

1

Web Service Scenarios and RO

Models

Contents
Mashups ... 2

M1: Yahoo Pipes .. 2

M2: The MashMaker Scenario, Desktop Mashups .. 3

M3: Displaying the time and location of a Website’s visitors using a layered mashup

architecture .. 5

M4: Creating situational applications using the enterprise information mashup fabric 7

Enterprise Services ... 8

E1: City University .. 8

E2: Information Enterprise to Enable Net Centric Operations in the US DoD 10

E3: Integrating BT’s Operational Support Systems (OSS) .. 11

E4: Documenting Software Components ... 13

B2B ... 13

B1: Reverse Auctioning .. 13

B2: Telecommunications Wholesaler .. 15

B3: E-Procurement ... 17

B4: Supply Chain Management .. 18

Cloud Computing ... 20

C1: NYT Times Machine ... 20

C2: Major League Baseball MLB Website’s Chat System ... 22

C3: Colorado State University using Google Apps ... 23

C4: LingoSpot a business built using Google App Engine .. 24

Grid Computing .. 25

G1: NEESgrid .. 25

G2: Distributed Aircraft Maintenance Environment .. 28

G3: Virtual Screening with Desktop Grids .. 30

G4: CombeChem testbed on the Grid.. 32

References ... 33

2

Mashups

M1: Yahoo Pipes

The scenario is an example of creating a mashup using Yahoo Pipes. Yahoo Pipes is an interactive

web application it enables the creation and execution of mashups. It offers a workspace in which

a user can add widgets such as data sources, filters, and functions to refine and merge the data.

A user has built a stock quote watch mashup using Yahoo Pipes[1], this displays the last

quote and chart for the stocks. In this example he uses the widgets provided to retrieve

the original stock data from a .csv file stored at the Yahoo Finance downloads. He then

uses a filter widget to filter the stock file for certain stock quotes. To loop through the

obtained data he uses a loop widget that displays the results as a chart.

Infrastructural and functional requirements

1. Data retrieval interaction (Read only) - The client can request data from the server,

but cannot update or modify it. So the client cannot change the server’s state.

2. Stateless interactions with the server - No interaction between the client and server

involves maintaining client specific data on the server, and data requests are independent

and isolated from each other.

3. Proprietary Workflows - The workflows description is not in an open format it is

specific to the platform executing it.

4. Workflows are controlled by and executed on one machine - There is no need for a

participation of multiple machines or a coordination of them.

5. Server/Service provider ownership of data - The data accessed by the client belongs

to the service provider.

6. Open Accessibility to the Data - The data is accessible, there are no security

restrictions.

7. Creation of the workflows is done by the end user with a GUI - Mashup Creator’s level

of expertise is minimal, the filtering and programming is through GUI no coding is required

from the end user EU.

8. No triggering of actions - There are no tasks that are triggered as result of executing a

mashup.

3

Non-functional requirements

1. Tolerance of failure - In this scenario, and many other mashup scenarios, mashups are

used by end users for providing specialised data for non-critical tasks, so the failure of

mashups do not have a large impact on other tasks.

Scenario Breakdown

The generic scenario of building mashups using Yahoo Pipes[1] is broken down to the following

steps:

(1.) The client creates a mashup

(2.) It creates widgets that read inputs from other created widgets or external resources

(3.) The widget produces the results

(4.) The client reads the results

Resource Oriented Model

Figure 1 Modelling Mashups Creations with Yahoo Pipes

In this scenario step 2, (creating widgets) is iterative. We used the *[j:= 1..n] UML

convention to indicate this. The Has links show the structural relationships between the mashup,

its widgets, and the results.

The return messages are not shown in the modelling, that is because in ROA where HTTP is

utilised, the server’s response is standardised. This standardisation also applies to error

messages.

M2: The MashMaker Scenario, Desktop Mashups

[2] describe MashMaker an interactive browser plug-in for creating mashups from Intel. The

scenario provided explains how a user, who is planning to rent a house, uses MashMaker.

A user is interested in houses that have the best restaurants around. The user visits a housing

website and adds it to MashMaker by clicking an icon in the browser. The houses are displayed in

MashMaker as a tree where each house is a node, when a node is clicked MashMaker suggests

appropriate queries like “things nearby”. The user searches for food nearby, then applies a filter

4

widget to include only those within 0.5 a mile and having a rating of 3 or more. He adds a count

widget to count how many restaurants match these criteria, and then copies this widget to the other

houses, saves it, and publishes it.

The interaction occurs between the different web servers, where the data resides, and

MashMaker on the client. The actual processing and aggregation of the data happens on the

client. However in case of overlaying information on maps, Google Maps is utilised and some of

the processing happens on the Google Maps Server then the results are transferred to the client.

Infrastructural and Functional Requirements

Similar to the requirements discussed in M1

1. No triggering of actions

There are no tasks that are triggered as result of executing a mashup.

Non-functional Requirements

Similar to the requirements discussed in M1

Technical Notes

1. Client/Intermediary Data processing, filtering and aggregation

The processing of the data is performed on the client or partially on an intermediary server like

Google Maps.

2. Data aggregating compositions

The compositions involved in creating mashups are based on joining data providing services,

where the composition depends on matching elements or attributes of the data.

3. Standards of data resources

The formats of the data sources vary, from HTML (web pages), RSS, JSON to RDF.

4. Scalability issue

Although the mashup is executed on the client there is a point that could affect the scalability of

the architecture, this is the MashMaker server that hosts a database of extractors [3]. Extractors

describe how to extract structured information from HTML pages. The creation and maintenance

of extractors is done in a wiki collaborative manner. The scalability issue is minor if the

extraction is executed on the client, which seems to be the case although is not explicitly stated.

5. Architecture

1. Multiple Servers for Data Sources

2. An intermediary server for maintaining extractors and mashup reuse

3. An application on the client to create mashups

Scenario Breakdown

(1.) The user creates a mashup

(2.) The user creates two web resources that link to websites that s/he wants to mashup

(3.) The user updates the mashup to mash the two web resources

(4.) The user runs the mashup

(5.) The mashup returns the results

Resource Oriented Model

5

Figure 2 RO Model of M2

Modelling Issues

Creating more than one resource at the same time. (3)

There are widgets that the user adds to the Mashup that manipulate the web resources that were

considered part of the mashup and not modelled as individual resources. This presents a

different level of granularity to M2.

