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Hénon [8] used an inclined billiard to investigate aspects of chaotic scattering

which occur in satellite encounters and in other situations. His model consisted

of a piecewise mapping which described the motion of a point particle bouncing

elastically on two disks. A one parameter family of orbits, named h-orbits,

was obtained by starting the particle at rest from a given height. We obtain

an analytical expression for the escape distribution of the h-orbits, which is

also compared with results from numerical simulations. Finally, some discussion

is made about possible applications of the h-orbits in connection with Hill’s problem.
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I. INTRODUCTION

Chaotic scattering is a phenomenon which appears in many scientific fields, such as

astronomy, electromagnetism, statistical mechanics, chemistry, quantum mechanics, just to

mention a few. Two objects that are separated initially by some distance, come closer,

interact with each other for a while and then they separate again.

More specifically, in astronomy, chaotic scattering can be found in many situations, such

as, for example, in the formation and evolution of the outer solar system (e.g. [1]), in plan-

etary rings (e.g. [11]), in exosolar planetary systems (e.g. [4]), in the dynamical evolution
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of globular clusters (e.g. [3]). Regarding the last situation, stars are expected to escape

from a globular cluster due to a variety of dynamical processes, such as two body relaxation

or an external tidal field. This theoretical prediction has also been confirmed by observa-

tions (e.g. [9]). It is important to know whether a star will escape from a cluster and also

the timescale on which that will happen as it affects the scaling of the N-body simulation

results (normally, the number N of stars used by a simulation is less than the number of

stars of the cluster under study) and reduce the computational effort required to perform a

simulation. Also, the timescale of escape is important when one uses Monte Carlo models

in order to study the dynamical evolution of globular clusters. Further reasons regarding

the importance of escape in globular clusters are discussed in [6].

A star can escape from a cluster when its energy exceeds some critical threshold but

escape may not occur immediately. Numerical simulations show that it may take a long

time for a star to escape or it may not even escape at all (escape on a timescale comparable

with the age of the universe falls into this category too). The assumption of rapid escape

referred to in [5] and [2] is therefore a significant source of error for theoretical predictions

regarding the evolution of globular clusters. Interest has therefore been generated in the

dynamics underpinning the escape mechanism.

Petit and Hénon [10] investigated numerically the motion of two satellites around a planet.

However, certain difficulties arose in their study and in order to overcome those difficulties,

Hénon [8] devised a model problem which demonstrated similar behaviour to the satellite

problem but it was easier to study. That model consisted of an inclined billiard, i.e. a point

particle bouncing on two fixed disks and a two dimensional mapping was used to describe

the dynamics of the model.

In the present paper, we extend the results obtained in [8] by deriving an analytical

expression for the escape distribution of a particular class of orbits, the so called h-orbits.

The structure of the paper is roughly as follows: first, we give a description of the model

developed by Hénon (Sec. 2). Then we obtain an analytical expression for the escape distri-

bution of the h-orbits and the formula is compared with results from numerical simulations

(Sec. 3). Next, there is some discussion about the billiard model and Hill’s problem, which

originally inspired Hénon to devise the inclined billiard model (Sec. 4). Finally, the last

section of the paper gives a brief summary.
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II. INCLINED BILLIARD MODEL

Hénon’s model is described as follows: a point particle moves in the (X,Y) plane and

bounces elastically on two fixed disks of radius r whose centres are located at (−1,−r) and

(1,−r). In addition, the particle is subject to a constant acceleration g in the negative Y

direction. For reasons of simplicity, r is considered to be large, an assumption which means

that the two disks overlap.

A one parameter family of orbits, the so called h-orbits, is defined by assuming that the

particle is dropped from rest at (h, Y0). Y0 is a positive constant which fixes the energy

and h is a variable. For those orbits, there are intervals of h in which the orbit changes

continuously and there are also critical values of h at which a transition in behaviour is

observed. For h = 1 the particle bounces ad infinitum on the right disk, while for h = −1

the particle bounces ad infinitum on the left disk. If the particle is dropped either to the

left of the left disk or to the right of the right disk, then the particle escapes and never

returns. If the particle is dropped either to the right of the left disk or to the left of the

right disk, then the particle exhibits a more complex behaviour, bouncing from one disk to

another. Hence, the values h = ±1 are associated with a transition. In general, transitions

are present at values of h which lead to solutions which approach asymptotically one of the

h = ±1 orbits.

