
Snow White Clouds and the Seven Dwarfs

Stephen C. Phillips, Vegard Engen and Juri Papay

IT Innovation Centre

University of Southampton

Southampton, U.K.

{scp, ve, jp}@it-innovation.soton.ac.uk

Abstract—With increasing availability of Cloud computing

services, this paper addresses the challenge consumers of

Infrastructure-as-a-Service (IaaS) have in determining which

IaaS provider and resources are best suited to run an application

that may have specific Quality of Service (QoS) requirements.

Utilising application modelling to predict performance is an

attractive concept, but is very difficult with the limited

information IaaS providers typically provide about the

computing resources. This paper reports on an initial

investigation into using Dwarf benchmarks to measure the

performance of virtualised hardware, conducting experiments on

BonFIRE and Amazon EC2. The results we obtain demonstrate

that labels such as ‘small’, ’medium’, ’large’ or a number of

ECUs are not sufficiently informative to predict application

performance, as one might expect. Furthermore, knowing the

CPU speed, cache size or RAM size is not necessarily sufficient

either as other complex factors can lead to significant

performance differences. We show that different hardware is

better suited for different types of computations and, thus, the

relative performance of applications varies across hardware.

This is reflected well by Dwarf benchmarks and we show how

different applications correlate more strongly with different

Dwarfs, leading to the possibility of using Dwarf benchmark

scores as parameters in application models.

Keywords: application benchmarking; QoS; application modelling;

performance prediction, Dwarfs, BonFIRE, Amazon EC2.

I. INTRODUCTION

Today, different Infrastructure-as-a-Service (IaaS)
providers describe their infrastructure offerings in different
ways and do not necessarily provide very much information, if
at all, about the infrastructure being offered. For instance,
Amazon EC2 describes (and prices) their infrastructure in
terms of Amazon EC2 Compute Units (ECU) as well as the
number of virtual cores and RAM size. A machine providing
the capability of one ECU is said to be equivalent to a 1.0-1.2
GHz 2007 Opteron or 2007 Xeon processor. Given the limited
and heterogeneous information provided by IaaS providers,
how can anyone know what resources they will need to execute
their application with a particular quality of service (QoS)? If
the application is already adapted for the IaaS provider’s
system then it may be possible to just try the application out
and measure its performance, scaling the deployment as
required. But what if the application is not yet adapted, or what
if you want to choose between several IaaS providers?

We want to be able to predict the performance of an
application given a general description of the hardware
provided by the IaaS provider. The first challenge is to find

some generic and sufficiently informative way of describing
the hardware resources. Such a description should enable
prediction of application performance and we hypothesise that
the Dwarf benchmarks [1-3] are a good candidate. “A dwarf is
an algorithmic method that captures a pattern of computation
and communication” [1]. A set of many dwarf benchmark
scores can be thought of as a more detailed performance
description than the well-known pair of SPECint and SPECfp
[4] scores commonly used for measuring super-computer
performance. The second challenge is to model the application
in such a way that its performance can be predicted on a range
of infrastructure specifications (described as scores on Dwarf
benchmarks).

We therefore need two things:

1. A description of each candidate IaaS provider’s
resources in terms of benchmark scores.

2. A model that can predict the performance of the
application given the benchmark scores.

In this paper we describe a benchmark suite to measure the
performance of virtualised hardware. Ultimately we could
imagine each IaaS provider describing the performance of their
resources in terms of a standard set of benchmark scores or
even couching service level agreements (SLAs) in those terms.
Alternatively, a Platform-as-a-Service (PaaS) provider may
measure the performance of many IaaS providers, adding to
one of many possible services that could be offered.

Once the (virtualised) hardware is described in terms of
benchmark scores, these scores must be related to application
performance through an application models. These models can
help in many ways:

 Making better provisioning decisions: deploying the
infrastructure resources required for a given application
QoS rather than over-provisioning.

 Making better application scheduling decisions:
knowing the application runtime with a good reliability
permits more intelligent scheduling.

 Determining the optimal application configuration: the
performance of complex applications and business or
industrial data processing workflows with many
components can be greatly affected by their
configuration such as buffer sizes and number of
threads.

This work has been carried out in BonFIRE, an EC supported 7th
Framework Programme ICT project (FP7- 257386)

Figure 1. Generalised application model.