M3: Displaying the time and location of a Website’s

visitors using a layered mashup architecture

[4] explained their layered architecture for creating mashups from streaming data. Their

approach is similar to Yahoo Pipes where the mashup architecture executes the mashup and the

results are sent to the client. They provided an example of a mashup that combines a Web

server’s log file with a geolocation service.

In this scenario a user wants to display the geographic locations of a web site’s visitors on a map,

this map is constantly updated. He or she does that by using the system built on this architecture to

access the web server’s log through a secure shell socket (SSH) this provides real-time updates

through a streaming push mechanism in contrast to a request/response mechanism using HTTP,

which increases the latency and network traffic. The user then uses the system to create components

to extract the IPs from the log, resolving the DNS, looking up the coordinates and overlaying them

on a map which is the sent to the client.

The requirements are similar to the ones in scenario M2; however there are some additional

ones

Infrastructural and Functional Requirements

1. Accepts Streaming Data pushed by servers

Unlike other approaches it accepts data pushed to the mashup engine over open ports

Non-functional Requirements

1. Secure Access

6

In this scenario access is enabled to access secure files on remote web servers using SSH

Technical Notes

1. Standards of data resources

Web logs, RSS, JSON, accesses data from Web Services using SOAP.

Scenario Breakdown

(1.) The application reads a Web log

(2.) A local copy of the Web log is created

(3.) The client reads the local copy (The search is discussed in the modelling issues)

(4.) IPs are extracted from the web log

(5.) The IPs are read to be sent to the DNS

(6.) Resolve the IPs at the DNS

(7.) Create a resource representing the DNS coordinates

(8.) Getting the Coordinates from the DNS

(9.) Creates a Map

(10.) Overlay the Map with the coordinates

Resource Oriented Model

Figure 3 RO Model of M3

Modelling Issues

7

1. The exchange of roles between server and client, servers become clients of other servers,

within the server it is not clear how the business logic is controlled, it is not like controlling

the client transition through hyperlinks. It is more like an internal workflow within the

server. Not sure how to model that.

2. Copying the Web log

3. The Web Log is pushed to the mashup server, it is not read, as the authors put it is a

streaming input, however the initiation of the stream is requested.

4. How to model a search:

o A resource with a query string URI which the client formulates then Gets

o Create a query resource, this creates a result resource

o Create a search results resource, structurally connected to the resources it searches

M4: Creating situational applications using the

enterprise information mashup fabric
In [5] the author discusses the enterprises need for Situational Applications the author described

them as “applications that come together for solving some immediate business problems”. The

paper described two scenarios to illustrate where it would be useful.

M4A: In the first example a salesperson needs information on a client before making a call on

prospect. The information needed is how much was sold to the customer during the last quarter, and

did the customer have problems with sales.

M4B: A CFO that has a meeting with his CEO. The CFO wants to present a summary of the financial

picture. This summary needs to be assembled from emails by finance personnel including

presentations that contain embedded spreadsheets about the financial picture.

Infrastructural and Functional Requirements

1. Information Assembly

In M4A there is no merging done on the data on information assembly

Non-functional Requirements

1. Closed

The system is to be used inside an enterprise.

Technical Notes

1. Standards of data sources

The data depends on the applications that the enterprise uses, the more the mashup engine

understands the formats of enterprise data, the more useful it would be.

Scenario Breakdown

(1.) Query the Customer info

(2.) Reading the results of the query

Resource Oriented Model

Figure 4 RO Model of M4

8

Modelling Issues

1. What is modelled is M4A, M4B is the same with the a change in the resource names.

2. However a requirement is having access to parts of resources, and although this is not

related to modelling and is an implementation issue but it could be done by having

dependent and independent URIs.

3. If a resource only exists as a part of another resource it is a dependent resource and its URI is

an extension of the resource it belongs to URI

Eg. www.example.com/resource1/resource2

Otherwise it is independent

Eg. www.example.com/resource2

Enterprise Services

E1: City University

The scenarios chosen were two integration projects from City university[6]. The first project was

Single Sourcing of Programme Data (SSPD). The university uses information about the study

programmes in different processes, like the producing student handbooks, publishing

programme information on the website, producing prospectus and quality and approval

processes for development of new programmes. These processes are using the same information

but they were ope rating independently this lead to inconsistencies data and effort duplications.

SSPD is concerned with how programme information is created, updated and used. So

that the processes mentioned above could be facilitated and any inconsistencies resolved.

It enables academic and administrative staff to define and maintain module and

programme specifications and submit them for approval.

The other integration project from city is called Managed Learning Environment (MLE)

The University uses both SITS:Vision student information management system, and

Virtual Learning Environment (WebCT Vista). The transfer of student information from

SITS:Vision to WebCT Vista took place using a nightly scripting process, this was slow and

had errors. MLE aims to have the SITS system trigger the updating process so new

information is added to WebCT directly.

Infrastructural and functional requirements

1. Complete control over the service providers and service consumers - The university

systems are the service providers and the service consumers there are no external entities

involved.

2. Actions are triggered as a result of service invocation, so it is not a read only

situation - The state of resources can be altered because of the service invocation

http://www.example.com/resource1/resource2
http://www.example.com/resource2

9

3. The ability to deal with multiple systems and data formats – The services deal with

legacy systems that use different technologies and formats to represent the data.

Non-functional requirements

1. Communication between the subsystems is controlled by the same entity - This

implies that security measures are less stringent because the services are not available to

external consumers.

Scenario Breakdown

The SSPD scenario from City University [6] can be decomposed into:

(1.) Academic Staff reads the program info

(2.) Creates a modification

(3.) Can update it, when it is finished

(4.) It is approved by the Administrative staff

(5.) The Program info is updated

(6.) It can be read by interested processes

Resource Oriented Model

Figure 5 Modelling City University’s SSPD

With step (3.) an update can also change the status of the modification to indicate it is ready to be

submitted. Error! Reference source not found. shows how roles are modelled, with the name

of the role associated with the action on the messages.

Scenario Breakdown

The other integration project from City (MLE) is modelled below. The steps involved in MLE are

(1.) The SITS system creates updates

(2.) The SITS system notifies WebCT

(3.) WebCT reads the changes and gets updated

Resource Oriented Model

10

Figure 6 Modelling City University’s MLE

WebCT and SITS are active resources, indicated by the heavy lines (a UML convention). This

means they initiate control activity.

