

UNIVERSITY OF SOUTHAMPTON

Faculty of Physical and Applied Sciences

 Electronics and Computer Science

Electronic and Software Systems

Nine-month progress report

Toward a Framework for Localisation of Product Software

across Organisational Boundaries

Supervisor: Dr Gary B. Wills

 Supervisor: Dr Andrew M. Gravell

 Internal examiner: Dr Robert J. Walters

By

Abdulrahman Mohammed Qahtani

February 20, 2012

http://www.ess.ecs.soton.ac.uk/

2

Abstract

 Distributed agile development (DAD) is a current trend for software development. It uses

agile practices to promote iteration and flexibility in the distributed development of software

projects. DAD involves a software vendor and their customers working together, leading to

an overlap between their organisations. In this report, which is a progress report submitted for

continuation towards a PhD, we introduce the agile software development and propose a

framework for the localisation of software products across organisational and cultural

boundaries. The framework addresses and accommodates the key components of the area

between software vendors and customers. Our approach is useful in that it helps project

managers, stakeholders and developers to understand the correlations and critical factors

associated with customers and software vendors. This framework tries to cover all the

important aspects of the development of agile software across distributed organisational

cultures instead of focusing on a specific aspect such as project management.

3

Table of Contents

Chapter 1 . Introduction ... 4

Chapter 2 . Review of Development and Localisation for Software Products across

Boundaries ... 6

2.1 Introduction ... 6

2.2 Agile software development background .. 6

2.3 Agile Manifesto Review.. 6

2.4 Distributed Agile Development background... 7

2.5 Review of Proposed Framework and Models in Terms of DSD and DAD 8

2.6 Challenges and Issues of DSD and DAD Review .. 10

2.7 Summary and Discussion of Literature Review chapter ... 11

Chapter 3 . Framework for Localisation of Product Software across Organisational

Boundaries ... 13

3.1 Introduction ... 13

3.2 Agile Approach across Organisational Boundaries .. 13

3.3 Proposed Framework for Localisation Software across Organisational Boundaries 15

3.3.1 Communication .. 15

3.3.2 Project management ... 16

3.3.3 Knowledge management .. 17

3.3.4 Configuration and integration management... 18

3.4 Summary and discussion of proposed framework chapter.. 19

Chapter 4 . Conclusion and Future work ... 20

4.1 Conclusion ... 20

4.2 Research Questions ... 21

4.3 Future work ... 21

References .. 24

4

Chapter 1 . Introduction

Agile software development is a significant departure from the plan-based approaches of

software engineering (Morien and Wongthongtham, 2008). The issue of how software

products can be produced and delivered faster, better and cheaper is the main motivation of

the huge demand to adopt agile in different software projects. As a matter of fact, agile

methods have promoted iterative approach principles as well as agile values to meet that

demand for producing faster software products (Abrahamsson et al., 2002).

On the other hand, software producers are looking at lower costs and highly skilled human

resources to develop software products. Thus, the concept of distributed software

development (DSD) has appeared. Although there are several advantages to this concept,

there are disadvantages such as communications challenges, the cultural difference issue and

the difference in time zones (Jiménez et al., 2009). Over the last two decades, agile methods

have been adopted on a number of occasions, as well as distributed software development in

different sized projects (Beck, 1999). Consequently, the new trend in agile adoption is to

apply agile principles to DSD projects to achieve the features of DSD and agile methods at

the same time. Adopting agile methods on DSD often increases some of the challenges of

DSD, such as communication, due to the emphasis of the agile approach on face to face

communication (Fowler and Highsmith, 2001) which does not exist in DSD.

Despite this fact, several distributed agile development projects have been successful in the

industrial context (Sureshchandra and Shrinivasavadhani, 2008). The current PhD focuses on

the organisational boundaries between software producers and stakeholders. In view of the

challenges and issues that face the adoption of agile distributed software development in

order to deliver and localise software, there is a lack of suitable frameworks for localising

software products across organisational boundaries to ensure success in the development and

localisation process by using agile and traditional methods, and thus achieve customer

satisfaction. To address this gap, we introduce the agile approach in a particular scenario, as

well as proposing a framework to accommodate the key aspects of organisational boundaries

that should be considered during the development and localisation process.

The rest of the report is structured as follows. In Chapter 2, the distributed agile development

background and a literature review of frameworks and models proposed for DSD and DAD.

In addition, we present some research discussing the issues and challenges of development

across distributed projects. In Chapter 3, we discuss the introduction of agile software

5

development in organisational boundaries and the proposed framework. In Chapter 4, we

provide a conclusion of the report, followed by research questions and future work.

