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Abstract

We present some applications of solid–state nuclear magnetic resonance to

model compounds and biological systems. We highlight a class of pulse

sequences that are designed based on symmetry properties of the internal

spin interactions. Examples are given showing resonance assignments, de-

termination of internuclear distances, and torsion angle determinations in

representative model systems as well as true biological systems.

1 Introduction

The use of solution–state nuclear magnetic resonance (NMR) for determin-

ing the high–resolution structure of biomolecules is well established. How-

ever there are many systems which are not amenable to solution–state NMR,

because they do not dissolve easily or because they have slow molecular mo-

tion in solution. Many membrane proteins belong to this class. Their study

may greatly benefit from the application of solid–state NMR.

In solid–state NMR, all the spin interactions survive motional averag-

ing, unlike the case of solution–state NMR where all interactions except

the isotropic scalar coupling, J , and isotropic chemical shift average to zero

due to the molecular Brownian motion [1]. The spin interactions present in

the solid–state NMR of spin—-1
2 systems are the isotropic and anisotropic

parts of the scalar coupling, the chemical shift, and the dipolar coupling

both homonuclear (between like spins) and heteronuclear (between unlike

spins). These interactions provide a wealth of structural and dynamic in-

formation. For example, estimation of dipolar couplings between nuclei

allows internuclear distance measurements. Measurement of chemical shift

anisotropy (CSA) provides information about the local electronic environ-

ment and molecular geometry [1].

The many anisotropic spin interactions, though useful, typically lead to

resolution and sensitivity problems. For instance, solid–state 1H NMR is
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generally quite difficult since the homonuclear dipolar couplings are of the

order of tens of kHz, leading to broad spectral peaks. The nuclei that can

be observed most easily in the solid state are low-γ species that do not have

strong homonuclear couplings. Nuclei that fall into this class are 13C and
15N. In biological solid–state NMR, the abundance of such nuclei is usually

enhanced by isotopic labelling. This is done either by chemical synthesis or

by isolating biomolecules from organisms grown in a labelled medium.

In this review, the “high-γ” species (typically protons) is denoted I,

while the “low-γ” species (typically 13C or 15N) is denoted S.

Resolution and sensitivity enhancement in solid–state NMR are often

achieved by three means: magic angle spinning (MAS), heteronuclear dipo-

lar decoupling by the use of radiofrequency (rf) fields and transfer of po-

larisation from the high-γ spins to the low-γ spins via cross–polarisation

(CP) [1]. These techniques give well resolved spectral lines for the low-

γ spins but suppress the anisotropic interactions. This leads to a loss of

geometry information.

Recoupling schemes have been devised to selectively retrieve the geom-

etry information lost by the use of the decoupling methods [1–3]. These

sequences aim to recouple the CSA, homonuclear or heteronuclear dipo-

lar couplings selectively, thereby allowing the measurement of structurally

important geometry parameters, without loss of spectral sensitivity and res-

olution.

In this review a brief outline will be given of some common recoupling

methods, together with some relevant applications. We highlight a proce-

dure for systematically developing recoupling sequences based on symmetry

properties of the internal spin interactions. This approach yields solutions

which depend on the type of interaction that needs to be recoupled. Se-

lected applications and spectra will be shown. We avoid detailed mathe-

matical description, giving instead appropriate references where required.

A more extensive review of many of the theoretical and practical aspects of

sequences based on symmetry has appeared [4].
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2 MAS, Decoupling and CP

As stated in the Introduction, nuclear spins that do not experience strong

homonuclear dipolar couplings are the most suitable candidates for obser-

vation in solid–state NMR. However, many such spins experience large CSA

interactions and hence still provide poor resolution in powders. A method for

averaging out such anisotropies is called magic–angle spinning (MAS) [5,6].

In MAS the sample is spun at an angle of tan−1
√

2 ≈ 54.7o with respect to

the magnetic field, as shown in Fig. 1a. Currently, the maximum available

spinning frequency is about 50 kHz [?]. MAS leads to a zero time average

of those spin interactions which transform as second-rank spherical ten-

sors under spatial rotations. This includes the CSA and the through-space

dipole-dipole interactions.

In most cases, MAS alone does not remove the effects of heteronuclear

dipolar couplings. It must be augmented by applying an rf field, either con-

tinuous or modulated in phase or amplitude, at the Larmor frequency of

the high-γ spins [1]. A schematic of this is shown in Fig. 1b. Several de-

coupling schemes have been introduced. The two popular ones in vogue are

continuous–wave, CW, decoupling and two–pulse phase–modulated (TPPM)

decoupling [7]. In TPPM decoupling a train of pulses pairs with flip angles

close to 180o and phases ±φ and φ ≈ 10 deg is applied. Both the flip–angle

and phase of the pulses need to be carefully optimised for good performance.

Recently, a variety of other methods has appeared [?], such as XiX [8] and

DROOPY [?].

A further increase in the signal strength of the low-γ species is provided

by the elegant technique of cross–polarisation (CP) which transfers magneti-

sation from the high-γ spins to the low-γ spins [9]. This involves simultane-

ous application of two rf fields, one at the Larmor frequency of the high-γ

spins and one at the Larmor frequency of the low-γ spins, such that the nu-

tation frequencies of the two spin species under the rf fields are the same [11].