 Tracking uncertainty in business processes: many
processes are non-deterministic; predicting the
likelihood of completing tasks allows for the
management of risk.

In this study we use virtualised resources from Amazon
EC2 and from BonFIRE. EC2 requires no introduction, but
BonFIRE may be unknown to some readers. BonFIRE [5]
offers a multi-site testbed with heterogeneous cloud resources,
including compute, storage and networking resources, for
large-scale testing of applications, services and systems
targeting the Internet of Services community.

II. BACKGROUND

A. Computer Benchmarks

There are many general benchmark scores that may be used
to predict application performance. For instance, at the most
basic level, the SPECint and SPECfp [4] benchmarks measure
the integer and floating point arithmetic performance. The
LINPACK [6] and the more recent LAPACK [7] benchmarks
measure the performance of a computer when performing
linear algebra operations common in much scientific software.
We are concerned with correlation application performance to
benchmarks. For instance, one would expect the performance
of a chess program would be closely correlated with the
SPECint score and a numerical scientific computation would
correlate well with the SPECfp score. However, Seltzer et al.
[8] and Zhang [9] argue that application benchmarking is
important since standard benchmarks can be uninformative and
misleading. The closer the benchmark resembles the
application, the better the correlation will be, which is
important to our aim of predicting application performance.

A more recent approach to benchmarking is the Dwarf
taxonomy first introduced by Colella in 2004 [3], which has
been further developed at UC Berkeley [1, 2]. Dwarves have
been proposed as a higher level of abstraction than the plethora
of benchmark tests that exist and are intended to capture known
computational patterns. Initially, 7 Dwarves were proposed for
scientific computing applications, which were extended to 13
in [1] to cover SPEC and EEMBC [10] tests, as well as three
additional computing areas: machine learning, database
software, and computer graphics and games. The current 13

Dwarves are given in Table I.

The list of Dwarves is not final, which Asanovic et al. [1, 2]
do not claim; they do however stress the importance of the
abstraction so that the list does not grow too large. Che et al.
[11] have proposed parallel benchmarks based on the Dwarf
taxonomy, but argue that the Dwarf taxonomy alone may not
be sufficient to capture the behaviour in some applications.
Furthermore, in a recent study, Kaltofen [12] has identified a
need for Dwarves to cover symbolic computation.

The TORCH project (Testbed for Optimization ResearCH)
[13, 14] has identified several kernels for benchmarking
purposes, including a subset of the 13 Dwarfs listed in Table I
above, which can be downloaded from [15]. The current
collection contains kernels from: Graph Traversal, Structured
Grids, Dense Matrices, Sparse Matrices, Spectral, Particles and
MapReduce (Monte Carlo). For each Dwarf, several
algorithms are included in the suite which are different in the
implementation detail, but nevertheless are all part of a higher
level Dwarf. This suite has been adopted in our study, which is
detailed further in Section III.

Alongside performing benchmarking of Cloud resources,
we are also concerned with monitoring the effective
performance of VMs as this may vary over time depending on
load on the underlying hardware. Therefore, we are interested
in benchmarking resources over time, as the observed variation
in performance can be taken into account when predicting
application performance.

B. Application Modelling

A generic application model (Fig. 1) takes as input a
description of the expected static application workload, a
description of the resources (physical or virtual) used to
execute the application (including the resource reliability) and a
description of any expected user interactions which contribute
to the workload or otherwise affect the process. Using some
mathematical process, the model makes a prediction about the
application performance.

To give a concrete example from the EC IST IRMOS
project [16, 17], where some of this work stems from, consider
a web server hosting an e-learning application. The workload
would describe the number of participants in an e-learning
session, the resource description would be the networks
connecting the application to the users and the virtual hardware
deployed for the application, the reliability would describe the
QoS of the virtual hardware and networks (propensity to crash,

TABLE I. THE THIRTEEN DWARFS. THE DWARFS USED IN THIS STUDY ARE

MARKED WITH AN ASTERISK (*).

