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Abstract—With increasing availability of Cloud computing 

services, this paper addresses the challenge consumers of 

Infrastructure-as-a-Service (IaaS) have in determining which 

IaaS provider and resources are best suited to run an application 

that may have specific Quality of Service (QoS) requirements. 

Utilising application modelling to predict performance is an 

attractive concept, but is very difficult with the limited 

information IaaS providers typically provide about the 

computing resources.  This paper reports on an initial 

investigation into using Dwarf benchmarks to measure the 

performance of virtualised hardware, conducting experiments on 

BonFIRE and Amazon EC2.  The results we obtain demonstrate 

that labels such as ‘small’, ’medium’, ’large’ or a number of 

ECUs are not sufficiently informative to predict application 

performance, as one might expect.  Furthermore, knowing the 

CPU speed, cache size or RAM size is not necessarily sufficient 

either as other complex factors can lead to significant 

performance differences.  We show that different hardware is 

better suited for different types of computations and, thus, the 

relative performance of applications varies across hardware.  

This is reflected well by Dwarf benchmarks and we show how 

different applications correlate more strongly with different 

Dwarfs, leading to the possibility of using Dwarf benchmark 

scores as parameters in application models.  

Keywords: application benchmarking; QoS; application modelling; 

performance prediction, Dwarfs, BonFIRE, Amazon EC2. 

I. INTRODUCTION 

Today, different Infrastructure-as-a-Service (IaaS) 
providers describe their infrastructure offerings in different 
ways and do not necessarily provide very much information, if 
at all, about the infrastructure being offered.  For instance, 
Amazon EC2 describes (and prices) their infrastructure in 
terms of Amazon EC2 Compute Units (ECU) as well as the 
number of virtual cores and RAM size.  A machine providing 
the capability of one ECU is said to be equivalent to a 1.0-1.2 
GHz 2007 Opteron or 2007 Xeon processor.  Given the limited 
and heterogeneous information provided by IaaS providers, 
how can anyone know what resources they will need to execute 
their application with a particular quality of service (QoS)?  If 
the application is already adapted for the IaaS provider’s 
system then it may be possible to just try the application out 
and measure its performance, scaling the deployment as 
required.  But what if the application is not yet adapted, or what 
if you want to choose between several IaaS providers? 

We want to be able to predict the performance of an 
application given a general description of the hardware 
provided by the IaaS provider.  The first challenge is to find 

some generic and sufficiently informative way of describing 
the hardware resources. Such a description should enable 
prediction of application performance and we hypothesise that 
the Dwarf benchmarks [1-3] are a good candidate. “A dwarf is 
an algorithmic method that captures a pattern of computation 
and communication” [1].  A set of many dwarf benchmark 
scores can be thought of as a more detailed performance 
description than the well-known pair of SPECint and SPECfp 
[4] scores commonly used for measuring super-computer 
performance.  The second challenge is to model the application 
in such a way that its performance can be predicted on a range 
of infrastructure specifications (described as scores on Dwarf 
benchmarks). 

We therefore need two things: 

1. A description of each candidate IaaS provider’s 
resources in terms of benchmark scores. 

2. A model that can predict the performance of the 
application given the benchmark scores. 

In this paper we describe a benchmark suite to measure the 
performance of virtualised hardware.  Ultimately we could 
imagine each IaaS provider describing the performance of their 
resources in terms of a standard set of benchmark scores or 
even couching service level agreements (SLAs) in those terms.  
Alternatively, a Platform-as-a-Service (PaaS) provider may 
measure the performance of many IaaS providers, adding to 
one of many possible services that could be offered. 

Once the (virtualised) hardware is described in terms of 
benchmark scores, these scores must be related to application 
performance through an application models.  These models can 
help in many ways: 

 Making better provisioning decisions: deploying the 
infrastructure resources required for a given application 
QoS rather than over-provisioning. 

 Making better application scheduling decisions: 
knowing the application runtime with a good reliability 
permits more intelligent scheduling. 

 Determining the optimal application configuration: the 
performance of complex applications and business or 
industrial data processing workflows with many 
components can be greatly affected by their 
configuration such as buffer sizes and number of 
threads. 

This work has been carried out in BonFIRE, an EC supported  7th 
Framework Programme ICT project (FP7- 257386) 



 
Figure 1.  Generalised application model. 

 

 Tracking uncertainty in business processes: many 
processes are non-deterministic; predicting the 
likelihood of completing tasks allows for the 
management of risk. 