For spins–1
2 the nutation frequency is given by ωnut = |12γB

peak
rf | where γ
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is the nuclear gyromagnetic ratio and Bpeak
rf the peak transverse rf field in

the coil [10]. Efficient magnetisation transfer usually takes place around

the condition, ωInut = ωSnut, called the Hartmann–Hahn condition [11]. This

typically leads to a maximum S spin signal enhancement approaching the

value γI/γS , which is about 4 for the case I =1H, S =13C. In addition,

low-γ spins often have much longer relaxation times, T1, than high-γ and

hence require longer recycle delays if they are observed directly. Under CP,

since the magnetisation originates from the high-γ species, shorter recycle

delays are possible, which speeds up the experiments. A schematic CP pulse

sequence is shown in Fig. 1c. Variants of CP schemes have been introduced

that significantly enhance the CP efficiency particularly under high MAS

frequencies. The most commonly used scheme is ramped–amplitude CP,

where the rf field on one of the channels is gradually changed to cover a

range of nutation frequencies [12].

In the presence of heteronuclear decoupling of the abundant spins, fast

MAS leads to spectra of the low-γ species with peaks at the isotropic chemi-

cal shift values. In practice, a good averaging of CSA takes place even when

the MAS frequencies are less than the strength of the CSA. In this case the

static powder shape breaks up into a set of sidebands spaced by the spin-

ning frequency and centered at the isotropic shift frequency. As the MAS

frequency increases the sidebands move outwards with diminishing intensity,

and the centrebands grow in intensity. This scenario is depicted in Fig. 2.

Spectrum (a) shows the 1H–decoupled CSA broadened powder pattern of the
13CH2 and 13CO peaks in a uniformly 13C–labelled glycine sample. Spectra

(b–d) show the effect of MAS on this static powder envelope.

The combination of CP and MAS, called CPMAS, is used routinely for

the observation of rare spins [13]. The spectra in Fig. 2 were all acquired

by employing MAS, decoupling and CP except Fig. 2a which was acquired

under static condition with CP and decoupling.
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3 Internal Spin Hamiltonians

In a spin–1
2 system the following spin interactions are present: J– couplings,

CSA, homonuclear and heteronuclear dipolar couplings. In general these in-

teractions are tensors with both a spatial part and spin part [14]. The spatial

part expresses the dependence of the interaction on the molecular orienta-

tions, keeping the spin polarisations and the static magnetic field fixed. It

may be manipulated by MAS. The spin part expresses the dependence of the

interaction on the spin orientations, keeping the molecular orientation and

the static magnetic field fixed. It may be manipulated by the application of

a rf field. The spatial part of dipolar interactions is directly related to the

geometry in the form of distances and angles.

The Hamiltonian of a spin system in solid–state NMR may be written

as

H = Hint +Hext (1)

where Hint corresponds to the interactions of the spins with each other and

to the molecular environment, Hext corresponds to couplings between the

nuclear spins and the applied magnetic fields.

The external interactions are the Zeeman interaction with the large static

magnetic field, HZ , which is often the most dominant interaction, and with

the applied rf field, Hrf . Hence,

Hext = HZ +Hrf (2)

The internal spin Hamiltonian may be written as

Hint = HJ +HCSA +HhomoDD +HheteroDD (3)

where HJ corresponds to the J–coupling, HCSA corresponds to the chemical

shift anisotropy,HhomoDD corresponds to the homonuclear dipolar coupling and

HheteroDD corresponds to the heteronuclear dipolar coupling. These terms may

be written as sums over all spin pais:

HhomoDD =
∑

j<k,homo

HjkDD
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HheteroDD =
∑

j<k,hetero

HjkDD (4)

Invoking the secular approximation (i.e only retaining those terms of the

internal Hamiltonian that commute with the predominant Zeeman Hamil-

tonian), the homonuclear coupling HjkDD and HISDD may be expressed as [14]

HjkDD =
b

2
(3cos2θjk − 1)(3IjzIkz − Ij · Ik)

HheteroDD = b(3cos2θIS − 1)IzSz

b = −µ0

4π
h̄

1
r3
γIγS (5)

where r is the distance between the spins. In the homonuclear case, θjk is

the angle subtended by the dipolar vector joining the spins Ij and Ik with

respect to the external magnetic field. θIS is the angle subtended by the

vector joining the I and S with respect to the external magnetic field in the

heteronuclear case. A measurement of these interactions leads directly to

structural information.

4 Recoupling Techniques in Solid–State NMR

CPMAS, though helpful in giving high–resolution isotropic spectral lines,

suppresses the effect of the anisotropic interactions and largely removes the

geometry information from the spectrum. Retrieving this information has

been one of the major concerns in solid–state NMR. Sequences that do this

are called recoupling sequences. These recoupling sequences reintroduce the

anisotropic interactions for certain time periods during MAS .

