The University of Southampton
University of Southampton Institutional Repository

Use of a genetic algorithm to improve predictions of alternate bar dynamics

Use of a genetic algorithm to improve predictions of alternate bar dynamics
Use of a genetic algorithm to improve predictions of alternate bar dynamics
Alternate bars may form in sandy beds of straight rivers and channels. These bars are characterized by the alternation of crests, all moving downstream at a speed of several meters per day. The aim of this paper is to predict the dynamics of alternate bars. To that end, we tested predictions of measured alternate bars in flume experiments, as derived from an amplitude evolution model. Weakly nonlinear stability analysis underlies this amplitude evolution model, so that it applies to situations in which the width-to-depth ratio is close to the critical ratio, above which alternate bars occur. The experiments have a width-to-depth ratio far above the critical value, well outside the range of formal validity of the model. While wavelengths and heights of the alternate bars are still well predicted, we found that the migration rate is not: the amplitude evolution model produces an underestimation of close to a factor of two. Therefore we took a slightly different approach. We tested the predictive capability for this amplitude evolution model by using a genetic algorithm to tune the model to bathymetric data. After tuning, the model is indeed able to predict the migration rate of the bars over periods that exceed the tuning period by far. Limits to the prediction time, i.e., failure of this method, could not be derived for the data sets used in this work.
morphology, alternate bars, data assimilation, genetic, algorithm, optimization, modeling, irregular bed forms, rough channels, circulation, sediment, river
0043-1397
Art.1231
Knaapen, M.A.F.
32abd748-aa55-4180-a3f3-d3315e122fb1
Hulscher, S.J.M.H.
607b5835-2a4a-4020-bc38-0c64a904c37d
Knaapen, M.A.F.
32abd748-aa55-4180-a3f3-d3315e122fb1
Hulscher, S.J.M.H.
607b5835-2a4a-4020-bc38-0c64a904c37d

Knaapen, M.A.F. and Hulscher, S.J.M.H. (2003) Use of a genetic algorithm to improve predictions of alternate bar dynamics. Water Resources Research, 39 (9), Art.1231. (doi:10.1029/2002WR001793).

Record type: Article

Abstract

Alternate bars may form in sandy beds of straight rivers and channels. These bars are characterized by the alternation of crests, all moving downstream at a speed of several meters per day. The aim of this paper is to predict the dynamics of alternate bars. To that end, we tested predictions of measured alternate bars in flume experiments, as derived from an amplitude evolution model. Weakly nonlinear stability analysis underlies this amplitude evolution model, so that it applies to situations in which the width-to-depth ratio is close to the critical ratio, above which alternate bars occur. The experiments have a width-to-depth ratio far above the critical value, well outside the range of formal validity of the model. While wavelengths and heights of the alternate bars are still well predicted, we found that the migration rate is not: the amplitude evolution model produces an underestimation of close to a factor of two. Therefore we took a slightly different approach. We tested the predictive capability for this amplitude evolution model by using a genetic algorithm to tune the model to bathymetric data. After tuning, the model is indeed able to predict the migration rate of the bars over periods that exceed the tuning period by far. Limits to the prediction time, i.e., failure of this method, could not be derived for the data sets used in this work.

This record has no associated files available for download.

More information

Published date: 2003
Keywords: morphology, alternate bars, data assimilation, genetic, algorithm, optimization, modeling, irregular bed forms, rough channels, circulation, sediment, river
Organisations: Ocean and Earth Science, Civil Engineering & the Environment

Identifiers

Local EPrints ID: 27820
URI: http://eprints.soton.ac.uk/id/eprint/27820
ISSN: 0043-1397
PURE UUID: 8bfebd32-bfcd-4d8e-8ade-c3bef4f43e91

Catalogue record

Date deposited: 28 Apr 2006
Last modified: 15 Mar 2024 07:21

Export record

Altmetrics

Contributors

Author: M.A.F. Knaapen
Author: S.J.M.H. Hulscher

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×