Dwarf name Description

Finite State Machines XML transformation and video compression

Combinatorial Logical functions, e.g., encryption

Graph Traversal* Decision Tree, searching, quicksort

Structured Grids* Regular grids, can be automatically refined

Unstructured Grids* Irregular grids, finite elements and nodes

Dense Matrices* Matrix to matrix operation

Sparse Matrices* Matrix to vector operations with sparse matrices

Spectral* Fast Fourier Transformations

Dynamic Programming Hidden Markov Models, sequence alignment

Particles* Interactions between particles

MapReduce (Monte
Carlo)*

Independent data sets, simple reduction at end
Ray-tracing, which is available in PARSEC

Backtrack and Branch &

Bound

Constraint optimisation, simplex algorithm

Graphical Models Hidden Markov Models and Bayesian Networks

latency, etc) and the user interactions would be a statistical
description of the frequency and magnitude of the interactions
between the users and the application. Using this data and a
mathematical model, the average response time of the web
server can be computed and the appropriate resources allocated
in order to achieve a certain QoS for the users.

There are different methods that can be adopted for
modelling, and a combination of several methods may be
necessary. For example, in the work introduced above [16, 17],
Discrete Event Simulation (DES) was used to model the
requests to the e-learning service as events passing through
different parts of the modelled system experiencing certain
delays depending on the amount of requests and capabilities of
the underlying hardware. To compute the innermost processing
time of components in such a model, you need a method of
estimating this based on a description of the hardware. In [17],
this was done based on extensive benchmarking of the
application on the known hardware the application could be run
on, which was used to train an Artificial Neural Network
(ANN).

In this paper we focus on the challenge of calculating the
innermost computation time and ignore the problems of
varying application workload and user interactions. To enable
such prediction to succeed on unseen hardware, it is necessary
to have a uniform description of hardware performance. We
hypothesise that this is achievable with Dwarf benchmarks.

III. METHOD

We have adapted several pieces of software (the ‘Dwarfs’)
and integrated them into an automated framework for
measuring the performance of a machine: the benchmark suite.
In addition we have integrated three applications which are also
executed and timed so that we can investigate the correlations
between application performance and Dwarf score.

A. Benchmarks

We have adopted the Dwarf benchmarks available in the
TORCH benchmark suite [13, 14]. This suite is not complete,
according to the list of Dwarfs suggested by Asanovic et al. [1,
2], which is highlighted in Table I. We have added one more
Dwarf, Unstructured Grid, using the Computational Fluid
Dynamics (CFD) software OpenFOAM [18].

In Addition to the Dwarf benchmarks, we are interested in
comparing the results with integer and floating point
benchmarks. Therefore, we have included Dhrystone [19, 20]
and Livermore Loops [21, 22].

Most of the Dwarfs are comprised of multiple algorithms.
Workloads of each algorithm have been carefully chosen to
require a reasonable runtime without using more memory than
available in a 1GB Linux machine. See Table II for an
overview of the chosen workloads and their execution times on
the reference machine. For Dhrystone and Livermore, we do
not have control of the workload, and thus use these
benchmarks ‘out of the box’.

Please note that workloads presented here are used for score
calculation. As mentioned earlier, we are benchmarking with a
range of workloads. This enables us to fit a polynomial curve to
describe the variation in runtime versus the varying workload,

with the intention that this data may be useful when predicting
the performance of untested application workloads. However,
this part of the work is not the focus of this paper, and is
therefore not discussed further.

No benchmark makes use of more than one processor core.
This means that the Dwarf scores are invariant as the number
of cores and quantity of memory assigned to a VM are
increased (if other factors are kept constant).

TABLE II. DWARF WORKLOADS AND EXECUTION TIMES ON THE REFERENCE

MACHINE.

Dwarf Algorithm Workload Time

(ms)

Graph Traversal Quicksort 10000000 3176

Structured Grid 3D Central Differences
3D Divergence

3D Curl

3D Gradient
3D Laplacian

SpMV Laplacian

60
60

60

60
60

60

420
258

356

350
197

253

Unstructured Grid OpenFOAM 8100 25617

Dense Matrices LU
QR

200
100

557
1753

Sparse Matrices SPMV

SPTS

CG

2000

2000

2000

908

826

697

Spectral Stockham FFT

Cooley Tukey FFT

Four Step FFT

1048576

1048576

1048576

2073

3727

1978

Particles 2D N-Body Cutoff

2D N-Body Barnes Hut

3D N-Body Cutoff
3D N-Body Barnes Hut

2000

2000

1000
1000

871

9729

256
3967

MapReduce Quasi-Monte Carlo

integration
20 4526

Dhrystone No Register
With Register

With Optimisation

N/A 5443082
7155492

9208880

Livermore Livermore N/A 1080

B. Applications

For this initial investigation, the following CPU-bound
applications have been chosen:

 Gromacs v. 4.0.7 [23]: a molecular dynamics package;

 FFmpeg v. 0.6.2 [24]: a video transcoder;

 Blender v. 2.49.2 [25]: a 3D renderer.