A convenient way of dealing with the problem is to introduce a two dimensional explicit

mapping, which is equivalent to studying a Hamiltonian system with two degrees of freedom.

Details about the mapping and its properties can be found in [8]. If (Xj , Yj) is the position

of the particle on the j’th rebound, then the two dimensional mapping, keeping the notation

of [8], is the following:

Xj+1 = Xj cosh φ+ wj sinh φ− sj(coshφ− 1) (1)

wj+1 = Xj sinh φ+ wj coshφ− (sj cosh φ+ sj+1) tanh
φ

2
. (2)

wj is defined by

Wj =
wjg

2
√
2E

sinhφ,

where Wj is the transverse velocity, E is the total energy and φ is a dimensionless parameter
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defined by

coshφ = 1 +
4E

gr
, sinhφ =

√

4E

gr
(2 +

4E

gr
).

Finally, sj = signXj. If the mapping is applied repeatedly, we obtain:

Xn =
h cosh [(n− 1

2)φ]

cosh φ
2

− 2 tanh
φ

2

n−1
∑

j=1

sj sinh [(n− j)φ], (3)

wn =
h sinh [(n− 1

2)φ]

cosh φ
2

− 2 tanh
φ

2

n−1
∑

j=1

sj sinh [(n− j)φ]− sn tanh
φ

2
.

A given h-orbit is associated to a sequence of binary digits (0 or 1 depending on whether

the particle bounces on the left or right disk respectively) and the corresponding to that

sequence number A, with 0 ≤ A ≤ 1. An h-orbit changes continuously within an interval

of continuity. In that interval, the sequence of rebounds remains the same throughout the

whole of this interval. This means that the value of A is constant. If A is plotted as a

function of h (for a fixed value of φ) a fractal picture is generated. This has the appearance

of the Devil’s staircase, which consinsts of an infinite number of horizontal bars. Each bar

corresponds to an interval of continuity, meaning that when a particle starts within that

interval, it will follow the same orbit in terms of which disk it bounces on. Such an example

is given in fig.1.

III. THE ESCAPE DISTRIBUTION

A. Analytical derivation

Now, we are going to obtain an expression for the number of bounces it takes for an

h-orbit to escape from the system. The derivation will apply for eφ ≤ 1
3 or eφ ≥ 3. When

1
3 < eφ < 3, the Devil’s staircase is not continuous any longer and gaps appear between

the horizontal bars, i.e. there exist values of A to which no h-orbits correspond. Also,

many of the assumptions made about the h-orbits do not hold. More details about that

situation can be found in [8], although, for reasons not known to us, Hénon only refers to

properties regarding eφ = 3. The mapping given by Eqs (1) and (2) has two fixed points

(X = −1, w = 0 and X = 1, w = 0), each one with eigenvalues eφ and e−φ, which suggests

that when eφ ≥ 3, we get at the same time e−φ ≤ 1
3 . For e

φ = 1, all the points of the mapping
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are fixed points. However, as stated in [8], it is not clear whether the peculiarities of the

1
3 < eφ < 3 case have general relevance to the problem of chaotic scattering.

The time to escape, for a given value of h, is the smallest integer k such that |Xn| > 1 for

all n > k. In particular, we would like to know which values of h, i.e. which sub-intervals of

(−1, 1), correspond to orbits which escape after at least k bounces within the constrained

region (−1 ≤ X ≤ 1). By summing up the lengths of these sub-intervals it is possible to

produce an escape distribution.

According to [8], at each end of every horizontal bar there are left and right asymptotic

orbits corresponding to

h+ = (eφ − 1)
p−1
∑

j=1

e−jφsj + (eφ − 2)e−pφ, (4)

and

h− = (eφ − 1)
p−1
∑

j=1

e−jφsj − (eφ − 2)e−pφ,

respectively, where p is associated with each horizontal bar (p-bar), indicating the number

of digits which occurred in the binary sequence before the repetition of either zeros or ones,

i.e. before the particle escapes over the left or right disk. Those orbits take infinitely

many bounces to escape. If we move away from those extremes and consider h = h+ − δ or

h = h− + δ, we find orbits which escape after a finite number of bounces. The smaller δ is,

the longer it takes for an orbit to escape (more precisely, k → ∞ as δ → 0). For values of h

in the interval (h−, h+), for a given p-bar, the number of bounces never falls below p.