E2: Information Enterprise to Enable Net Centric

Operations in the US DoD

The US DoD aiming to provide Net centric operations, where different systems coordinate in case

of warfare or national security alerts. The issues facing this coordination are discussed in [7]:

In the DoD there is large number systems both legacy and emerging, these systems are aiming to

provide Net centric operations. However these systems are large, monolithic with different

infrastructures in terms of: transport, network, data, interface layers, etc). This limits data exchange

among them and interoperability is a main concern. Moreover these systems are configuration

intensive and difficult to manage. Maintaining these systems and keeping them up to date is very

expensive and replacing them is usually cost prohibitive. Although these systems are for the DoD,

however they are for several divisions, as a result they:

1. Have different conceptual basis.

2. Stand alone because of the acquisition environments

3. Have different management

4. Do not share common funding

5. Have different customers

6. Have different evolvement rates

Net Centric operations aim to prepare for the unknown. It is not known in advance what

information is required or what collaborations and coordination must take place. This means that

the system must be flexible and rapid in terms of customisation, re-configuration when required.

Infrastructural and Functional Requirements

1. Federated control over the service providers and service consumers

Although the subsystems are under the control of the DoD, however they are autonomous

systems that were not designed to work together.

2. Service Coordination

Several services from different subsystems must be made to work together.

3. Workflow Support

Service coordination requires workflow support from the service infrastructure

4. Actions are triggered as a result of service invocation, so it is not a read only situation

The state of resources can be altered because of the service invocation

5. Service Discovery

11

To provide the flexibility needed, the infrastructure should provide means for automated or

semi-automated discovery

6. The ability to deal with multiple systems and data formats

The services deal with legacy systems that use different technologies and formats to represent

the data.

7. Notification

Running services send notifications to the clients or to the service coordinators.

Non-functional Requirements

1. Flexibility

The functional and infrastructural requirements are changing and not known in advance

2. Rapid development

The development of the integration is a response to urgent situations and must be done quickly

3. Timely response

Net centric operations are time critical, delay is not tolerable.

4. Security

The security involves:

a. The authentication and authorisation of the service consumers and service

providers

b. The encryption of the communication to guarantee confidentiality

5. Reliability

This includes

a. The availability of services

b. The recoverability of data and applications

Resource Oriented Model

There is no clear scenario to model, however the key requirements are:

1. Flexibility as the requirements are changing

2. Rapid development

3. Security

Resource oriented architecture can fulfil these requirements because:

For flexibility, realising the resources in a system will facilitate combining them in different ways,

it will enable reuse since the Because of the uniform interface accessing and designing the

interaction with external systems will be easier than connecting to external systems which have

different interfaces, and hence more rapid. Because of fine grained Role Based Access Control

(RBAC) controlling access to the system will be broken down to the finest level, and restrictions

can be controlled easily because it is reduced to:

1. identifying resources

2. identifying roles

3. specifying what action each role can perform on a resource

E3: Integrating BT’s Operational Support Systems (OSS)
BT used Web Services to integrate core operational support systems (OSS) which are legacy

subsystems to enhance existing services or provide new ones. The following scenarios mentioned

in [8] illustrate this:

BT.com Online website

12

BT.com offers many customer services such as ‘View my bill’, ‘Friends and Family’, etc. BT would like

its customers to use the website because it reduces the cost of operator-assisted services. BT.com

needs access to core services from multiple internal heterogonous sub-systems.

Project SCORe (Service Consolidation and Operational Revitalisation)

A problem that was identified with the call-centres is the complexity of retrieving the data relative

to a customer’s contact. SCORe aims at reducing costs and increasing customer satisfaction. Because

the data is held in multiple databases and controlled by several systems; this means that several

calls to these systems were needed using different technologies.

Infrastructural and Functional Requirements

1. Complete control over the service providers and service consumers

BT systems are the service providers and the service consumers there are no external

entities involved.

2. Actions are triggered as a result of service invocation, so it is not a read only situation

The state of resources can be altered because of the service invocation

3. The ability to deal with multiple systems and data formats

The services deal with legacy systems that use different technologies and formats to

represent the data.

Non-functional Requirements

1. Communication between the subsystems is controlled by the same entity

This implies that security measures are less stringent because the services are not available to

external consumers.

Scenario Breakdown

BT.com

 The customer can read the bill, this will invoke reads to the subsystems

 The customer can update and read Family and Friends options, this will also invoke

update and read requests to the system

Score

 The operator can retrieve customer information, which then retrieves it from the

subsystems.

Resource Oriented Model

Figure 7 RO Model of E3

Modelling Issues

No sequence numbering.

13

E4: Documenting Software Components

In [9] the author discusses the problem of reusing software components in large enterprises and

the automation of this reuse. He explains that current technologies aren’t sufficient. The

following is a scenario based on the issues he mentioned:

A programmer creates an internal software component then generates a WSDL description of it

using a tool such as axis. This WSDL description doesn’t help the next programmer hired to work on

this component, as it doesn’t describe how to use this component. The automatically generated

WSDL file is tens of pages long which is only useful to specific programs, that is because an entire

process has been converted to a web service. Since it is hard for a programmer to understand and

use such a component it would be impossible for some other program to do so automatically.

So the main concerns in the scenario

1. Making components reusable for other developers, by having a clear descriptions

2. This could facilitate the automation of the reuse

 Infrastructural and Functional Requirements

Automatic/Semiautomatic discovery

Clear service descriptions are needed to enable discovery and hence reusability.

Non-functional Requirements

Readability and reusability of software components

Resource Oriented Model

There is no clear scenario to model, however the key requirements are the reusability and clarity

of the software design.

So the key 3 things that must be described in the documentation of the system are the

1. Representation of the resource

2. Transitions allowed from 1 resource action to another

3. Allowed actions on the resources

The more the design and implementation reflects these descriptions, the more the system

becomes understandable and reusable.

