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a b s t r a c t

In this paper a new system identification algorithm is introduced for Hammerstein systems based on

observational input/output data. The nonlinear static function in the Hammerstein system is modelled

using a non-uniform rational B-spline (NURB) neural network. The proposed system identification

algorithm for this NURB network based Hammerstein system consists of two successive stages. First the

procedure. Then the remaining parameters are estimated by the method of the singular value

decomposition (SVD). Numerical examples including a model based controller are utilized to

demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse

of the nonlinear static function approximated by NURB network, followed by a linear pole assignment

controller.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The Hammerstein model, comprising a nonlinear static func-
tional transformation followed by a linear dynamical model, has
been widely researched [1–9]. It is a popular nonlinear plant/
process modelling approach for a wide range of biological/
engineering problems [10–13]. For example, it is a suitable model
for signal processing applications involving any nonlinear distor-
tion followed by a linear filter, the modelling of the human heart
in order to regulate the heart rate during treadmill exercises [14]
and the modelling of hydraulic actuator friction dynamics [15].

The model characterization/representation of the unknown
nonlinear static function is fundamental to the identification of
Hammerstein model. Various approaches have been developed in
order to capture the a priori unknown nonlinearity by use of both
parametric [8,9] and nonparametric methods [6,7,16]. In the
parametric approaches the unknown nonlinear function is
restricted by some parametric representation with a finite
ll rights reserved.

),
number of parameters. In particular, the nonlinear subsystem
often has a predetermined linear in the parameters model
structure. The special structure of Hammerstein models can be
exploited to develop hybrid parameter estimation algorithms
[3,9,17]. It has been shown that the Bernstein basis used in Bezier
curve is the best conditioned and the most stable among any
other polynomial basis [18]. Similar to Bezier curve, both the
uniform/nonrational B-spline curve and the non-uniform/rational
B-spline (NURB) curve have also been widely used in computer
graphics and computer aided geometric design (CAGD) [19].
These curves consist of many polynomial pieces, offering much
more versatility than do Bezier curves while maintaining the
same advantage of the best conditioning property. The early work
on the construction of B-spline basis functions is mathematically
involved and numerically unstable [20]. De Boor algorithm uses
recurrence relations and is numerically stable [20]. NURB is a
generalization of the uniform, nonrational B-splines, and offers
much more versatility and powerful approximation capability. Both
B-spline and NURB curves can be evaluated quickly using De Boor
algorithms. The system identification algorithm for the Hammerstein
model has been introduced based on the Bezier–Bernstein approx-
imation and the inverse of de Casteljau’s algorithm [21,22]. The
nonrational B-spline neural networks have been widely applied for
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Fig. 1. The Hammerstein system.
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nonlinear dynamical systems [23–25], including the modelling and
control of Hammerstein systems [26].

Alternatively rational models have been well researched in the
context of modelling and control of general nonlinear dynami-
cally systems [27–31]. These models provide a more concise
description to some systems than polynomial models, and can
be more appropriate models for certain applications. However the
structure detection and parameter estimation are very challen-
ging and need special treatments [27–31]. In comparison to
nonrational B-splines neural networks, the rational functions
used in [27–31] are not based on polynomial pieces, so they
may be less versatile due to its global nature.

Note that for the identification of the Hammerstein model
based on the uniform, nonrational B-splines neural network, the
optimization of model output with respect to the number/loca-
tion of knots is an intractable mixed integer problem. With the
number of knots and their location determined, conventional
nonlinear optimization algorithms are applicable for determining
the parameters in the B-spline function based Hammerstein
model. If there is severe local nonlinearity, the location of knots
need to be empirically set by the user by inserting more knots at
higher density in regions with high curvatures. These regions
should be identified by trial and error during an iterative model-
ling process. Clearly this trial and error approach cannot yield the
optimum solution.

The NURB neural network possesses a much more powerful
modelling capability than a conventional nonrational B-spline
neural network because of the extra shaping parameters. This
motivates us to propose the use of NURB neural networks to
model the nonlinear static function in the Hammerstein system.
The positiveness constraints are imposed on the shaping para-
meters in the NURB model in order to avoid singularity in the
model. The assertion is that the severe local nonlinearity can be
approximated better by optimizing the shaping parameters in the
NURB neural networks, hence the need of optimizing the number/
location of knots could be relaxed. This alleviates tractability
issue, e.g. for optimizing number/location of knots, because all the
adjustable parameters are continuous variables and the conven-
tional nonlinear optimization algorithms are applicable for their
estimation. However the joint estimation of all parameters in the
Hammerstein based on NURB neural networks, subject to con-
straints, is still difficult. This motivates us to develop a hybrid
parameter estimation algorithm that is simple to implement, by
exploiting the special structure of resultant NURB neural network
based Hammerstein model.