In this study we use virtualised resources from Amazon 
EC2 and from BonFIRE.  EC2 requires no introduction, but 
BonFIRE may be unknown to some readers.  BonFIRE [5] 
offers a multi-site testbed with heterogeneous cloud resources, 
including compute, storage and networking resources, for 
large-scale testing of applications, services and systems 
targeting the Internet of Services community. 

II. BACKGROUND 

A. Computer Benchmarks 

There are many general benchmark scores that may be used 
to predict application performance.  For instance, at the most 
basic level, the SPECint and SPECfp [4] benchmarks measure 
the integer and floating point arithmetic performance.  The 
LINPACK [6] and the more recent LAPACK [7] benchmarks 
measure the performance of a computer when performing 
linear algebra operations common in much scientific software.  
We are concerned with correlation application performance to 
benchmarks. For instance, one would expect the performance 
of a chess program would be closely correlated with the 
SPECint score and a numerical scientific computation would 
correlate well with the SPECfp score.  However, Seltzer et al. 
[8] and Zhang [9] argue that application benchmarking is 
important since standard benchmarks can be uninformative and 
misleading.  The closer the benchmark resembles the 
application, the better the correlation will be, which is 
important to our aim of predicting application performance. 

A more recent approach to benchmarking is the Dwarf 
taxonomy first introduced by Colella in 2004 [3], which has 
been further developed at UC Berkeley [1, 2].  Dwarves have 
been proposed as a higher level of abstraction than the plethora 
of benchmark tests that exist and are intended to capture known 
computational patterns.  Initially, 7 Dwarves were proposed for 
scientific computing applications, which were extended to 13 
in [1] to cover SPEC and EEMBC [10] tests, as well as three 
additional computing areas: machine learning, database 
software, and computer graphics and games. The current 13 

Dwarves are given in Table I. 

The list of Dwarves is not final, which Asanovic et al. [1, 2] 
do not claim; they do however stress the importance of the 
abstraction so that the list does not grow too large.  Che et al. 
[11] have proposed parallel benchmarks based on the Dwarf 
taxonomy, but argue that the Dwarf taxonomy alone may not 
be sufficient to capture the behaviour in some applications.  
Furthermore, in a recent study, Kaltofen [12] has identified a 
need for Dwarves to cover symbolic computation. 

The TORCH project (Testbed for Optimization ResearCH) 
[13, 14] has identified several kernels for benchmarking 
purposes, including a subset of the 13 Dwarfs listed in Table I 
above, which can be downloaded from [15].  The current 
collection contains kernels from: Graph Traversal, Structured 
Grids, Dense Matrices, Sparse Matrices, Spectral, Particles and 
MapReduce (Monte Carlo).  For each Dwarf, several 
algorithms are included in the suite which are different in the 
implementation detail, but nevertheless are all part of a higher 
level Dwarf.  This suite has been adopted in our study, which is 
detailed further in Section III. 

Alongside performing benchmarking of Cloud resources, 
we are also concerned with monitoring the effective 
performance of VMs as this may vary over time depending on 
load on the underlying hardware. Therefore, we are interested 
in benchmarking resources over time, as the observed variation 
in performance can be taken into account when predicting 
application performance. 

B. Application Modelling 

A generic application model (Fig. 1) takes as input a 
description of the expected static application workload, a 
description of the resources (physical or virtual) used to 
execute the application (including the resource reliability) and a 
description of any expected user interactions which contribute 
to the workload or otherwise affect the process.  Using some 
mathematical process, the model makes a prediction about the 
application performance. 

To give a concrete example from the EC IST IRMOS 
project [16, 17], where some of this work stems from, consider 
a  web server hosting an e-learning application. The workload 
would describe the number of participants in an e-learning 
session, the resource description would be the networks 
connecting the application to the users and the virtual hardware 
deployed for the application, the reliability would describe the 
QoS of the virtual hardware and networks (propensity to crash, 

TABLE I.  THE THIRTEEN DWARFS.  THE DWARFS USED IN THIS STUDY ARE 

MARKED WITH AN ASTERISK (*). 