6

Chapter 2 . Review of Development and Localisation

for Software Products across Boundaries

2.1 Introduction

The localisation of software products across organisational boundaries has many different

related aspects and disciplines, such as software engineering and management. Thus, this

chapter will discuss research and studies that have been conducted in terms of a proposed

new framework and models in this particular area. It will also discuss the main factors that

have an effect on the localisation of software products in a distributed environment,

especially if there are different teams as well as different development approaches, such as

traditional approaches like the waterfall model and agile software development methodology.

2.2 Agile software development background

Agile software development is “a phenomenon” (Dingsøyr et al., 2008) and not merely a

development approach or methodology; it is actually a philosophy of software development

and a new way of thinking in development process and project management (Shore and

Warden, 2007; Fowler, 2001). It is the demand of the business community (Abrahamsson et

al., 2002) to find a development method which would be lighter and faster than the traditional

approach, plan-based models. It is a reaction against traditional models such as the waterfall

model to reduce development time and costs, as well as to accommodate any change in

requirements at any time without a significant effect on the whole development duration. As

a result, the agile method was a sensation in the software development process and

community (Cohen et al., 2004).

2.3 Agile Manifesto Review

In early 2001, seventeen agile practitioners and their proponents gathered in order to discuss

the agile method. The main motivation behind that meeting was to strike a balance in the

amount of modelling, documentation and planning in software development (Cohen et al.,

2004). Since traditional methods emphasised those aspects, “the Manifesto has become an

important piece of the Agile Movement” (Cohen et al., 2004) as it had representatives from

different agile methods and technologies, such as Extreme Programming (XP), DSDM,

SCRUM, Crystal, Feature-Driven Development, Adaptive Software Development, Pragmatic

Programming and others (Fowler and Highsmith, 2001).

7

Also, Fowler and Highsmith (2001) say that “the Agile movement is not anti-methodology”.

The manifesto reads as follows (Beck et al., 2001):

We are uncovering better ways of developing software by doing it and helping others do it. Through

this work, we have come to value:

 Individuals and interactions over processes and tools.

 Working software over comprehensive documentation.

 Customer collaboration over contract negotiation.

 Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the left more.

The agile manifesto focuses on relationships, developers and the human role (Abrahamsson

et al., 2002). Glass (2001) states that traditional software development places emphasis on

process more than people, although the practitioners notice that people matter in software

development. The second value of the agile manifesto is less emphasis on documentation

which is agreed by the agile community (Glass, 2001; Abrahamsson et al., 2002). The

balancing on documentation over years and levels is required but the main emphasis should

be on producing working software as an ultimate product. The third and fourth values are a

focus on flexibility in requirements changes and collaboration with customers in order to gain

customer satisfaction and reduce the cost and time of development. Furthermore, the agile

manifesto makes a collection of twelve principles beside those four values (Fowler and

Highsmith, 2001). These values and principles together in practice would be the best way to

be agile (Shore and Warden, 2007).

2.4 Distributed Agile Development background

Distributed agile development (DAD) refers to adopting agile principles in distributed

software development (DSD) to achieve the features of agile software development and the

advantages of using distributed development projects. As agile practices promote the

development iteration process through agile methodologies, this can help DSD to tackle its

challenges and issues, such as the difference in culture and communication (Phalnikar et al.,

2009). However, there are many stories of organisations adopting agile methods in distributed

development environments in different forms (Lee and Yong, 2009).

8

2.5 Review of Proposed Framework and Models in Terms of DSD and

DAD

Little research has proposed frameworks and models to provide a guide for developers and

managers in the agile development process for distributed projects.

Šmite and Borzovs (2006) conducted a study to investigate the impact of risk management on

GSD, which is called global risk. In addition, they designed a framework to address the key

risk management in global software development (GSD) across organisational and cultural

boundaries. Wahyudin et al. (2008) proposed a framework for communication and

information exchanges between development team members in GSD. This paper focused on

the communication aspect in GSD with agile software and the notification of the

development process. In addition, they proposed a concept to formalise the key

communication between teams in agile projects to reduce the challenge of communication

and the cost and to gain the benefit of communication in a distributed agile development

(DAD). Akbar et al. (2008) proposed a model for those software companies developing web

applications for distributed client locations. Their proposed model emphasises the support

that is needed for communication between developers and offshore clients to complete their

projects with the minimum documentation. Hossain et al. (2009) conducted a survey to

investigate and identify the challenges of applying an agile method called Scrum on GSD.