A general schematic of the recoupling strategy may be understood with

reference to Fig. 3. Figure 3a shows the modulation of a heteronuclear

interaction under MAS. The time average of the interaction is equal to

zero. The averaging-out of the interaction can be prevented by applying, for

instance, two π pulses in a rotor period as shown in Fig. 3b. The time average

of the interactions does not vanish anymore, but will be present although

scaled by a certain factor depending upon the pulse sequence, called the
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scaling factor, κ [1–3]. The scenario in Fig. 3 applies to the recoupling

of heteronuclear dipolar interactions in the popular rotational echo double

resonance (REDOR) method [22,23].

Any recoupling scheme involves an interplay of both MAS and rf irradi-

ation. The first true recoupling sequence involved recoupling of the CSA by

applying a repetitive pulse train synchronous with the sample rotation [16]

followed by rotary resonance recoupling (R3) [20] and REDOR [22, 23] in-

volving heteronuclear dipolar recoupling, and rotational resonance [17–19]

involving homonuclear dipolar recoupling.

A variety of recoupling sequences has been introduced since then, in-

cluding dipolar recoupling at the magic–angle (DRAMA) [24, 25], radio–

frequency driven recoupling (RFDR) [26–28], double–quantum homonuclear

rotary resonance (HORROR) [29] and DRAWS [?]. A good summary of

many of these recoupling sequences may be found in Ref. [2, 3].

In most cases, a recoupling sequence should be insensitive to imperfec-

tion in the phases and amplitudes of the rf pulses and rf inhomogeneity,

should be sufficiently broad–banded to cover a wide range of chemical shift

differences, and should be able to selectively discriminate various internal

spin interactions. In the following sections, a systematic theory is described

which leads to a systematic design of recoupling sequences based on the

symmetry of the internal spin Hamiltonians [4,30]. This approach was first

used explicitly in the design of the C7 pulse sequence [33] and has since been

used for the construction of a wide variety of experiments. Some of these

are discussed further below.

5 Symmetry Properties of the Spin Interactions

The spin interactions in NMR have well defined transformation properties

under rotation. Three types of rotation are involved, in general. They

are, rotations of the molecular framework (space), rotations of the nuclear

spin polarisation (spin) and rotations of the external magnetic field. The
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transformation properties of a spin interaction under these rotations is char-

acterised by its set of rotational ranks.

Characterisation of an internal Hamiltonian may be done based on the

quantum numbers of the space and spin part. The space rank of a spin

interaction is denoted as l and spin rank as λ. An irreducible spherical tensor

of rank l has 2l + 1 components taking values from m = −l,−l + 1, · · ·+ l.

A spatial rotation, such as MAS, induces a mixing of the (2l + 1) space

components. Similarly, the spin rank λ has (2λ + 1) components taking

values µ = −λ,−λ + 1, · · · + λ. A spin rotation in the interaction frame of

the rf field induces a mixing of the (2λ+ 1) spin components.

Each interaction can therefore be regarded as a superposition of (2l +

1) × (2λ + 1) components in the presence of sample rotation (MAS) and

resonant rf fields. A particular spin interaction, HΛ may be written as

HΛ =
+l∑

m=−l

+λ∑
µ=−λ

HΛ
lmλµ (6)

In the case of exact MAS, the components with l = 2 and m = 0 vanish [4].

Expressions for HΛ may be found in Ref. [31, 32]. Table 1 gives the ranks

for the most important spin interactions and shows that a distinction may

be made among the spin interactions depending on their space and/or spin

ranks. Selective recoupling of these interactions is possible by designing

pulse sequences based on their transformation properties.

6 Symmetry–Based Recoupling Sequences

There are two large classes of pulse sequences based on symmetry principles.

These are known as CNν
n and RN ν

n sequences [4].

Both CNν
n and RN ν

n sequences are characterised by three symmetry

numbers, N,n and ν. N is called the step number, while n and ν are called

the spin and space winding numbers. The values of these symmetry numbers

define selection rules which indicate which interactions are decoupled or

recoupled to first order in average Hamiltonian theory [33,34].
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6.1 CN ν
n Sequences

A CNν
n sequence may be constructed by dividing n rotational periods of

the sample into N equal intervals. During each of these intervals a rf pulse

sequence is applied which is cyclic, in the sense that it induces a rotation of

the nuclear spins through an integer multiple of 360o. The winding number

ν defines the phase difference between successive rf cycles, which is given

by 2πν/N . The sample hence rotates (in space, MAS) through n full rota-

tions and simultaneously experiences a set of rf pulses, the phases of which

advance through ν full rotations. A schematic timing diagram is shown in

Fig. 4.

The following selection rule determines whether a spin interaction is

symmetry–allowed to first order, under a CNν
n sequence:

H̄(1)
lmλν = 0 if mn− µλ 6= NZ (7)

where Z denotes any integer [31, 33, 35]. The superscript (1) indicates that

the selection rule is valid only to first–order in average Hamiltonian theory

[4].

