carriage_door_state)) , dom(door_state)

events

 event INITIALISATION

 then

 @act1 trns . &

 @act2 speed . &

 @act3 permit . &

 @act4 braking . &

 @act5 door_state . DOOR / {CLOSED}

 @act6 carriage_alarm . CARRIAGE / {FALSE}

 @act7 train_carriage . &

 @act8 emergency_button . &

 @act9 leader_carriage . &

 @act10 trns_state .&

 @act11 emergency_brake .&

 @act12 carriage_door_state . DOOR_CARRIAGE / {CLOSED}

 @act13 door_train_carriage . &

 end

 event recvTrainMsg extends recvTrainMsg

 end

(b) Variables and Invariants

 event increaseMaxSpeed refines changeSpeed

 any t1 s1

 where

 @grd1 s1 ! "

 @grd2 t1 ! dom(door_train_carriage)#braking

 @grd3 trns_state(t1) $ MAINTENANCE

 @grd4 s1 > MAX_SPEED

 @grd5 speed(t1)<s1

 @grd6 t1 % emergency_brake

 @grd7 speed(t1)& MAX_SPEED

 @grd8 door_train_carriage[{t1}]

 ' door_state([{OPEN}] =)

 @grd9 door_train_carriage[{t1}]$)

 @grd10 permit(t1)=TRUE

 then

 @act1 speed (t1) * s1

 @act2 emergency_brake *emergency_brake + {t1}

 end

 event modifyTrain refines modifyTrain

 any t state

 where

 @grd1 t ! trns

 @grd2 state = MAINTENANCE , speed(t)=0

 @grd3 card(train_carriage([{t}]'CABIN_CARRIAGE)

 =NUMBER_CABIN_CARRIAGE

 - t ! dom(leader_carriage)

 - leader_carriage(t) ! train_carriage([{t}]

 @grd4 state ! TRAIN_STATE

 @grd5 state $ trns_state(t)

 then

 @act1 trns_state(t)*state

 end

end
!

 end

 event deactivateEmergencyCarriageButton extends deactivateEmergencyCarriageButton

 end

 event deactivateEmergencyTrainButton refines deactivateEmergencyTrainButton

 any c

 where

 @grd2 c ! dom(train_carriage) // @grd5 t = train_carriage(c)

 @grd3 emergency_button(train_carriage(c)) = TRUE

 @grd4 carriage_alarm(c) = TRUE

 @grd5 {c} = (dom(carriage_alarm " {TRUE}) # train_carriage$[{train_carriage(c)}])

 @grd6 ((DOOR_CARRIAGE);train_carriage)$[{train_carriage(c)}] #

door_state$[{OPEN}] = % // doors must be closed to deactivate emergency button

 then

 @act1 carriage_alarm(c)& FALSE

 @act2 emergency_button(train_carriage(c)) & FALSE

 end

 event allocateLeaderCabinCarriageTrain

 any c

 where

 @grd1 c ! dom(train_carriage)

 @grd2 finite(train_carriage$[{train_carriage(c)}])

 @grd3 c ! CABIN_CARRIAGE

 @grd4 c ! dom(train_carriage " {train_carriage(c)})

 @grd5 trns_state(train_carriage(c))=MAINTENANCE

 @grd6 card(dom(train_carriage " {train_carriage(c)}))

 =MAX_NUMBER_CARRIAGE

 @grd7 train_carriage(c) ' dom(leader_carriage)

 then

 @act1 leader_carriage(train_carriage(c)) & c

 end

 event deallocateLeaderCabinCarriageTrain

 any t

 where

 @grd1 t ! dom(leader_carriage)

 @grd2 finite(train_carriage$[{t}])

 @grd3 trns_state(t)=MAINTENANCE

 @grd4 card(dom(train_carriage " {t}))

 =MAX_NUMBER_CARRIAGE

 then

 @act1 leader_carriage & {t}(leader_carriage

 end

 event allocateCarriageTrain refines alocateCarriageTrain

 any c t

 where

 @grd1 c ! CARRIAGE)dom(train_carriage)

 @grd2 carriage_alarm[{c}]= {FALSE}

 @grd4 *tr·tr ! dom(door_train_carriage) + tr,t

 - DOOR_CARRIAGE$[{c}]#door_train_carriage[{tr}]=%

 @grd5 t ! trns

 @grd6 emergency_button(t) = FALSE

 @grd7 finite(train_carriage$[{t}])

 @grd8 card(dom(train_carriage " {t}))<MAX_NUMBER_CARRIAGE

 @grd9 speed(t)=0

 @grd10 DOOR_CARRIAGE$[{c}] # door_train_carriage[{t}]=% // @grd11 t !

(c) Some events of Train M2

Figure 6.17: Excerpt of machine Train M2

142 Chapter 6 Case Study

6.9 Third Refinement of Train: Train M3

As a continuation of the refinement of the train doors by carriage, we data refine vari-

able door state. The opening doors event needs to be strengthened to specify which

doors to open when a train is stopped in a platform. Figure 6.18 shows an excerpt of

Train M3. Some additional properties related to the allocation of the leader carriage

are defined: when a train has already allocated a leader carriage, then it has the cor-

rect number of carriages (inv2) and the leader carriage belongs to the set of carriage

of that train (inv3). These two invariants could have been included in the previous

refinement. Nevertheless due to the high number of proof obligations already existing

in the previous refinement, they were added later. Variable door state disappears being

refined by door carriage state and gluing invariants inv1 and thm2. Theorem thm1

is added to help with the proofs: the carriage doors of a train t are the same as the

doors defined by the constant DOOR CARRIAGE restricted to the carriages. Some

existing events are strengthened in this refinement to be consistent with the invariants

as illustrated in Fig. 6.18(b). Due to inv2, event allocateLeaderCabinCarriageTrain

needs to be strengthened by adding guard grd8: this event is only enabled if the number

of carriages for that train is equal to NUMBER CABIN CARRIAGE. Also events

allocateCarriageTrain and removeCarriageTrain require an additional guard (grd4

and grd11 respectively) stating that the events are only enabled if train t does not have

a leader carriage yet. Therefore we reinforce some ordering in the events: first car-

riages are allocated/removed; after the leader carriage can be allocated. Refined event

openDoors is strengthened with the inclusion of guard grd8: the set of carriage doors

ds that are opened are located in the same side as the platform.

6.10 Fourth Refinement of Train and Second Decomposi-

ton: Train M4

The fourth refinement of Train corresponds to the preparation step before the decom-

position. Context Train C4, illustrated in Fig. 6.19(a), introduces an enumerated car-

rier set TRAIN MOV ING STATE defining the moving state of a train: MOV ING,

NOT READY (not ready to move) and NEUTRAL (not moving but ready to move).

We use additional control variables to help in the separation of aspects resulting in

adding variables ready train and train doors closed. Both are total functions between

trns and BOOL (inv1 and inv2 in Fig. 6.19(b)). ready train defines trains that are

ready to move or moving (which therefore have a leader carriage and the correct number

of carriages to move (inv3)); train doors closed defines trains that have all their doors

closed (inv4). These variables are somehow redundant and are mainly added as a prepa-

ration for the shared event decomposition: they will be allocated to LeaderCarriage and

represent a combination of states defined by Carriage variables. They also simplify

Chapter 6 Case Study 143

machine Train_M3 refines Train_M2 sees Train_C2

variables trns speed permit braking emergency_button train_carriage carriage_alarm leader_carriage

 trns_state emergency_brake carriage_door_state door_train_carriage

invariants

 @inv1 !d,ds·d " dom(door_state) # ds " DOOR_STATE # carriage_door_state(d$DOOR_CARRIAGE(d))=ds % door_state(d)=ds

 @inv2 !t·t"trns # t " dom(leader_carriage) # card(train_carriage&[{t}])=MAX_NUMBER_CARRIAGE

 # card(train_carriage&[{t}]'CABIN_CARRIAGE)=NUMBER_CABIN_CARRIAGE

 @inv3 !t·t"trns # t " dom(leader_carriage) (leader_carriage(t) " train_carriage&[{t}]

 theorem @thm1 !t·t"dom(door_train_carriage) (door_train_carriage[{t}]=DOOR_CARRIAGE&[train_carriage&[{t}]]

 theorem @thm2 !d,ds·d) dom(door_state) # ds " DOOR_STATE # carriage_door_state[d*DOOR_CARRIAGE[d]]={ds}

 %door_state[d]={ds}

events

 event INITIALISATION

 then

 @act1 trns + ,

 @act2 speed + ,

 @act3 permit + ,

 @act4 braking + ,

 @act5 carriage_alarm + CARRIAGE * {FALSE}

 @act6 train_carriage + ,

 @act7 emergency_button + ,

 @act8 leader_carriage + ,

 @act9 trns_state +,

 @act10 emergency_brake +,

 @act11 carriage_door_state + DOOR_CARRIAGE * {CLOSED}

 @act12 door_train_carriage + ,

 end

 event reduceSpeed refines reduceSpeed

 any t1 s1

 where

 @grd1 s1 " -

 @grd2 t1 " dom((DOOR_CARRIAGE;train_carriage)&)

 @grd4 trns_state(t1) . MAINTENANCE

 @grd5 speed(t1) / MAX_SPEED

 @grd6 speed(t1)>s1

 @grd7 !d·d " door_train_carriage[{t1}] (

carriage_door_state(d$DOOR_CARRIAGE(d)).OPEN

 @grd8 door_train_carriage[{t1}].,

 then

 @act1 speed (t1) + s1

 end

 event brake refines brake

 any t1

 where

 @grd1 t1 " trns

 @grd2 permit(t1) = FALSE 0 emergency_button(t1)=TRUE

 @grd3 t1 1 braking

 then

 @act1 braking + braking 2 {t1}

 end

 event enterCDV refines enterCDV

 any t1 c1 c2

 where

 @grd1 c2 " CDV

(a) Variables and invariants

 event allocateLeaderCabinCarriageTrain

 refines allocateLeaderCabinCarriageTrain

 any c

 where

 @grd1 c ! dom(train_carriage)

 @grd2 finite(train_carriage"[{train_carriage(c)}])

 @grd3 c ! CABIN_CARRIAGE

 @grd4 c ! dom(train_carriage # {train_carriage(c)})

 @grd5 trns_state(train_carriage(c))=MAINTENANCE

 @grd6 card(train_carriage"[{train_carriage(c)}])

 =MAX_NUMBER_CARRIAGE

 @grd7 train_carriage(c) $ dom(leader_carriage)

 @grd8 card(train_carriage"[{train_carriage(c)}]%CABIN_CARRIAGE)

 =NUMBER_CABIN_CARRIAGE

 then

 @act1 leader_carriage(train_carriage(c)) & c

 end

 event allocateCarriageTrain refines allocateCarriageTrain

 any c t

 where

 @grd1 c ! CARRIAGE'dom(train_carriage)

 @grd2 carriage_alarm[{c}]= {FALSE}

 @grd3 (tr·tr ! dom(door_train_carriage)) tr*t

 + DOOR_CARRIAGE"[{c}]%door_train_carriage[{tr}]=,

 @grd4 t ! trns'dom(leader_carriage)

 @grd5 emergency_button(t) = FALSE

 @grd6 finite(train_carriage"[{t}])

 @grd7 card(dom(train_carriage # {t}))<MAX_NUMBER_CARRIAGE

 @grd8 speed(t)=0

 @grd9 DOOR_CARRIAGE"[{c}] % door_train_carriage[{t}]=,

 @grd10 trns_state(t)=MAINTENANCE

 then

 @act1 train_carriage(c)& t

 @act2 door_train_carriage & door_train_carriage

 - ({t} . DOOR_CARRIAGE"[{c}])

 @act3 carriage_door_state& carriage_door_state

 / ((DOOR_CARRIAGE#{c}).{CLOSED})

 end

 event removeCarriageTrain refines removeCarriageTrain

 any c t

 where

 @grd1 t ! dom(door_train_carriage)

 @grd2 c0t ! train_carriage

 @grd3 carriage_alarm(c) = FALSE

 @grd4 emergency_button(t) = FALSE

 @grd5 trns_state(t)=MAINTENANCE

 @grd6 speed(t)=0

 @grd8 carriage_door_state[DOOR_CARRIAGE#{c}]={CLOSED} // !d·d"DOOR_CARRIAGE#[{c}]

$ carriage_door_state(d%DOOR_CARRIAGE(d))=CLOSED //

door_state[door_train_carriage[{t}]]={CLOSED}

 @grd10 (d·d!DOOR_CARRIAGE"[{c}] + t = door_train_carriage"(d)