B2B

B1: Reverse Auctioning

The scenario modelled here is a reverse auctioning scenario mentioned in [10]:

“A buyer (e.g., car manufacturer) uses reverse auctioning for procuring specially designed

components. In order to get help with selecting the right suppliers and organizing and

managing the auction, the buyer outsources these activities to an auctioning service. The

auctioning service advertises the auction, before different suppliers can request the

permission to participate in it. The suppliers determine the shipper that would deliver the

components to the buyer or provide a list of shippers with different transport costs and

quality levels, where the buyer can choose from. Once the auction has started, the

14

suppliers can bid for the lowest price. At the end, the buyer selects the supplier according

to the lowest bid. After the auction is over, the auctioning service is paid.”

Infrastructural and functional requirements

1. Registration - The auctioning service deals with many participants/clients that need to

register before using the service. This implies the need for authentication and authorisation

2. Support for different client roles - There are two different roles for users of this

service: buyers and suppliers.

3. The service provider and the service consumers are different entities

The service provider is the auctioning services, and the consumers are the buyer and the

suppliers.

Non-functional requirements

1. Security

This involves authentication and authorisation for service consumers and encryption of

payment transactions.

Scenario Breakdown

The reverse auctioning scenario mentioned in [10] could be broken down into these steps

(1.) The buyer creates an auction

(2.) The buyer starts the auction

(3.) The suppliers place their bids

(4.) The buyer selects a bid

(5.) The buyer pays for the service

(6.) The buyer deletes the auction

Resource Oriented Model

Figure 8 Modelling Reverse Auctioning

As in Error! Reference source not found. the messages are annotated with roles.

15

B2: Telecommunications Wholesaler

In [11] the authors discussed an IBM project that aims to enable a large telecommunications

wholesaler to supply services to more than 150 customers. The wholesaler owns the physical

network. The customers are either telecommunications companies extending their own network

infrastructure, or companies that want to bundle telecommunication services with their

products. These customers will use the order management services of the wholesaler to connect,

configure, or disconnect telephone services for end users. The order management application

should offer two main processes:

1. Provide a new Public Switched Telephone Network (PSTN) telephone service.

2. Move a PSTN telephone service to a new address.

A customer needs to follow the next steps, summarised from [11], in order to perform the

aforementioned processes:

1. Identify the service to be moved and its current location or site address.

2. Identify the new address for the service. This has to be the address as recognized by the

systems that record telecommunications plant and service information. Hence search aids

are required.

3. When a recognized address is identified, the next step is to search for transmission cable

plant which exists at the target address and could be reused for provisioning this service.

4. Having identified a particular copper transmission path, this result has to be recorded.

5. Determine the features of the service at the new address which depends on a complex set of

factors. Some features may already exist from a previous service at this address, some

transferred from the old address, and some may be requested.

6. Next, determine a phone number for the service at the new address and reserve it. The old

number maybe kept if the network at the new address permits, otherwise a list of numbers

available must be supplied.

7. If a visit is required, then a time must be negotiated which suits both the customer and the

field staff to be assigned to the task.

8. The request to move and the reservation is confirmed, allowing the commercial transaction

to proceed.

Infrastructural and Functional Requirements

1. Negotiation

The service infrastructure should support conventions that enable the service provider and

service consumers to negotiate.

2. Workflow support

The processes needed involve the invocation of several services in a certain order.

3. Conversational services

The service infrastructure should enable execution of services where the all inputs the inputs

cannot be known upfront.

Non-functional Requirements

1. Security

This involves authentication and authorisation for service consumers

Scenario Breakdown

(1.) The client creates a service request

(2.) Adds the new address of the service

(3.) Determines the features of this service

16

(4.) A number is created

(4.A) A list of new numbers

(4.B) The old number is kept

(5.) Increase the RAM in the machines

(5.A) The client chooses a number

(5.B) The old number is read

(6.) [Optional] A visit is arranged

(7.) The client pays for the service

Resource Oriented Model

Figure 9 RO Model of B2

Modelling Issues

1. Not all structural relationships have been modelled e.g. Payment and Service Request

2. 4.c, 6.c and u who initiates them?

17

3. How to represent optional parts in a better way

4. (7.) Negotiating the visit? How is that represented?

B3: E-Procurement

 [12] presents and e-procurement general scenario:

“E-procurement has a buy side, a sell side, and the connection of the two. On the buy side, a

customer such as a company purchasing agent needs to access information on all relevant

products, including product specifications, comparisons with all competitive products,

pricing including discounts, delivery arrangements, and promises. The seller must have all

relevant information on the buyer, including company, finance, credit, contact, logistics,

preferences, and legal. On the sell side, the vendor must provide all relevant, up-to-date

catalogue information from hundreds or thousands of suppliers together with real-time

inventories and pricing. For a sale, transaction details must be irrefutably committed on both

sides, and reflected in the inventory and financial systems.”

Infrastructural and Functional Requirements

The characteristics are identical to the ones in scenario B2

Non-functional Requirements

1. Security

This involves authentication of buyers and sellers and the encryption of payment transactions.

Scenario Breakdown

(1.) The buyer reads the catalogue

(2.) The buyer places the order

(3.) The seller provides the pricing for that order

(4.) The buyer reads the pricing

(5.) The buyer provides the payment

Resource Oriented Model

Figure 10 RO Model of B3

18

B4: Supply Chain Management

A scenario mentioned in [13] illustrates an example of a supply chain and the different entities

and interactions involved:

“We consider a manufacturing company in Bristol, UK which needs to distribute its goods

internationally. It does not maintain its own transportation capability, but instead

outsources this to other companies, which we refer to as Freight Forwarders. These

companies provide a service to the manufacturing company – they transport crates on its

behalf. However, the manufacturing company still needs to manage relationships with these

service providers. One role within this company, which we refer to as the Logistics

Coordinator, is responsible for doing this. Specifically, it carries out the following tasks;

1. Commissioning new service providers, and agreeing the nature of the service they

will provide. (E.g. locating a new freight forwarder in Poland, and agreeing that it

will regularly transport crates from Gdansk to Warsaw.)

2. Communicating with service providers to initiate, monitor and control shipments.

(E.g. informing the Polish freight forwarder that a crate is about to arrive at

Gdansk; receiving a message from them that it has been delivered in Warsaw, and

they want payment.) This is done using one of the messaging standards, EDIFACT.

3. Coordinating the activity of service providers to ensure that they link seamlessly to

provide an end-to-end service. (E.g. making sure the shipping company plans to

deliver the crate to Gdansk when the Polish transport company is expecting it.