This paper introduces a hybrid system identification consisting
two successive stages. We note that the model output can be
represented as a linear in the parameters model once the shaping
parameters are fixed. This means that the mean squares error due
to the shaping parameters can be easily obtained using the least
squares method, without explicitly estimating the other para-
meters. In the proposed algorithm the shaping parameters in
NURB neural networks are estimated using the particle swarm
optimization (PSO) as the first step, in which the mean square
error is used as the cost function. The PSO [32,33] constitutes a
population based stochastic optimization technique, which was
inspired by the social behaviour of bird flocks or fish schools. The
algorithm commences with random initialisation of a swarm of
individuals, referred to as particles, within the specific problem’s
search space. It then endeavours to find a globally optimum
solution by gradually adjusting the trajectory of each particle
towards its own best location and towards the best position of the
entire swarm at each optimization step. The PSO method is
popular owing to its simplicity in implementation, ability to rapidly
converge to a ‘‘reasonably good’’ solution and to ‘‘steer clear’’ of
local minima. It has been successfully applied to wide-ranging
optimization problems [34–38]. In order to satisfy the shaping
parameter constraints, the normalisation are applied in PSO as
appropriate. Once the shaping parameters are determined. The
remaining parameters can be estimated by Bai’s overparametriza-
tion approach [3], or the Gauss–Newton algorithm subject to
constraints as proposed in [22]. We used Bai’s overparametrization
approach [3] in this study.

For completeness a model based controller is utilized to
demonstrate the efficacy of the proposed approach. A popular
treatment of handling the Hammerstein model is to remove the
nonlinearity via an inversion [39–41]. In this study, the controller
consists of computing the inverse of the nonlinear static function
approximated by NURB, followed by a linear pole assignment
controller. The linearization of the closed loop system is achieved
by inserting the inverse of the identified static nonlinearity via
the inverse of De Boor algorithm [26] which was introduced for
the control of B-spline based Hammerstein systems. It is shown
that the inverse of De Boor algorithm [26] is also applicable to
NURB based Hammerstein systems.
2. The Hammerstein system

The Hammerstein system, as shown in Fig. 1, consists of a
cascade of two subsystems, a nonlinear memoryless function Cð�Þ
as the first subsystem, followed by a linear dynamic part as the
second subsystem. The system can be represented by

yðtÞ ¼ ŷðtÞþxðtÞ ¼�a1yðt�1Þ�a2yðt�2Þ� � � ��ana yðt�naÞ

þb1vðt�1Þþ � � � þbnb
vðt�nbÞþxðtÞ ð1Þ

vðt�jÞ ¼Cðuðt�jÞÞ, j¼ 1, . . . ,nb ð2Þ

where y(t) is the system output and u(t) is the system input. xðtÞ is
assumed to be a white noise sequence independent of u(t) with zero
mean and variance of s2. v(t) is the output of nonlinear subsystem
and the input to the linear subsystem. aj’s, bj’s are parameters of the
linear subsystem. na and nb are assumed known system output and
input lags. Denote a¼ ½a1, . . . ,ana �

T ARna and b¼ ½b1, . . . ,bnb
�T ARnb .

It is assumed that Aðq�1Þ ¼ 1þa1q�1þ � � � þana q�na and
Bðq�1Þ ¼ b1q�1þ � � � þbnb

q�nb are coprime polynomials of q�1,
where q�1 denotes the backward shift operator. The gain of the
linear subsystem is given by

G¼ lim
q-1

Bðq�1Þ

Aðq�1Þ
¼

Pnb

j ¼ 1 bj

1þ
Pna

j ¼ 1 aj

ð3Þ

The two objectives of the work are that of the system
identification and the subsequent controller design for the iden-
tified model. The objective of system identification for the above
Hammerstein model is that, given an observational input/output
data set DN ¼ fyðtÞ,uðtÞg

N
t ¼ 1, to identify Cð�Þ and to estimate the

parameters aj, bj in the linear subsystems. Note that the signals
between the two subsystems are unavailable.