For illustration, consider a pulse sequence with symmetry C71
2, i.e., N =

7, n = 2 and ν = 1. Consider a double–quantum dipole-dipole term with

{l,m, λ, µ} = {2, 1, 2, 2}. The expression mn− µν yields a value 0, which is

an integer multiple of N=7, and hence this term is symmetry-allowed under

the pulse sequence C71
2. Consider the case of a CSA term with {l,m, λ, µ} =

{2, 2, 1, 1}. The expression mn−µν yields a value 5 which is not a multiple

of N = 7. Hence this CSA interaction is symmetry-forbidden under C71
2.

This calculation may be repeated for all CSA terms with l = 2 and λ = 1.

They are all symmetry forbidden under C71
2.

It is possible to depict the selection rules by a space–spin selection dia-

gram, as shown in Fig. 5. In the case of C71
2, all CSA terms are suppressed

while two homonuclear DD coupling terms and one isotropic chemical–shift

term are allowed. This sequence therefore recouples homonuclear DD cou-

pling terms and is compensated for the effects of CSA, to first order. Since
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only dipole-dipole terms with spin quantum number µ = ±2 are allowed,

this symmetry generates a CSA–compensated double–quantum recoupling

sequence [4].

6.2 RN ν
n Sequences

The general strategy for designing sequences of the form RN ν
n is as follows

[4]:

• Select a pulse sequence element R that rotates resonant spins by 180o

around the x–axis. This element may be a single π pulse, a composite

π pulse, or a smoothly modulated rf pulse.

• Derive the pulse sequence element R′ by changing the sign of all rf

phases in the element R.

• Choose the rf field amplitude such that the duration of R and R′,

denoted by τR, is equal to τR = nτr/N , where τr = 2π/ωr is the rotor

period, N is an even integer, and n is any integer. Here ωr is the

angular spinning frequency.

• Form the sequence RN ν
n by concatenating N/2 phase shifted {R,R′}

pairs as follows:

RN ν
n = (R)φ(R′)−φ(R)φ(R′)−φ · · · (R′)−φ

≡ {RφR′−φ}N/2

where the extra phase shifts are specified by φ = πν/N , and ν is an

integer.

A schematic of the construction of a RN ν
n sequence is shown in Fig. 6.

The entire sequence RN ν
n consists of N/2 contiguous RR′ pairs spanning

n rotational periods.

The selection rule for RN ν
n sequences is as follows:

H̄(1)
lmλν = 0 if mn− µλ 6= N

2 Zλ (8)
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Zλ denotes any integer with the same parity as λ. If λ is odd, then Zλ is any

odd integer; if λ is even, then Zλ is any even integer [32,34]. This selection

rule is more restrictive than the selection rules for CNν
n sequences [4].

For illustration, consider a pulse sequence with symmetry R185
2. Con-

sider CSA and heteronuclear DD interactions both of which have {l, λ} =

{2, 1}. Since l=2, there are four m components with m = (−2,−1,+1,+2).

Since λ=1, there are three µ components with µ = (−1, 0,+1). The selection

rule mn− µν yields 9 and -9 for the combinations {l,m, λ, µ}={2, 2, 1,−1}

and {2,−2, 1, 1}. These terms are both symmetry-allowed since 9 is an odd

integer multiple of N
2 = 9, and the spin rank λ is also odd. Consider now

homonuclear DD and isotropic chemical shift terms. For the homonuclear

DD interaction, l = 2 and λ = 2. No combination of {l,m, λ, µ} yields an

even integer multiple of N2 = 9 since the spin rank λ is even. This means that

homonuclear DD interaction are symmetry forbidden for the R185
2 sequence.

The same holds good for isotropic chemical shift terms where l = 0 and λ=1.

Hence, a R185
2 sequence is a suitable candidate for recoupling heteronuclear

DD interactions in the presence of homonuclear DD interactions, or for mea-

suring CSA in systems with strong homonuclear DD interactions [36].

Fig. 7 illustrates diagrammatically the selection rule for R185
2. CSA

and heteronuclear DD terms are symmetry–allowed while homonuclear DD

coupling terms and isotropic chemical–shift terms are symmetry–forbidden.

7 Applications of Symmetry-Based Sequences

Solid–state NMR is now used for investigating the molecular structure of

many biologically interesting systems, such as fibrils, fibres, membrane pro-

teins and enzyme proteins. Some examples are given in Ref. [37–42]. In the

following section, we concentrate on a few applications of the symmetry-

based sequences to biological systems. A systematic investigation of any

biological system requires the following: sequential assignments via through–

bond (scalar couplings) or through–space (dipolar couplings), homonuclear
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and heteronuclear distance measurements, and torsion angle measurements.

This information can shed light on other mechanistic features like hydrogen

bonds and dynamic effects.

7.1 Assignment Techniques

The route to structure determination of biomolecules is well established in

solution–state NMR. The starting point in spectral analysis is the assign-

ment of the spectral peaks to the respective amino acids. We first discuss

the application of symmetry–based pulse sequences to the assignment of 13C

spectra in labelled biomolecules.

7.1.1 Scalar Correlation

Through-bond correlation spectroscopy mediated by J–couplings is well es-

tablished in solution–state NMR [43]. The main ingredient of though-bond

correlation spectroscopy in solid–state NMR is to construct a mixing pulse

sequence that allows only J–couplings to be active while suppressing all

other interactions. In terms of the symmetry notation such a sequence

should allow only {m,µ} = {0, 0} components, while suppressing all CSA

and through-space dipole-dipole coupling terms. One suitable symmetry is

C91
3 [44]. Many others are known [4].