 @grd11 c ! ran(DOOR_CARRIAGE)

 @grd12 DOOR_CARRIAGE"[{c}]1door_train_carriage[{t}]

 @grd13 t $ dom(leader_carriage) // no leader carriage allocated

 then

 @act1 train_carriage & {c}2train_carriage

 @act2 door_train_carriage & door_train_carriage 3DOOR_CARRIAGE"[{c}]

 where

 @grd1 c ! CARRIAGE"dom(train_carriage)

 @grd2 carriage_alarm[{c}]= {FALSE}

 @grd3 #tr·tr ! dom(door_train_carriage) $ tr%t

 & DOOR_CARRIAGE'[{c}](door_train_carriage[{tr}]=)

 @grd4 t ! trns"dom(leader_carriage)

 @grd5 emergency_button(t) = FALSE

 @grd6 finite(train_carriage'[{t}])

 @grd7 card(dom(train_carriage * {t}))<MAX_NUMBER_CARRIAGE

 @grd8 speed(t)=0

 @grd9 DOOR_CARRIAGE'[{c}] (door_train_carriage[{t}]=)

 @grd10 trns_state(t)=MAINTENANCE

 then

 @act1 train_carriage(c)+ t

 @act2 door_train_carriage + door_train_carriage

 , ({t} - DOOR_CARRIAGE'[{c}])

 @act3 carriage_door_state+ carriage_door_state

 . ((DOOR_CARRIAGE*{c})-{CLOSED})

 end

event openDoors refines openDoors

 any t occpTrns platform ds

 where

 @grd1 t ! TRAIN

 @grd2 occpTrns ! /(CDV)

 @grd3 platform ! PLATFORM

 @grd4 platform ! (occpTrns (PLATFORM)

 @grd5 t ! dom((DOOR_CARRIAGE;train_carriage)')

 @grd6 speed(t) = 0

 @grd7 ({platform} %)) 0 emergency_button(t) = TRUE

 @grd8 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}

 @grd9 ds 1 DOOR_CARRIAGE'[train_carriage'[{t}]]

 @grd10 #d·d!ds

 &carriage_door_state[{d}2DOOR_CARRIAGE]={CLOSED}

 @grd11 ds%)

 then

 @act1 carriage_door_state+ carriage_door_state

 . ((ds2DOOR_CARRIAGE)-{OPEN})

 end

 event removeCarriageTrain refines removeCarriageTrain

 any c t

 where

 @grd1 t ! dom(door_train_carriage)

 @grd2 c3t ! train_carriage

 @grd3 carriage_alarm(c) = FALSE

 @grd4 emergency_button(t) = FALSE

 @grd5 trns_state(t)=MAINTENANCE

 @grd6 speed(t)=0

 @grd7 carriage_door_state[DOOR_CARRIAGE*{c}]={CLOSED}

 @grd8 #d·d!DOOR_CARRIAGE'[{c}]

 & t = door_train_carriage'(d)

 @grd9 c ! ran(DOOR_CARRIAGE)

 @grd10 DOOR_CARRIAGE'[{c}]1door_train_carriage[{t}]

 @grd11 t 4 dom(leader_carriage)

 then

 @act1 train_carriage + {c}5train_carriage

 @act2 door_train_carriage + door_train_carriage

 6DOOR_CARRIAGE'[{c}]

(b) Refinement of some events in Train M3

Figure 6.18: Excerpt of machine Train M3

the event splitting by replacing predicates that contain variables related to carriages.

For instance, in Fig. 6.19(c) guard grd8 of event increaseMaxSpeed replaces guard

grd8 in the abstract event (Fig. 6.17(c)): this event does not need to refer to variable

door train carriage since it is only required to ensure that all the train doors are closed

when a train increases its speed (train doors closed(t1) = TRUE). The consequence of

adding these variables is that they need to be consistent throughout the events. For in-

stance, act2 needs to be added to the actions of deallocateLeaderCabinCarriageTrain

when a leader carriage is deallocated from a train which implies that the train is no

longer ready to move (Fig. 6.19(c)). Therefore these control variables should be added

with care in particular when it is intended to further refine the resulting sub-events after

an event decomposition. Invariants inv5 and inv6 are gluing invariants resulting from

the added variables: the first states that if a train has its doors opened, then the train

must be stopped; the second states that if a train is ready, then the set of carriages for

144 Chapter 6 Case Study

that train is not empty. All other events are updated reflecting the introduction of the

new variables.

context Train_C4 extends Train_C2

constants MOVING NOT_READY NEUTRAL

sets TRAIN_MOVING_STATE

axioms

 @axm1 partition(TRAIN_MOVING_STATE, {MOVING}, {NOT_READY}, {NEUTRAL})

end

!

(a) Context Train C4

machine Train_M4 refines Train_M3 sees Train_C4

variables trns speed permit braking emergency_button train_carriage

carriage_alarm leader_carriage trns_state emergency_brake

carriage_door_state door_train_carriage ready_train train_doors_closed

invariants

 @inv1 ready_train ! trns " BOOL

 @inv2 train_doors_closed ! trns " BOOL

 @inv3 #t·t!dom(ready_train) $ ready_train(t) = TRUE % t!trns

 $ card(train_carriage&[{t}])=MAX_NUMBER_CARRIAGE

 $ card(train_carriage&[{t}]'CABIN_CARRIAGE)

 =NUMBER_CABIN_CARRIAGE

 $ t ! dom(leader_carriage)

 @inv4 #t·t!dom(train_doors_closed)

 $ train_doors_closed(t) = TRUE

 % (#d·d !door_train_carriage[{t}]

 % carriage_door_state(d(DOOR_CARRIAGE(d)))OPEN)

 @inv5 #t·t!dom(train_doors_closed)

 $ train_doors_closed(t) = FALSE % speed(t) = 0

 @inv6 #t·t!dom(ready_train) $ ready_train(t) = TRUE

 % DOOR_CARRIAGE*train_carriage&[{t}])+

events

 event INITIALISATION

 then

 @act1 trns , +

 @act2 speed , +

 @act3 permit , +

 @act4 braking , +

 @act5 carriage_alarm , CARRIAGE - {FALSE}

 @act6 train_carriage , +

 @act7 emergency_button , +

 @act8 leader_carriage , +

 @act9 trns_state ,+

 @act10 emergency_brake ,+

 @act11 carriage_door_state , DOOR_CARRIAGE - {CLOSED}

 @act12 door_train_carriage , + // @act13 train_moving_state !"

 @act14 ready_train , +

 @act15 train_doors_closed , +

 end

 event recvTrainMsg extends recvTrainMsg

 where

 @grd3 train_doors_closed(t1) = TRUE

 /* @grd3 (#d·d $ door_train_carriage[{t1}] %

carriage_door_state(d&DOOR_CARRIAGE(d))'OPEN)

 @grd4 train_moving_state(t1)=MOVING */

 end

(b) Variables and invariants

event increaseMaxSpeed refines increaseMaxSpeed

 any t1 s1

 where

 @grd1 s1 ! "

 @grd2 t1 ! trns

 @grd3 t1 # braking

 @grd4 trns_state(t1) $ MAINTENANCE

 @grd5 s1 > MAX_SPEED

 @grd6 speed(t1)<s1

 @grd7 t1 # emergency_brake

 @grd8 speed(t1)% MAX_SPEED

 @grd9 train_doors_closed(t1) = TRUE

 @grd10 permit(t1)=TRUE

 @grd11 speed(t1)>0

 @grd12 ready_train(t1) = TRUE

 then

 @act1 speed (t1) & s1

 @act2 emergency_brake & emergency_brake ' {t1}

 end

event deallocateLeaderCabinCarriageTrain

refines deallocateLeaderCabinCarriageTrain

 any t lc

 where

 @grd1 t ! dom(leader_carriage)

 @grd2 finite(train_carriage([{t}])

 @grd3 trns_state(t)=MAINTENANCE

 @grd4 card(dom(train_carriage) {t}))=MAX_NUMBER_CARRIAGE

 @grd5 lc = leader_carriage

 then

 @act1 leader_carriage & {t}*leader_carriage

 @act2 ready_train(t) & FALSE

end

 event addTrain refines addTrain

 any t oc

 where

 @typing_t t ! TRAIN

 @guard t ! TRAIN+trns

 @grd1 oc ! CDV

 then

 @act1 trns&trns '{t}

 @act2 speed(t)&0

 @act7 permit(t)&FALSE

 @act8 emergency_button(t)&FALSE

 @act9 trns_state(t)&MAINTENANCE // @act10 train_moving_state(t)!NOT_READY

 @act11 ready_train(t) & FALSE

 @act12 train_doors_closed(t)&TRUE

 end

 event modifyTrain refines modifyTrain

 any t ocA oc state

 where

 @typing_ocA ocA ! CDV

 @typing_oc oc ! ,(CDV)

 @typing_t t ! TRAIN

 @grd1 t ! trns

 @grd2 ocA ! oc

 @grd3 finite(oc)

event increaseMaxSpeed refines increaseMaxSpeed

 any t1 s1

 where

 @grd1 s1 ! "

 @grd2 t1 ! trns

 @grd3 t1 # braking

 @grd4 trns_state(t1) $ MAINTENANCE

 @grd5 s1 > MAX_SPEED

 @grd6 speed(t1)<s1

 @grd7 t1 # emergency_brake

 @grd8 speed(t1)% MAX_SPEED

 @grd9 train_doors_closed(t1) = TRUE

 @grd10 permit(t1)=TRUE

 @grd11 speed(t1)>0

 @grd12 ready_train(t1) = TRUE

 then

 @act1 speed (t1) & s1

 @act2 emergency_brake & emergency_brake ' {t1}

 end

event deallocateLeaderCabinCarriageTrain

refines deallocateLeaderCabinCarriageTrain

 any t lc

 where

 @grd1 t ! dom(leader_carriage)

 @grd2 finite(train_carriage([{t}])

 @grd3 trns_state(t)=MAINTENANCE

 @grd4 card(dom(train_carriage) {t}))=MAX_NUMBER_CARRIAGE

 @grd5 lc = leader_carriage

 then

 @act1 leader_carriage & {t}*leader_carriage

 @act2 ready_train(t) & FALSE

end

 event addTrain refines addTrain

 any t oc

 where

 @typing_t t ! TRAIN

 @guard t ! TRAIN+trns

 @grd1 oc ! CDV

 then

 @act1 trns&trns '{t}

 @act2 speed(t)&0

 @act7 permit(t)&FALSE

 @act8 emergency_button(t)&FALSE

 @act9 trns_state(t)&MAINTENANCE // @act10 train_moving_state(t)!NOT_READY

 @act11 ready_train(t) & FALSE

 @act12 train_doors_closed(t)&TRUE

 end

 event modifyTrain refines modifyTrain

 any t ocA oc state

 where

 @typing_ocA ocA ! CDV

 @typing_oc oc ! ,(CDV)

 @typing_t t ! TRAIN

 @grd1 t ! trns

 @grd2 ocA ! oc

 @grd3 finite(oc)

(c) Refinement of some events in Train M4

Figure 6.19: Excerpt of machine Train M4

Now we are ready to proceed to the next decomposition as described in Fig. 6.3. We want

to separate the aspects related to carriages from the aspects related to leader carriages:

Leader Carriage: Allocates the leader carriage, controls the speed of the train, modi-

fies the state of the train, receives the messages sent from the central, handles the

emergency button of the train.

Carriage: Add and removes carriages, opens and closes carriage doors, handles the

carriage alarm.

Chapter 6 Case Study 145

The decomposition is summarised in Table 6.1 (equivalent to view of Fig. 6.12 with the

addition of the variable partition):

LeaderCarriage Carriage
Variables trns, permit, braking, emergency button carriage alarm, leader carriage

trns state, speed, emergency brake carriage door state, door train carriage
ready train, train doors closed train carriage

Events openDoors, closeDoors openDoors, closeDoors
activateEmergencyCarriageButton activateEmergencyCarriageButton

deactivateEmergencyCarriageButton deactivateEmergencyCarriageButton
deactivateEmergencyTrainButton deactivateEmergencyTrainButton
allocateLeaderCabinCarriageTrain allocateLeaderCabinCarriageTrain

deallocateLeaderCabinCarriageTrain deallocateLeaderCabinCarriageTrain
allocateCarriageTrain allocateCarriageTrain

modifyTrain, removeCarriageTrain modifyTrain, removeCarriageTrain
increaseSpeed, increaseMaxSpeed
reduceSpeed, reduceMaxSpeed

recvTrainMsg, brake, stopBraking
addTrain, enterCDV, leaveCDV

Table 6.1: Decomposition summary of Train M4

6.10.1 Machine LeaderCarriage

Machine LeaderCarriage contains the variables that are not related to the carriages

(Fig. 6.20(a)). Some events are only included in this sub-component: events dealing

with the speed changes, entering and leaving sections, receiving messages and adding

trains. All the other events are shared between the two sub-components.