All three pieces of software are open source, cross-platform
and are licensed under the GPL or LGPL licenses.

For Gromacs, two different workloads have been chosen.
Both configurations run 2500 molecular dynamics steps of a
box of 16896 water molecules with a 2fs time-step and periodic
boundary conditions. However, one configuration uses a
spherical cut-off for the electrostatic calculations and the other
one uses the particle mesh Ewald (PME) method. It is
expected that these different algorithms for approximating the
same physical property will correlate differently with the
Dwarfs. The computations take 255 seconds and 758 seconds
respectively on the reference machine.

The chosen FFmpeg computation is the transcoding of the
“Big Buck Bunny” video [26], which is nearly 10 minutes in

duration. The video was transcoded from M4V (h264
encoded) to OGV (libtheora encoded), also changing the frame
size from 640x360 to 480x270. The original sound is also
changed from AAC to FLAC during the transcoding. This
takes nearly 300 seconds on the reference machine.

Using Blender, our intention was to render frames from the
Big Buck Bunny video, but this required more RAM than
feasible in practice for the machines we are interested in
benchmarking. As with the benchmarks, we have taken care
not to exceed a requirement of 1GB RAM. Instead, we render
four frames of a bespoke animation, which takes approximately
930 seconds on the reference machine.

C. Benchmarking Process

Each algorithm in each dwarf is executed multiple times in
succession with a broad range of workloads. The mean,
standard deviation and coefficient of variation are calculated
for each workload, and the means are used for subsequent
analysis. Score calculation is performed only on the mean of
the greatest workload, as specified previously in Table II.
Executing the benchmarks multiple times smooths out the
small local fluctuations in performance to give a more robust
score. The number of executions has been set to 10 for this
investigation due to pragmatic constraints on time. The total
runtime of the benchmarks and the applications is
approximately 75 minutes on the reference machine.

The runtimes of each individual algorithm would provide a
representation of a machine’s performance but these raw
numbers are not ideal for three reasons: firstly the different
runtimes for algorithms in the same Dwarf need to be
combined, secondly the variation in magnitude for the different
runtimes needs to be eliminated and thirdly the general
expectation is that a higher number means a better score, but
for runtimes smallest is best. For these reasons a final step is
taken to calculate the Dwarf scores.

For a Dwarf composed of n algorithms, the Dwarf score D
is:

∑

where the runtime of algorithm i on a reference machine is Ti
and on the machine being benchmarked is ti. This formula
expresses each algorithm’s runtime as a percentage of a
reference machine to normalise the scores and takes the mean
of these sub-scores to create a Dwarf score. The reference
machine is chosen to be relatively slow and would, by
definition, score 100 for every Dwarf. Data from the reference
machine is not otherwise included in this analysis.

The reference machine we have used for this investigation
is a Dell Latitude D630, running native Ubuntu Natty. In terms
of the benchmarking process we are conducting, and the
subsequent analysis of correlations, the specification of the
reference machine is irrelevant. It merely serves the purpose of
providing some reference values from which scores are
calculated. If these values were different, the scores would
change, but the correlations would remain the same. However,
using reference values from benchmarking results on a

machine will allow us a more intuitive reference point, in
which it is possible to say that a score of 200 is twice as “good”
as the reference machine.

The application runtimes are treated in a similar way to
obtain scores that may be correlated with the Dwarf scores. A
single workload is executed for each application, and the
runtime is then expressed as a percentage of the runtime on the
reference machine, giving a baseline of 100 and a larger
number for better performance.

To obtain some insights into the performance variation one
might experience in the Cloud, all the benchmarks and
applications have been executed ten times consecutively.

D. Computational Resources

The benchmark suite and applications have been executed
on VMs deployed on a local machine, in the BonFIRE
experimental facility [5] and on Amazon EC2. As already
described, the benchmarks are invariant to the amount of
memory and number of cores assigned to the VM and so
although both facilities offer many instance types, only a few
vary in anything more than memory or number of cores.