A schematic of a scalar correlation experiment using a C91
3 sequence

as a mixing element is shown in Fig. 8a. An experimental spectrum of [U–
13C,15N]–bacteriochlorophyll is shown in Fig. 8b [45]. The cross–peaks reveal
13C resonances belonging to sites with a mutual J–coupling. Similar results

have been obtained on an U–13C labelled cyclic decapeptide antamanide

yielding assignments of most 13C peaks [45].

In this context, we would like to point out that the RFDR pulse sequence

[26–28], which is often proposed to be a dipole-dipole mixing sequence, in

fact often generates an average Hamiltonian with a substantial J-coupling

component [?]. Many RFDR spectra which have been interpreted in terms
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of pure dipole-dipole couplings may be better understood as through-bond

correlation spectra.

7.1.2 Double–Quantum Correlation

The INADEQUATE experiment [49] is widely employed in solution–state

NMR for assigning 13C spectra. Double–quantum correlation spectroscopy

has similar potential in solid–state NMR by allowing only signals passing

through DQ coherences and suppressing signals from isolated spins–1
2 . This

is particularly useful in large 13C labelled biomolecules where the back-

ground signals from naturally–occuring isolated 13C nuclei obscure the spec-

trum. As shown earlier C71
2 is a suitable candidate for DQ correlation spec-

troscopy [33]. This symmetry–based sequence recouples homonuclear DQ

couplings. A similar sequence more suitable for high MAS frequencies is

C145
4 [35]. This sequence can be made more efficient by adding supercycles

to reduce resonance offset effects and CSA effects. This sequence is called

SC14 and it recouples DQ dipole–dipole terms with the quantum numbers

{l,m, λ, µ} = {2,±1, 2,∓2} [35].

A typical pulse scheme employing SC14 for DQ correlation spectroscopy

is shown in Fig. 9a. A 2D DQ spectrum of [U–13C]-L–tyrosine is shown in

Fig. 9b. All the assignments are clearly visible and marked in the spectrum.

DQ filtration effectively eliminates the natural abundance background

from large biomolecules. Fig. 10 shows the 13C spectrum of [11,12-13C2-

retinylidene] bovine rhodopsin, compared with the corresponding double

quantum filtered signal obtained using a R146
2 sequence [53]. DQ dipolar

recoupling is a key step in many experiments for the determination of struc-

tural information, including internuclear distance and torsion angle mea-

surements (see below).

Many other symmetries suitable for homonuclear DQ recoupling are

available [4].
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7.1.3 Homonuclear Zero–Quantum Recoupling

Homonuclear dipolar recoupling methods allow determination of proximity,

distance and angular information under high–resolution MAS conditions.

Besides the 2Q correlation spectroscopy discussed above, zero–quantum

homonuclear dipolar recoupling may be used for obtaining 2D longitudi-

nal magnetisation exchange spectra which yield a qualitative estimate of

spatial proximity of spin sites, and which can identify resonances originat-

ing in the same spin system, even if the associated spins do not have a direct

mutual coupling [50,51]. A good ZQ sequence should be practically feasible

at high MAS frequencies, should have minimum dependence on isotropic

and anisotropic chemical shifts, have a low rf field requirement, and the

recoupled DD interaction should be as large as possible.

A good candidate for ZQ homonuclear dipolar recoupling is the symme-

try sequence R62
6. This recouples the DD terms with the following quantum

numbers {l,m, λ, µ} = {2,±1, 2, 0} and {2,±2, 2, 0} [52]. A pulse sequence

for ZQ homonuclear dipolar recoupling is shown in Fig. 11a. An exper-

imental 2D correlation spectrum of [U–13C]-L–tyrosine acquired with the

sequence in Fig. 11a is shown in Fig. 11b. The large number of cross–

peaks in this spectrum show that the longitudinal magnetisation has been

redistributed over the whole spin system by the zero–quantum recoupling

sequence. This is the solid–state analogue of the TOCSY experiment in

liquids. Ref. [4] lists many other symmetries suitable for homonuclear zero-

quantum recoupling.

7.2 Local Geometry Determination

7.2.1 Heteronuclear Distance Measurements and H-Bond Effects

Heteronuclear distance measurements are very useful for molecular structure

refinements and for investigating protein secondary structure and hydrogen

bondings. Separated local field (SLF) spectroscopy is a classic method for

determining heteronuclear dipolar couplings and hence 13C–1H and 15N–1H
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bond lengths [54,55]. In this 2D technique the chemical shifts in one dimen-

sion are correlated with the heteronuclear dipolar couplings in the other di-

mension. This high–resolution method normally uses simple multiple–pulse

sequences for decoupling the homonuclear dipolar interactions. Although

originally developed for static samples, it may also be used under MAS [?].