Furthermore, they proposed a conceptual framework that presents the key challenges of using

Scrum in GSD projects. Their framework could help project managers who are using Scrum

on GSD to consider the challenges and risks that could face their project in order to reduce

them. Lee and Yong (2009) conducted a study that examined the main issues of global DSD

and the challenges facing the distributed localisation teams of software products.

Furthermore, they suggested a framework to map the challenges of project management in

the globalisation of DAD to practices. Mudumba and Lee (2010) found that there was a lack

of studies conducted on the risk management of DSD. As a result of this, they proposed an

agile risk management framework that supported an identification process of dynamic risk

management for DSD. Interestingly, they discussed multi-organisations, multi-teams and

other multiplicities in DSD. In addition, they reported that several researchers had

recommended this type of agile method in project management to mitigate the dynamic risk

in software development projects. Phalnikar et al. (2009) carried out a study to investigate the

benefits of using agile methodology like Scrum in distributed software development projects.

They presented some of the challenges of DSD, such as communication, configuration

9

management, project estimation and cultural challenges. In addition, they showed the benefits

of agile distributed development. The scope of their study covered projects using a traditional

development approach and agile adoption of those projects. Furthermore, they proposed two

models for team structure in DSD.

Table 1 shows the frameworks and models that were proposed to address some of the

challenges and issues of distributed software development and apply agile concepts on

distributed software development projects. Furthermore, the table has the main contribution

and discussed aspect of each study.

Table 1: Frameworks and model proposed for DSD and DAD

Paper Contribution Aspects Research method for generation and
evaluation of result

(Lee and Yong,
2009)

Framework Project management and
GSD

Generate their result and evaluated
form case study on My Yahoo! ‘Zorro’
across 17th international contraries

(Šmite and
Borzovs, 2006)

Framework Risk Management of GSD Conducted a case study in software
houses in Latvia. In addition, a single
case study was conducted in another
company. There was no validating
result. However, the research results
were validated using a global and in-
house project survey.

(Hossain et al.,
2009)

Framework Risks of applying SCRUM
in GSD

Result is not evaluated

(Mudumba and
O.-K. (Daniel)
Lee, 2010)

Framework Agile Risk Management of
GSD

The proposed framework evaluated
by reflects that framework on case
from literature, which is the Skandia
Financial Concepts (SFC) case.

(Phalnikar et al.,
2009)

Model Team structured in DSD
projects

Result is not evaluated

(Akbar et al.,
2008)

Model Communication between
people in DSD projects

Result is not evaluated

(Wahyudin et
al., 2008)

Framework Communication and
exchange of information

This study used an initial empirical
evaluation by using a scenario of
requirements and then comparing
the results with alternative
requirements

10

2.6 Challenges and Issues of DSD and DAD Review

Coram and Bohner (2005) examined the impact of agile methods on software project

management. Their study discussed the impact of applying agile in the project process as well

as the people involved in the project process, such as developers, testers, project leaders and

customers. Also, they discussed some management and development processes (e.g. planning

and documentation). Some researchers have focused on one aspect of project management,

such as risk management, and then examined the impact of distributed development or agile

development on this aspect. Jiménez et al. (2009) conducted a systematic review of the

literature relating to the challenges and issues of distributed software development. In

addition, their study shows the proposed solutions and meeting of those challenges. They

addressed the challenges of DSD projects, such as communication, group awareness

(relationship between people in the project), configuration management, knowledge

management, coordination, collaboration, project and process management, process support,

risk management, cultural differences and quality measurement. In addition, they presented a

proposed solution or way of meeting each challenge at that time. Sengupta et al. (2006) have

done research initialled by study at the IBM research centre to investigate the challenges of

DSD. They identified four areas in DSD, which are collaborative software tools, knowledge

acquisition and management, testing in a distributed set-up and process and metrics issues.

In addition, they addressed the issues and difficulties of each area as well as presenting the

research gaps for those areas, such as inadequate communication, trust, system integration

and knowledge management. Damian and Zowghi (2007) investigated requirement

engineering challenges and issues in distributed software development, especially across

cultural boundaries and those existing in stockholder organisations. These authors have been

able to construct a model on the requirement gathering process, including negotiation and

specification. They show the difficulty of the development process in DSD projects in terms

of requirements engineering. Fowler (2003) has written about his experience of adopting

agile principles in an offshore development project. In this report, he discussed the

importance of some factors in agile development (e.g. communication, cultural changes and

documentation). In addition, he presents the challenges as well as benefits of applying agile

in offshore projects. He also discusses the current and future trend of agile offshore

development, stating “Offshore development is very fashionable”. Rodríguez et al. (2010)

have conducted a study to investigate the tools and technologies that are used by distributed

teams. They discussed the collaboration and integration of these technologies and the tools

11

involved in software processes, such as IBM Jazz, Microsoft SharePoint and Google Apps.