Dwarf name Description 

Finite State Machines XML transformation and video compression 

Combinatorial Logical functions, e.g., encryption 

Graph Traversal* Decision Tree, searching, quicksort 

Structured Grids* Regular grids, can be automatically refined 

Unstructured Grids* Irregular grids, finite elements and nodes 

Dense Matrices* Matrix to matrix operation 

Sparse Matrices* Matrix to vector operations with sparse matrices 

Spectral* Fast Fourier Transformations 

Dynamic Programming Hidden Markov Models, sequence alignment 

Particles* Interactions between particles 

MapReduce (Monte 
Carlo)* 

Independent data sets, simple reduction at end 
Ray-tracing, which is available in PARSEC 

Backtrack and Branch & 

Bound 

Constraint optimisation, simplex algorithm 

Graphical Models Hidden Markov Models and Bayesian Networks 

 



latency, etc) and the user interactions would be a statistical 
description of the frequency and magnitude of the interactions 
between the users and the application.  Using this data and a 
mathematical model, the average response time of the web 
server can be computed and the appropriate resources allocated 
in order to achieve a certain QoS for the users.  

There are different methods that can be adopted for 
modelling, and a combination of several methods may be 
necessary. For example, in the work introduced above [16, 17], 
Discrete Event Simulation (DES) was used to model the 
requests to the e-learning service as events passing through 
different parts of the modelled system experiencing certain 
delays depending on the amount of requests and capabilities of 
the underlying hardware. To compute the innermost processing 
time of components in such a model, you need a method of 
estimating this based on a description of the hardware. In [17], 
this was done based on extensive benchmarking of the 
application on the known hardware the application could be run 
on, which was used to train an Artificial Neural Network 
(ANN). 

In this paper we focus on the challenge of calculating the 
innermost computation time and ignore the problems of 
varying application workload and user interactions.  To enable 
such prediction to succeed on unseen hardware, it is necessary 
to have a uniform description of hardware performance.  We 
hypothesise that this is achievable with Dwarf benchmarks. 

III. METHOD 

We have adapted several pieces of software (the ‘Dwarfs’) 
and integrated them into an automated framework for 
measuring the performance of a machine: the benchmark suite.  
In addition we have integrated three applications which are also 
executed and timed so that we can investigate the correlations 
between application performance and Dwarf score. 

A. Benchmarks 

We have adopted the Dwarf benchmarks available in the 
TORCH benchmark suite [13, 14]. This suite is not complete, 
according to the list of Dwarfs suggested by Asanovic et al. [1, 
2], which is highlighted in Table I. We have added one more 
Dwarf, Unstructured Grid, using the Computational Fluid 
Dynamics (CFD) software OpenFOAM [18]. 

In Addition to the Dwarf benchmarks, we are interested in 
comparing the results with integer and floating point 
benchmarks. Therefore, we have included Dhrystone [19, 20] 
and Livermore Loops [21, 22].  

Most of the Dwarfs are comprised of multiple algorithms. 
Workloads of each algorithm have been carefully chosen to 
require a reasonable runtime without using more memory than 
available in a 1GB Linux machine. See Table II for an 
overview of the chosen workloads and their execution times on 
the reference machine. For Dhrystone and Livermore, we do 
not have control of the workload, and thus use these 
benchmarks ‘out of the box’. 

Please note that workloads presented here are used for score 
calculation. As mentioned earlier, we are benchmarking with a 
range of workloads. This enables us to fit a polynomial curve to 
describe the variation in runtime versus the varying workload, 

with the intention that this data may be useful when predicting 
the performance of untested application workloads.  However, 
this part of the work is not the focus of this paper, and is 
therefore not discussed further. 

No benchmark makes use of more than one processor core.  
This means that the Dwarf scores are invariant as the number 
of cores and quantity of memory assigned to a VM are 
increased (if other factors are kept constant). 

TABLE II.   DWARF WORKLOADS AND EXECUTION TIMES ON THE REFERENCE 

MACHINE. 

Dwarf Algorithm Workload Time 

(ms) 

Graph Traversal Quicksort 10000000 3176 

Structured Grid 3D Central Differences 
3D Divergence 

3D Curl 

3D Gradient 
3D Laplacian 

SpMV Laplacian 

60 
60 

60 

60 
60 

60 

420 
258 

356 

350 
197 

253 

Unstructured Grid OpenFOAM 8100 25617 

Dense Matrices LU 
QR 

200 
100 

557 
1753 

Sparse Matrices SPMV 

SPTS 

CG 

2000 

2000 

2000 

908 

826 

697 

Spectral Stockham FFT 

Cooley Tukey FFT 

Four Step FFT 

1048576 

1048576 

1048576 

2073 

3727 

1978 

Particles 2D N-Body Cutoff 

2D N-Body Barnes Hut 

3D N-Body Cutoff 
3D N-Body Barnes Hut 

2000 

2000 

1000 
1000 

871 

9729 

256 
3967 

MapReduce Quasi-Monte Carlo 

integration 
20 4526 

Dhrystone No Register 
With Register 

With Optimisation 

N/A 5443082 
7155492 

9208880 

Livermore Livermore N/A 1080 

B. Applications 

For this initial investigation, the following CPU-bound 
applications have been chosen: 