Informing the Polish company when the shipping company is about to drop it off.)

4. Communicating with other roles in the company to coordinate logistics with other

corporate functions. (E.g. sales to know what to dispatch; financial to ensure

payment of freight forwarders.)

In our scenario, we consider a specific logistics supply chain from Bristol, UK to Warsaw,

Poland. It consists of three freight forwarders: The first is a trucking company, responsible

for transporting crates from the manufacturing plant in Bristol to the port of Portsmouth,

UK. The second is a shipping company, responsible for shipping crates from Portsmouth to

the Polish port of Gdansk. The third is another trucking company, which transports crates to

the distribution warehouse in Warsaw. We assume that the Logistics Provider communicates

with the Freight Forwarders using the EDIFACT standard, and is already successfully using

this logistics chain.”

A problem arises when the shipping company becomes unavailable and the Logistics Coordinator

must find an alternative company, the new potential provider uses RosettaNet as a standard for

communication and the Logistics Coordinator needs to negotiate with it.

Infrastructural and Functional Requirements

The requirements are identical to the ones in scenarios B2 and B3 however there are others:

1. Mediating between different standards

In this example EDIFACT and RosettaNet, and this involves both the mediation of data and the

mediation of protocols used.

2. Discovery of services

In this example EDIFACT and RosettaNet, and this involves both the mediation of data and

the mediation of protocols used.

Non-functional Requirements

Identical to B1s requirements

19

Scenario Breakdown

(1.) Logistics coordinator creates a supply chain

(2.) Read the offered services from the shipping company

(3.) Logistics coordinator creates a service request

(4.) The shipping company creates an offer

(5 .)Logistics coordinator agrees to that offer

(6.) The shipping company starts a shipment

(7.) Logistics coordinator updates the supply chain with info from the agreement

(8.) Logistics coordinator updates the shipping monitor with info from the shipment

(9.) The shipping monitor monitors the shipment

Resource Oriented Model

Figure 11 RO Model of B4

Modelling Issues

1. Structural relationships are not modelled

20

2. There is more than 1 shipping company and the process is the same, so it is iterative and is

similar to M2. But this is not shown in the model

3. When the update, changes the structural relationships, what happens e.g. (7.u)

Cloud Computing

C1: NYT Times Machine

The cloud computing scenario we chose is the New York Times project called TimesMachine,

which is discussed in [14], it aims to provide access to issues dating back to 1851, adding up to

11 million articles.

The technical team wanted to generate the PDF files from TIFF images. The generation

was done based on request; however this solution would not work for high traffic. The

team decided to generate all the PDF files and serve them on request. The size of TIFF files

was 4 Terabytes. So they used Amazon's Elastic Compute Cloud (EC2) and Simple Storage

Service (S3). The TIFF files were uploaded to S3 and they started a Hadoop cluster of 100

customized EC2 Amazon Machine Images. They transferred the conversion application.

That resulted in the conversion to PDFs and storing the results to S3 taking 36 hours only.

Infrastructural and functional requirements

1. Configuration of Virtual Machines - In this scenario the Amazon Machine Images (AMI)

were configured to form a Hadoop cluster. This can be done through a web-based control

panel or through Web Services. EC2 offers a SOAP interface and a query interface.

2. Transferring large amounts of data to and from the servers - This implies the need

for reliable, efficient and secure data transfer. This is discussed in the following 3 points.

3. The data is owned and manipulated by the client - In contrast to mashups where the

client requests the data, here clients request resources to manipulate their data.

4. The client transfers the job/application to the servers - In this scenario the client

uploads to the cloud the application that manipulates the data.

5. Multitenancy - This means that the services and resources are used by multiple clients

other than the New York Times and this implies a stronger need for security and for

resource virtualisation.

21

6. Batch processing - Interaction with the server does not need to happen during the

processing

Non-functional requirements

1. Service Level Agreements - There is no formal specification for the agreement, the SLA

is a webpage. Therefore, the negotiation of SLA not automated.

2. Reliability - This should be based on the SLA and include

a. The availability of services

b. The recoverability of data and applications

Since it is built on a business model what are the penalties in the case the reliability criteria

are not met.

3. Security - The security involves:

a. The authentication and authorisation of the service consumer in this case the

technical team at The New York Times

b. The encryption of the communication to guarantee confidentiality

c. The encryption of the data and applications on the client which are owned by the

clients to ensure that no one else can access them

4. Monitoring - Amazon offers a web console, command line tools, and a Web API (Web

Service) to monitor the instances.

Scenario Breakdown

The New York Times project scenario TimesMachine [14] is decomposed into the following steps:

(1.) Create the data items, upload the images

(2.) Create a Hadoop Cluster

(3.) Create an application and upload the converter

(4.) The application returns the results

(5.) The client reads the results

Resource Oriented Model

22

Figure 12 NYT Cloud Computing RO Model

The client sends the representation of the resource when creating or updating it, the client

receives a resource representation when it reads a resource.

C2: Major League Baseball MLB Website’s Chat System
Another scenario that was mentioned in [14], the MLB Advanced Media a company the develops

and maintains the MLB websites wanted to add a chat service.

The technical team faced the problem that this chat service has to be up and running at a very short

notice, there was no time to buy and set up new equipment. So they decided to use machines from

Joynet a cloud computing provider, the machines acquired were used to test and launch the new

product. At the development stage they needed 10 virtual machines and 20 for the chat clusters.

When they launched the chat system they needed extra RAM for the machines, when the playoff and

World Series started they needed extra machines with extra RAM and processing power. When the

season ended they could scale down on the resources required.

Infrastructural and Functional Requirements

The requirements are similar to C1 however it differs in some technical issues

1. Flexible Scalability

The resources utilised efficiently, acquired when needed or released otherwise

2. Standards used

There is no Web API (Web Service) interface to Joynet services

3. Used as hosting server

The scenario described here is more like a hosting server than cloud computing.