The machines benchmarked are shown in Table III. The
CPU information is obtained from /proc/cpuinfo and memory
information from /proc/meminfo in the Linux file-system. This
information is not necessarily reliable as in theory a VM could
be configured to report any data here. The data reported for

TABLE III. THE DIFFERENT MACHINES THAT HAVE BEEN BENCHMARKED

AND THEIR BASIC SPECIFICATIONS.

 Machine CPU ECU Cores Speed

(GHz)

Cache

(MiB)

RAM

(GiB)

Local Intel
Core i7

M 640

 1 2.8 4 1

B
o
n

F
IR

E

epcc-

medium

AMD

Opteron
2210

 2 1.8 1 2

ustutt-

medium
Intel 2 2.7 4 2

inria-
medium

Intel
Xeon

5148
LV

 2 2.3 4 2

ibbt-

large

AMD

Opteron

2212

 2 2.0 1 4

A
m

az
o
n

 E
C

2

micro Intel

Xeon

E5430

≤ 2 1 2.7 6 0.6

small
(type 1)

Intel
Xeon

E5507

1 1 2.3 4 1.6

small
(type 2)

Intel
Xeon

E5430

1 1 2.7 6 1.6

medium Intel

Xeon
E5410

5 2 2.3 6 1.7

large Intel

Xeon
E5507

4 2 2.3 4 7.3

xlarge Intel

Xeon

E5645

8 4 2.0 12 14.7

EPCC, INRIA and IBBT is known to reflect the physical hosts
but the data for UStutt (“Intel”) is clearly incomplete (if not
misleading).

The hypervisor in use on Amazon EC2 and the BonFIRE
testbeds is Xen, except for IBBT where the VMs are deployed
on physical nodes (no virtualisation used). The operating
system used on the VMs deployed on the BonFIRE testbeds is
Debian Squeeze, and on Amazon EC2, Ubuntu Maverick.

IV. RESULTS

The entire benchmark suite and applications have been
executed on each VM instance shown in Table III. In addition,
the benchmark suite and applications have been executed on
nine further instances of the EC2 “small” VM to analyse any
variation in performance.

In analyzing the scores from the 10 EC2 small instances, an
anomaly was noticed: six of the instances performed
significantly differently to the other four. Looking at the
/proc/cpuinfo data revealed that these two groups of machines
claimed to be different CPU models, with the smaller group
having a faster clock speed and larger cache. These different
machines have been labeled as “small (type 1)” and “small
(type 2)” in Table III.

Fig. 2 shows the mean Dwarf scores for the two groups of
EC2 small instances. Using Welch’s t test for populations with
unequal variances and assuming a Gaussian distribution, we
find that the scores for all the Dwarfs apart from Structured
Grid and Sparse Matrix are significantly different between the
two groups. This demonstrates a statistically different
performance between machines all described as just “small”
and “1 ECU” by Amazon. Furthermore, although type 2 has
the faster clock speed we see that it performs worse on the
MapReduce, Particle and Spectral Dwarfs and worse on the
Livermore and Dhrystone tests. This is counter to what would
be expected even if the clock speed and cache sizes were
known. There are clearly some non-obvious factors
influencing the performance which the Dwarf scores are

sensitive to.

These hidden factors also influence the performance of the
applications, shown in Fig. 3. We see that the difference is
statistically significant for all four application tests, with the
Gromacs-Cutoff and Transcoding tests performing better on the
seemingly slower machines (type 1).

Separating out the two EC2 small instance types, we can go
on to analyse the behavior of the Dwarfs and applications
across all the 11 machine types tested. Fig. 4 illustrates the
range of scores for the Structured and Unstructured Grid
Dwarfs and also demonstrates that some machines are better at
one Dwarf than another. This example shows that the two
Dwarfs are discriminating between different hardware types
and are measuring in some way the unknown underlying
factors.

Taking this a step further, we can look at the correlation of
every Dwarf and application with every other Dwarf and
application. We expect all pairs to correlate strongly. The
interesting data is in the margins of these correlations – just
how strongly do they correlate?