 Gromacs  v. 4.0.7 [23]: a molecular dynamics package; 

 FFmpeg v. 0.6.2 [24]: a video transcoder; 

 Blender v. 2.49.2 [25]: a 3D renderer. 

All three pieces of software are open source, cross-platform 
and are licensed under the GPL or LGPL licenses. 

For Gromacs, two different workloads have been chosen.  
Both configurations run 2500 molecular dynamics steps of a 
box of 16896 water molecules with a 2fs time-step and periodic 
boundary conditions.  However, one configuration uses a 
spherical cut-off for the electrostatic calculations and the other 
one uses the particle mesh Ewald (PME) method.  It is 
expected that these different algorithms for approximating the 
same physical property will correlate differently with the 
Dwarfs.  The computations take 255 seconds and 758 seconds 
respectively on the reference machine. 

The chosen FFmpeg computation is the transcoding of the  
“Big Buck Bunny” video [26], which is nearly 10 minutes in 



duration.  The video was transcoded from M4V (h264 
encoded) to OGV (libtheora encoded), also changing the frame 
size from 640x360 to 480x270.  The original sound is also 
changed from AAC to FLAC during the transcoding. This 
takes nearly 300 seconds on the reference machine. 

Using Blender, our intention was to render frames from the 
Big Buck Bunny video, but this required more RAM than 
feasible in practice for the machines we are interested in 
benchmarking.  As with the benchmarks, we have taken care 
not to exceed a requirement of 1GB RAM.  Instead, we render 
four frames of a bespoke animation, which takes approximately 
930 seconds on the reference machine. 

C. Benchmarking Process 

Each algorithm in each dwarf is executed multiple times in 
succession with a broad range of workloads. The mean, 
standard deviation and coefficient of variation are calculated 
for each workload, and the means are used for subsequent 
analysis. Score calculation is performed only on the mean of 
the greatest workload, as specified previously in Table II. 
Executing the benchmarks multiple times smooths out the 
small local fluctuations in performance to give a more robust 
score. The number of executions has been set to 10 for this 
investigation due to pragmatic constraints on time. The total 
runtime of the benchmarks and the applications is 
approximately 75 minutes on the reference machine. 

The runtimes of each individual algorithm would provide a 
representation of a machine’s performance but these raw 
numbers are not ideal for three reasons: firstly the different 
runtimes for algorithms in the same Dwarf need to be 
combined, secondly the variation in magnitude for the different 
runtimes needs to be eliminated and thirdly the general 
expectation is that a higher number means a better score, but 
for runtimes smallest is best.  For these reasons a final step is 
taken to calculate the Dwarf scores. 

For a Dwarf composed of n algorithms, the Dwarf score D 
is: 

   
 

 
∑   

 

   

  
  

 

where the runtime of algorithm i on a reference machine is Ti 
and on the machine being benchmarked is ti.  This formula 
expresses each algorithm’s runtime as a percentage of a 
reference machine to normalise the scores and takes the mean 
of these sub-scores to create a Dwarf score.  The reference 
machine is chosen to be relatively slow and would, by 
definition, score 100 for every Dwarf.  Data from the reference 
machine is not otherwise included in this analysis. 

The reference machine we have used for this investigation 
is a Dell Latitude D630, running native Ubuntu Natty.  In terms 
of the benchmarking process we are conducting, and the 
subsequent analysis of correlations, the specification of the 
reference machine is irrelevant.  It merely serves the purpose of 
providing some reference values from which scores are 
calculated.  If these values were different, the scores would 
change, but the correlations would remain the same.  However, 
using reference values from benchmarking results on a 

machine will allow us a more intuitive reference point, in 
which it is possible to say that a score of 200 is twice as “good” 
as the reference machine. 

The application runtimes are treated in a similar way to 
obtain scores that may be correlated with the Dwarf scores.  A 
single workload is executed for each application, and the 
runtime is then expressed as a percentage of the runtime on the 
reference machine, giving a baseline of 100 and a larger 
number for better performance. 