6.10.2 Machine Carriage

The variables related to carriages are included in sub-component Carriage (Fig. 6.20(b)).

All the events of Carriage result from splitting the original events as described in Ta-

ble. 6.1. We are interested in adding more details about the carriage doors, therefore we

further refine Carriage.

6.10.3 Refinement of Carriage and Decomposition: Carriage M1

This refinement is a preparation step before the next decomposition. We intend to

use an existing generic development of carriage doors as a pattern and apply a generic

instantiation to our model. We use the shared event decomposition to adjust our current

model to fit the first machine of the pattern. Carriage M1 refines Carriage and after is

decomposed in a way that one of the resulting sub-components fits the generic model of

carriage doors. The generic model is described in Sect. 6.11.

Two variables are introduced in this refinement, representing the carriage doors (carriage door)

and their respective state (carriage ds) as seen in Fig. 6.21(a). The last variable is used

146 Chapter 6 Case Study

machine LeaderCarriage sees LeaderCarriage_C0

variables trns speed permit braking emergency_button trns_state

 emergency_brake ready_train train_doors_closed

invariants

 theorem @typing_train_doors_closed train_doors_closed ! "(TRAIN # BOOL)

 @Train_MetroSystem_M0_inv3 trns $ TRAIN

 @Train_MetroSystem_M0_inv9 braking $ trns

 @Train_MetroSystem_M0_inv10 speed ! trns % &

 @Train_MetroSystem_M1_inv2 permit ! trns % BOOL

 @Train_MetroSystem_M1_inv3 emergency_button ! trns % BOOL

 @Train_M1_inv1 finite(trns)

 @Train_M2_inv8 trns_state ! trns % TRAIN_STATE

 @Train_M2_inv10 't·t!trns (trns_state(t)=MAINTENANCE) speed(t)=0

 @Train_M2_inv11 emergency_brake $trns

 @Train_M2_inv12 't·((t!trns (speed(t)>MAX_SPEED)) t ! emergency_brake)

 @Train_M4_inv14 ready_train ! trns % BOOL

 @Train_M4_inv16 train_doors_closed ! trns % BOOL

 @Train_M4_inv18 't·t!dom(train_doors_closed) (train_doors_closed(t) = FALSE

) speed(t) = 0

 theorem @WD_Train_M4_inv6 't·t!dom(ready_train))ready_train!TRAIN * BOOL

events

 event INITIALISATION

 then

 @act1 trns + ,

 @act2 speed + ,

 @act3 permit + ,

 @act4 braking + ,

 @act7 emergency_button + ,

 @act9 trns_state +,

 @act10 emergency_brake +,

 @act14 ready_train + ,

 @act15 train_doors_closed + ,

 end

 event recvTrainMsg

 any t1 bb

 where

 @typing_t1 t1 ! TRAIN

 @typing_bb bb ! BOOL

 @grd1 bb ! BOOL

 @grd2 t1 ! trns

 @grd3 train_doors_closed(t1) = TRUE

 then

 @act1 permit(t1)+bb

 end

 event increaseSpeed

 any t1 s1

 where

 @typing_t1 t1 ! TRAIN

 @typing_s1 s1 ! -

 @grd1 s1 ! &

 @grd2 t1 ! trns

 @grd3 t1 . braking

 @grd4 trns_state(t1) / MAINTENANCE

 @grd5 s1 0 MAX_SPEED

(a) sub-component LeaderCarriage

machine Carriage sees Carriage_C0

variables train_carriage carriage_alarm leader_carriage carriage_door_state

 door_train_carriage

invariants

 theorem @typing_leader_carriage leader_carriage ! "(TRAIN # CARRIAGE)

 theorem @typing_door_train_carriage door_train_carriage ! "(TRAIN # DOOR)

 theorem @typing_train_carriage train_carriage ! "(CARRIAGE # TRAIN)

 theorem @typing_carriage_alarm carriage_alarm ! "(CARRIAGE # BOOL)

 @Train_M1_inv2 carriage_alarm ! CARRIAGE $ BOOL

 @Train_M1_inv4 finite(train_carriage)

 @Train_M1_inv5 finite(dom(train_carriage))

 @Train_M2_inv3 door_train_carriage = (DOOR_CARRIAGE;train_carriage)%

 @Train_M2_inv7 finite(leader_carriage)

 @Train_M2_inv13 carriage_door_state ! DOOR_CARRIAGE $ DOOR_STATE

 theorem @Train_M2_thm1 &c·c!ran(DOOR_CARRIAGE) ' c!dom(train_carriage)

 (DOOR_CARRIAGE%[{c}])door_train_carriage[{train_carriage(c)}]

 theorem @Train_M3_thm1 &t·t!dom(door_train_carriage)

 (door_train_carriage[{t}]=DOOR_CARRIAGE%[train_carriage%[{t}]]

events

 event INITIALISATION

 then

 @act5 carriage_alarm * CARRIAGE # {FALSE}

 @act6 train_carriage * +

 @act8 leader_carriage * +

 @act11 carriage_door_state * DOOR_CARRIAGE # {CLOSED}

 @act12 door_train_carriage * +

 end

 event openDoors

 any t occpTrns platform ds

 where

 @typing_platform platform ! CDV

 @typing_ds ds ! "(DOOR)

 @grd1 t ! TRAIN

 @grd2 occpTrns ! "(CDV)

 @grd3 platform ! PLATFORM

 @grd4 platform ! (occpTrns , PLATFORM)

 @grd5 t ! dom((DOOR_CARRIAGE;train_carriage)%)

 @grd7 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}

 @grd8 ds) DOOR_CARRIAGE%[train_carriage%[{t}]]

 @grd10 &d·d!ds(carriage_door_state[{d}-DOOR_CARRIAGE]={CLOSED}

 then

 @act1 carriage_door_state* carriage_door_state . ((ds-DOOR_CARRIAGE)#{OPEN})

 end

 event closeDoors

 any t ds closed

 where

 @typing_closed closed ! BOOL

 @typing_ds ds ! "(DOOR)

 @grd1 t ! TRAIN

 @grd2 t ! dom(((train_carriage%);(DOOR_CARRIAGE%)))

 @grd4 ds) ((train_carriage%);(DOOR_CARRIAGE%))[{t}]

 @grd5 ds) DOOR_CARRIAGE%[train_carriage%[{t}]]

 @grd6 carriage_door_state[ds#DOOR_CARRIAGE[ds]]={OPEN}

 @grd7 (/d·d!DOOR_CARRIAGE%[train_carriage%[{t}]]0ds '

carriage_door_state[{d}-DOOR_CARRIAGE]1{CLOSED}) 2 closed = FALSE

 then

(b) sub-component Carriage

Figure 6.20: Variables and invariants of LeaderCarriage and Carriage

to data refine carriage door state that disappears. The gluing invariant for this data

refinement is expressed by inv4: the state of all the doors in carriage ds match the state

of the same door in carriage door state. As a result, some events need to be refined to

fit the new variables. For instance, in Fig. 6.21(b), act1 in event openDoors updates

variable carriage ds instead of the abstract variable carriage door state. Also when

carriage doors are allocated, both new variables are assigned as seen in actions act3 and

act4 of event allocateCarriageTrain (similar for removeCarriageTrain).

Comparing with the generic model of carriage doors, the relevant events to fit the instan-

tiation are openDoors, closeDoors, allocateCarriageTrain and removeCarriageTrain.

Not by coincidence, these events manipulate variables carriage ds and carriage door

that will instantiate generic variables generic door state and generic door respectively.

The decomposition summary is described in Table 6.2.

6.10.4 Machine CarriageInterface

Machine CarriageInterface contains the variables that are not related to the carriage

doors. This machine handles the activation/deactivation of the carriage alarm, the deac-

Chapter 6 Case Study 147

machine Carriage_M1 refines Carriage sees Carriage_C0

variables carriage_alarm leader_carriage train_carriage carriage_door carriage_ds door_train_carriage

invariants

 @inv1 carriage_door ! DOOR

 @inv2 carriage_ds " carriage_door # DOOR_STATE

 @inv3 $c·c"dom(train_carriage) % DOOR_CARRIAGE&[{c}]!carriage_door

 @inv4 $d,c·d'c"dom(carriage_door_state) (d " dom(carriage_ds) (d"ran(door_train_carriage)

 %carriage_ds(d)=carriage_door_state(d'c)

 @inv5 door_train_carriage&"DOOR) TRAIN

 @inv6 $d·d"ran(door_train_carriage) % d " carriage_door

events

 event INITIALISATION

 then

 @act5 carriage_alarm * CARRIAGE + {FALSE}

 @act6 train_carriage * ,

 @act8 leader_carriage * ,

 @act12 door_train_carriage * ,

 @act13 carriage_door *,

 @act14 carriage_ds *,

 end

 event openDoors refines openDoors

 any t occpTrns platform ds

 where

 @typing_platform platform " CDV

 @typing_ds ds " -(DOOR)

 @grd1 t " TRAIN

 @grd2 occpTrns " -(CDV)

 @grd3 platform " PLATFORM

 @grd4 platform " (occpTrns . PLATFORM)

 @grd5 t " dom((DOOR_CARRIAGE;train_carriage)&)

 @grd7 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}

 @grd8 ds ! DOOR_CARRIAGE&[train_carriage&[{t}]] // @grd10

!d·d"ds#carriage_door_state[{d}$DOOR_CARRIAGE]={CLOSED}

 @grd11 ds ! dom(carriage_ds)

 @grd12 carriage_ds[ds]={CLOSED}

 then

 @act2 carriage_ds*carriage_ds/ (ds+{OPEN}) // @act1 carriage_door_state%

carriage_door_state & ((ds$DOOR_CARRIAGE)'{OPEN})

 end

 event closeDoors refines closeDoors

 any t ds closed cds

 where

 @typing_closed closed " BOOL

 @typing_ds ds " -(DOOR)

 @grd1 t " TRAIN

 @grd2 t " dom(((train_carriage&);(DOOR_CARRIAGE&)))

 @grd4 ds ! ((train_carriage&);(DOOR_CARRIAGE&))[{t}]

 /* @grd5 ds (DOOR_CARRIAGE)[train_carriage)[{t}]]

 @grd6 carriage_door_state[ds'DOOR_CARRIAGE[ds]]={OPEN} */

 @gd13 cds = carriage_ds

 @grd7 (0d·d"DOOR_CARRIAGE&[train_carriage&[{t}]]1ds (cds(d)2CLOSED) 3 closed =

FALSE // (*d·d"DOOR_CARRIAGE)[train_carriage)[{t}]]+ds ,

carriage_door_state[{d}$DOOR_CARRIAGE]-{CLOSED}) . closed = FALSE

 @grd11 ds ! dom(carriage_ds)

 @grd12 carriage_ds[ds]={OPEN}

(a) Variables and invariants

machine Carriage_M1 refines Carriage sees Train_C4

variables carriage_alarm leader_carriage train_carriage

 carriage_door carriage_ds door_train_carriage

invariants

 @inv1 carriage_door ! DOOR

 @inv2 carriage_ds " carriage_door # DOOR_STATE

 @inv3 $c·c"dom(train_carriage) % DOOR_CARRIAGE&[{c}]!carriage_door

 @inv4 $d,c·d'c"dom(carriage_door_state) (d " dom(carriage_ds)

 (d"ran(door_train_carriage)

 % carriage_ds(d)= carriage_door_state(d'c)

 @inv6 door_train_carriage&"DOOR) TRAIN

 @inv7 $d·d"ran(door_train_carriage) % d " carriage_door

events

 event INITIALISATION

 then

 @act5 carriage_alarm * CARRIAGE + {FALSE}

 @act6 train_carriage * ,

 @act8 leader_carriage * ,

 @act12 door_train_carriage * ,

 @act13 carriage_door *,

 @act14 carriage_ds *,

 end

 event openDoors refines openDoors

 any t occpTrns platform ds

 where

 @typing_platform platform " CDV

 @typing_ds ds " -(DOOR)

 @grd1 t " TRAIN

 @grd2 occpTrns " -(CDV)