Non-functional Requirements

Identical to C1s requirements

23

Scenario Breakdown

(1.) Create Machine instances

(2.) Increase the number of machines and increase their RAM

(3.) Install “Create” the chat system

(4.) Run the Chat system

(5.) Increase the RAM in the machines

(6.) Scale down the machines

Resource Oriented Model

Figure 13 RO Model of C2

Modelling Issues

1. There are multiple machines, should they be considered a collection? And how will the

application be modelled in that case

C3: Colorado State University using Google Apps

In [15] the author discusses Colorado State University’s use of Google Apps such as Google Mail,

Google Calendar, and Google Talk, Google Docs, Google Sites and Google Video.

In 2009, Colorado State University (CSU) used Google Apps as an e-mail hosting solution for its

undergraduate students. Google Apps Education Edition, is free for colleges and universities. CSU

wanted to replace their old system with an outsourced e-mail and collaboration solution. The

important issues were: cost, reliability and the scope of services. Google Apps was selected

because the main it offered e-mail, calendar, and personal web site services for students.

Moreover the interoperability between those applications was a plus. This has increased

students collaboration and communication. The faculty and staff are now moving their accounts

to use the suite because of its potential.

Infrastructural and Functional Requirements

The requirements are similar to C2 however it differs in

1. Software as a service

Instead of acquiring software solutions the university used of Google Apps.

2. The client does not transfer applications to the server

The client uses the services as applications existing on their systems.

Non-functional Requirements

Identical to C1s requirements

24

Scenario Breakdown

(1.) Create a user account

(2.) Pay for the service

(3.) The Apps are created for this account

Resource Oriented Model

Figure 14 RO Model of C3

Modelling Issues

1. Is there an application specification resource or is it part of the user account?

2. Can I model the payment in more detail? What is the granularity of the modelling

3. Alternative paths?

4. In this scenario I assumed there would be a payment, however in Google Apps, there are

different options, depending on the account type.

C4: LingoSpot a business built using Google App Engine
LingoSpot is one of the case studies mentioned in Google App Engine’s documentation1

Lingospot provides services for online publishers to help readers discover more of their content,

including virally-distributed widgets for related videos and articles, as well as smart discovery links

within context. We use App Engine to scale our services to Web audiences limitlessly, ranging from a

million+ users in 30 minutes at large sites, to supporting hundreds of smaller sites that have

installed our viral widgets, without worrying an iota about provisioning capacity for the traffic and

growth.

Google App Engine enables users to run programs written in Python or Java, it also offers APIs to

access datastore, Google Accounts, URL fetch, Google Maps, and email services. It offers a Web-

based Administration Console to manage applications.

Infrastructural and Functional Requirements

1. Platform as a service

LingoSpot used Google Apps Engine as a development and hosting platform for its application

2. Dynamic Scalability

The system autonomously responds to the peaks on demand.

Non-functional Requirements

1 Google App Engine, App Engine Developer Profiles,

http://code.google.com/appengine/casestudies.html

http://code.google.com/appengine/casestudies.html

25

Identical to C1s requirements

Scenario Breakdown

(1.) Create a user account

(2.) Read the SDK

(3.) Upload the application

(4.) Run the application

Resource Oriented Model

Figure 15 RO Model of C4

Grid Computing

G1: NEESgrid

NEES is an NSF funded project to build a virtual laboratory for earthquake engineers. Using grid

technologies it enables remote access and control to observational sensors, experimental data,

computational resources, and earthquake engineering control systems such as shake tables,

reaction walls, and robots. NEESgrid also enables access to collaboration tools. [16]

Earthquake engineers wanted to study the effect of an earthquake on different types of

substances and structures, these different structures and their shake tables are

distributed across a number of labs, the aim was to coordinate these experiments with

computer simulations. So the (Multi-site Online Simulation Test) MOST was devised to

test and illustrate this capability using the NEESgrid system. MOST coupled physical

experiments testing the effect of an earthquake on the interior of a multi-story building at

3 different sites each testing a part of the structure. MOST linked the physical experiments

26

at the University of Illinois at Urbana-Champaign (UIUC) and at the University of

Colorado, Boulder (CU) with a numerical simulation at National Centre for

Supercomputing Applications (NCSA). A simulation coordinator coordinates the overall

experiment. [17]

Infrastructural and functional requirements

1. Remote access to instruments - Services can be interfaces to instruments; in this case

lab instruments such as shake tables.

2. Notifications - Running services send notifications to the clients or to the service/job

scheduler.

3. Batch Processing - When a service or job is run, there is no need for the client to interact

and results are delivered when it stops.

4. Coordination between running services - The services communicate to ensure correct

synchronisation.

5. Negotiation - It involves interactions between the client and the server to ensure

compliance between the client’s requirement and the server’s policies.

6. Support of sending and receiving large volumes of data - Large volumes of data are

being transferred between different services requiring reliable, efficient, and secure

transfer.

7. Service Scheduling - Services are invoked and controlled by schedulers in this case the

Experiment Coordinator is controlling several experiment executions.

Non-functional requirements

1. Security - The security involves:

a. The authentication and authorisation of the researchers and scientists to protect

sensitive data and applications

b. The encryption of the messages and transferred data to guarantee confidentiality

2. Monitoring - This is needed to ensure that the different components are functioning

3. Reliability - Reliable data transfer and service execution, no delays, interruptions or

outages.

The main reason of analysing these scenarios was to inform design decisions when developing

EXPRESS by gathering requirements from real scenarios. From this analysis there is an evident

need to represent the requirements in unified way which will map easily to EXPRESS and this

will be presented in the next chapter.

Scenario Breakdown

The NEESgrid scenario [16] discussed, consists of the following steps:

(1.) Create experiments and the simulation

27

(2.) Create an experiment coordinator

(3.) The coordinator starts the experiments

(4.) The coordinator retrieves experiment results

(5.) The coordinator reads the results

(6.) The coordinator aggregates the results

(7.) The results are read

Resource Oriented Model

Figure 16 NEESgrid Experiment RO Model

Due to the complex nature of the NEESgrid scenario, and the limited space structural links

between resources were not modelled.

28

G2: Distributed Aircraft Maintenance Environment
The DAME (Distributed Aircraft Maintenance Environment) project [18], is a Grid enabled

system for aeroengine faults diagnosis and prognosis. The aim of the project is to use Grid

technology to manage and analyse the vast amounts of data to diagnose existing anomalies and

predict potential problems in aircraft engines. [19] states the challenges for DAME which are: the

huge amount of data captured by the monitoring tool, the need for advanced pattern matching

and data mining of the captured and historical data, the requirement of collaboration from

diverse actors, the heterogeneity and distributiveness of the data assets and tools.