To obtain some insights into the performance variation one 
might experience in the Cloud, all the benchmarks and 
applications have been executed ten times consecutively.  

D. Computational Resources 

The benchmark suite and applications have been executed 
on VMs deployed on a local machine, in the BonFIRE 
experimental facility [5] and on Amazon EC2.  As already 
described, the benchmarks are invariant to the amount of 
memory and number of cores assigned to the VM and so 
although both facilities offer many instance types, only a few 
vary in anything more than memory or number of cores. 

The machines benchmarked are shown in Table III. The 
CPU information is obtained from /proc/cpuinfo and memory 
information from /proc/meminfo in the Linux file-system.  This 
information is not necessarily reliable as in theory a VM could 
be configured to report any data here.  The data reported for 

TABLE III.  THE DIFFERENT MACHINES THAT HAVE BEEN BENCHMARKED 

AND THEIR BASIC SPECIFICATIONS. 

 Machine CPU ECU Cores Speed 

(GHz) 

Cache 

(MiB) 

RAM 

(GiB) 

 

Local Intel 
Core i7 

M 640 

 1 2.8 4 1 

B
o
n

F
IR

E
 

epcc-

medium 

AMD 

Opteron 
2210 

 2 1.8 1 2 

ustutt-

medium 
Intel  2 2.7 4 2 

inria-
medium 

Intel 
Xeon 

5148 
LV 

 2 2.3 4 2 

ibbt-

large 

AMD 

Opteron 

2212 

 2 2.0 1 4 

A
m

az
o
n

 E
C

2
 

micro Intel 

Xeon  

E5430 

≤ 2 1 2.7 6 0.6 

small 
(type 1) 

Intel 
Xeon  

E5507 

1 1 2.3 4 1.6 

small 
(type 2) 

Intel 
Xeon 

E5430 

1 1 2.7 6 1.6 

medium Intel 

Xeon  
E5410 

5 2 2.3 6 1.7 

large Intel 

Xeon  
E5507 

4 2 2.3 4 7.3 

xlarge Intel 

Xeon  

E5645 

8 4 2.0 12 14.7 

 



EPCC, INRIA and IBBT is known to reflect the physical hosts 
but the data for UStutt (“Intel”) is clearly incomplete (if not 
misleading). 

The hypervisor in use on Amazon EC2 and the BonFIRE 
testbeds is Xen, except for IBBT where the VMs are deployed 
on physical nodes (no virtualisation used).  The operating 
system used on the VMs deployed on the BonFIRE testbeds is 
Debian Squeeze, and on Amazon EC2, Ubuntu Maverick. 

IV. RESULTS 

The entire benchmark suite and applications have been 
executed on each VM instance shown in Table III.  In addition, 
the benchmark suite and applications have been executed on 
nine further instances of the EC2 “small” VM to analyse any 
variation in performance. 

In analyzing the scores from the 10 EC2 small instances, an 
anomaly was noticed: six of the instances performed 
significantly differently to the other four.  Looking at the 
/proc/cpuinfo data revealed that these two groups of machines 
claimed to be different CPU models, with the smaller group 
having a faster clock speed and larger cache.  These different 
machines have been labeled as “small (type 1)” and “small 
(type 2)” in Table III. 

Fig. 2 shows the mean Dwarf scores for the two groups of 
EC2 small instances.  Using Welch’s t test for populations with 
unequal variances and assuming a Gaussian distribution, we 
find that the scores for all the Dwarfs apart from Structured 
Grid and Sparse Matrix are significantly different between the 
two groups.  This demonstrates a statistically different 
performance between machines all described as just “small” 
and “1 ECU” by Amazon.  Furthermore, although type 2 has 
the faster clock speed we see that it performs worse on the 
MapReduce, Particle and Spectral Dwarfs and worse on the 
Livermore and Dhrystone tests.  This is counter to what would 
be expected even if the clock speed and cache sizes were 
known.  There are clearly some non-obvious factors 
influencing the performance which the Dwarf scores are 

sensitive to. 

These hidden factors also influence the performance of the 
applications, shown in Fig. 3.  We see that the difference is 
statistically significant for all four application tests, with the 
Gromacs-Cutoff and Transcoding tests performing better on the 
seemingly slower machines (type 1). 