Without significantly losing generality the following assump-
tions are initially made about the problem:

Assumption 1. Cð�Þ is a one to one mapping, i.e. it is an invertible
and continuous function.
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Assumption 2. u(t) is bounded by UminouðtÞoUmax, where Umin

and Umax are assumed known finite real values.

Assumption 3. The persistence excitation condition is given by

rank

uðnaþnbÞ � � � uðnaþ1Þ

^ ^ ^

uðN�1Þ � � � uðN�nbÞ

0
B@

yðnaþnbÞ � � � yðnbþ1Þ

^ ^ ^

yðN�1Þ � � � yðN�naÞ

1
CA¼ naþnb

ð4Þ

3. Modelling of Hammerstein system using NURB neural
network

In this work the non-uniform rational B-spline (NURB) neural
network is adopted in order to model Cð�Þ. De Boor’s algorithm is
a fast and numerically stable algorithm for evaluating B-spline
basis functions [20]. Univariate B-spline basis functions are
parameterized by the order of a piecewise polynomial of order
k, and also by a knot vector which is a set of values defined on the
real line that break it up into a number of intervals. Supposing
that there are d basis functions, the knot vector is specified by
(dþk) knot values, fU1,U2, . . . ,Udþkg. At each end there are k knots
satisfying the condition of being external to the input region, and
as a result the number of internal knots is (d�k). Specifically

U1oU2oUk ¼UminoUkþ1oUkþ2

o � � �oUdoUmax ¼Udþ1o � � �oUdþk ð5Þ

Given these predetermined knots, a set of d B-spline basis
functions can be formed by using the De Boor recursion [20],
given by

Bð0Þj ðuÞ ¼
1 if UjruoUjþ1

0 otherwise

�
j¼ 1, . . . ,ðdþkÞ ð6Þ

BðiÞj ðuÞ ¼
u�Uj

Uiþ j�Uj
Bði�1Þ

i ðuÞ

þ
Uiþ jþ1�u

Uiþ jþ1�Ujþ1
Bði�1Þ

jþ1 ðuÞ,

j¼ 1, . . . ,ðdþk�iÞ

9>>>>>>=
>>>>>>;

i¼ 1, . . . ,k ð7Þ

We model Cð�Þ as the NURB neural network in the form of

CðuÞ ¼
Xd

j ¼ 1

N ðkÞj ðuÞoj ð8Þ

with

N ðkÞj ðuÞ ¼
ljBðkÞj ðuÞPd

j ¼ 1 ljBðkÞj ðuÞ
ð9Þ

where oj’s are weights, lj40’s the shaping parameters that are to
be determined. Denote x¼ ½o1, . . . ,od�

T ARd. k¼ ½l1, . . . ,ld�
T ARd.

For uniqueness we set the constraint
Pd

j ¼ 1 lj ¼ 1. Note that due to
the piecewise nature of B-spline functions, there are only (kþ1)
basis functions with non-zero values for any point u. Hence the
computational cost for the evaluation of CðuÞ based on the De-Boor
algorithm is determined by the polynomial order k, rather than the
number of knots, and this is in the order of Oðk2

Þ.
The optimization of model output with respect to the number/

location of knots is an intractable mixed integer problem. With
the number of knots and their location determined, conventional
nonlinear optimization algorithms are applicable for determining
the weights and the shaping parameters. Note that if lj ¼ 1=d (8j)
the NURB network based Hammerstein systems becomes a
nonrational B-spline based Hammerstein systems [26], for which
the system identification can be carried out iteratively in practice.
The number and locations of knots are predetermined to produce
a model as small as possible that can still provide good modelling
capability. The model performance may not be particularly
sensitive to the location of knots if these are evenly spread out,
and there is no severe local nonlinearity. However, if there is
severe local nonlinearity, the location of knots need to be
empirically set by the user by inserting more knots at higher
density in regions with high curvatures. These regions can be
identified by trial and error during the iterative modelling
process.

Our algorithm involves estimating the weights and the shap-
ing parameters in the NURB model. Note that the proposed NURB
neural network possesses a much more powerful modelling
capability than a nonrational B-spline network because of the
extra shaping parameters. The assumption is that even if there is
severe local nonlinearity it is possible to improve modelling
accuracy by adjusting the associated shaping parameters. This is
advantageous because all the parameters are continuous variables
that can be solved by nonlinear optimization, compared to
presetting the knots by trial and error which does not yield to
the optimum.