In order to find those intervals of h which correspond to orbits that remain bound for at

least k bounces, we require to sum together the full lengths of the horizontal bars for which

p ≥ k. Only partial contributions will be required from the bars with p < k. This is because

some values of h near the centre of these bars lead to orbits which escape too rapidly (under

k bounces). The whole calculation may be performed in the following three steps:

i) calculating the partial contribution from a bar with p < k by finding an expression for

the time to escape, k, as a function of δ. This expression may be inverted to yield δ as a

function of k. We refer to δr or δl depending on which end is being considered. The total

partial contribution from each bar is given by δr + δl.

ii) summing together the partial contributions (of which there are 2p−1) from all the p-bars

for each p < k.

iii) considering the contributions from all bars with p ≥ k (the length of a bar is h+ − h−).
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We start with the first step, calculating an expression for k(δ) by considering the values

of h which lead to left and right asymptotic orbits. Substituting Eq. (4) into Eq. (3), we

obtain

Xn =



(eφ − 1)
p−1
∑

j=1

e−jφsj + (eφ − 2)e−pφ





cosh [(n− 1
2)φ]

cosh φ
2

−

− 2 tanh
φ

2

n−1
∑

j=1

sj sinh [(n− j)φ].

If we expand the above equation (keep in mind that sp = 1 and sj = −1 for all j ≥ p+ 1

since we deal with a left escaping orbit), we end up with

Xn = −1 + e−nφLl, n ≥ p+ 1

where

Ll =
eφ(eφ − 2)e−pφ

eφ + 1
+

e(p+1)φ

eφ + 1
+ tanh

φ

2



epφ + eφ
p−1
∑

j=1

e−jφsj +
p−1
∑

j=1

ejφsj



 .

Now suppose that h = h+ − δl and that the sj ’s are the same as in Eq. (4), i.e we are

looking at the same bar. Then, from (3), we get

X
′

n = (h+ − δl)
cosh [(n− 1

2)φ]

cosh φ
2

− 2 tanh
φ

2

n−1
∑

j=1

sj sinh [(n− j)φ] =

= Xn − δl
cosh [(n− 1

2)φ]

cosh φ
2

= −1 + e−nφLl − δl
cosh [(n− 1

2)φ]

cosh φ
2

. (5)

As we are interested in the number of bounces k before the particle escapes over the left

disk, Eq. (5) yields (X
′

k = −1)

δl =
2e

φ
2 cosh φ

2Ll

e2kφ + eφ
=

(eφ + 1)Ll

e2kφ + eφ
.

Following the above approach, we can obtain a similar expression for right asymptotic orbits.

In this case, we find that

Xn = 1− e−nφLr, n ≥ p+ 1

where

Lr =
eφ(eφ − 2)e−pφ

eφ + 1
+

e(p+1)φ

eφ + 1
+ tanh

φ

2



epφ − eφ
p−1
∑

j=1

e−jφsj −
p−1
∑

j=1

ejφsj
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and eventually,

δr =
2e

φ
2 cosh φ

2Lr

e2kφ + eφ
=

(eφ + 1)Lr

e2kφ + eφ
.

Now, we continue with the second step, i.e. summing together all the partial contribu-

tions. In order to do that, we are going to use two subscripts. The first subscript is p,

which was defined earlier, while the second subscript q distinguishes between bars of the

same p-value. In the case of bars with p < k, we must evaluate

k−1
∑

p=1

2p−1

∑

q=1

[(δl)pq + (δr)pq], (6)

where

(δl)pq =
2e

φ
2 cosh φ

2 (Ll)pq
e2kφ + eφ

1 ≤ p ≤ k − 1,

(δr)pq =
2e

φ
2 cosh φ

2 (Lr)pq
e2kφ + eφ

1 ≤ p ≤ k − 1,

(Ll)pq =
eφ(eφ − 2)e−pφ

eφ + 1
+

e(p+1)φ

eφ + 1
+ tanh

φ

2



epφ + eφ
p−1
∑

j=1

e−jφsqj +
p−1
∑

j=1

ejφsqj



 ,

and

(Lr)pq =
eφ(eφ − 2)e−pφ

eφ + 1
+

e(p+1)φ

eφ + 1
+ tanh

φ

2



epφ − eφ
p−1
∑

j=1

e−jφsqj −
p−1
∑

j=1

ejφsqj



 .