Their study included a comparison between these technologies and the benefits of tools and

technologies in the software development process, like tracking systems, management

features and calendar management. Table 2 shows a summary of the research that has been

conducted to investigate the challenges and issues in different factors like communication,

knowledge and requirements.

Table 2: Summary of research conducted on DSD and DAD with main discussed aspects.

Paper Factors Methods

(Coram and Bohner, 2005) Project management, people, planning,
documentation, development process.

Using the qualitative
approach to generate the
result. However, there is no
evaluation.

(Jiménez et al., 2009) Cultural differences, group awareness,
configuration management, knowledge
management, coordination,
collaboration, project and process
management, process support, risk
management, quality and
measurement.

Systematic literature review.

(Sengupta et al., 2006) Collaborative software tools,
knowledge acquisition and
management, testing in DSD, process
and metrics issue

Using initial case study in
IBM. However, there is no
evaluation for results.

(Damian and Zowghi, 2007) Requirement engineering and its
challenges in DSD, like technology,
culture and informal communication.

Conducted case study in the
Global Development Systems
(GDS) company in the US to
find results and evaluate
them.

(Fowler, 2003) Cultural changes, requirements,
documentation, costs, project
management and future of DSD.

There is no evaluation.

(Javier Portillo Rodríguez,
Christof Ebert, 2010)

Discussed some collaborative
technologies like IBM Jazz, Microsoft
SharePoint, Google Apps and IBM Lotus

Comparison between some
collaborative technologies.

2.7 Summary and Discussion of Literature Review chapter

The literature review helped us to understand the main idea behind distributed software

development as well as adopting agile principles for DSD projects. In addition, it presented

the previous work and research that was conducted on applying agile principles in DSD

projects to understand the challenges and issues of this process and the key factors that would

have an effect on the development process at organisational boundaries. We separated the

previous literature into two sections. The first section researches and studies the proposed

12

frameworks or models. We found some frameworks and models discussed the project

management and risk management challenges in DSD and DAD projects (Lee and Yong,

2009; Šmite and Borzovs, 2006; Hossain et al., 2009; Mudumba and Lee, 2010). Other

research proposed frameworks or models to cover communication aspects in terms of DSD as

well as DAD (Akbar et al., 2008; Wahyudin et al., 2008). One piece of research has proposed

two models for team structures in DAD projects (Phalnikar et al., 2009). Although many

studies have proposed frameworks and models on different aspects like communication,

project management and the team-structured challenges of DSD or DAD, there is a lack of

frameworks which discuss all the key factors of the development process in DSD and

organisational boundaries.

The second section presents research that includes case studies, systematic review or the

investigation of DSD and DAD, along with studies which discuss the challenges and issues of

development in distributed projects in general or in specific aspects, like project management,

requirements engineering and communication. This research helps developers, project

managers and stakeholders to consider the key factors and challenges of development in

distributed projects.

Table 3 shows the factors and aspects that have been discussed in the two previous literature

sections. While some of these aspects have been presented in the proposed frameworks or

models in section one, such as project management, risk management and communication, no

framework has been proposed to address all of these aspects in terms of organisational

boundaries in distributed software development.

Table 3: Factors which have been discussed in the literature review.

Communication

Documentation

Project management

Risk management

Configuration

management

Trust

Culture

Testing

Tools and technologies

Requirements

Time zone

Knowledge management

Process management

Coordination

Collaboration

Group awareness

Quality

Measurement

Planning

People

Integration

13

Chapter 3 . Framework for Localisation of Product

Software across Organisational Boundaries

3.1 Introduction

In the previous chapter, we noticed that many aspects (Table 3) discussed, either in

frameworks or as a review, the challenges and issues of the development process in DSD and

DAD. However, no framework proposed to address all those aspects illustrated in Table 3.

The purpose of this project was to investigate the key factors of localisation of product

software across organisational boundaries and discuss the main challenges and issues. In

addition, introducing the agile approach to distributed software development across

organisational boundaries like that in Figure 1.

Organisational boundary is that area which comes from the overlap of multi-organisations.