However, the MAS frequency must be slow enough to ensure sufficient side-

band intensity from which both the magnitude and the orientation of the

dipolar tensors may be estimated. In multiply-labelled samples, a high MAS

frequency is required to ensure a good resolution and sensitivity. TC5 [56],

TMREV [57,58] and R-sequences [4,59] have been used at high spinning fre-

quencies, although only the R-sequences have theoretically ideal behaviour

in the first-order theory.

Figure 12a shows a SLF pulse scheme involving a RN ν
n sequence for het-

eronuclear dipolar recoupling. Fig. 12b shows a 13C 2D spectra obtained

on [U-13C]-L-histidine·HCl·H2O at 10.9 kHz spinning frequency [59]. The

splittings in the indirect dimension are proportional to heteronuclear DD

couplings. Distance estimates are obtained by comparing the dipolar pat-

terns with numerically exact two–spin simulations [36]. Table 2 summarizes

the CH bond lengths of L-histidine·HCl·H2O determined by neutron diffrac-

tion [60] and by solid-state NMR. Notice that the NMR bond lengths are

consistently longer than neutron diffraction data due to the librational mo-

tion of the C-H bond in a direction orthogonal to the bond [?].

In order to quantify CH or NH bond elongations due to the formation

of H-bonds, an internal calibration can be used. Fig. 12d shows the 15N

2D spectra using R185
2 at 20 kHz spinning speed on uniformly 15N labelled

L-histidine·HCl·H2O. The δ1
15N–1H bond is found to be about 4 pm longer

than ε1
15N–1H bond due to the formation of an intermolecular hydrogen

bond [59].
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7.2.2 Homonuclear Distances: Bond Length Determination

The accurate determination of distances between like nuclei is of great im-

portance. For good quality crystals of small molecules, diffraction methods

give very accurate internuclear distances. For large biomolecules, on the

other hand, the typical resolution from diffraction is of the order of 10 pm

to 30 pm, after refinement.

For typical 13C–13C bonds in conjugated chains, the single bond distance

is about 150 pm while the double bond distance is about 135 pm. These

correspond to rather different electronic distributions. While single bonds

are typically very flexible, isolated double bonds are quite stiff and the elec-

trons forming the double-bond are expected to be localised between the two

nuclei. Many conjugated systems exhibit intermediate bond orders and the

bonding electrons are much more delocalised. In such cases, high-precision

bond length measurements allow one to answer questions about reaction

mechanism, electronic distribution and molecular motions.

Solid–state NMR can often provide such information. Internuclear dis-

tance measurements can be performed for directly bonded carbon pairs,

using RNν
n -sequences for homonuclear DQ dipolar recoupling [61]. The pre-

cision is not yet as good for longer distances, although a variety of methods

is available [19,62].

A pulse sequence for distance measurements between homonuclear spin

pairs is given in Fig. 13a. The DQ-filtered signal intensity depends upon the

duration of the recoupling sequence. This is demonstrated experimentally

in Fig. 13b for the case of [11,12-13C2]-all-E-retinal, a model of which is

shown alongside the spectrum. This series of spectra was acquired using a

fixed reconversion time, τrec, while τexc is incremented. The dipole-dipole

interaction between the labelled nuclei is recoupled and the observed signals

are modulated with a frequency which can be related to the strength of

the dipole-dipole coupling constant and, hence, to the internuclear distance.

Fig. 13d shows a typical best fit of the experimental points, corresponding
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to rjk = ... ± ... pm [61]. The method is sufficiently precise to distinguish

between pure single bonds and double bonds, as well as intermediate cases

in conjugated chains [61].

7.2.3 Torsion angle measurements

The torsion angles of four-atom units is a very important structural param-

eter. In NMR, torsion angles can be estimated by determining the relative

orientation of a pair of anisotropic spin interaction tensors, such as CSA

and DD coupling tensors. Methods have been developed to correlate the

orientations between two CSA tensors [65], two dipolar tensors [66] and one

CSA tensor with a dipolar tensor [63, 64]. The choice of dipolar tensors

is preferred because the dipolar tensor is symmetric and precisely aligned

along the internuclear vector. The orientation of a CSA tensor, on the other

hand, depends on the local molecular structure and needs to be determined

in advance by other methods.

A variety of experiments has been suggested for the determination of

torsion angles [63,64,67,68]. Here, we outline an approach using symmetry–

based pulse sequences leading to a direct measurement of a molecular torsion

angle through the relative orientation of two magnetic spin–spin coupling

tensors. We outline a method demonstrating the measurement of H–C–C–H

torsion angles in 13C2–labelled H–C–C–H moieties. 2Q coherence between

isotopically labelled neighbouring 13C sites are excited (for instance, by a

C71
2 sequence) and are allowed to evolve in the presence of local fields from

the directly–bonded 1H spins. The heteronuclear dipolar fields depend on

the spin states of the protons and also on the geometric relationship of

the two 13C–1H coupling tensors. The experiment monitors the effect of

heteronuclear dipolar interactions which are time–modulated due to MAS

on the 2Q 13C coherences generating a modulation of the 13C 2Q evolution

that depends on the H–C–C–H torsion angle. This is the solid–state NMR

equivalent of double–quantum cross-correlation NMR in liquids [?,?].
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The pulse sequence for determining the H–C–C–H torsion angle is given

in Fig. 14a [70]. The amplitude of the 2Q signal is measured for a sufficient

number of 2Q t1 intervals. This method has been applied to the measure-

ment of torsion angles in [10,11–13C2]–rhodopsin [69]. Simulations indicate

that a torsion angle resolution of ≈ ±20o can be achieved in the neighbour-

hood of the cis conformation and ≈ ±10o in the neighbourhood of the trans

conformation. A clear distinction between cis and trans conformations is

easily achieved [70].