With specified knots and over the estimation data set DN,
k,x,a,b may be jointly estimated via

min
k,x,a,b

J¼
XN

t ¼ 1

ðy�ŷðt,k,x,a,bÞÞ2
( )

ð10Þ

subject to

ljZ0 8j, kT 1¼ 1 and G¼ 1 ð11Þ

in which G¼1 is imposed for unique solution. We point out that
this is still a very difficult nonlinear optimization problem due to
the mixed constraints, and this motivates us to propose the
following hybrid procedure. It is proposed that the shaping
parameters lj’s are found using the PSO, as the first step of
system identification, followed by the estimation of the remaining
parameters.
4. The system identification of Hammerstein system based on
NURB using PSO

4.1. The basic idea

Initially consider using NURB approximation with a specified
shape parameter vector k, the model predicted output ŷðtÞ in (1)
can be written as

ŷðtÞ ¼ �a1yðt�1Þ�a2yðt�2Þ� � � ��ana yðt�naÞþb1

Xd

j ¼ 1

ojN ðkÞj ðt�1Þ

þ � � � þbnb

Xd

j ¼ 1

ojN ðkÞj ðt�nbÞ ð12Þ

Over the estimation data set DN ¼ fyðtÞ,uðtÞg
N
t ¼ 1, (1) can be

rewritten in a linear regression form

yðtÞ ¼ ½pðxðtÞÞ�T!þxðtÞ ð13Þ

where xðtÞ ¼ ½�yðt�1Þ, . . . ,�yðt�naÞ,uðt�1Þ, . . . ,uðt�nbÞ�
T is system

input vector of observables with assumed known dimension
of ðnaþnbÞ, !¼ ½aT ,ðb1o1Þ, . . . ,ðb1odÞ, . . . ðbnb

o1Þ, . . . ,ðbnb
onb
Þ�T A

Rnaþd�nb ,

pðxðtÞÞ ¼ ½�yðt�1Þ, . . . ,�yðt�naÞ,

N ðkÞ1 ðt�1Þ, . . . ,N ðkÞd ðt�1Þ, . . .N ðkÞ1 ðt�nbÞ, . . . ,N ðkÞd ðt�nbÞ�
T ð14Þ

(13) can be rewritten in the matrix form as

y¼ P!þN ð15Þ

where y¼ ½yð1Þ, . . . ,yðNÞ�T is the output vector. N¼ ½xð1Þ, . . . ,xðNÞ�T ,
and P is the regression matrix
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P¼

p1ðxð1ÞÞ p2ðxð1ÞÞ � � � pnaþd�nb
ðxð1ÞÞ

p1ðxð2ÞÞ p2ðxð2ÞÞ � � � pnaþd�nb
ðxð2ÞÞ

. . . . . . . . . . . .

p1ðxðNÞÞ p2ðxðNÞÞ � � � pnaþd�nb
ðxðNÞÞ

2
66664

3
77775 ð16Þ

The parameter vector ! can be found as the least squares
solution of

!LS ¼ B�1PT y ð17Þ

provided that B¼ PT P is of full rank. Alternatively if this condition
is violated, i.e. RankðBÞ ¼ ronaþd � nb, then performing the eigen-
value decomposition BQ ¼QS, where S¼ diag½s1, . . . ,sr ,0, . . . ,0�
with s14s24 � � �4sr 40. Q ¼ ½q1, . . . ,qnaþd�nb

�, followed by
truncating the eigenvectors corresponding to zero eigenvalues,
we have

!
svd
LS ¼

Xr

i ¼ 1

yT Pqi

si
qi ð18Þ

Thus the mean square error can be readily computed from

JðkÞ ¼ ½y�P!svd
LS �

T ½y�P!svd
LS �=N ð19Þ

for any specified k. Notice that it is computationally simple to
evaluate JðkÞ due to the fact that the model has a linear in the
parameter structure for a given k. This is an important observa-
tion for simplifying the algorithm design. This suggests that we
can optimize k as the first task. The information of other models
parameters are implicit in !

svd
LS and dependent on k. We point out

that at this stage other models parameters are not estimated
which would be much more computationally involved but
unnecessary.