 @grd3 platform " PLATFORM

 @grd4 platform " (occpTrns . PLATFORM)

 @grd5 t " dom((DOOR_CARRIAGE;train_carriage)&)

 @grd6 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}

 @grd7 ds ! DOOR_CARRIAGE&[train_carriage&[{t}]]

 @grd8 ds ! dom(carriage_ds)

 @grd9 carriage_ds[ds]={CLOSED}

 then

 @act1 carriage_ds*carriage_ds/ (ds+{OPEN})

 end

 event closeDoors refines closeDoors

 any t ds closed cds

 where

 @typing_closed closed " BOOL

 @typing_ds ds " -(DOOR)

 @grd1 t " TRAIN

 @grd2 t " dom(((train_carriage&);(DOOR_CARRIAGE&)))

 @grd3 ds ! ((train_carriage&);(DOOR_CARRIAGE&))[{t}]

 @grd4 cds = carriage_ds

 @grd5 (0d·d"DOOR_CARRIAGE&[train_carriage&[{t}]]1ds

 (cds(d)2CLOSED) 3 closed = FALSE

 @grd6 ds ! dom(carriage_ds)

 @grd7 carriage_ds[ds]={OPEN}

 then

 @act2 carriage_ds*carriage_ds / (ds+{CLOSED})

 end

 end

 event allocateCarriageTrain refines allocateCarriageTrain

 any c t ds

 where

 @typing_t t ! TRAIN

 @typing_c c ! CARRIAGE

 @grd1 c ! CARRIAGE"dom(train_carriage)

 @grd2 carriage_alarm[{c}]= {FALSE}

 @grd3 t ! dom(door_train_carriage)

 @grd4 #tr·tr ! dom(door_train_carriage) $ tr%t

 & DOOR_CARRIAGE'[{c}](door_train_carriage[{tr}]=)

 @grd5 finite(train_carriage'[{t}])

 @grd6 card(dom(train_carriage * {t}))<MAX_NUMBER_CARRIAGE

 @grd7 DOOR_CARRIAGE'[{c}] (door_train_carriage[{t}]=)

 @grd8 t+dom(leader_carriage)

 @grd9 ds = DOOR_CARRIAGE'[{c}]

 @grd10 ds(dom(carriage_ds)=)

 then

 @act1 train_carriage(c), t

 @act2 door_train_carriage , door_train_carriage

 - ({t} . DOOR_CARRIAGE'[{c}])

 @act3 carriage_door , carriage_door - ds

 @act4 carriage_ds , carriage_ds - (ds.{CLOSED})

 end

 event removeCarriageTrain refines removeCarriageTrain

 any c t ds

 where

 @typing_t t ! TRAIN

 @typing_c c ! CARRIAGE

 @grd1 t ! dom(door_train_carriage)

 @grd2 c/t ! train_carriage

 @grd3 carriage_alarm(c) = FALSE

 @grd16 t ! dom(door_train_carriage)

 @grd10 #d·d!DOOR_CARRIAGE'[{c}]

 & t = door_train_carriage'(d)

 @grd11 c ! ran(DOOR_CARRIAGE)

 @grd12 t + dom(leader_carriage)

 @grd13 ds = DOOR_CARRIAGE'[{c}]

 @grd14 ds0carriage_door

 @grd15 carriage_ds[DOOR_CARRIAGE'[{c}]] = {CLOSED}

 then

 @act1 train_carriage , {c}1train_carriage

 @act2 door_train_carriage ,

 door_train_carriage 2DOOR_CARRIAGE'[{c}]

 @act3 carriage_door , carriage_door " ds

 @act4 carriage_ds , ds1carriage_ds

 end

 event deallocateLeaderCabinCarriageTrain refines deallocateLeaderCabinCarriageTrain

 any t lc

 where

 @typing_t t ! TRAIN

 @typing_lc lc ! 3(TRAIN . CARRIAGE)

 @grd5 t ! dom(leader_carriage)

 @grd2 finite(train_carriage'[{t}])

 @grd4 card(dom(train_carriage * {t}))=MAX_NUMBER_CARRIAGE

 @grd6 lc = leader_carriage

(b) Refinement of some events in Carriage M1

Figure 6.21: Excerpt of machine Carriage M1

tivation of the emergency button and the allocation/deallocation of the leader cabin car-

riage. Events openDoors, closeDoors, allocateCarriageTrain and removeCarriageTrain

are shared with CarriageDoor.

6.10.5 Machine CarriageDoor

CarriageDoors contains the variables related to carriage doors and the events resulting

from splitting the original events as described in Table 6.2. The resulting sub-events can

be seen in Fig. 6.22.

148 Chapter 6 Case Study

CarriageInterface CarriageDoor
Variables carriage alarm, leader carriage carriage doors, carriage ds

train carriage, door train carriage
Events openDoors, closeDoors openDoors, closeDoors

allocateCarriageTrain allocateCarriageTrain
removeCarriageTrain removeCarriageTrain

activateEmergencyCarriageButton
deactivateEmergencyCarriageButton
deactivateEmergencyTrainButton
allocateLeaderCabinCarriageTrain

deallocateLeaderCabinCarriageTrain
modifyTrain

Table 6.2: Decomposition summary of Carriage M1

machine CarriageDoors sees CarriageDoors_C0

variables carriage_door carriage_ds

invariants
 theorem @typing_carriage_door carriage_door ! ℙ(DOOR)
 theorem @typing_carriage_ds carriage_ds ! ℙ(DOOR × DOOR_STATE)
 @Carriage_M1_inv1 carriage_door ⊆ DOOR
 @Carriage_M1_inv2 carriage_ds ! carriage_door " DOOR_STATE

events
 event INITIALISATION
 then
 @act13 carriage_door #$
 @act14 carriage_ds #$
 end

 event openDoors
 any t occpTrns platform ds
 where
 @typing_platform platform ! CDV
 @typing_ds ds ! ℙ(DOOR)
 @grd1 t ! TRAIN
 @grd2 occpTrns ! ℙ(CDV)
 @grd3 platform ! PLATFORM
 @grd4 platform ! (occpTrns ∩ PLATFORM)
 @grd7 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}
 @grd11 ds ⊆ dom(carriage_ds)
 @grd12 carriage_ds[ds]={CLOSED}
 then
 @act2 carriage_ds#carriage_ds (ds×{OPEN})
 end

 event closeDoors
 any t ds closed cds
 where
 @typing_cds cds ! ℙ(DOOR × DOOR_STATE)
 @typing_closed closed ! BOOL
 @typing_ds ds ! ℙ(DOOR)
 @grd1 t ! TRAIN
 @gd13 cds = carriage_ds
 @grd11 ds ⊆ dom(carriage_ds)
 @grd12 carriage_ds[ds]={OPEN}
 then
 @act2 carriage_ds#carriage_ds (ds×{CLOSED})
 end

 event allocateCarriageTrain
 any c t ds
 where
 @typing_ds ds ! ℙ(DOOR)
 @typing_t t ! TRAIN
 @typing_c c ! CARRIAGE
 @grd14 ds = DOOR_CARRIAGE∼[{c}]
 @grd15 ds∩dom(carriage_ds)=$
 then
 @act3 carriage_door # carriage_door ∪ ds
 @act4 carriage_ds # carriage_ds ∪ (ds×{CLOSED})
 end

 event allocateCarriageTrain
 any c t ds
 where
 @typing_ds ds ! ℙ(DOOR)
 @typing_t t ! TRAIN
 @typing_c c ! CARRIAGE
 @grd14 ds = DOOR_CARRIAGE∼[{c}]
 @grd15 ds∩dom(carriage_ds)="
 then
 @act3 carriage_door # carriage_door ∪ ds
 @act4 carriage_ds # carriage_ds ∪ (ds×{CLOSED})
 end

 event removeCarriageTrain
 any c t ds
 where
 @typing_ds ds ! ℙ(DOOR)
 @typing_t t ! TRAIN
 @typing_c c ! CARRIAGE
 @grd11 c ! ran(DOOR_CARRIAGE)
 @grd13 ds = DOOR_CARRIAGE∼[{c}]
 @grd14 ds⊆carriage_door
 @grd15 carriage_ds[DOOR_CARRIAGE∼[{c}]] = {CLOSED}
 then
 @act3 carriage_door # carriage_door ∖ ds
 @act4 carriage_ds # ds!carriage_ds
 end
end
!

Figure 6.22: Events of sub-component CarriageDoors

There are two kind of carriage doors: emergency doors and service doors. We intend to

instantiate twice the generic doors development, one per kind of door (the developments

are similar for both kind of doors). Specific details for each kind of door are added

as additional refinements later on. We describe the generic model and afterwards the

instantiation.

6.11 Generic Model: GCDoor

The generic model for the carriage doors is based in three refinements: GCDoor M0,

GCDoor M1 and GCDoor M2. In each refinement step, more requirements and details

are introduced.

Chapter 6 Case Study 149

6.11.1 Abstract machine GCDoor M0

We start by adding the carriage doors and respective states. Four events model carriage

doors. The properties to be preserved are:

1. Doors can be added or removed.

2. Doors can be in an opening or closing state. Doors can only be open if the train

is in a platform.

3. When adding/removing doors, they are closed by default for safety reasons.

The static part of the generic development is initially divided in two parts: context

GCDoor C0 for the doors and context GCTrack C0 for the tracks as seen in Fig. 6.23.

context GCDoor_C0 extends GCTrack_C0

constants GEN_DOOR_CARRIAGE

 DOOR_SIDE

 OPEN CLOSED

sets DOOR DOOR_STATE

 GEN_CARRIAGE

axioms

 @axm1 partition(DOOR_STATE, {OPEN}, {CLOSED})

 @axm2 GEN_DOOR_CARRIAGE ! DOOR " GEN_CARRIAGE

 @axm3 DOOR_SIDE ! DOOR " SIDE

end
!

(a) Context GCDoor C0

context GCTrack_C0

constants RIGHT PLATFORM LEFT PLATFORM_SIDE

sets SIDE TRACK

axioms

 @axm1 PLATFORM ! TRACK

 @axm2 partition(SIDE, {LEFT}, {RIGHT})

 @axm3 PLATFORM_SIDE " PLATFORM # SIDE

end
!

(b) Context GCTrack C0

Figure 6.23: Generic contexts

Context GCDoor C0 contains sets DOOR, DOOR STATE and GEN DOOR CARRIAGE,

representing carriage doors, defining if a door is opened or closed and defining the car-

riages to which a door belongs to, respectively. Context GCTrack C0 contains sets

SIDE and TRACK, defining the side (LEFT or RIGHT) of a door or platform

and each section of the track, respectively. Machine GCDoor M0 contains variables

generic door and generic door state. The invariants of this abstraction are quite weak

since we just add the type variables as can be seen in Fig. 6.24(a).

Property 1 is expressed by events addDoor and removeDoor. Property 2 is expressed by

variable generic door state and events openDoors and closeDoors. Event openDoors is

only enabled if the set of doors ds is closed and if the parameter occpTrns, corresponding

to the sections occupied by the carriage, intersects a platform. Doors are removed in

event removeDoor, if they are CLOSED confirming property 3. Next section describes

the refinement of this machine.