8 Conclusions

In this review an outline of the design of pulse sequences in solid–state

NMR based on the symmetry properties of the spin interactions was given.

Two classes of symmetry-based sequences were highlighted, namely, CNν
n

and RN ν
n . Representative applications of these sequences in various small

biomolecular systems were highlighted. It is expected that a systematic

application of these sequences will pave the way for an understanding of

various structural and functional aspects of many biological systems. Work

along these lines is being done in our group and several other research groups.
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Table 1: Rotational ranks of spin interactions in a diamagnetic solid.

Spin interaction Space rank, l Spin rank, λ

Isotropic chemical shift 0 1

Chemical shift anisotropy 2 1

J–coupling 0 0

Homonuclear Dipole–dipole coupling 2 2

Heteronuclear Dipole–dipole coupling 2 1∗
∗ rank under rotation of only one spin species
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Table 2. Estimated 13C–1H and 15N–1H bond lengths in

L–histidine.HCl.H2O (pm)

Atom Site Neutron diffraction Solid–state NMR
13C α 110.3 112.0

β 109.7 111.0

ε1 108.9 109.0

δ2 107.6 108.5
15N ε2 102.6 105.0

δ1 107.0 109.0
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Figure Captions

Figure 1: (a) A schematic of the MAS technique showing the sample

spinning at an angular frequency ωr about an axis at the magic–angle of

tan−1
√

2 ≈ 54.7o with respect to the static magnetic field, B0. (b) A

schematic of continuous–wave (CW) decoupling showing the pulse sequence

for observation of rare spins such as 13C while the heteronuclear interactions

are suppressed by continuous–wave rf irradiation at the Larmor frequency of
1H. (c) A schematic of the CP pulse sequence in which magnetisation trans-

fer from 1H to 13C takes place by matching the rf fields on the 1H and 13C

channels according to the Hartmann–Hahn condition. A decoupling field is

applied to the 1H channel while observing 13C.

Figure 2: 13C CP-MAS spectra of [13C2,15N]–glycine at different spin-

ning frequencies in a field of 9.4 T. The vertical scales of the spectra are:

(a):(b):(c):(d):(e)=6:4:1:1:1. The MAS frequencies, ωr/2π are indicated

alongside each spectrum.
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Figure 3: Schematic of a recoupling sequence showing the time–dependence

of the heteronuclear dipolar coupling Hamiltonian, HIS in the interaction

frame of the rf field. (a) The time–dependent evolution of HIS under MAS.

The integral of the dipolar coupling over a single rotor cycle is zero leading

to an averaging of the dipolar coupling to zero if the spinning speed is

sufficiently high. On the right is shown an internuclear vector between a

carbon nucleus and a nitrogen nucleus traversing a conical path. (b) The

time–dependent evolution of HIS under MAS with two π pulses on the S

spin per rotor cycle. Since each π pulse reverses the sign of HIS the dipolar

coupling is no longer averaged to zero but gets scaled by κ, the scaling

factor, depending on the nature of the pulse sequence applied for recoupling.

(Reproduced with permission from Ref. [15]).

Figure 4: Construction of a CNν
n sequence. The pulse sequence is set up so

that n sample revolutions are synchronised with N rf cycles. In the simplest

version, the rf cycle may be a 2π pulse. The pulses of consecutive cycles

increment in steps of 2πν/N .

Figure 5: Spin–space selection (SSS) diagram for the symmetry C71
2 showing

the selection of double–quantum dipolar and isotropic chemical shift terms,

and symmetry–forbidden CSA terms. The space part, m, and the spin part,

µ, are split for visual clarity. Only those branches with m ≥ 0 are shown: the

branches with m < 0 are mirror images. The m = 0 component vanishes in

the case of exact MAS. For the symmetry C71
2, the space branches are spaced

vertically by two units corresponding to n = 2. Each of these branches splits

into three spin components, with µ = {−1, 0, 1}, and are spaced vertically

by one unit corresponding to ν = 1. The barrier on the right has holes at

levels 0, ±7, ±14, · · · corresponding to N = 7. A spin interaction component

is symmetry–allowed if the corresponding branch passes through a hole in

the barrier. If it does not pass through a hole, it symmetry–forbidden and

is suppressed by the recoupling sequence, to first order.
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Figure 6: Construction of a RN ν
n sequence. The pulse sequence timing is

set up so that n sample revolutions are synchronised with N rf elements.

Each pulse element may be a simple π pulse or a composite π pulse. The

phases of the elements alternate between the values ±πν/N .