Fig. 5 shows the correlation matrix for all Dwarfs and
applications, using Pearson’s sample correlation coefficient. A
key property of the Pearson’s correlation coefficient is that it is
invariant to the location and scale of the two data-sets. This
means that the base-line values taken from the reference
machine to compute the Dwarf and application scores do not
affect these results. A perfect positive correlation has a value
of one and is coloured bright red. An uncorrelated data-set

Figure 2. Comparison of mean Dwarf scores for the two types of EC2 small

instances.

Figure 4. Comparison of Structured and Unstructured Grid Dwarf scores.

Figure 3. Mean application scores for the two types of EC2 small instances.
Note the truncated y-axis.

would have a value of zero. The weakest correlation is
between the Gromacs-Cutoff application and the Spectral
Dwarf (0.75) and this is coloured bright green.

Looking first at the upper-left section of the diagram, where
the Dwarf-to-Dwarf correlations are shown, we see strong
correlations across the board with the Spectral Dwarf being the
most distinct, having correlations as low as 0.89 with several
other Dwarfs including the Particle Dwarf. The data points for
these two Dwarfs are plotted in Fig. 6, demonstrating that there
is indeed a roughly linear relationship. The strong correlations
between Dwarf scores are to be expected, but the variation in

the strength of the correlations demonstrates that the Dwarfs
are indeed measuring different properties of the machines.

The bright red section of Fig. 5 near the bottom-right is
perhaps surprising. This area shows that the Livermore and
Dhrystone measures are strongly correlated, demonstrating that
floating-point and integer performance scale linearly on the
systems tested. The other strong correlations in this area show
that the Gromacs-Cutoff and Gromacs-PME computations are
very strongly correlated with the Dhrystone and Livermore
measures and, as a consequence, correlate very strongly with
each other. Note, this does not mean the two application tests
are doing the same thing: the Gromacs-Cutoff application is
three times faster consistently in this case (though less precise).

It is instructive to look at the variation in application
performance across the 11 machines (see Fig. 7). The shape of
the four bars varies quite markedly between different groups of
machines, demonstrating that some hardware is better at
executing some applications than others. The question is, can
the Dwarf scores help to predict which application will perform
well and which will not?

Returning to Fig. 5 we can inspect the correlations between
the applications and the Dwarfs. As already mentioned, the
Gromacs applications correlate most strongly with the
Livermore and Dhrystone scores, but both also correlate very
strongly with the Particle Dwarf. This is to be expected as both
algorithms are predominantly sums over functions of particle

Figure 6. Comparing the Spectral and Particle Dwarf scores for

the 11 machines with the trend line shown. The Pearson’s

correlation coefficient for this data-set is 0.89.

Figure 5. Correlation matrix for all Dwarfs and applications across the 11 machine types benchmarked.

Stru
ctu

red
 G

rid

U
n

stru
ctu

red
 G

rid

M
ap

R
ed

u
ce

D
en

se M
atrix

Sp
arse M

atrix

G
rap

h
 Traversal

P
article

Sp
ectral

Liverm
o

re

D
rysto

n
e

G
ro

m
acs-C

u
to

ff

G
ro

m
acs-P

M
E

Tran
sco

d
e

R
en

d
erin

g
Structured Grid 1.00 0.94 0.95 0.95 0.97 0.93 0.94 0.94 0.91 0.95 0.85 0.89 0.90 0.93

Unstructured Grid 0.94 1.00 0.97 0.98 0.94 0.95 0.93 0.94 0.90 0.95 0.86 0.92 0.93 0.99

MapReduce 0.95 0.97 1.00 0.97 0.98 0.98 0.97 0.89 0.95 0.97 0.92 0.95 0.98 0.94

Dense Matrix 0.95 0.98 0.97 1.00 0.95 0.95 0.93 0.89 0.91 0.96 0.87 0.92 0.94 0.97

Sparse Matrix 0.97 0.94 0.98 0.95 1.00 0.95 0.98 0.91 0.93 0.97 0.90 0.93 0.94 0.91

Graph Traversal 0.93 0.95 0.98 0.95 0.95 1.00 0.93 0.91 0.88 0.91 0.83 0.88 0.97 0.90