Work on DAME is currently further researched in BROADEN (Business Resource Optimisation for

Aftermarket and Design Engineering on Networks) [20] which investigate the use of SOA

techniques to achieve their goals. The main usage scenarios for DAME are:

There is a QUICK monitoring service installed on the aircrafts. This service captures the engines

monitoring data. QUICK can produce up to 1 Gigabyte of data for each engine, an aircraft can have

two or more engines; this can scale to many Terabytes each year for a fleet. Downloading and

storing this amount of data efficiently requires a huge number of distributed repositories at

different airports and these repositories must be available for the health monitoring of the

engines. DAME’s Engine Data Service is responsible for the downloading and storage of that data.

The scenario mentioned in [21] illustrates the challenge.

“Heathrow, with its two runways, is authorized to handle a maximum of 36 landings per

hour. Let us assume that on average half of the aircraft landing at Heathrow have four

engines and the remaining half have two engines. In future, if each engine downloads

around 1 GB of data per flight, the system at Heathrow must be capable of dealing with a

typical throughput of around 100 GB of raw engine data per hour, all of which must be

processed and stored. The data storage requirement alone for an operational day is,

therefore, around 1 TB, with subsequent processing generating yet more data.”

Due to the vast amounts of data the choice for DAME was to be highly distributed, having the

airports as the units of distribution. The monitoring data from an aeroplane arriving at an airport

is stored at that airport. Therefore the search queries are distributed across airport nodes, where

each node deals with the data it stores. This means that data relating to one engine is found in the

different airports it landed in. To make DAME work each airport node has a data repository,

pattern matching service, and a data catalogue.

An engine specialist wants to analyse a particular engine’s data. The specialist provides the

engine’s identifiers; the system submits it to a global catalogue, which returns a handle to the

data in the repository and also provides access to a pattern matching control (PMC) service

which can distribute the search process across different nodes. The specialist searches for a

feature in the engine data; the PMC becomes the master node and distributes the query to the

other nodes. The search is performed in parallel; the PMC collects the results and returns them to

the specialist.

The requirements are similar to G1 however it differs in the following issues

Infrastructural and Functional Requirements

1. Clients and Servers are controlled and managed by the same entity

Although DAME is implemented on a grid infrastructure, all the different components belong to

the same entity.

2. Service Brokering

There is a service broker which forwards services to different machines (servers/nodes), in this

scenario the PMC.

29

Non-functional Requirements

1. Support of sending and receiving large volumes of data

Large volumes of data are being transferred between different services requiring reliable,

efficient, and secure transfer.

Scenario Breakdown

(1.) Downloading the engine monitoring data

(2.) Copying it to the nodes

(3.) A client reads the Global Catalogue

(4.) Sends a query to the node, the node distributes the query

(4.1) The query is run on the data

(4.2) Reads the results

(4.3) Aggregates the results

(5.) The client reads the results

Resource Oriented Model

Figure 17 RO Model of G2

Modelling Issues

1. Who is doing (1.) & (2.), the node?

2. The multilevel bullets get confusing, especially if it indicates the timing

3. Who distributes the query is it the “Query” factory or should it be “Query 1”

4. Structural relationships are not shown in the model

30

G3: Virtual Screening with Desktop Grids
[22] Entropia is an architecture for desktop grids. Desktop grids utilise the idle commodity

computing resources (desktops) to perform highly distributed and computing intensive tasks. A

binary virtual machine is installed on each desktop. These communicate with a job manager and

resource scheduler to receive jobs, execute them, and return results. Desktop grids are effective

when there is high need for parallel processing power and there is no need for communication

between nodes during processing or the communication is minimal. [22] describes “Virtual

Screening” as one of the scenarios that make use of desktop grids:

In virtual screening, for drug discovery, a vast number of potential drug molecules are tested

ranging from hundreds of thousands to millions. The aim is to discover if these drugs affect the

activity of a studied protein. Testing involves a process called docking that assesses the binding

affinity of the test molecule to a specific place on a protein. Each potential molecule can be

evaluated independently making the process suitable for desktop grids. The results are binding

scores.

So a scenario based on that would be: an end-user submits a computation to the Job Manager for

example evaluating 50000 potential molecules. The Job Manager divides the computation to

independent subjobs, in this scenario evaluating every five molecules together resulting 10000

subjobs. The subjobs are submitted to the Subjob Scheduler. Any available resources are periodically

reported to the Node Manager that informs the Subjob Scheduler. Results of the subjobs are sent to

the Job Manager then handed back to the end-user.

Infrastructural and Functional Requirements

1. Virtual Machines installed on clients/participants

For the desktop grid to work, virtual machines need to be installed on the nodes or desktops

forming the grid computational resources.

2. Job Management

Managing breaking down the jobs into independent sub-jobs that are assigned to nodes, then

assembling the results and returning them to the client.

3. Job Scheduling

The scheduling involves having knowledge of the numbers and sizes of tasks/jobs and the

availability of resources. The VMs on the nodes informs the scheduler of the availability

4. There are three entities in this scenario

a. Desktop grid service provider: in this scenario Entropia

b. Nodes/participants: the desktops which become grid resources after installing the VMs

c. Client: who has a computationally intensive task to be run

Non-functional Requirements

1. Security

In addition to the security issues mentioned in G1, another security measure is unobtrusiveness,

meaning that the virtual machines and any jobs running on them do not harm or access

confidential data or applications on the nodes they executed on.

2. Tolerance of failure

In this scenario, tasks are being submitted to desktops, which are volatile and it is likely that they

could be switched off or cut off the network.

Scenario Breakdown

(1.) Create VMs on nodes

(2.) Create the Job

(3.) Submit the job to the Job Manager

31

(4.) The Job Manager splits the Job into subjobs

(5.) The Job Scheduler reads the subjobs

(6.) The Job Scheduler sends them to the nodes

(7.) The subjobs have results

(8.) The Job Manager reads the results

(9.) Aggregates the results

(10.) The client reads the results

Resource Oriented Model

Figure 18 RO Model of G3

Modelling Issues

1. There are notifications when processing the jobs end, not modelled

2. The monitoring is not modelled

32

G4: CombeChem testbed on the Grid

The CombeChem project [23] developed a testbed to combine structure data sources and

property data sources using the grid technologies to create a knowledge sharing environment.