150 Chapter 6 Case Study

machine GCDoor_M0 sees GCDoor_C0

variables generic_door generic_door_state

invariants

 @inv1 generic_door ! DOOR

 @inv2 generic_door_state " generic_door # DOOR_STATE

event openDoors

 any ds platform occpTrns

 where

 @grd ds ! DOOR

 @grd1 ds ! dom(generic_door_state)

 @grd2 generic_door_state[ds]={CLOSED}

 @grd3 platform " PLATFORM

 @grd4 platform " (occpTrns $ PLATFORM)

 @grd5 ds %&

 @grd6 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}

 then

 @act1 generic_door_state'generic_door_state ((ds){OPEN})

 end

 event closeDoors

 any ds

 where

 @grd ds ! DOOR

 @grd1 ds ! dom(generic_door_state)

 @grd2 generic_door_state[ds]={OPEN}

 @grd3 ds %&

 then

 @act1 generic_door_state'generic_door_state

 ((ds){CLOSED})

 end

 event addDoor

 any ds c

 where

 @grd1 ds $ generic_door = &

 @grd2 ds % &

 @grd3 ds = GEN_DOOR_CARRIAGE*[{c}]

 then

 @act1 generic_door ' generic_door + ds

 @act2 generic_door_state ' generic_door_state

 + (ds){CLOSED})

 end

 event removeDoor

 any ds c

 where

 @grd1 ds ! generic_door

 @grd2 ds % &

 @grd3 generic_door_state[ds]={CLOSED}

 @grd4 ds = GEN_DOOR_CARRIAGE*[{c}]

 then

 @act1 generic_door ' generic_door , ds

 @act2 generic_door_state '

 ds-generic_door_state

 end

(a) Variables, invariants and event openDoors

machine GCDoor_M0 sees GCDoor_C0

variables generic_door generic_door_state

invariants

 @inv1 generic_door ! DOOR

 @inv2 generic_door_state " generic_door # DOOR_STATE

event openDoors

 any ds platform occpTrns

 where

 @grd ds ! DOOR

 @grd1 ds ! dom(generic_door_state)

 @grd2 generic_door_state[ds]={CLOSED}

 @grd3 platform " PLATFORM

 @grd4 platform " (occpTrns $ PLATFORM)

 @grd5 ds %&

 @grd6 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}

 then

 @act1 generic_door_state'generic_door_state ((ds){OPEN})

 end

 event closeDoors

 any ds

 where

 @grd ds ! DOOR

 @grd1 ds ! dom(generic_door_state)

 @grd2 generic_door_state[ds]={OPEN}

 @grd3 ds %&

 then

 @act1 generic_door_state'generic_door_state

 ((ds){CLOSED})

 end

 event addDoor

 any ds c

 where

 @grd1 ds $ generic_door = &

 @grd2 ds % &

 @grd3 ds = GEN_DOOR_CARRIAGE*[{c}]

 then

 @act1 generic_door ' generic_door + ds

 @act2 generic_door_state ' generic_door_state

 + (ds){CLOSED})

 end

 event removeDoor

 any ds c

 where

 @grd1 ds ! generic_door

 @grd2 ds % &

 @grd3 generic_door_state[ds]={CLOSED}

 @grd4 ds = GEN_DOOR_CARRIAGE*[{c}]

 then

 @act1 generic_door ' generic_door , ds

 @act2 generic_door_state '

 ds-generic_door_state

 end

(b) Some events in GCDoors M0

Figure 6.24: Machine GCDoors M0

6.11.2 Second refinement of GCDoor : GCDoor M1

In this refinement more details are introduced about the possible behaviour of the doors.

The properties to be preserved are:

1. The actions involving the doors may result from commands sent from the central

door control. These commands have a type (OPEN RIGHT DOORS,

OPEN LEFT DOORS, CLOSE RIGHT DOORS, CLOSE LEFT DOORS,

ISOLATE DOORS, REMOV E ISOLATION DOORS), a state (START , FAIL,

SUCCESS and EXECUTED) and a target (set of doors).

2. After the doors are closed, they must be locked for the train to move.

3. If a door is open, then an opening device was used: MANUAL PLATFORM if

opened manually in a platform, MANUAL INTERNAL if opened inside the car-

riage manually and AUTOMATIC CENTRAL DOOR if opened automatically

from the central control.

4. Doors can get obstructed when closed automatically (people/object obstruction).

If an obstruction is detected then it should be tried to close the doors again.

The context used in this refinement (GCDoor C1) extends the existing one as seen in

Fig. 6.25(a). Abstract events are refined to include the properties defined above. Some

Chapter 6 Case Study 151

context GCDoor_C1 extends GCDoor_C0

constants MANUAL_PLATFORM MANUAL_INTERNAL AUTOMATIC_CENTRAL_DOOR START FAIL SUCCESS EXECUTED

OPEN_RIGHT_DOORS OPEN_LEFT_DOORS CLOSE_RIGHT_DOORS CLOSE_LEFT_DOORS ISOLATE_DOORS REMOVE_ISOLATION_DOORS

sets OPENING_DEVICE COMMAND_STATE COMMAND_TYPE COMMAND

axioms

 @axm1 partition(OPENING_DEVICE, {MANUAL_PLATFORM}, {MANUAL_INTERNAL}, {AUTOMATIC_CENTRAL_DOOR})

 @axm2 partition(COMMAND_STATE, {START}, {FAIL}, {SUCCESS},{EXECUTED})

 @axm3 partition(COMMAND_TYPE, {OPEN_RIGHT_DOORS}, {OPEN_LEFT_DOORS}, {CLOSE_RIGHT_DOORS},

 {CLOSE_LEFT_DOORS}, {ISOLATE_DOORS}, {REMOVE_ISOLATION_DOORS})

end
!

(a) Context GCDoors C1

machine GCDoor_M1 refines GCDoor_M0 sees GCDoor_C1

variables generic_door generic_door_state locked_doors door_opening_device obstructed_door command

 command_doors command_type command_state

invariants

 @inv1 locked_doors ! DOOR

 @inv2 "d·d#locked_doors $ d # dom(generic_door_state) % generic_door_state(d)&{OPEN}

 @inv3 door_opening_device # generic_door ' OPENING_DEVICE

 @inv4 "d·d#generic_door $ generic_door_state(d)=OPEN %d#dom(door_opening_device)

 @inv5 obstructed_door ! dom(generic_door_state)

 @inv6 command ! COMMAND

 @inv7 command_type # command (COMMAND_TYPE

 @inv8 command_state # command (COMMAND_STATE

 @inv9 command_doors # command ()(generic_door)

 @inv10 "dos·dos#ran(command_doors) % dos *+

 @inv11 "d,opDev·d # generic_door $ opDev # OPENING_DEVICE $ (d,opDev)#door_opening_device

 $ opDev=AUTOMATIC_CENTRAL_DOOR (-cmd·cmd#command $ d # command_doors(cmd))

events

 event INITIALISATION extends INITIALISATION

 then

 @act1 locked_doors.+

 @act2 door_opening_device.+

 @act3 obstructed_door.+

 @act4 command . +

 @act5 command_doors .+

 @act6 command_type .+

 @act7 command_state .+

 end

 event commandCloseDoors

 any doors cmd cmd_type

 where

 @guard doors ! generic_door

 @guard1 generic_door_state[doors]*{CLOSED}

 @guard2 cmd_type # {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}

 @guard3 cmd # COMMAND/command

 @grd4 doors *+

 then

 @act1 command_state(cmd).START

 @act2 command_doors(cmd).doors

 @act3 command . command 0 {cmd}

 @act4 command_type(cmd).cmd_type

 end

event commandOpenDoors

 any doors cmd cmd_type

 where

 @grd doors ! generic_door

(b) Variables, invariants

Figure 6.25: Excerpt of machine GCDoors M1

new invariants are added as seen in Fig. 6.25(b). Property 1 is defined by new variables

command, command type, command state and command doors (see invariants inv6

to inv9). Property 2 is defined by invariant inv2 (if a door is locked, then the door

is not opened) and events lockDoor/unlockDoor. Property 3 is defined by variables

door opening device, inv3 and inv11 (if a door is opened automatically, then a com-

mand has been issued to do so). Property 4 is defined by variable obstructed door, inv5

and events doorIsObstructed and closeObstructedDoor. The system works as follows:

doors can be opened/closed manually or automatically. To open/close a door automati-

cally, a command must be issued from the central door control defining which doors are

a↵ected (for instance, to open a door automatically, event commandOpenDoors needs

to occur). A command starts with state START which can lead to a successful result

(SUCCESS) or failure (FAIL). Either way, it finishes with state EXECUTED. Ab-

stract event otherCommandDoors refers to commands not defined in this refinement. If

a door gets obstructed when being closed automatically (event doorIsObstructed) then

event closeObstructedDoor models a successful attempt to close an obstructed door.

Otherwise, it needs to be closed manually.

The system works as follows: doors can be opened/closed manually or automatically. If

it is done automatically, a command sent from the central door control is issued defin-

ing which doors are a↵ected (for instance, event commandOpenDoors, illustrated in

Fig. 6.26, issues a command to open a set of doors automatically). Event otherCommandDoors

is left abstract the enough in order to refer to commands not defined in this refinement.

If a door gets obstructed when closing automatically (event doorIsObstructed) then

152 Chapter 6 Case Study

event commandOpenDoors

 any doors cmd cmd_type

 where

 @grd doors ! generic_door

 @grd1 generic_door_state[doors]={CLOSED}

 @grd2 cmd_type

 " {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}

 @grd3 cmd " COMMAND#command

 @grd4 doors $%

 then

 @act1 command_state(cmd)&START

 @act2 command_doors(cmd)&doors

 @act3 command & command ' {cmd}

 @act4 command_type(cmd)&cmd_type

 end

 event otherCommandDoors

 any doors cmd cmd_type

 where

 @grd doors ! generic_door

 @grd1 cmd_type " COMMAND_TYPE

 @grd3 cmd " COMMAND#command

 @grd4 doors $%

 then

 @act1 command_state(cmd)&START

 @act2 command_doors(cmd)&doors

 @act3 command & command ' {cmd}

 @act4 command_type(cmd)&cmd_type

 end

event doorIsObstructed

 any ds cmd

 where

 @grd ds ! DOOR#(locked_doors ' obstructed_door)

 @grd1 ds ! dom(generic_door_state)

 @grd2 cmd " command

 @grd3 command_type(cmd)

 " {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}

 @grd4 command_state(cmd)"{START,FAIL}

 @grd5 ds ! command_doors(cmd)

 @grd6 ds $%

 @grd7 generic_door_state[ds]={OPEN}

 then

 @act1 obstructed_door & obstructed_door ' ds

 @act2 command_state(cmd)&FAIL

 end

 event updateCmdState

 any state cmd

 where

 @guard3 cmd " command

 @guard state " COMMAND_STATE#{START} // @guard1 command_state(cmd)=START

 then

 @act1 command_state(cmd)&state

 end

event openDoorAutomatically

refines openDoors

 any ds cmd

 where

 @grd ds ! generic_door"locked_doors

 @grd1 ds ! dom(generic_door_state)

 @grd2 generic_door_state[ds]={CLOSED}

 @grd3 cmd # command

 @grd4 command_type(cmd) #

 {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}

 @grd5 command_state(cmd)=START

 @grd6 ds ! command_doors(cmd)

 @grd7 ds $%

 then

 @act1 generic_door_state&

 generic_door_state ' (ds({OPEN})

 @act2 door_opening_device & door_opening_device

 ' (ds({AUTOMATIC_CENTRAL_DOOR})

 end

 event closeObstructedDoor

 refines closeDoors

 any ds cmd st

 where

 @grd ds ! obstructed_door

 @grd1 ds ! dom(generic_door_state)

 @grd2 cmd # command

 @grd3 command_type(cmd)#

 {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}

 @grd4 command_state(cmd)=FAIL

 @grd5 ds ! command_doors(cmd)

 @grd6 ds $%

 @grd7 generic_door_state[ds]={OPEN}

 @grd8 st # {SUCCESS,FAIL}

 @grd9 st = SUCCESS) command_doors(cmd)"ds=%

 * generic_door_state[command_doors(cmd)"ds]

 ={CLOSED}

 then

 @act1 generic_door_state&

 generic_door_state'(ds({CLOSED})

 @act2 obstructed_door & obstructed_door " ds

 @act3 command_state(cmd)&st

 end

 event lockDoor

 any d

 where

 @guard d # generic_door"locked_doors

 @guard1 generic_door_state(d)=CLOSED

 then

 @act1 locked_doors&locked_doors + {d}

 end

 event unlockDoor

 any d

 where

 @guard2 d # generic_door

 @guard d # locked_doors

 then

 event lockDoor

 any d

 where

 @grd d ! generic_door"locked_doors

 @grd1 generic_door_state(d)=CLOSED

 then

 @act1 locked_doors#locked_doors $ {d}

 end

 event unlockDoor

 any d

 where

 @grd1 d ! generic_door

 @grd2 d ! locked_doors

 then

 @act1 locked_doors#locked_doors " {d}

 end

event openDoorManually refines openDoors

 any ds open_device platform occpTrns

 where

 @guard ds % generic_door"locked_doors

 @guard1 ds % dom(generic_door_state)

 @guard2 generic_door_state[ds]&{OPEN}

 @guard3 open_device ! {MANUAL_PLATFORM,MANUAL_INTERNAL}

 @grd3 platform ! PLATFORM

 @grd4 platform ! (occpTrns ' PLATFORM)

 @grd5 ds &(

 @grd7 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}

 then

 @act1 generic_door_state#generic_door_state) (ds*{OPEN})

 @act2 door_opening_device # door_opening_device) (ds*{open_device})

 end

 event closeDoors refines closeDoors

 any ds cmd

 where

 @guard ds % DOOR

 @guard1 ds % dom(generic_door_state)