4.2. Particle swarm optimization for estimating the shaping

parameters lj’s

In the following we propose to apply the PSO algorithm
[32,33], and aim to solve

kopt ¼ arg min
kA
Qd

j ¼ 1
Lj

JðkÞ s:t: kT 1¼ 1 ð20Þ

where 1 denotes a vector of all ones with appropriate dimension.

Yd

j ¼ 1

Lj ¼
Yd

j ¼ 1

½0;1� s:t: kT 1¼ 1 ð21Þ

defines the search space. A swarm of particles, fkðlÞi g
S
i ¼ 1, that

represent potential solutions are ‘‘flying’’ in the search spaceQd
j ¼ 1 Lj, where S is the swarm size and index l denotes the

iteration step. The algorithm is summarized as follows.
(a) Swarm initialisation. Set the iteration index l¼0 and

randomly generate fkðlÞi g
S
i ¼ 1 in the search space

Qd
j ¼ 1 Lj. These

are obtained by randomly set each element of fkðlÞi g
S
i ¼ 1 as randðÞ

(denoting the uniform random number between 0 and 1),
followed normalizing them by

kð0Þi ¼ kð0Þi

Xd

j ¼ 1

kð0Þi 9j

,
ð22Þ

where �9j denotes the jth element of �, so that fkð0Þi g
T 1¼ 1 is

valid.

(b) Swarm evaluation. The cost of each particle kðlÞi is obtained

as JðkðlÞi Þ. Each particle kðlÞi remembers its best position visited so

far, denoted as pbðlÞi , which provides the cognitive information.

Every particle also knows the best position visited so far among

the entire swarm, denoted as gbðlÞ, which provides the social
information. The cognitive information fpbðlÞi g
S
i ¼ 1 and the social

information gbðlÞ are updated at each iteration
For (i¼1; irS; iþþ)

If (JðkðlÞi Þo JðpbðlÞi Þ) pbðlÞi ¼ kðlÞi ;

End for;

in ¼ arg min
1r irS

JðpbðlÞi Þ;

If (JðpbðlÞ
in
Þo JðgbðlÞÞ) gbðlÞ ¼ pbðlÞ

in
;

(c) Swarm update. Each particle kðlÞi has a velocity, denoted as
cðlÞi , to direct its ‘‘flying’’. The velocity and position of the ith
particle are updated in each iteration according to

cðlþ1Þ
i ¼ m0nc

ðlÞ
i þrandðÞnm1nðpbðlÞi �kðlÞi ÞþrandðÞnm2nðgbðlÞ�kðlÞi Þ

ð23Þ

kðlþ1Þ
i ¼ kðlÞi þcðlþ1Þ

i ð24Þ

where m0 is the inertia weight, m1 and m2 are the two acceleration
coefficients. In order to avoid excessive roaming of particles
beyond the search space [37], a velocity space

Yd

j ¼ 2

Uj ¼
Yd

j ¼ 2

½�Uj,max,Uj,max� ð25Þ

is imposed on cðlþ1Þ
i so that
If (cðlþ1Þ
i 9j4Uj,max) cðlþ1Þ

i 9j ¼ Uj,max;

If (cðlþ1Þ
i 9jo�Uj,max) cðlþ1Þ

i 9j ¼�Uj,max.
Moreover, if the velocity as given in Eq. (23) approaches zero, it is
reinitialised proportional to Uj,max with a small factor n

If ðcðlþ1Þ
i 9j ¼ ¼ 0Þcðlþ1Þ

i 9j ¼ 7randðÞnnnUj,max ð26Þ

In order to ensure each element of kðlþ1Þ
i that it satisfies the

constraint and stays in the space, we modified constraint check in
the PSO as follows:
If (kðlþ1Þ
i 9jo0Þ kðlþ1Þ

i 9j ¼ 0;
then

kðlþ1Þ
i ¼ kðlþ1Þ

i

Xd

j ¼ 1

kðlþ1Þ
i 9j

,
ð27Þ

Note that the normalization step that we introduced here does
not affect the cost function value, rather it effectively keeps the
solution stay inside the bound.

(d) Termination condition check. If the maximum number of
iterations, Imax, is reached, terminate the algorithm with the
solution gbðImaxÞ; otherwise, set l¼ lþ1 and go to Step (b).