Some researchers define organisational boundaries as a central phenomenon viewed with

multi theoretical lenses (Santos & Eisenhardt, 2005). In our research, there are two different

types of organisational boundaries. The first type is an inter-organisational boundary that

appears between a software producer and customers' organisations. The second type is an

intra-organisational boundary that shows inside an organisation, such as boundaries between

the localisation team and customers or management level and software development level

(Figure 1).

3.2 Agile Approach across Organisational Boundaries

During a localisation process for any software product, there are new development requests

required by the customer. There are two ways to meet these requests: either develop those

requests in current version or in the next version of that software product. Those that will be

developed in the next version would take at least six months and usually follow a traditional

approach like waterfall. In this study, we will introduce an agile software development

approach to develop requests and requirements on the current version. Figure 1 shows that

the development team at a software producer site are divided into two stages. Stage one is

developing new versions of that software product by traditional approaches such as the

waterfall approach. Stage two is developing new features or classes based on a customer’s

requirements of current versions in short term plans. Actually, there are many advantages to

using agile principles in developing a customer’s requirements in a short term iteration

process:

14

 By using agile at the customer’s location, communicating requirements are easier.

 Applying the customer’s requests in short iteration would make the localisation

process faster and easier.

 The localisation team and customer working together in a small team will help to

convey and exchange important information to promote the localisation and

development process.

Central development (Traditional approach)

Agile Supporting team N

Organization location

D
evelo

p
 n

ew
 versio

n
s b

y
Trad

itio
n

al ap
p

ro
ach

D
ev

el
o

p
 o

r
m

ai
n

ta
in

 c
la

ss
es

in

 c
u

rr
en

t
ve

rs
io

n

Software producer

Customer

Agility
 Stakeholder Localization

Team

Customer n

Customer2

Customer1

 Agile Supporting team 2

 Agile Supporting team 1

Traditional development transaction

Agility transaction

Figure 1: Agile approach across organisational boundaries.

15

3.3 Proposed Framework for Localisation Software across

Organisational Boundaries

The proposed framework consists of four components, which are communication, project

management, knowledge management, and configuration management. These components

cover management aspects as well as the software development process, such as

documentation and testing.

Communication

 Time Zone
 Trust
 People
 Cultural difference

 Collaboration

Project Management

 Risk Management
 Process Management
 Quality

 Planning

Configuration Management

 Integration
 User acceptance test

Knowledge Management

 Documentation
 Communicating

Requirements
 Group Awareness

 Tools & Technology

Distributed Software Development

Organizational
Boundaries

Figure 2: Framework for localisation of software product across organisational boundaries

3.3.1 Communication

Many researchers have addressed communication as one of the main issues of distributed

software development as well as agile development (Fowler, 2003; Sengupta et al., 2006;

Abrahamsson et al., 2002; Jiménez et al., 2009). The reason which lies behind the importance

of communication is that development in general requires close communication and this

requirement increases with agile development, which emphasises face-to-face

communication. To discuss communication as a key factor affecting localisation software

16

products across organisational boundaries, there are some other aspects related with

communication, such as:

 Time zone: Time zone is an effective factor in communication, especially for teams

distributed across countries as well as working hours in different organisations. Agile

software development promotes people’s interaction during the development process

and that is difficult if there is a difference in time zone.

 Trust: During distributed development and development across organisations, the

problem of face-to-face communication highlights another issue, which is trust

between team members in different stages and forms, such as in requirements

negotiation, exchange information and conveying experiences.

 People: The manifesto for agile software development places great emphasis on

people in the development of software using agile: “Individuals and interactions over

processes and tools” (Beck et al., 2001). Furthermore, the main motivation of the

organisation in distributing their development projects is to look for highly skilled

human resources (Beck et al., 2001). Structures for people in development or the

localisation process across organisational boundaries, including project managers,

stakeholders and developers, are a very important factor of communication.

 Cultural difference: This is an important factor for distributing development and

developing across organisations. Fowler (2003) described cultural change as the

“hardest” part of adopting agile methods. Also, culture can have an effect on

communication, especially for global software development (GSD) projects.

 Collaboration: One of the four values of the agile manifesto is customer

collaboration. Thus, agile software development emphasises and promotes the

concept of collaboration with customers and with other developers to support that

software product and the development process. In the localisation of software

products across organisational boundaries, collaboration is very important to meet the

customer’s requirements and avoid problems of distributed sites as well as to apply

the agile principles in that domain across an organisation.