 @guard2 generic_door_state[ds]={OPEN}

 @guard3 cmd ! command

 @guard4 command_type(cmd) ! {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}

 @guard5 command_state(cmd)=START

 @guard6 ds % command_doors(cmd)

 @grd3 ds &(

 then

 @act1 generic_door_state#generic_door_state) (ds*{CLOSED})

 end

 event addDoor extends addDoor

 end

 event removeDoor extends removeDoor

 where

 @grd6 ds'dom(door_opening_device)=(

 @grd5 +dos·dos!ran(command_doors) , ds'dos=(

 end

end

event commandOpenDoors

 any doors cmd cmd_type

 where

 @grd doors ! generic_door

 @grd1 generic_door_state[doors]={CLOSED}

 @grd2 cmd_type

 " {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}

 @grd3 cmd " COMMAND#command

 @grd4 doors $%

 then

 @act1 command_state(cmd)&START

 @act2 command_doors(cmd)&doors

 @act3 command & command ' {cmd}

 @act4 command_type(cmd)&cmd_type

 end

 event otherCommandDoors

 any doors cmd cmd_type

 where

 @grd doors ! generic_door

 @grd1 cmd_type " COMMAND_TYPE

 @grd3 cmd " COMMAND#command

 @grd4 doors $%

 then

 @act1 command_state(cmd)&START

 @act2 command_doors(cmd)&doors

 @act3 command & command ' {cmd}

 @act4 command_type(cmd)&cmd_type

 end

event doorIsObstructed

 any ds cmd

 where

 @grd ds ! DOOR#(locked_doors ' obstructed_door)

 @grd1 ds ! dom(generic_door_state)

 @grd2 cmd " command

 @grd3 command_type(cmd)

 " {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}

 @grd4 command_state(cmd)"{START,FAIL}

 @grd5 ds ! command_doors(cmd)

 @grd6 ds $%

 @grd7 generic_door_state[ds]={OPEN}

 then

 @act1 obstructed_door & obstructed_door ' ds

 @act2 command_state(cmd)&FAIL

 end

 event updateCmdState

 any state cmd

 where

 @guard3 cmd " command

 @guard state " COMMAND_STATE#{START} // @guard1 command_state(cmd)=START

 then

 @act1 command_state(cmd)&state

 end

event openDoorAutomatically

refines openDoors

 any ds cmd

 where

 @grd ds ! generic_door"locked_doors

 @grd1 ds ! dom(generic_door_state)

 @grd2 generic_door_state[ds]={CLOSED}

 @grd3 cmd # command

 @grd4 command_type(cmd) #

 {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}

 @grd5 command_state(cmd)=START

 @grd6 ds ! command_doors(cmd)

 @grd7 ds $%

 then

 @act1 generic_door_state&

 generic_door_state ' (ds({OPEN})

 @act2 door_opening_device & door_opening_device

 ' (ds({AUTOMATIC_CENTRAL_DOOR})

 end

 event closeObstructedDoor

 refines closeDoors

 any ds cmd st

 where

 @grd ds ! obstructed_door

 @grd1 ds ! dom(generic_door_state)

 @grd2 cmd # command

 @grd3 command_type(cmd)#

 {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}

 @grd4 command_state(cmd)=FAIL

 @grd5 ds ! command_doors(cmd)

 @grd6 ds $%

 @grd7 generic_door_state[ds]={OPEN}

 @grd8 st # {SUCCESS,FAIL}

 @grd9 st = SUCCESS) command_doors(cmd)"ds=%

 * generic_door_state[command_doors(cmd)"ds]

 ={CLOSED}

 then

 @act1 generic_door_state&

 generic_door_state'(ds({CLOSED})

 @act2 obstructed_door & obstructed_door " ds

 @act3 command_state(cmd)&st

 end

 event lockDoor

 any d

 where

 @guard d # generic_door"locked_doors

 @guard1 generic_door_state(d)=CLOSED

 then

 @act1 locked_doors&locked_doors + {d}

 end

 event unlockDoor

 any d

 where

 @guard2 d # generic_door

 @guard d # locked_doors

 then

Figure 6.26: Some events in GCDoors M1

event closeObstructedDoor models a successful attempt to close an obstructed door.

Otherwise, it needs to be closed manually.

6.12 Third refinement of GCDoor : GCDoor M2

In the third refinement, malfunctioning doors can be isolated and in that case, they

ignore the commands issued by the central command. Isolated doors can be either

opened or closed. After the execution of a command, the corresponding state is updated

according to the success/failure of the command. The properties to be preserved are:

Chapter 6 Case Study 153

1. Doors can be isolated (independently of the respective door state) in case of mal-

function or safety reasons.

2. If a command is successful, it means that the command already occurred.

3. Two commands cannot have the same door as target except if the command has

already been executed.

4. If a door is obstructed, then it must be in a state corresponding to OPEN .

The properties to be preserved are mainly defined as invariants. Property 1 is de-

fined by new variable isolated door, inv1, inv6 and events commandIsolationDoors,

isolateDoor and removeIsolatedDoor as seen in Fig. 6.27(b). Property 2 is defined by

several invariants depending on the command: inv2 for opening doors, inv3 for closing

doors, inv4 to isolate doors, inv5 to lift the isolation from a door. Property 3 is defined

by inv7 and the last property by inv8.

An excerpt of GCDoors M2 is depicted in Fig. 6.27. New event commandIsolationDoors

models a command to add/remove doors from isolation refining the abstract event

otherCommandDoors. After this command is issued, the actual execution (or not) of

the command dictates the command state at refined event updateIsolationCmdState.

A command log is created corresponding to the end of the command’s task in event

executeLogCmdState. Other commands could be added in a similar manner but we

restrict to these commands for now. The state update of other commands (opening and

closing doors) follows the same behaviour as the isolation one.

This model has three refinement layers with all the proof obligations discharged. We

instantiate this model, benefiting from the discharged proof obligations and refinements

to model emergency and service doors.

6.13 Instantiation of Generic Carriage Door

We use the GCDoor development as a pattern to model emergency and service doors.

The instantiation is similar for both kind of doors: specific details for each type of door

are added later. We abstract ourselves from these details and focus in the instantiation

of one of the doors: emergency doors.

The pattern context is defined by contexts GCDoor C0 (and context GCTrack C0)

in Fig. 6.23 and GCDoor C1 in Fig. 6.25(a). The parameterisation context seen by

the instance results from the context seen by the abstract machine CarriageDoors as

illustrated in Fig. 6.28(a). CarriageDoors C0 does not contain all the sets and constants

that need to be instantiated. Therefore CarriageDoors C1 is created based on the

pattern context GCDoor C1 (Fig. 6.28(b)).

154 Chapter 6 Case Study

machine GCDoor_M2 refines GCDoor_M1 sees GCDoor_C1

variables generic_door generic_door_state isolated_door locked_doors door_opening_device obstructed_door

 command command_doors command_type command_state

invariants

 @inv1 isolated_door ! DOOR

 @inv2 "cmd,d·cmd # command $ command_type(cmd)#{OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}

 $d # DOOR$d # command_doors(cmd)$command_state(cmd)=SUCCESS $ d % isolated_door& generic_door_state(d)=OPEN

 @inv3 "cmd,d·cmd # command $ command_type(cmd)#{CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}

 $ d # DOOR $ d # command_doors(cmd)$command_state(cmd)=SUCCESS$d % isolated_door& generic_door_state(d)=CLOSED

 @inv4 "cmd,d·cmd # command $ command_type(cmd)=ISOLATE_DOORS $ d # DOOR

 $ d # command_doors(cmd) $ command_state(cmd)=SUCCESS & d# isolated_door

 @inv5 "cmd,d·cmd # command $ command_type(cmd)=REMOVE_ISOLATION_DOORS

 $ d # DOOR $ d # command_doors(cmd) $ command_state(cmd)=SUCCESS & d% isolated_door

 @inv6 "d·d#isolated_door $ d # dom(generic_door_state)& generic_door_state(d)#{OPEN, CLOSED}

 @inv7 "cmd1,cmd2·cmd1#command $ cmd2#command $ cmd1'cmd2

 $ command_state(cmd1)'EXECUTED $ command_state(cmd2)'EXECUTED &command_doors(cmd1)(command_doors(cmd2)=)

 @inv8 "d·d#obstructed_door & generic_door_state(d)=OPEN

events

 event INITIALISATION extends INITIALISATION

 then

 @act3 isolated_door *)

 end

 event commandOpenDoors refines commandOpenDoors

 any doors cmd cmd_type

 where

 @guard doors ! generic_door

 @guard1 generic_door_state[doors]={CLOSED}

 @guard2 cmd_type # {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}

 @guard3 cmd # COMMAND+command

 @guard4 "cmd1·cmd1#command $ command_state(cmd1)'EXECUTED&doors(command_doors(cmd1)=)

 @grd4 doors ')

 then

 @act1 command_state(cmd)*START

 @act2 command_doors(cmd)*doors

 @act3 command * command , {cmd}

 @act4 command_type(cmd)*cmd_type

 end

 event commandCloseDoors refines commandCloseDoors

 any doors cmd cmd_type

 where

 @guard doors ! generic_door

 @guard1 generic_door_state[doors]={OPEN}

 @guard2 cmd_type # {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}

 @guard3 cmd # COMMAND+command

 @guard4 "cmd1·cmd1#command $ command_state(cmd1)'EXECUTED&doors(command_doors(cmd1)=)

 @grd4 doors ')

 then

 @act1 command_state(cmd)*START

 @act2 command_doors(cmd)*doors

 @act3 command * command , {cmd}

 @act4 command_type(cmd)*cmd_type

 end

 event updateSuccessOpenDoorCmdState refines updateCmdState

 any cmd

(a) Variables, invariants

 end

event commandIsolationDoors refines otherCommandDoors

 any doors cmd cmd_type

 where

 @grd doors ! generic_door

 @grd1 cmd_type " {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS}

 @grd2 cmd " COMMAND#command

 @grd3 $cmd1·cmd1"command

 % command_state(cmd1)&EXECUTED

 'doors(command_doors(cmd1)=)

 @grd4 doors &)

 @grd5 cmd_type = ISOLATE_DOORS * (doors(isolated_door =))

 @grd6 cmd_type = REMOVE_ISOLATION_DOORS * isolated_door&)

 % doors(isolated_door&)

 then

 @act1 command_state(cmd)+START

 @act2 command_doors(cmd)+doors

 @act3 command + command , {cmd}

 @act4 command_type(cmd)+cmd_type

 end

 event updateIsolationCmdState refines updateCmdState

 any state cmd

 where

 @grd cmd " command

 @grd1 state " COMMAND_STATE#{START,EXECUTED}

 @grd2 command_state(cmd)=START

 @grd3 command_type(cmd)

 " {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS}

 @grd4 (command_type(cmd) = ISOLATE_DOORS

 % (-d·d"command_doors(cmd) % d .isolated_door))

 / (command_type(cmd) = REMOVE_ISOLATION_DOORS

 % (-d·d"command_doors(cmd) % d "isolated_door))

 * state = FAIL

 then

 @act1 command_state(cmd)+state

 end

 event executedLogCmdState refines updateCmdState

 any cmd

 where

 @guard3 cmd " command

 @guard1 command_state(cmd)"{FAIL,SUCCESS}

 with

 @state state = EXECUTED

 then

 @act1 command_state(cmd)+EXECUTED

 end

 event openDoorAutomatically refines openDoorAutomatically

 any ds cmd platform occpTrns

 where

 @guard ds ! generic_door#(isolated_door , locked_doors)

 @guard1 ds ! dom(generic_door_state)

 @guard2 generic_door_state[ds]&{OPEN}

 @guard3 cmd " command

 @guard4 command_type(cmd) " {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}

 @guard5 command_state(cmd)=START

event executedLogCmdState refines updateCmdState

 any cmd

 where

 @guard3 cmd ! command

 @guard1 command_state(cmd)!{FAIL,SUCCESS}

 with

 @state state = EXECUTED

 then

 @act1 command_state(cmd)"EXECUTED

 end

 event isolateDoor

 any d cmd

 where

 @grd d ! generic_door#isolated_door

 @grd1 cmd ! command

 @grd2 command_state(cmd)=START

 @grd3 d ! command_doors(cmd)

 @grd4 command_type(cmd) = ISOLATE_DOORS

 @grd5 generic_door_state(d)!{OPEN, CLOSED}

 then

 @act1 isolated_door" isolated_door $ {d}

 end

 event removeIsolatedDoor

 any d cmd

 where

 @grd d ! isolated_door

 @grd1 cmd ! command

 @grd3 d ! command_doors(cmd)

 @grd4 command_type(cmd) = REMOVE_ISOLATION_DOORS

 @grd2 command_state(cmd)=START

 @grd5 generic_door_state(d)!{OPEN, CLOSED}

 then

 @act1 isolated_door" isolated_door # {d}

 end

 event addDoor extends addDoor

 end

 event removeDoor extends removeDoor

 end

end
!