Separating out the two EC2 small instance types, we can go 
on to analyse the behavior of the Dwarfs and applications 
across all the 11 machine types tested. Fig. 4 illustrates the 
range of scores for the Structured and Unstructured Grid 
Dwarfs and also demonstrates that some machines are better at 
one Dwarf than another.  This example shows that the two 
Dwarfs are discriminating between different hardware types 
and are measuring in some way the unknown underlying 
factors. 

Taking this a step further, we can look at the correlation of 
every Dwarf and application with every other Dwarf and 
application.  We expect all pairs to correlate strongly.  The 
interesting data is in the margins of these correlations – just 
how strongly do they correlate? 

Fig. 5 shows the correlation matrix for all Dwarfs and 
applications, using Pearson’s sample correlation coefficient.  A 
key property of the Pearson’s correlation coefficient is that it is 
invariant to the location and scale of the two data-sets.  This 
means that the base-line values taken from the reference 
machine to compute the Dwarf and application scores do not 
affect these results.  A perfect positive correlation has a value 
of one and is coloured bright red.  An uncorrelated data-set 

 

Figure 2.  Comparison of mean Dwarf scores for the two types of EC2 small 

instances. 

 

Figure 4.  Comparison of Structured and Unstructured Grid Dwarf scores. 

 

Figure 3.  Mean application scores for the two types of EC2 small instances.  
Note the truncated y-axis. 



would have a value of zero.  The weakest correlation is 
between the Gromacs-Cutoff application and the Spectral 
Dwarf (0.75) and this is coloured bright green. 

Looking first at the upper-left section of the diagram, where 
the Dwarf-to-Dwarf correlations are shown, we see strong 
correlations across the board with the Spectral Dwarf being the 
most distinct, having correlations as low as 0.89 with several 
other Dwarfs including the Particle Dwarf.  The data points for 
these two Dwarfs are plotted in Fig. 6, demonstrating that there 
is indeed a roughly linear relationship.  The strong correlations 
between Dwarf scores are to be expected, but the variation in 

the strength of the correlations demonstrates that the Dwarfs 
are indeed measuring different properties of the machines. 

The bright red section of Fig. 5 near the bottom-right is 
perhaps surprising.  This area shows that the Livermore and 
Dhrystone measures are strongly correlated, demonstrating that 
floating-point and integer performance scale linearly on the 
systems tested.  The other strong correlations in this area show 
that the Gromacs-Cutoff and Gromacs-PME computations are 
very strongly correlated with the Dhrystone and Livermore 
measures and, as a consequence, correlate very strongly with 
each other.  Note, this does not mean the two application tests 
are doing the same thing: the Gromacs-Cutoff application is 
three times faster consistently in this case (though less precise). 

It is instructive to look at the variation in application 
performance across the 11 machines (see Fig. 7).  The shape of 
the four bars varies quite markedly between different groups of 
machines, demonstrating that some hardware is better at 
executing some applications than others. The question is, can 
the Dwarf scores help to predict which application will perform 
well and which will not? 

Returning to Fig. 5 we can inspect the correlations between 
the applications and the Dwarfs.  As already mentioned, the 
Gromacs applications correlate most strongly with the 
Livermore and Dhrystone scores, but both also correlate very 
strongly with the Particle Dwarf.  This is to be expected as both 
algorithms are predominantly sums over functions of particle 

 
Figure 6.  Comparing the Spectral and Particle Dwarf scores for 

the 11 machines with the trend line shown.  The Pearson’s 

correlation coefficient for this data-set is 0.89. 

 
Figure 5.  Correlation matrix for all Dwarfs and applications across the 11 machine types benchmarked. 
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Structured Grid 1.00 0.94 0.95 0.95 0.97 0.93 0.94 0.94 0.91 0.95 0.85 0.89 0.90 0.93

Unstructured Grid 0.94 1.00 0.97 0.98 0.94 0.95 0.93 0.94 0.90 0.95 0.86 0.92 0.93 0.99

MapReduce 0.95 0.97 1.00 0.97 0.98 0.98 0.97 0.89 0.95 0.97 0.92 0.95 0.98 0.94

Dense Matrix 0.95 0.98 0.97 1.00 0.95 0.95 0.93 0.89 0.91 0.96 0.87 0.92 0.94 0.97

Sparse Matrix 0.97 0.94 0.98 0.95 1.00 0.95 0.98 0.91 0.93 0.97 0.90 0.93 0.94 0.91