The grid infrastructure enriches laboratory devices and supports provenance and automation

techniques.

As part of the CombeChem project Smart Lab was developed, it is intended to aid chemists during

the different stages of an experiment, i.e. planning the experiment, performing the experiment,

and analysing the results. The following scenario of using Smart Lab is built upon the description

of the Smart Lab in [24].

A chemist uses the tablet PC to plan an experiment, gets it authorised by his/her supervisor. After

the plan is authorised, the chemist follows it through to perform the experiment, during the

experiment the chemist can observe and make notes that will be stored with experiment process.

Moreover sensors and devices in the lab will store observations related to the experiment while it is

being executed. After the experiment is performed results are recorded.

The requirements are identical to the ones in scenario G1 and G2 however there are others:

Infrastructural and Functional Requirements

1. Workflow support

The different processes that are executed can be coordinated and saved as workflows, so new

workflows can be generated from them by changing processes or parameters.

2. Provenance Maintenance

The workflows provide means to link results to the steps they were generated from, thus

providing a trial record and a method to reproduce the results.

Scenario Breakdown

(1.) The chemist creates the plan

(2.) The chemist creates the experiment process that is based on the plan

(3.) The process is updated by sensors and the chemists observations

(4.) The chemist can retrieve the process which contains all the information about the process

Resource Oriented Model

Figure 19 RO Model of G4

Modelling Issues

33

The sequence numbering (3.) does it happen at the same time, what if multiple requests are

happening. Alternative scenarios

References

[1] P. Donnelly. (2010, 26/02/2010). Yahoo Finance Stock Quote Watch List Feed.
Available: http://pipes.yahoo.com/31337/watchlist

[2] R. J. Ennals and M. N. Garofalakis, "MashMaker: mashups for the masses," in the
2007 ACM SIGMOD international conference on Management of data, Beijing, China,
2007, pp. 1116-1118.

[3] R. Ennals, et al., "Intel Mash Maker: Join the web," SIGMOD Record, vol. 36, pp. 27-
33, Dec 2007.

[4] B. Biornstad and C. Pautasso, "Let It Flow: Building Mashups with Data Processing
Pipelines," Service-Oriented Computing - Icsoc 2007 Workshops, vol. 4907, pp. 15-28,
2009.

[5] A. Jhingran, "Enterprise information mashups: integrating information, simply," in
the 32nd international conference on Very large data bases, Seoul, Korea, 2006, pp.
3-4.

[6] C. University, "Introducing SOA at City University, London," October 2008 2008.

[7] R. Miller and R. Cherinka, "Engineering a Complex Information Enterprise: A Case
Study Architecting the Department of Defense Hourglass," in International
Conference on Enterprise Information Systems and Web Technologies, EISWT-07,
Orlando, Florida, USA,, 2007.

[8] J. Calladine, "Giving legs to the legacy - Web Services integration within the
enterprise," BT Technology Journal, vol. 22, pp. 87-98, 2004.

[9] C. Petrie, "Practical Web Services," IEEE Internet Computing, vol. 13, pp. 93-96, Nov-
Dec 2009.

[10] G. Decker and M. Weske, "Behavioral consistency for B2B process integration,"
Advanced Information Systems Engineering, Proceedings, vol. 4495, pp. 81-95, 2007.

[11] O. Zimmermann, et al., "Service-oriented architecture and business process
choreography in an order management scenario: rationale, concepts, lessons
learned," in Companion to the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, San Diego, CA, USA,
2005, pp. 301-312.

[12] M. L. Brodie, "The B2B e-commerce revolution: Convergence, chaos, and holistic
computing," Information Systems Engineering, pp. 15-36, 2000.

[13] C. Preist, et al., "Automated business-to-business integration of a logistics supply
chain using semantic web services technology," Semantic Web - Iswc 2005,
Proceedings, vol. 3729, pp. 987-1001, 2005.

[14] M. Klems, et al., "Do Clouds Compute? A Framework for Estimating the Value of
Cloud Computing," Designing E-Business Systems, vol. 22, pp. 110-123, 2009.

[15] D. R. Herrick, "Google this!: using Google apps for collaboration and productivity," in
Proceedings of the ACM SIGUCCS fall conference on User services conference, St.
Louis, Missouri, USA, 2009, pp. 55-64.

http://pipes.yahoo.com/31337/watchlist

34

[16] S. Gullapalli, et al., "Showcasing the features and capabilities of NEESgrid: A grid
based system for the earthquake engineering domain," in the 13th IEEE International
Symposium on High Performance Distributed Computing, Honolulu, Hawaii USA,
2004, pp. 268-269.

[17] L. Pearlman, et al., "Distributed hybrid earthquake engineering experiments:
Experiences with a ground-shaking grid appllication," in the 13th IEEE International
Symposium on High Performance Distributed Computing, 2004, pp. 14-23.

[18] T. Jackson, et al., "Delivering a grid-enabled distributed aircraft maintenance
environment (DAME)," in the UK e-Science All Hands Meeting, Nottingham, UK,
2003.

[19] T. Jackson, et al., "Distributed health monitoring for aero-engines on the GRID:
DAME," in IEEE Aerospace Conference 2005, 2005, pp. 3738-3747.

[20] T. Jackson, et al., "A virtual organisation deployed on a service orientated
architecture for distributed data mining applications," in Grid-Based Problem Solving
Environments. vol. 239, ed, 2007, pp. 155-170.

[21] J. Austin, et al., "DAME: Searching large data sets within a grid-enabled engineering
application," Proceedings of the IEEE, vol. 93, pp. 496-509, Mar 2005.

[22] A. Chien, et al., "Entropia: architecture and performance of an enterprise desktop
grid system," Journal of Parallel and Distributed Computing, vol. 63, pp. 597-610,
May 2003.

[23] J. G. Frey, et al., "Combinatorial Chemistry and the Grid," in Grid Computing: Making
the Global Infrastructure a Reality, F.Berman, et al., Eds., ed: Wiley, 2004.

[24] K. R. Taylor, et al., "The Semantic Grid and chemistry: Experiences with
CombeChem," Journal of Web Semantics, vol. 4, pp. 84-101, Jun 2006.