(b) Some events in GCDoor M2

Figure 6.27: Excerpt of machine GCDoor M2

Following the steps suggested in Sect. 3.5.2, we create the instantiation refinement for

emergency carriage doors as seen in Fig. 6.29. As expected, the generic sets and con-

stants are replaced by the instance sets existing in contexts CarriageDoors C0 and

CarriageDoors C1. Moreover, generic variables are renamed to fit the instance and be

a refinement of abstract machine CarriageDoors. The same happens to generic events

addDoor and removeDoor.

Comparing the abstract machine of the pattern GCDoor M0 and the last refinement of

our initial development CarriageDoors, we realise that they are similar but not a perfect

match. CarriageDoors events contains some additional parameters and guards result-

ing from the previous refinements. For instance, event closeDoors in CarriageDoors

(Fig. 6.30(b)) contains an additional parameter cds compared to event closeDoors in

Chapter 6 Case Study 155

context CarriageDoor_C0

constants PLATFORM DOOR_SIDE PLATFORM_SIDE CLOSED OPEN

 DOOR_CARRIAGE

sets DOOR DOOR_STATE CDV SIDE CARRIAGE

axioms

 @MetroSystem_C1_axm1 partition(DOOR_STATE, {OPEN}, {CLOSED})

 @MetroSystem_C1_axm2 PLATFORM ! CDV

 @Train_C1_axm2 DOOR_CARRIAGE " DOOR # CARRIAGE

 @Train_C1_axm3 $c·c"ran(DOOR_CARRIAGE)%DOOR_CARRIAGE&[{c}]'(

 @Train_C2_axm4 DOOR_SIDE " DOOR # SIDE

 @Train_C2_axm5 PLATFORM_SIDE " PLATFORM # SIDE

 @Train_C2_axm6 PLATFORM '(

end
!

(a) Context CarriageDoors C0

context CarriageDoor_C1 extends CarriageDoor_C0

constants MANUAL_PLATFORM MANUAL_INTERNAL AUTOMATIC_CENTRAL_DOOR

START FAIL SUCCESS EXECUTED OPEN_RIGHT_DOORS OPEN_LEFT_DOORS

CLOSE_RIGHT_DOORS CLOSE_LEFT_DOORS ISOLATE_DOORS REMOVE_ISOLATION_DOORS

sets OPEN_DEV COMD_ST COMD_TYPE COMD

axioms

 @axm1 partition(OPEN_DEV, {MANUAL_PLATFORM}, {MANUAL_INTERNAL},

 {AUTOMATIC_CENTRAL_DOOR})

 @axm2 partition(COMD_ST, {START}, {FAIL}, {SUCCESS},{EXECUTED})

 @axm3 partition(COMD_TYPE,{OPEN_RIGHT_DOORS},{OPEN_LEFT_DOORS},

 {CLOSE_RIGHT_DOORS}, {CLOSE_LEFT_DOORS},{ISOLATE_DOORS},

 {REMOVE_ISOLATION_DOORS})

end
!

!
(b) Context CarriageDoors C1

Figure 6.28: Parameterisation context CarriageDoors C0 plus additional context
CarriageDoors C1

INSTANTIATED REFINEMENT IEmergencyDoor M2

INSTANTIATES GCDoors M2 VIA GCDoor C0 GCDoor C1

REFINES CarriageDoors /* abstract machine */

SEES CarriageDoors C0 CarriageDoors C1 /* instance contexts */

REPLACE
SETS GEN CARRIAGE := CARRIAGE DOOR := DOOR

DOOR STATE := DOOR STATE SIDE := SIDE
OPENING DEV ICE := OPEN DEV COMMAND STATE := COMD ST
COMMAND := COMD COMMAND TY PE := COMD TY PE

CONSTANTS GEN DOOR CARRIAGE := DOOR CARRIAGE
OPEN := OPEN PLATFORM := PLATFORM
CLOSED := CLOSED PLATFORM SIDE := PLATFORM SIDE
. . .

RENAME /*rename variables, events and params*/

VARIABLES generic doors := carriage doors generic door state := carriage ds
EVENTS addDoor := allocateCarriageTrain removeDoor := removeCarriageTrain

END

Figure 6.29: Instantiated Refinement IEmergencyDoor M2

GCDoor M0 (Fig. 6.30(a)). Some customisation is tolerable in the generic event to en-

sure that the instantiation of GCDoor M0.closeDoors refines CarriageDoors.closeDoors

by adding a parameter that match cds and respective guard grd13.

The customisation can be realised by a (shared event) composition of event

GCDoor M0.closeDoors with another event that introduces the additional parameter

cds and guard cds = carriage ds. The monotonicity of the shared event composition

allows the composed pattern to be instantiated as initially desired. Another option is

to introduce an additional step: the last machine of the refinement chain before the

156 Chapter 6 Case Study

machine GCDoor_M0 sees GCDoor_C0

variables generic_door generic_door_state

invariants

 @inv1 generic_door ! DOOR

 @inv2 generic_door_state " generic_door # DOOR_STATE

event openDoors

 any ds platform occpTrns

 where

 @grd ds ! DOOR

 @grd1 ds ! dom(generic_door_state)

 @grd2 generic_door_state[ds]={CLOSED}

 @grd3 platform " PLATFORM

 @grd4 platform " (occpTrns $ PLATFORM)

 @grd5 ds %&

 @grd6 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}

 then

 @act1 generic_door_state'generic_door_state ((ds){OPEN})

 end

 event closeDoors

 any ds

 where

 @grd ds ! DOOR

 @grd1 ds ! dom(generic_door_state)

 @grd2 generic_door_state[ds]={OPEN}

 @grd3 ds %&

 then

 @act1 generic_door_state'generic_door_state

 ((ds){CLOSED})

 end

 event addDoor

 any ds c

 where

 @grd1 ds $ generic_door = &

 @grd2 ds % &

 @grd3 ds = GEN_DOOR_CARRIAGE*[{c}]

 then

 @act1 generic_door ' generic_door + ds

 @act2 generic_door_state ' generic_door_state

 + (ds){CLOSED})

 end

 event removeDoor

 any ds c

 where

 @grd1 ds ! generic_door

 @grd2 ds % &

 @grd3 generic_door_state[ds]={CLOSED}

 @grd4 ds = GEN_DOOR_CARRIAGE*[{c}]

 then

 @act1 generic_door ' generic_door , ds

 @act2 generic_door_state '

 ds-generic_door_state

 end

(a) Event GCDoor M0.closeDoors

machine CarriageDoors sees Train_C4

variables carriage_door carriage_ds

invariants

 theorem @typing_carriage_door carriage_door ! "(DOOR)

 theorem @typing_carriage_ds carriage_ds ! "(DOOR # DOOR_STATE)

 @Carriage_M1_inv1 carriage_door $ DOOR

 @Carriage_M1_inv2 carriage_ds ! carriage_door % DOOR_STATE

events

 event INITIALISATION

 then

 @act13 carriage_door &'

 @act14 carriage_ds &'

 end

 event openDoors

 any occpTrns platform ds

 where

 @typing_platform platform ! CDV

 @typing_ds ds ! "(DOOR)

 @grd2 occpTrns ! "(CDV)

 @grd3 platform ! PLATFORM

 @grd4 platform ! (occpTrns (PLATFORM)

 @grd7 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}

 @grd11 ds $ dom(carriage_ds)

 @grd12 carriage_ds[ds]={CLOSED}

 then

 @act2 carriage_ds&carriage_ds) (ds#{OPEN})

 end

 event closeDoors

 any ds cds

 where

 @typing_cds cds ! "(DOOR # DOOR_STATE)

 @typing_ds ds ! "(DOOR)

 @grd11 ds $ dom(carriage_ds)

 @grd12 carriage_ds[ds]={OPEN}

 @grd13 cds = carriage_ds

 then

 @act2 carriage_ds&carriage_ds) (ds#{CLOSED})

 end

(b) Event CarriageDoors.closeDoors

machine CarriageDoorsInst_M0 refines CarriageDoors sees CarriageDoors_C0

variables carriage_door carriage_ds

events
 event INITIALISATION
 then
 @act13 carriage_door !"
 @act14 carriage_ds !"
 end

 event openDoors refines openDoors
 any occpTrns platform ds
 where
 @typing_platform platform # CDV
 @typing_ds ds # !(DOOR)
 @grd2 occpTrns # !(CDV)
 @grd3 platform # PLATFORM
 @grd4 platform # (occpTrns " PLATFORM)
 @grd7 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}
 @grd11 ds # dom(carriage_ds)
 @grd12 carriage_ds[ds]={CLOSED}
 with
 @t t # TRAIN
 then
 @act2 carriage_ds!carriage_ds$ (ds%{OPEN})
 end

 event closeDoors refines closeDoors
 any ds
 where
 @typing_ds ds # !(DOOR)
 @grd11 ds # dom(carriage_ds)
 @grd12 carriage_ds[ds]={OPEN}
 with
 @cds cds = carriage_ds
 @t t # TRAIN
 @closed closed # BOOL
 then
 @act2 carriage_ds!carriage_ds $ (ds%{CLOSED})
 end

 event allocateCarriageTrain refines allocateCarriageTrain
 any c ds
 where
 @typing_ds ds # !(DOOR)
 @typing_c c # CARRIAGE
 @grd14 ds = DOOR_CARRIAGE&[{c}]
 @grd15 ds"dom(carriage_ds)="
 with
 @t t # TRAIN
 then
 @act3 carriage_door ! carriage_door ' ds
 @act4 carriage_ds ! carriage_ds ' (ds%{CLOSED})
 end

 event removeCarriageTrain refines removeCarriageTrain
 any c ds
 where

(c) Event CarriageDoorsInst M0.closeDoors

Figure 6.30: Event closeDoors in the pattern and instance; they di↵er in the param-
eters, guards and witnesses

instantiation (in our case study, machine CarriageDoors) is refined. The resulting re-

finement machine (CarriageDoorsInst M0) refines the first instantiation machine (i.e.

CarriageDoors v CarriageDoorsInst M0 v EmergencyDoors M0) “customising”

the instantiation. Therefore the additional parameters (and respective guards) can dis-

appear by means of witnesses as can be seen in Fig. 6.30(c). Ideally we aim to have a

syntactic match (after instantiation) between the pattern and the initial instantiantion.

Nevertheless a valid refinement is enough to apply the instantiation.

An instance machine EmergencyDoor M2 (Fig. 6.31) is similar to GCDoor M2 apart

from the replacements and renaming applied in IEmergencyDoor M2 (cf. Figs. 6.27,

Fig. 6.29 and Fig. 6.31). That machine can be further refined (and decomposed) intro-

ducing the specific details related to emergency doors. The instantiation of the service

doors follows the same steps.

Statistics: In Table 6.3, we describe the statistics of the development in terms of vari-

ables, events and proof obligations (and how many POs were automatically discharged

by the theorem prover of the Rodin platform) for each refinement step. Almost 3/4 of

the proof obligations are automatically discharged.