When we substitute the above equations into Eq. (6), the following quantity will appear:

2p−1

∑

q=1

(Ll)pq = 2p−1

[

eφ(eφ − 2)e−pφ

eφ + 1
+

e(p+1)φ

eφ + 1
+ epφ tanh

φ

2

]

+

+
2p−1

∑

q=1

p−1
∑

j=1

(eφe−jφ + ejφ)sqj tanh
φ

2
.

The same expression arises for (Lr)pq, except a minus sign before the double sum. The

double summation term is zero because, for a given j, sqj = ±1 in equal numbers of bars.

Hence:

k−1
∑

p=1

2p−1

∑

q=1

[(δl)pq + (δr)pq] =
eφ + 1

e2kφ + eφ

k−1
∑

p=1

2p−1

∑

q=1

[(Ll)pq + (Lr)pq] =
2k[e(k−1)φ − e−(k−1)φ]

1 + e(2k−1)φ
. (7)

Finally, the contribution from all bars with p ≥ k is

∞
∑

p=k

2p−1(h+ − h−) =
∞
∑

p=k

2p−12(eφ − 2)e−pφ =
2ke−kφ(eφ − 2)

1− 2e−φ
. (8)
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Thus, Esc(k), the fraction of h-orbits in the interval (−1, 1) which escape after at least k

bounces, is found by adding Eq. (7) and Eq. (8) and dividing by 2:

Esc(k) =
1

2

{

2k[e(k−1)φ − e−(k−1)φ]

1 + e(2k−1)φ
+

2ke−kφ(eφ − 2)

1− 2e−φ

}

= 2k−1 e
kφ(1 + eφ)

eφ + e2kφ
. (9)

B. Numerical Results

In order to test our analytical result , we advanced Eq. (1) and (2) numerically. The

interval (−1, 1) was divided into N subintervals, each having a width of 2/N . The initial

conditions were

X0 = −1 + k
2

N
, w0 = −(X0 − s0) tanh

φ

2
, k = 1, 2, ..., N,

with the initial values X0 distributed uniformly in the interval (−1, 1). Using the iterative

scheme given by Eq. (1) and (2), h-orbits were evolved forward in time and for each h-

orbit, we found the minimum number of iterations k required to satisfy |Xk| > 1. An escape

distribution is built up by determining what fraction of the h-orbits escaped on the first

bounce, on the second bounce and so on. The simulations were done for different values of φ

and N . The value of N was even increased to N = 5000000 to ensure that the results were

independent of the number of subdivisions. Fig.2 shows the escape distribution for different

values of φ, both analytical [Eq. (9)] and numerical .

The numerical results are in excellent agreement with those obtained from Eq. (9). There

is only a small range of eφ for which there is some discrepancy between the numerical and

the analytical results for some p-bars. Every horizontal bar has a point hD, which, according

to [8], is given by

hD =
2 sinh φ

2

cosh [(n− 1
2)φ]

n−1
∑

j=1

sj sinh [(n− j)φ]

and for which Xn = 0. When h− + δr > hD or h+ − δl < hD, our analytical result needs some

correction, i.e. the difference in bar length hD − (h− + δr) or (h+ − δl)− hD. For example,

also visible in fig.2, for eφ = 3 and k = 3 our analytical result is around 3.5% larger than

the numerical one and that happens because our calculation overestimates the contribution

of the left side of the p = 2 bar (for h > 0; for h < 0 is the right side of the p = 2 bar that

exhibits some problem). For eφ = 3.2, the error for k = 3 reduces to around 1%. If the extra
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bar length is subtracted from our analytical calculation, we obtain the correct percentage.

For the p = 2 bar, the correction is:

hD − (h− + δr) = 1− 2(e−φ − e−2φ) +
1− 2eφ − e2φ + 2e3φ

eφ + e6φ
−

1− eφ − e2φ + e3φ

1 + e3φ
.

IV. HILL’S PROBLEM AND H-ORBITS

As it was stated in the introduction, Hénon’s billiard model was inspired by [10], which

dealt with the interaction of two satellites around a planet. That study was done in the

context of the so called Hill’s problem, a special case of the restricted three body problem

where the massless particle moves in the neighbourhood of the secondary body. Originally

intended as a model for the motion of the Moon around the Earth with perturbations by

the sun, with some modification it can also serve as a simplified model of the dynamical

behaviour of escaping stars in globular clusters [7]. In that case, the centre of the galaxy

and the globular cluster play the role of the two main bodies, while the star is treated as

the massless particle.