Particle 0.94 0.93 0.97 0.93 0.98 0.93 1.00 0.89 0.97 0.98 0.95 0.96 0.94 0.92

Spectral 0.94 0.94 0.89 0.89 0.91 0.91 0.89 1.00 0.81 0.87 0.75 0.80 0.81 0.92

Livermore 0.91 0.90 0.95 0.91 0.93 0.88 0.97 0.81 1.00 0.97 0.97 0.98 0.93 0.91

Drystone 0.95 0.95 0.97 0.96 0.97 0.91 0.98 0.87 0.97 1.00 0.96 0.98 0.92 0.96

Gromacs-Cutoff 0.85 0.86 0.92 0.87 0.90 0.83 0.95 0.75 0.97 0.96 1.00 0.99 0.90 0.89

Gromacs-PME 0.89 0.92 0.95 0.92 0.93 0.88 0.96 0.80 0.98 0.98 0.99 1.00 0.93 0.93

Transcode 0.90 0.93 0.98 0.94 0.94 0.97 0.94 0.81 0.93 0.92 0.90 0.93 1.00 0.89

Rendering 0.93 0.99 0.94 0.97 0.91 0.90 0.92 0.92 0.91 0.96 0.89 0.93 0.89 1.00

pair distances, with the PME method performing the sum in
Fourier space for the long-range portion. The use of the FFT in
the PME application may be indicated by an increase in the
correlation with the Spectral Dwarf compared to the Cutoff
case (0.75 to 0.80).

Of the other applications, the Transcoding application
correlates very strongly with the MapReduce and Graph
Traversal Dwarfs (0.98 and 0.97 respectively) and the
Rendering application correlates very strongly with the
Unstructured Grid and Dense Matrix Dwarfs (0.99 and 0.97
respectively).

Fig. 8 gives an indication that these application-to-Dwarf
correlations may indeed be able to provide useful predictions of
application performance: the Unstructured Grid Dwarf and the
Rendering application score clearly move together whereas the
Unstructured Grid score is sometimes similar and sometimes
very different to the Rendering application score.

V. CONCLUSION

We have executed a suite of eight Dwarfs, a floating point
and integer benchmark and four applications multiple times on
virtual machines deployed on eleven different physical host
types.

Through analysis of the runtimes and logs of all these codes
we have demonstrated that on Amazon EC2, the description of
the virtual machines using just EC2 Compute Units (ECUs)
and RAM size is not sufficient for predicting performance.
Machines all described as “small” may have different clock
speeds and cache size and even knowledge of this additional
detail does not help in performance prediction as some
applications run slower on the machines with a faster clock.

We have shown that the Dwarf scores are sensitive to the
sometimes small (but hidden) differences between the
architectures of the physical hosts that the virtual machines
tested were deployed upon. By examining the correlations
between different Dwarf scores we have demonstrated that
different Dwarfs measure different aspects of computational
performance.

Finally, the varying correlations between Dwarfs and
applications suggest the Dwarfs will be useful in predicting
application performance as part of an application model.

VI. FURTHER WORK

To progress further with this work, more data will be
needed, both data of more distinct physical hosts and repeated
measurements of the same physical hosts.

We are primarily interested in using the Dwarf scores as a
predictor for application performance and will investigate this
aspect further, comparing predictions from Dwarf scores with
predictions possible from other data such as ECUs or clock
speed. It may also be possible to use the data measuring the
Dwarf performance for varying workloads to predict the
variation in performance of applications as their workload is
changed. This will feed into our related work on modelling
quality of service terms for applications.

It may also be instructive to apply the benchmark suite to
investigating other issues, such as the performance difference
between a physical host and a virtual machine on the same host
or whether there is any difference in performance between
different hypervisors.

Finally, any model of an application executing in the cloud
must take into account the variability of virtual machine
performance as the load resulting from other users of the same
physical host varies. Executing the benchmark suite on the
same virtual machine type over an extended period will help
measure these fluctuations. We also hope to make use of
detailed infrastructure monitoring data from the BonFIRE
facility describing the variation over time of CPU and memory
resources allocated to each virtual machine.

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K.
Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, "The Landscape of Parallel Computing Research: A View
from Berkeley," Electrical Engineering and Computer Sciences,
University of California at Berkeley UCB/EECS-2006-183, 2006.

Figure 7. Comparison of application scores across the benchmarked

machines.

Figure 8. Comparison of the scores for Unstructured Grid, Gromacs-Cutoff

and Rendering, showing that the Unstructured Grid Dwarf is a good predictor

for Rendering performance but not for Gromacs-Cutoff.