Graph Traversal 0.93 0.95 0.98 0.95 0.95 1.00 0.93 0.91 0.88 0.91 0.83 0.88 0.97 0.90

Particle 0.94 0.93 0.97 0.93 0.98 0.93 1.00 0.89 0.97 0.98 0.95 0.96 0.94 0.92

Spectral 0.94 0.94 0.89 0.89 0.91 0.91 0.89 1.00 0.81 0.87 0.75 0.80 0.81 0.92

Livermore 0.91 0.90 0.95 0.91 0.93 0.88 0.97 0.81 1.00 0.97 0.97 0.98 0.93 0.91

Drystone 0.95 0.95 0.97 0.96 0.97 0.91 0.98 0.87 0.97 1.00 0.96 0.98 0.92 0.96

Gromacs-Cutoff 0.85 0.86 0.92 0.87 0.90 0.83 0.95 0.75 0.97 0.96 1.00 0.99 0.90 0.89

Gromacs-PME 0.89 0.92 0.95 0.92 0.93 0.88 0.96 0.80 0.98 0.98 0.99 1.00 0.93 0.93

Transcode 0.90 0.93 0.98 0.94 0.94 0.97 0.94 0.81 0.93 0.92 0.90 0.93 1.00 0.89

Rendering 0.93 0.99 0.94 0.97 0.91 0.90 0.92 0.92 0.91 0.96 0.89 0.93 0.89 1.00



pair distances, with the PME method performing the sum in 
Fourier space for the long-range portion.  The use of the FFT in 
the PME application may be indicated by an increase in the 
correlation with the Spectral Dwarf compared to the Cutoff 
case (0.75 to 0.80). 

Of the other applications, the Transcoding application 
correlates very strongly with the MapReduce and Graph 
Traversal Dwarfs (0.98 and 0.97 respectively) and the 
Rendering application correlates very strongly with the 
Unstructured Grid and Dense Matrix Dwarfs (0.99 and 0.97 
respectively). 

Fig. 8 gives an indication that these application-to-Dwarf 
correlations may indeed be able to provide useful predictions of 
application performance: the Unstructured Grid Dwarf and the 
Rendering application score clearly move together whereas the 
Unstructured Grid score is sometimes similar and sometimes 
very different to the Rendering application score. 

V. CONCLUSION 

We have executed a suite of eight Dwarfs, a floating point 
and integer benchmark and four applications multiple times on 
virtual machines deployed on eleven different physical host 
types. 

Through analysis of the runtimes and logs of all these codes 
we have demonstrated that on Amazon EC2, the description of 
the virtual machines using just EC2 Compute Units (ECUs) 
and RAM size is not sufficient for predicting performance.  
Machines all described as “small” may have different clock 
speeds and cache size and even knowledge of this additional 
detail does not help in performance prediction as some 
applications run slower on the machines with a faster clock. 

We have shown that the Dwarf scores are sensitive to the 
sometimes small (but hidden) differences between the 
architectures of the physical hosts that the virtual machines 
tested were deployed upon.  By examining the correlations 
between different Dwarf scores we have demonstrated that 
different Dwarfs measure different aspects of computational 
performance. 

Finally, the varying correlations between Dwarfs and 
applications suggest the Dwarfs will be useful in predicting 
application performance as part of an application model. 

VI. FURTHER WORK 

To progress further with this work, more data will be 
needed, both data of more distinct physical hosts and repeated 
measurements of the same physical hosts. 

We are primarily interested in using the Dwarf scores as a 
predictor for application performance and will investigate this 
aspect further, comparing predictions from Dwarf scores with 
predictions possible from other data such as ECUs or clock 
speed.  It may also be possible to use the data measuring the 
Dwarf performance for varying workloads to predict the 
variation in performance of applications as their workload is 
changed.  This will feed into our related work on modelling 
quality of service terms for applications. 

It may also be instructive to apply the benchmark suite to 
investigating other issues, such as the performance difference 
between a physical host and a virtual machine on the same host 
or whether there is any difference in performance between 
different hypervisors. 

Finally, any model of an application executing in the cloud 
must take into account the variability of virtual machine 
performance as the load resulting from other users of the same 
physical host varies.  Executing the benchmark suite on the 
same virtual machine type over an extended period will help 
measure these fluctuations.  We also hope to make use of 
detailed infrastructure monitoring data from the BonFIRE 
facility describing the variation over time of CPU and memory 
resources allocated to each virtual machine. 
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