Let us assume that the cluster moves on a circular orbit of radius R around the centre of

the galaxy with constant angular velocity, the mass of the cluster with respect to the galaxy

is assumed to be small, the mass of the star is considered to be negligible compared to that

of the cluster and all three bodies lie in the same plane. If we consider a coordinate system

that rotates with the angular velocity of the cluster around the galaxy and with its origin

being at the cluster, Hill’s equations can be written as follows [13]:

ξ̈ − 2η̇ − 3ξ = −
ξ

r3
(10)

η̈ + 2ξ̇ = −
η

r3
, (11)

where ξ and η are the x and y coordinates of the star and r =
√
ξ2 + η2. Note that the

above equations have been scaled in terms of time and distance. In the above mentioned

coordinate system, the two Lagrangian points of interest occur at (−1
3

1

3 , 0) and (13
1

3 , 0).

One recalls that in our inclined billiard model, the particle was dropped with zero hori-

zontal velocity onto the inclined surface from a fixed height, i.e. with constant φ for various

h in the interval (-1,1). In Hill’s problem, the h-orbits can be defined to be those with initial

conditions given by

ξ0 = C, ξ̇0 = 0, η0 = 0.
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At a fixed initial value of the initial Hamiltonian Hin (analogous to the condition of constant

φ in Hénon’s model), η̇0 is calculated from

Hin =
1

2
(ξ̇20 + η̇20)−

3

2
ξ20 −

1

|ξ0|
.

Each time the orbit intersects the surface of section η = 0 (with η̇ > 0 when ξ > 0 and with

η̇ < 0 when ξ < 0), the value of ξ is recorded. If ξ = ξj on the jth intersection with the surface

of section, then the orbit may be represented symbolically by a sequence {dj, j = 1...∞},

where

dj =

{

0 if ξj < 0

1 if ξj > 0.

If the orbit escapes through the right Lagrangian point after k intersections with the surface

of section, then dj = 1, j > k. Similarly, if the orbit escapes through the left Lagrangian

point after k intersections with the surface of section, then dj = 0, j > k. Hence a real

number can be attached to a given orbit in a similar way as it was done for the inclined

billiard model.

Fig.3 is an example of an h-orbit in Hill’s problem, exhibiting similar features to those

found in fig. 1.

V. SUMMARY

Hénon [8] used an inclined billiard in order to investigate the phenomenon of chaotic

scattering. A point particle, initially at rest, fell from a certain height and bounced elastically

off the surface of two disks. When the particle bounced beyond the top of either disk, it

was considered to have escaped. By assigning a number A to the orbit of the particle, we

were able to plot A(h), where h (−1 ≤ h ≤ 1) was the initial value of the x-coordinate of

the particle. For certain values of the parameter φ, which was related to the particle energy,

the graphical representation of A(h) had the form of the so-called Devil’s staircase. Based

on certain properties of the Devil’s staircase, we were able to derive an analytical expression

for the number of particles that escaped after at least k bounces.

It may be possible to approach the issue of stars escaping from a cluster or other similar

situations by using the billiard model as a simplification of Hill’s problem. Therefore, our

future aim is to investigate the possibility of connecting the billiard model and Hill’s problem

in a way that can be used to describe a more complex situation such as for example the
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dynamical evolution of a star within a globular cluster. The latter is far more complicated

as a system than the inclined billiard we have studied, but many times, it is possible to get

a good approximation of a complicated system by following a more simple approach to the

problem.
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FIG. 1:The Devil’s staircase for eφ=4.
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FIG. 2:Percentage of particles that escape after at least k bounces against the num-

ber of bounces k. From right to left, the first two curves correspond to eφ = 3

(the left curve comes from the simulations, while the right one is based on equation

28), the third one corresponds to eφ = 4 and the fourth one corresponds to eφ = 5.

Note that each of the third and fourth curves are actually two curves (one on top

of the other one), as the numerical and analytical results are almost identical. Also

note the small discrepancy between the numerical and analytical results for eφ = 3.
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FIG. 3:Orbital sequence number A against ξn in Hill’s problem, where ξn = 1
3

− 1

3 ξ0. The

initial value of the Hamiltonian is Hin = −1.9. The results for Hill’s problem were ob-

tained by integrating equations (10) and (11) numerically, using a Burilsch-Stoer in-

tegrator with a variable time step [12]. The time of integration was 4π which, in

our system of units, is twice the orbital period of the cluster around the galaxy.