3.3.2 Project management

 From the literature review, project management is a hot topic for researchers in terms of

applying agile principles (da Silva et al., 2010; Coram and Bohner, 2005; Lee and Yong,

17

2009; Hayataand Han, 2011) in distributed development, due to its effect on the development

process. Those researchers have discussed different aspects of project management like this:

 Risk management: Risk management becomes a critical concern for people in DSD

(Mudumba and Lee, 2010). In addition, these concerns increase with the application

of agile principles on DSD projects or across organisational boundaries. Thus, risk

management has been discussed by researchers as one of the key challenges of DSD

and DAD. In the proposed framework we assumed that risk management was a part of

project management and we put it as a sub component under project management.

 Process management: Process in the proposed framework refers to the software

development process, which is clear in a traditional approach, for example in the

waterfall model, analysis and design of customer’s requirements implementation,

testing, delivering and the documentation process. All these processes should be

considered in terms of agile development and DSD across organisational boundaries.

Owing to its importance in the software development process, it is addressed as a

considerable component under project management.

 Quality: Although the software development process across organisational

boundaries aims to achieve many advantages from using agile principles, like

reducing the time and cost of the development process as well as increasing the

productivity, the quality of produced software products take an important place.

Moreover, it is addressed as an important sub-component of project management in

the proposed framework.

 Planning: Planning takes an important place in agile development, like the planning

before any iteration to sort out a priority list of the customer’s requirements.

However, that importance increases across boundaries to arrange the distributed

development process and plans across organisational boundaries. Thus, the proposed

framework gives the importance of planning in project management.

3.3.3 Knowledge management

During the development process in any software project or business, there is a huge amount

of information as well as knowledge. The bulk of the information appears in different forms

such as test cases, codes, comments and logs on source codes, project specifications and

developers’ and project team members’ experiences and comments. Furthermore, this

information should have a level of accuracy and availability through useful tools. The

18

proposed framework emphasises knowledge management and integration as key components

in software development across distributed multi-teams.

 Documentation: The manifesto for agile software development puts the emphasis on

working software over comprehensive documentation. However, documentation in

DSD and across organisations is required to solve the lack of face-to-face as well as

informal communication. Herbsleb and Moitra (2001) discussed documentation in

GSD and they emphasised the documentation process in DSD as part of the

knowledge management.

 Communicating requirement: The proposed framework promotes management

practice and software engineering practices through agile concepts. Agile software

development support face-to-face communication and interaction with customers over

the complexity of the process. The framework supports the idea of allocating agile

teams in the customer’s location to gather customer’s requirements and other agile

teams in distributed development to deal with these requirements.

 Group awareness: Information should be available as well as equal to the people in

distributed agile development teams, like developers in different sites. Thus, group

awareness is a very important factor. Hence one of the manifesto’s values is an

emphasis on individuals and interactive action.

 Tools and technologies: In the development process, either using traditional

approaches or agile methodology, some tools and technologies are used. Those tools

can be at the communication level or at the development and management level, like

tracking tools and documentation tools.

3.3.4 Configuration and integration management

The coordination and synchronisation of the source code and software versions is an

important step for any iteration development. However, the integration and version control of

the source code becomes more complex with distributed projects across multi-teams and

organisations. Therefore, configuration management is a key component in the proposed

framework and it guides the developers and project managers at the customer’s location so

that they consider this step and make sure the new version of any iteration is integrated with

the customer’s needs and the customer’s environment in terms of both platforms and

hardware.

19

 Integration: For the localisation process of software products across organisational

boundaries, there are multi versions to meet customers’ change requests or new

requirements. Thus, the integration process is emphasised to make sure the new

version is compatible with the current version to or customise that version for the

organisation system. Also, emphasis is put on using the version control concept and

technology to work as well as move smoothly from version to version in the

localisation process across customers’ boundaries.

 User acceptance test: Most software testing happens in development time by the

development team, like unit tests and integration tests. However, user acceptance tests

require sharing customers in this kind of test to make sure that the software meets all

customers’ requirements. Thus, the user acceptance test is the one of key components

of the proposed framework to address the testing process across organisational

boundaries.

3.4 Summary and discussion of proposed framework chapter

The research objectives were to introduce the agile concept and propose a framework to

address key factors of that system localised across organisational boundaries. In this chapter,

we discussed how agile principles could be applied in distributed development projects across

organisational boundaries to localise software products in terms of applying the customer’s

requirements and requests in a current version of that product. In addition, we discussed how

this adoption of agile principles would support project managers, developers and

stockholders.

Furthermore, we proposed a framework to address key factors of management and software

engineering aspects for the localisation process across organisational boundaries. The

introduction of and proposed framework for agile options might decrease the challenges of

DSD and development across boundaries.