Ratnaweera et al. [35] reported that using a time varying
acceleration coefficient (TVAC) enhances the performance of PSO.
We adopt this mechanism, in which m1 is reduced from 2.5 to
0.5 and m2 varies from 0.5 to 2.5 during the iterative procedure

m1 ¼ ð0:5�2:5Þnl=Imaxþ2:5

m2 ¼ ð2:5�0:5Þnl=Imaxþ0:5 ð28Þ

The reason for good performance of this TVAC mechanism can be
explained as follows. At the initial stages, a large cognitive
component and a small social component help particles to
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wander around or better exploit the search space, avoiding local
minima. In the later stages, a small cognitive component and a
large social component help particles to converge quickly to a
global minimum. We use m0 ¼ randðÞ at each iteration.

The search space as given in Eq. (21) is defined by the specific
problem to be solved, and the velocity limit Uj,max is empirically
set. An appropriate value of the small control factor n in Eq. (26)
for avoiding zero velocity is empirically found to be n¼ 0:1 for our
application.

4.3. Estimating the parameter vectors x,a,b using !
svd
LS

In this section we describe the second stage of Bai’s two
stage identification algorithm [3] which can be used to
recover x,a,b from !

svd
LS ðkoptÞ based on the result of PSO

above. Our final estimate of â, which is simply taken as the
subvector of the resultant !

svd
LS ðkoptÞ, consisting of its first na

elements.
Rearrange the ðnaþ1Þth to ðnaþðdþ1Þ � nbÞth elements of

!
svd
LS ðkoptÞ into a matrix

M¼

b1o0 b1o1 � � � b1od

b2o0 b2o1 � � � b2od

. . . . . . . . . . . .

bnb
o0 bnb

o1 � � � bnb
od

2
66664

3
77775¼ bxT ARnb�ðdþ1Þ

ð29Þ

The matrix M has rank 1 and its singular value decomposition is
of the form

M¼C

dM 0 � � � 0

0 0 � � � 0

. . . . . . . . . . . .

0 0 � � � 0

2
6664

3
7775DT
¼C

dM

0

^

0

0

2
6666664

3
7777775 1 0 . . . 0
� �

DT
ð30Þ

where C¼ ½C1, . . . ,Cnb
�ARnb�nb and D¼ ½D1, . . . ,Ddþ1�A

Rðdþ1Þ�ðdþ1Þ, where Ci (i¼ 1, . . . ,nb) and Ki (i¼ 1, . . . ,ðdþ1Þ) are
orthonormal vectors. dM is the sole non-zero singular value of M.
b and x can be obtained using

b̂ ¼ dMG1

x̂ ¼D1 ð31Þ

followed by

b̂’bb̂

x̂’x̂=b ð32Þ

where b¼ ð1þ
Pna

j ¼ 1 âjÞ=ð
Pnb

j ¼ 1 b̂jÞ.
Note that the standard Bai’s approach as above may suffer a

serious numerical problem that the matrix M turns out to have
rank higher than one, resulting in the parameters estimator far
from usable. This issue was discussed in [42], in which the
modified SVD approach was proposed to address the problem.
The more stable modified SVD approach [42] is used in our
simulations.

4.4. A summary of the complete system identification algorithm

For completeness, the system identification algorithm is sum-
marized below.
(1)
 Based on the training data set and any prior knowledge of the
system, predetermine the number of basis functions d, the
polynomial order k and the input range [Umin, Umax]. Prede-
termine a set of (dþk) knots within the range according to (5).
(2)
 Apply the PSO to determine k̂ as the optimal shaping para-
meter vector kopt according to Section 4.2.
(3)
 Using the shaping parameters as specified by kopt, find
!

svd
LS ðkoptÞ based on (18). Subsequently apply the method

described in Section 4.3 to find the parameter vector â, b̂
and x̂ from !

svd
LS ðkoptÞ.
(4)
 Based on x̂ and k̂, the underlying function Cð�Þ for any point
within the range ½Umin,Umax� can be recovered by applying the
De Boor algorithm using (6)–(9).
5. An illustrative example

The Hammerstein system is a suitable model for signal
processing applications involving any nonlinear distortion fol-
lowed by a linear filter, e.g. the modelling of hydraulic actuator
friction dynamics [15], liquid level control system for a non-
constant cross-sectional area tank [43]. A Hammerstein system is

simulated, in which the linear subsystem is Aðq�1Þ ¼ 1�1:2q�1þ

0:9q�2, Bðq�1Þ ¼ 1:7q�1�q�2, and the nonlinear subsystem CðuÞ ¼

2 signðuÞ
ffiffiffiffiffiffiffi
9u9

q
. The variances of the additive noise to the system

output is set as 0.01 (low noise) and 0.25 (high noise) respec-
tively. About 1000 training data samples y(t) were generated by
using (1) and (2), where u(t) was uniformly distributed random
variable uðtÞA ½�1:5,1:5�. The signal to noise ratio are calculated as
36 dB and 22 dB respectively. The polynomial degree of B-spline
basis functions was set as k¼2 (piecewise quadratic). The knots
sequence Uj is set as