Figure 7: SSS diagram for the symmetry R185
2 showing (a) symmetry–

allowed CSA/hetero-DD terms (b) symmetry–forbidden Homo–DD terms

(c) symmetry–forbidden isotropic chemical shift terms. The position of the

holes in the barrier depends on whether the spin rank λ is odd or even. In

cases (a) and (c), the rank λ = 1 is odd, so the holes in the barrier are at

levels ±9,±27 . . .. In case (b), the rank λ = 2 is even, so the holes in the

barrier are at levels 0,±18,±36 · · ·.

Figure 8: (a) Pulse sequence for 2D correlation spectroscopy employing the

mixing sequence C91
3. The preparation period consists of a CP block gener-

ating 13C magnetisation from 1H. During the mixing period magnetisation

transfer takes place under an isotropic mixing Hamiltonian generated by

the C91
3 sequence bracketed by two π

2 pulses. (b) Part of a scalar correla-

tion spectrum of [U–13C, 15N]-bacteriochlorophyll recorded using the pulse

sequence in (a). See Ref. [44] for experimental details. (Reproduced with

permission from Ref. [44]).
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Figure 9: (a) Pulse sequence for 2Q correlation spectroscopy using the sym-

metry sequence, C14−5
4 for 2Q excitation and conversion. I refers to 1H

and S refers to 13C. Following ramped CP a π/2 pulse on S converts the

transverse magnetisation into S spin longitudinal magnetisation. The π/2

pulse is followed by a 2Q–excitation pulse sequence of duration τE which

converts the S–spin longitudinal magnetisation into (±2)–quantum coher-

ence. The 2Q coherences are allowed to evolve for a time interval of t1,

and are then reconverted into longitudinal S–spin magnetisation by another

C14−5
4 block. The longitudinal magnetisation is converted into observable

magnetisation by a π/2 read pulse. (b) Experimental 2D 2Q 13C spectrum

of [U–13C]–L–tyrosine. See Ref. [35] for experimental details. (Reproduced

with permission from Ref. [35]).

Figure 10: (a) RAMP–CP 13C spectrum of [11,12-13C2-retinylidene]-

rhodopsin, acquired at 9.4 T and 173 K, at a spinning frequency of 5.5 kHz

(b) Experimental 2D filtered spectrum acquired under the same conditions

using the sequence R146
2 [53, 61]).

Figure 11: (a) Pulse sequence for zero–quantum correlation spectroscopy

using the sequence R62
6 for the transfer of longitudinal magnetisation be-

tween neighbouring sites. (b) Experimental 2D homonuclear 13C correlation

spectrum of [U–13C]–L–tyrosine at a spinning frequency of 23.0 kHz, and

a mixing interval of 9.9 ms. (b) Experimental 2D 2Q 13C spectrum of [U–
13C]–L–tyrosine. See Ref. [52] for experimental details. (Reproduced with

permission from Ref. [52]).
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Figure 12: (a) Pulse sequence for heteronuclear dipolar recoupling where the

R sequence may be either R187
1 or R185

2. (b) Experimental 13C 2D spectrum

of [U-13C6,15N3]-L-histidine·HCl·H2O at 9.4 T and a spinning frequency of

10.9 kHz with R187
1 sequence. (c) Sections through the 2D spectrum parallel

to the ω1 axis. These show the heteronuclear dipolar split patterns for each

of the 13C sites bonded with 1H. (d) Experimental 15N 2D spectrum of [U-
13C6,15N3]-L-histidine·HCl·H2O at 9.4 T and a spinning frequency of 20.0

kHz using R185
2. (e) Sections through the 2D spectrum parallel to the ω1

axis. These show the heteronuclear dipolar split patterns for each of the 13C

sites bonded with 1H. (Reproduced with permission from Ref. [36,59])

Figure 13: (a) Pulse sequence used for the measurement of distances between

homonuclear spin pairs. The sequence starts with RAMP–CP followed by a

π/2 pulse, to create enhanced longitudinal magnetisation on the spin species

S, in this case 13C. This is followed by a recoupling interval of duration τexc

to generate DQ coherences between the labelled spins. This is followed by

an interval of duration τrec during which the DQ coherence is reconverted

back to longitudinal magnetisation and then observed through a π/2 reading

pulse. The whole reconversion block is phase cycled to select DQ coherences

while suppressing all other terms at the end of the excitation block. (b)

A series of double–quantum filtered spectra of [11,12-13C2]-all-E-retinal for

different values of τexc. The molecular schematic is also shown. (c) Best fit of

the experimental points indicating a distance of 137.6±1.7 pm (Reproduced

with permission from Ref. [61]).
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Figure 14: (a) Pulse sequence for the measurement of H–C–C–H torsion an-

gles using a C71
2 sequence for 2Q excitation and a MREV–8 [71] for homonu-

clear decoupling. (b) Coherence pathway diadram. (c) Signal amplitudes for

[10,11–13C2]–metarhodopsin–I as a function of the 2Q evolution interval t1.

The filled circles correspond to experimental values. The lines correspond

to best–fit simulations for H–C–C–H torsion angles of |φ|= 140o, 160o, 170o,

and 180o. The dotted lines indicated that the 68.3% confidence limits on the

torsion angle are φ=180±22o. (Reproduced with permission from Ref. [72]).
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