[2] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J.
Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D.
Wessel, and K. Yelick, "A View of the Parallel Computing Landscape,"
Communications of the ACM, vol. 52, pp. 56-67, Oct 2009.

[3] P. Colella, "Defining Software Requirements for Scientific Computing,"
DARPA HPCS Presentation, 2004.

[4] SPEC, "Standard Performance Evaluation Corporation," Available:
http://www.spec.org/index.html, 2010.

[5] BonFIRE. (2011). EC FP7-ICT BonFIRE Project. Available:
http://www.bonfire-project.eu/

[6] Netlib, "LINPACK," Available: http://www.netlib.org/linpack/, 2010.

[7] Netlib, "LAPACK -- Linear Algebra PACKage," Available:
http://www.netlib.org/lapack/, 2010.

[8] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang, "The Case for
Application-Specific Benchmarking," in Proc. 7th Workshop on Hot
Topics in Operating Systems, 1999, pp. 102-107.

[9] X. Zhang, "Application-Specific Benchmarking," Engineering and
Applied Sciences, Harvard University, Cambridge, Massachusetts, 2001.

[10] EEMBC, "Embedded Microprocessor Benchmark Consortium,"
Available: http://www.eembc.org, 2010.

[11] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sceaffer, S.-H. Lee, and K.
Skadron, "Parallel Benchmarks Inspired by Berkeley Dwarfs," in Proc.
IEEE Int. Symp. on Workload Characterization, 2009.

[12] E. L. Kaltofen, "The ``Seven Dwarfs'' of Symbolic Computation," North
Carolina State University, Research Report SFB F013, 2010.

[13] A. Kaiser, S. Williams, K. Madduri, K. Ibrahim, D. Bailey, J. Demmel,
and E. Strohmaier, "TORCH Computational Reference Kernels: A
Testbed for Computer Science Research," EECS Department, University
of California, Berkeley UCB/EECS-2010-144, 2010.

[14] A. Kaiser, S. Williams, K. Madduri, K. Ibrahim, D. Bailey, J. Demmel,
and E. Strohmaier, "A Principled Kernel Testbed for Hardware/Software
Co-Design Research," presented at the 2nd USENIX Workshop on Hot
Topics in Parallelism (HotPar), 2010.

[15] TORCH. (2011). Testbed for Optimization ResearCH. Available:
https://ftg.lbl.gov/projects/torch/

[16] IRMOS. (2010). EC FP7-ICT IRMOS Project. Available:
http://www.irmosproject.eu

[17] T. Cucinotta, F. Checconi, G. Kousiouris, D. Kyriazis, T. Varvarigou, A.
Mazzetti, Z. Zlatev, J. Papay, M. Boniface, S. Berger, D. Lamp, T.
Voith, and M. Stein, "Virtulised e-Learning with Real-Time Guarantees
on the IRMOS Platform," presented at the SOCA, 2010.

[18] OpenCFD Limited. (2011). OpenFOAM. Available:
http://www.openfoam.com/

[19] R. P. Weicker, "Dhrystone: a synthetic systems programming
benchmark," Communications of the ACM, vol. 27, pp. 1013-1030,
1984.

[20] P. Weicker, "Dhrystone benchmark: rationale for version 2 and
measurement rules," ACM SIGPLAN Notices, vol. 23, pp. 49-62, 1988.

[21] [21] F. H. McMahon. (1993). Livermore Loops C Code. Available:
http://www.netlib.org/benchmark/livermorec

[22] F. H. McMahon, "Livermore fortran kernels: A computer test of
numerical performance range," NTIS report UCRL-53745, 1986.

[23] GROMACS (2011). GROningen MAchine for Chemical Simulations.
Available: http://www.gromacs.org/

[24] FFMPEG (2011). Available: http://www.ffmpeg.org/

[25] Blender (2011). Available: http://www.blender.org/

[26] Blender (2011). Big Buck Bunny. Available:
http://www.bigbuckbunny.org

http://www.spec.org/index.html
http://www.bonfire-project.eu/
http://www.netlib.org/linpack/
http://www.netlib.org/lapack/
http://www.eembc.org/
http://www.irmosproject.eu/
http://www.openfoam.com/
http://www.netlib.org/benchmark/livermorec
http://www.gromacs.org/
http://www.ffmpeg.org/
http://www.blender.org/
http://www.bigbuckbunny.org/