½�3:2, �2:4, �1:6, �0:8, �0:05, 0, 0:05, 0:8, 1:6, 2:4, 3:2�

Initially the system identification was carried out as outlined
in Section 4.4. In the modified PSO algorithm, we set S¼20,
Imax ¼ 20, Uj,max ¼ 0:025. The resultant eight NURB basis functions
for the two data sets are plotted in Fig. 2. The modelling results
are shown in Table 1, for the linear subsystem. Fig. 3 demon-
strates for the nonlinear subsystem obtained with s2 ¼ 0:01 data
set. (The plot obtained with s2 ¼ 0:25 data set has the same
appearance except for the external knots sequences.)

The simulations of the pole assignment controller (see
Appendix A) was experimented based on a given polynomial
Tðq�1Þ ¼ 1�0:6q�1þ0:1q�2. Under the assumption that the pro-
posed inverse of De Boor algorithm can cancel the nonlinearity in
the system which is modelled by the identified NURB model as
shown in Fig. 3, and by using parameter estimates given in
Table 1, the required controller polynomials are estimated, e.g.
for the data set from noise sequence variance at 0.01,

Fðq�1Þ ¼ 1�0:4873q�1

and

Gðq�1Þ ¼ 0:6369�0:4354q�1

and we predetermine

Hðq�1Þ ¼ 0:5308þ0:1834q�1

The learning rate was preset as Z¼ 0:1. The maximum value of
iteration number m was predetermined as 100. The reference
signals r(t) are generated as a series of sinusoidal wave with its
magnitude and frequency changing every 200 time steps.
Fig. 4(a) and (b) plots the resultant control signal and system
response to the reference signal, respectively, when the output
noise variance is set at 0.01. It can be concluded that the proposed
method has excellent results in terms of system identification as
well as the subsequent control for the identified systems.



Table 1
Results of linear subsystem parameter estimation for two systems.

Parameters a1 a2 b1 b2

True parameter �1.2 0.9 1.7 �1

Estimate parameters (s2 ¼ 0:01) �1.2004 0.9004 1.7077 �1.0076

Estimate parameters (s2 ¼ 0:25) �1.2015 0.9027 1.7424 �1.0412
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Fig. 3. The modelling result for the nonlinear function CðuÞ (s2 ¼ 0:01).−1.5 −1 −0.5 0 0.5 1 1.5
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Fig. 4. The results of the pole assignment controller.
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6. Conclusions

This article has introduced a new system identification algorithm
for the Hammerstein systems based on observational input/output
data, using the non-uniform rational B-spline (NURB) neural net-
work. The main contribution is to propose the PSO for the estima-
tion of the shaping parameters in NURB neural networks. For
completeness, a model based controller consists of computing the
inverse of the nonlinear static function approximated by NURB
neural network, followed by a linear pole assignment controller is
included. An illustrative example is utilized to demonstrate the
efficacy of the proposed approaches.
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Appendix A. The pole assignment controller

The pole assignment controller used in the numerical exam-
ples is as shown in Fig. 5, in which

Fðq�1Þ ¼ 1þ f 1q�1þ � � � þ f nf
q�nf ð33Þ

Gðq�1Þ ¼ g0þg1q�1þ � � � þgng
q�ng ð34Þ

Hðq�1Þ ¼ h0þh1q�1þ � � � þhnh
q�nh ð35Þ

where nf, ng and nh are lags in the controller to be determined.
Here the problem under study is the control of the Hammerstein
system, of which the nonlinear subsystem is modelled as a NURB
curve and identified from input/output data. The proposed con-
troller is the pole assignment design scheme for F, G, H [44,45],
followed by Ĉ

�1
, which is calculated using the inverse of the De

Boor algorithm as described in Appendix B. We assume that the
modelling of Ĉ

�1
using the inverse of De Boor algorithm as

described in Appendix B can cancel the actual nonlinearity in
Hammerstein system. Hence the closed loop description of the
system is