20

Chapter 4 . Conclusion and Future work

4.1 Conclusion

As we discussed previously in this report, distributed software development is the new trend

in software development, as well as agile software development being a departure from the

traditional approaches, like the waterfall model. Furthermore, in the reviewing of distributed

development across organisational boundaries, we identified the research gap, which was the

lack of a suitable framework for management and software engineering aspects for the

localisation of software products across organisational boundaries. Furthermore, there are

many examples to support that motivation to investigate localisation software products across

organisational boundaries. The example from literature is the My Yahoo! ‘Chameleon’

project, which aims to localise web software products in international locations based on the

agile process (Lee & Yong, 2009). In addition, from my own experience, I have worked for

three years to represent my employer, fronting a localisation team to develop and localise

administration software products with distributed support, the same scenario as shown in

Figure 1 (Taif University, 2008).

Our idea was to fill in that gap by introducing agile software development to localisation

projects across organisational boundaries and proposing a framework to address the key

factors of the localisation process using agile principles.

Our goals in this research are:

I. Introducing agile software development to the localisation process for software

products across organisational boundaries.

II. Proposing a framework based on agile principles. The proposed framework would

have a combination of management aspects like project management and software

engineering aspects such as communicating requirement, documentation and testing.

In addition, it may support people such as project managers, developers and

stakeholders to understand the organisational domain and the key factors and

challenges in that domain.

21

4.2 Research Questions

Q1 - How can we introduce agile software development principles to localisation software

products across organisational boundaries?

Q2 – How would agile software development improve / help in the localisation process for

software products across organisational boundaries?

Q3 – How would the proposed framework help / support people in the localisation process

across organisational boundaries?

4.3 Future work

This research aims to introduce agile development principles to the localisation of software

products across organisational boundaries, and also to propose a framework for this domain

to address the key factors of using agile software development. The future work, after the

stage that has been presented in this report, will be divided into four steps (Figure 4):

 Review the proposed framework: In this step, we will check the design of that proposed

framework. We could use the triangulation concept (using three ways to prove the result)

to prove and improve the framework by reviewing the literature, find a case study from

the literature to compare the input as well as the output of the proposed framework and

review that framework and introduce agile into organisational boundaries with the most

agile practitioners to get their feedback. Figure 3 shows the Gantt chart of the plan and its

milestones (Figure 3).

Review the proposed framework

Literature review

Feedback from
agilest people

Case studies from
literature review

Figure 3: Triangulation review of proposed framework

22

 Formulate the research questions

Research questions should lead to the research goal and state what the research will

investigate. In this stage we are going to discuss what kind of questions we need in this

research, and then formulate appropriate questions for this research.

 Choose and define the research methodology

In terms of research methodology, it is an important step to identify which are the appropriate

research methods to follow. Through the selected methodology, we could prove and evaluate

the research results. This step will take place after formulating the research questions.

Figure 3: Gantt chart of future plan milestones

ID Milestones (Tasks) Start Finish Duration
May 2012 Jul 2012Apr 2012 Jun 2012Mar 2012 Aug 2012

1/4 29/4 3/6 17/610/622/4 26/85/88/7 22/76/5 19/84/3 13/511/3 27/525/3 8/418/3 15/4 1/7 12/829/724/620/5 15/7

1 8.4w27/04/201201/03/2012
Review the proposed framework using
triangulation concept.

2 3w18/05/201230/04/2012
Reformulate research questions

3 8w13/07/201221/05/2012Define research methodology

5 3w24/08/201206/08/2012Write research hypothesis

6 4w21/09/201227/08/2012Writing up the mini thesis

4 3w03/08/201216/07/2012
Initial contact with potential collaboration
to understand the current state.

Sep 2012

2/9 9/9 16/9 23/9 30/9

24

References

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software development

methods: review and analysis. VTT Technical report.

Akbar, R., Haris, M., & Naeem, M. (2008). Agile Framework for Globally Distributed

Development Environment (The DAD Model). 8th WSEAS International Conference

on Applied Informatics and Communications Rhodes, Greece, pp. 423-428.

Beck, K. (1999). extreme Programming Explained: Embrace Change. 2
nd

 ed . XP Series (p.

224). Addison-Wesley Professional

Cohen, D., Lindvall, M., & Costa, P. (2004). An Introduction to Agile Methods. Advances in

Computers, 62(03), 1-66.

Coram, M., & Bohner, S. (2005). The Impact of Agile Methods on Software Project

Management. Proceedings of the 12th IEEE International Conference and Workshops

on the Engineering of Computer-Based Systems (ECBS’05).