This case study was carried out under the following conditions:

• Rodin v2.1

• Shared Event Composition plug-in v1.3.1

Chapter 6 Case Study 157

machine EmergencyDoors_M2 refines EmergencyDoors_M1 sees CarriageDoors_C1

variables carriage_door carriage_ds isolated_door locked_doors door_opening_device obstructed_door
command command_doors command_type command_state

invariants
 @inv1 isolated_door ⊆ DOOR
 @inv2 !cmd,d·cmd " command ∧ command_type(cmd)"{OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}
 ∧ d " DOOR ∧ d " command_doors(cmd) ∧ command_state(cmd)=SUCCESS
 ∧ d # isolated_door$ carriage_ds(d)=OPEN
 @inv3 !cmd,d·cmd " command ∧ command_type(cmd)"{CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}
 ∧ d " DOOR ∧ d " command_doors(cmd) ∧ command_state(cmd)=SUCCESS
 ∧ d # isolated_door$ carriage_ds(d)=CLOSED
 @inv4 !d·d"isolated_door ∧ d " dom(carriage_ds)$ carriage_ds(d)"{OPEN, CLOSED}
 @inv5 !cmd1,cmd2·cmd1"command ∧ cmd2"command ∧ cmd1≠cmd2
 ∧ command_state(cmd1)≠EXECUTED
 ∧ command_state(cmd2)≠EXECUTED $command_doors(cmd1)∩command_doors(cmd2)=%
 @inv6 !cmd,d·cmd " command ∧ command_type(cmd)=ISOLATE_DOORS ∧ d " DOOR
 ∧ d " command_doors(cmd) ∧ command_state(cmd)=SUCCESS $ d" isolated_door
 @inv7 !cmd,d·cmd " command ∧ command_type(cmd)=REMOVE_ISOLATION_DOORS
 ∧ d " DOOR ∧ d " command_doors(cmd) ∧ command_state(cmd)=SUCCESS $ d# isolated_door
 @inv8 !d·d"obstructed_door $ carriage_ds(d)=OPEN

events
 event INITIALISATION extends INITIALISATION
 then
 @act3 isolated_door &%
 end

 event commandOpenDoors refines commandOpenDoors
 any doors cmd cmd_type
 where
 @guard doors ⊆ carriage_door
 @guard1 carriage_ds[doors]={CLOSED}
 @guard2 cmd_type " {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}
 @guard3 cmd " COMD∖command
 @guard4 !cmd1·cmd1"command ∧
command_state(cmd1)≠EXECUTED$doors∩command_doors(cmd1)=%
 @grd4 doors ≠%
 then
 @act1 command_state(cmd)&START
 @act2 command_doors(cmd)&doors
 @act3 command & command ∪ {cmd}
 @act4 command_type(cmd)&cmd_type
 end

 event commandCloseDoors refines commandCloseDoors
 any doors cmd cmd_type
 where
 @guard doors ⊆ carriage_door
 @guard1 carriage_ds[doors]={OPEN}
 @guard2 cmd_type " {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}
 @guard3 cmd " COMD∖command
 @guard4 !cmd1·cmd1"command ∧
command_state(cmd1)≠EXECUTED$doors∩command_doors(cmd1)=%
 @grd4 doors ≠%
 then
 @act1 command_state(cmd)&START
 @act2 command_doors(cmd)&doors
 @act3 command & command ∪ {cmd}

(a) Variables, invariants @act4 command_type(cmd)!cmd_type
 end

 event commandIsolationDoors refines otherCommandDoors
 any doors cmd cmd_type
 where
 @guard doors ⊆ carriage_door
 @guard1 cmd_type

" {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS}
 @guard3 cmd " COMD∖command
 @guard4 #cmd1·cmd1"command
 ∧ command_state(cmd1)≠EXECUTED
 $doors∩command_doors(cmd1)=%
 @grd4 doors ≠%
 @grd5 cmd_type = ISOLATE_DOORS & (doors∩isolated_door = %)
 @grd6 cmd_type = REMOVE_ISOLATION_DOORS & isolated_door≠%
 ∧ doors∩isolated_door≠%
 then
 @act1 command_state(cmd)!START
 @act2 command_doors(cmd)!doors
 @act3 command ! command ∪ {cmd}
 @act4 command_type(cmd)!cmd_type
 end

 event updateIsolationCmdState refines updateCmdState
 any state cmd
 where
 @guard3 cmd " command
 @guard state " COMD_ST∖{START,EXECUTED}
 @guard1 command_state(cmd)=START
 @guard5 command_type(cmd)
 " {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS}
 @grd3 (command_type(cmd) = ISOLATE_DOORS
 ∧ ('d·d"command_doors(cmd) ∧ d (isolated_door))
 ∨ (command_type(cmd) = REMOVE_ISOLATION_DOORS
 ∧ ('d·d"command_doors(cmd) ∧ d "isolated_door))
 & state = FAIL
 then
 @act1 command_state(cmd)!state
 end

 event updateSuccessOpenDoorCmdState refines updateCmdState
 any cmd
 where
 @guard3 cmd " command
 @guard1 command_state(cmd)=START
 @guard5 command_type(cmd)"{OPEN_LEFT_DOORS,OPEN_RIGHT_DOORS}
 @guard4 #d·d"command_doors(cmd)∧ d(isolated_door$carriage_ds(d)=OPEN
 @grd6 command_doors(cmd)∖isolated_door≠%
 with
 @state state = SUCCESS
 then
 @act1 command_state(cmd)!SUCCESS
 end

 event updateFailOpenDoorCmdState refines updateCmdState
 any cmd
 where
 @guard3 cmd " command

 event executedLogCmdState refines updateCmdState
 any cmd
 where
 @guard3 cmd ! command
 @guard1 command_state(cmd)!{FAIL,SUCCESS}
 with
 @state state = EXECUTED
 then
 @act1 command_state(cmd)"EXECUTED
 end

 event isolateDoor
 any d cmd
 where
 @guard d ! carriage_door∖isolated_door
 @guard1 cmd ! command
 @guard2 command_state(cmd)=START
 @guard3 d ! command_doors(cmd)
 @guard4 command_type(cmd) = ISOLATE_DOORS
 @guard5 carriage_ds(d)!{OPEN, CLOSED}
 then
 @act1 isolated_door" isolated_door ∪ {d}
 end

 event removeIsolatedDoor
 any d cmd
 where
 @guard d ! isolated_door
 @guard1 cmd ! command
 @guard3 d ! command_doors(cmd)
 @guard4 command_type(cmd) = REMOVE_ISOLATION_DOORS
 @guard2 command_state(cmd)=START
 @guard5 carriage_ds(d)!{OPEN, CLOSED}
 then
 @act1 isolated_door" isolated_door ∖ {d}
 end

 event allocateCarriageTrain extends allocateCarriageTrain
 end

 event removeCarriageTrain extends removeCarriageTrain
 end
end
!

(b) Some events in EmergencyDoor M2

Figure 6.31: Excerpt of instantiated machine EmergencyDoor M2

• Model Decomposition plug-in v1.2.1

• Instantiation was done manually (currently tool support is not available).

• ProB v2.1.2

• Camille Text Editor 2.0.1

Although we are interested mainly interested in safety properties, the model checker

ProB [141] proved to be very useful as a complementary tool during the development

of this case study. In some stages of the development, all the proof obligations were

158 Chapter 6 Case Study

Variables Events ProofObligations/Auto
TransitiveClosureCtx � � 10/10

MetroSystem C0 � � 5/3
MetroSystem C1 � � 0/0
MetroSystem M0 7 10 75/64

MetroSystem M1 10 13 17/17

MetroSystem M2 12 17 78/57

MetroSystem M3 12 17 24/22

Track 4 10 0/0
Train 7 14 0/0
Middleware 1 4 0/0
Train M1 9 16 74/52

Train M2 13 21 155/79

Train M3 12 21 65/24

Train M4 14 21 119/89

LeaderCarriage 9 21 0/0
Carriage 5 11 0/0
Carriage M1 6 11 28/21

CarriageInterface 4 11 0/0
CarriageDoors 2 5 0/0
CarriageDoorsInst M0 2 5 2/1
GCDoor M0 2 5 6/6
GCDoor M1 9 15 81/80

GCDoor M2 10 22 170/153

Total 909/678(74.6%)

Table 6.3: Statistics of the metro system case study

discharged but with ProB we discovered that the system was deadlocked due to some

missing detail. In large developments, these situations possibly occur more frequently.

Therefore we suggest discharging the proof obligations to ensure the safety properties

are preserved and run the ProB model checker to confirm that the system actually is

free from deadlocks.

6.14 Discussion: Conclusions and Lessons Learned

We modelled a metro system case study, starting by proving its global properties through

several refinement steps. Afterwards, due to an architectural decision and to alleviate

the problem of modelling and handling a large system in one single machine, the system

is decomposed in three sub-components. We further refine one of the resulting sub-

components (Train), introducing several details in four refinements levels. Then again,

due to the number of proof obligations, to achieve separation of aspects and to ease the

further developments, we decompose it into two sub-components: LeaderCarriage and

Carriage. Since we are interested in modelling carriage doors, sub-component Carriage

is refined and afterwards decomposed originating sub-component CarriageDoors. Ben-

efiting from an existing generic development for carriage doors GCDoor, we consider

this development as a pattern and instantiate two kind of carriage doors: service and

emergency doors. Although the instantiation is similar for both types of doors, the

resulting instances can be further refined independently. Using generic instantiation, we

avoid having to prove the proof obligations regarding the pattern GCDoor : GCDoor M0,

GCDoor M1 and GCDoor M2 (in the overall 257 POs). This figure only considers the

instantiation of emergency doors (the instantiation of service doors would imply twice

Chapter 6 Case Study 159

the number of POs).

From the experience of other developments involving a large number of refinements lev-

els or refinements with large models, the development tools reach a point where it is not

possible to edit the model due to the high amount of resources required to do it (or it

is done very slowly). The decomposition is a possible solution that alleviates this issue

by splitting the model into more tool manageable dimensions. Following a top-down

approach, developed models become more complex in each refinement step. Neverthe-

less by applying decomposition, we alleviate the consequences of such complexity by

separating concerns (architecture approach), decreasing the number of events and vari-

ables per sub-component which results in models that are more manageable from a tool

point of view. Moreover, for each refinement, the properties (added as requirements)

are preserved. Using generic instantiation, we avoid proving the pattern proof obliga-

tions GCDoor. Therefore we reach our goal of reusing existing developments as much as

possible and discharge as little proof obligations as possible. Even the interactive proofs

were relatively easy to discharge once the correct tactic was discovered. This task would

be more di�cult without the decomposition due to the elevated number of hypotheses

to considered for each PO. Nevertheless we believe that the e↵ort of discharging proof

obligations could be minimised by having a way to reuse tactics. In particular when the

same steps are followed to discharge similar POs.

In a combination of refinement and instantiation, we learned that the abstract machine

and the abstract pattern do not necessarily match perfectly. In particular, some extra

guards and parameters may exist resulting from previous refinements in the instance.

Nevertheless the generic model can still be reused. We can (shared event) compose the

pattern with another machine in a way that the resulting events include the additional

parameters and guards to guarantee a valid refinement. Another interesting conclusion is

that throughout an instantiation, it is possible not to use all the generic events. A subset

of generic events can be instantiated in opposition to instantiate all. This a consequence

of the event refinements that only depend on abstract and concrete events. Nevertheless

this only applies for safety properties. If we are interested in liveness properties, the

exclusion of a generic event may result in a system deadlock.

With this case study we aim to illustrate the application of decomposition and generic

instantiation as techniques to help the development of formal models. Following these

techniques, the development is structured in a way that simplifies the model by sepa-

rating concerns and aspects and decreases the number of proof obligations to be dis-

charged. Although we use Event-B, these techniques are generic enough to suit other

formal notations and other case studies. Formal methods has been widely used to val-

idate requirements of real systems. The systems are formally described and properties

are checked to be preserved whenever a system transition occurs. Usually this result

in complex models with several properties to be preserved, therefore structuring and

reusability are pursued to facilitate the development. Lutz [114] describes the reuse of

160 Chapter 6 Case Study

formal methods when analysing the requirements and designing the software between

two spacecrafts’ formal models. Stepney et al. [177, 178] propose patterns to be applied

to formal methods in system engineering. Using the Z notation, several patterns (and

anti-patterns) are identified and catalogued to fit particular kind of models. These pat-

terns introduce structure to the models and aim to aid formal model developers to choose

the best approach to model a system, using some examples. Although the patterns are

expressed for Z, they are generic enough to be applied to other notations. Comparing

with the development of our case study, the instantiation of service and emergency doors

corresponds to the Z promotion, where a global system is specified in terms of multiple

instances of local states and operations. Although there is not an explicit separation of

local and global states in our case study, service and emergency doors states are con-

nected to the state of CarriageDoor and we even use decomposition, instantiation and

refactoring (called meaning preservation refactoring steps in Z promotion) to fit into a

specific pattern. [177] suggests template support and architecture patterns to be sup-

ported by tools, something that currently does not happen. We have a similar viewpoint

and we would like to address this issue in the future. Templates could be customised

according to the modeller’s needs and selected from an existing list, perhaps categorised

as suggested in [177].

Butler [44] uses the shared event approach in classical B to decompose a railway system

into three sub-components: Train, Track and Communication. The system is modelled

and reasoned as a whole in an event-based approach, both the physical system and

the desired control behaviour. Our case study follows a similar methodology applied

to a metro system following the same shared event style. Moreover we introduce more

requirements regarding the trains and the carriage doors, expressed through the use of

decomposition and generic instantiation.