½AFþBG�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
closed loop denominator

yðtÞ ¼ BHrðtÞ ð36Þ

where r(t) is a reference signal for the system output y(t) to
follow. The dynamics of the closed loop are specified by a stable
polynomial

AFþBG¼ Tðq�1Þ ¼ 1þt1q�1þ � � � þtnq�n ð37Þ

The coefficients of polynomials F, G can be solved by setting
nf ¼ nbþ1, ng ¼ na�1, nrnaþnbþ1. H can be predetermined as
desired subject to

lim
q-1

Bðq�1ÞHðq�1Þ

Tðq�1Þ
¼ 1 ð38Þ

From Fig. 5, it is clear that the actual control input u(t) applied to
the Hammerstein system is given by

uðtÞ ¼ Ĉ
�1
ðv̂ðtÞÞ ¼ Ĉ

�1 HrðtÞ�GyðtÞ

F

� �
ð39Þ

Rewriting (39) in a recursive form yields the following control
law:

1: v̂ðtÞ ¼
Xnh

j ¼ 0

hjrðt�jÞ�
Xng

j ¼ 0

gjyðt�jÞ�
Xnf

j ¼ 1

f jv̂ðt�jÞ

2: Find uðtÞ ¼ Ĉ
�1
ðv̂ðtÞÞ

using the inverse of De Boor algorithm ð40Þ
1
−1ψ

G

F
H

v(t)r (t)
u

_

+

Fig. 5. The control of Hammerstein system using pole
Note that in practice if v̂ðtÞ is out of the region between ĈðUminÞ

and ĈðUmaxÞ, v̂ðtÞ is reset as 0 to avoid this to happen at the next
time step.
Appendix B. The inverse of De Boor algorithm

Using estimated weights ô j and shaping parameters l̂ j, the
output of the nonlinear subsystem is represented by

v¼ ĈðuÞ ¼

Pd
j ¼ 1 ô jl̂jBðkÞj ðuÞPd

j ¼ 1 l̂jBðkÞj ðuÞ
ð41Þ

The inverse of De Boor algorithm [26] solves the problem of

finding its inverse, u¼ Ĉ
�1
ðvÞ, given that v lies in the region

between two points, ĈðUminÞ and ĈðUmaxÞ. Initially a sequence in
the domain of v is generated as

Vi ¼

Pd
j ¼ 1 ô jl̂jBðkÞj ðUiÞPd

j ¼ 1 l̂jBðkÞj ðuÞ
, i¼ 1;2, . . . ,ðdþkÞ ð42Þ

Note that v¼ ĈðuÞ is an one-to-one mapping, and this means that
the resultant sequence due to the internal knots ½Vk, . . . ,Vd� is
either increasing or decreasing.

B.1. The algorithm
(1)
 (t)

assig
Given v, and the sequence fVig, initially find

l¼ argfðv�ViÞðv�Viþ1Þo0,i¼ k,kþ1, . . . ,ðd�1Þg ð43Þ
(2)
 Initialise uð0Þ as a random number with Ulouð0ÞoUlþ1.

(3)
 The (mþ1)th step is given by

uðmþ1Þ ¼ uðmÞ þDuðmÞ ¼ uðmÞ þZ � sign
Vd�Vk

Ud�Uk

	 

ðv�ĈðuðmÞÞÞ

ð44Þ

where

signðsÞ ¼
1 if sZ0

�1 if so0

(
ð45Þ

0oZ51 is the learning rate, that is preset empirically.
ĈðuðmÞÞ is calculated using De Boor algorithm ((6)–(9)
and (41)).
(4)
 Set m¼mþ1, repeat Steps 3 and 4, until 9DuðmÞ9=ðUd�UkÞoe,
where e40 is a predetermined small number in order to
achieve the required precision, e.g. e¼ 10�3. Or the iteration
B

A
ψ(.)

v(t) y(t)

Hammerstein system

nment and the inverse of De Boor algorithm.
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can be terminated when m reaches a predetermined max-
imum value.
The inverse of De Boor algorithm was introduced for the control
of B-spline based Hammerstein systems [26], in which the
convergence was analyzed as Theorem 1 in [26]. It is easy to
verify that the same procedure and convergence analysis is
applicable for NURB approximation based Hammerstein systems
(with fVig, ĈðuÞ evaluation by NURB basis functions as here rather
than nonrational B-spline function as in [26]).
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