Damian, D., & Zowghi, D. (2003). Requirements Engineering challenges in multi-site

software development organizations. Requirements Engineering Journal, 8, pp.149-160.

Dingsøyr, T., Dybå, T., & Abrahamsson, P. (2008). A Preliminary Roadmap for Empirical

Research on Agile Software Development. Agile 2008 Conference, pp. 83-94. IEEE.

Fowler, M. (2001). The new methodology. Wuhan University Journal of Natural Sciences,

6(1-2), 12-24.

Fowler, M. (2003). Using an Agile Software Process with Offshore Development.

Development, 1-8.

Fowler, M., & Highsmith, J. (2001a). The Agile Manifesto. Software Development (Vol. 9,

pp. 28–35). [San Francisco, CA: Miller Freeman, Inc., 1993-. Retrieved from

http://andrey.hristov.com/fht-stuttgart/The_Agile_Manifesto_SDMagazine.pdf

Glass, R. L. (2001). Agile versus traditionlal: Make love, not war. Cutter IT Journal, 14(12).

Retrieved from http://www.cutter.com/content/itjournal/fulltext/2001/12/itj0112c.html

Hayata, Tomohiro and Han, J. (2011). A Hybrid Model for IT Project with Scrum. Work,

285-290.

Hossain, E., Babar, M. A., Paik, H.-young, & Verner, J. (2009). Risk Identification and

Mitigation Processes for Using Scrum in Global Software Development: A Conceptual

Framework. 2009 16th Asia-Pacific Software Engineering Conference, 457-464. IEEE.

25

Jiménez, M., Piattini, M., & Vizcaíno, A. (2009). Challenges and Improvements in

Distributed Software Development: A Systematic Review. Advances in Software

Engineering, 2009, pp.1-14.

Kent Beck, Beedle, M., Bennekum, A. van, Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., et al. (2001). Manifesto for Agile Software Development. Retrieved

February 14, 2012, from http://agilemanifesto.org/

Lee, S., & Yong, H.-S. (2009). Distributed agile: project management in a global

environment. Empirical Software Engineering, 15(2), pp. 204-217.

Moitra, J. D. H. and D. (2001). Global software development - IEEE Software. IEEE

Software, (April), pp. 16-20.

Morien, R., & Wongthongtham, P. (2008). Supporting agility in software development

projects - defining a project ontology. 2008 2nd IEEE International Conference on

Digital Ecosystems and Technologies, pp.229-234. IEEE.

Mudumba, V., & Lee, O.-K. (Daniel). (2010). A New Perspective on GDSD Risk

Management: Agile Risk Management. 2010 5th IEEE International Conference on

Global Software Engineering, pp. 219-227. IEEE.

Phalnikar, R., Deshpande, V. S., & Joshi, S. D. (2009). Applying Agile Principles for

Distributed Software Development. 2009 International Conference on Advanced

Computer Control, pp. 535-539. IEEE.

Rodríguez, J., Ebert, C., & Vizcaino, and A. (2010). Technologies and Tools for Distributed

Teams. IEEE Software, 27(5), pp.10-14.

Santos, F. M., & Eisenhardt, K. M. (2005). Organizational Boundaries and Theories of

Organization. Organization Science, 16(5), pp. 491-508.

Sengupta, B., Chandra, S., & Sinha, V. (2006). A research agenda for distributed software

development. Proceeding of the 28th international conference on Software engineering -

ICSE ’06, 731. New York, New York, USA: ACM Press.

Shore, J., & Warden, S. (2007). The art of agile development (First.). O’Reilly.

Sureshchandra, K., & Shrinivasavadhani, J. (2008). Adopting Agile in Distributed

Development. 2008 IEEE International Conference on Global Software Engineering,

217-221. IEEE.

Taif University. (2008). Internal business documents private communications.

Wahyudin, D., Heindl, M., Eckhard, B., Schatten, A., & Biffl, S. (2008). as Formal Means to

Balance Agile Practices in Global Software Development Settings. IFIP International

Federation For Information Processing, pp. 208-222.

26

da Silva, F. Q. B., Costa, C., Franca, a. C. C., & Prikladinicki, R. (2010). Challenges and

Solutions in Distributed Software Development Project Management: A Systematic

Literature Review. 2010 5th IEEE International Conference on Global Software

Engineering, 87-96. IEEE.

Šmite, D., & Borzovs, J. (2006). A Framework for Overcoming Supplier Related Threats in

Global Projects. Software Process Improvement. Proceeding, Lecture Notes in

Computer Science, vol. 4257, Springer-Verlag, 2006, pp. 50-61.

