The University of Southampton
University of Southampton Institutional Repository

Smart panels with velocity feedback control systems using triangularly shaped strain actuators

Smart panels with velocity feedback control systems using triangularly shaped strain actuators
Smart panels with velocity feedback control systems using triangularly shaped strain actuators
In this paper we present a theoretical study on the active structural acoustic control of a new smart panel with sixteen triangularly shaped piezoelectric patch actuators, having their base edges evenly distributed along the perimeter of the panel, and velocity sensors positioned at the vertices opposite the base edges. The performance is assessed and contrasted with that of a conventional smart panel using a 4 x 4 array of square piezoelectric patch actuators evenly distributed over the surface of the panel with velocity sensors at their centers.
For both systems the control effectiveness and stability of MIMO decentralized or SISO direct velocity feedback control architectures have been analyzed. The two control systems are arranged to generate active damping which reduces the response and sound radiation of the panel in the lightly damped and well separated low-frequency resonances. In particular the new control system can be seen as a set of sixteen "active wedges" which absorb energy from the incident flexural waves to the borders of the panel so that the panel could be considered anechoic. This study shows that the new arrangement with triangularly shaped actuators can achieve better control than the corresponding system using square actuators.
0001-4966
2046-2064
Gardonio, Paolo
bae5bf72-ea81-43a6-a756-d7153d2de77a
Elliott, Stephen J.
721dc55c-8c3e-4895-b9c4-82f62abd3567
Gardonio, Paolo
bae5bf72-ea81-43a6-a756-d7153d2de77a
Elliott, Stephen J.
721dc55c-8c3e-4895-b9c4-82f62abd3567

Gardonio, Paolo and Elliott, Stephen J. (2005) Smart panels with velocity feedback control systems using triangularly shaped strain actuators. Journal of the Acoustical Society of America, 117 (4), 2046-2064. (doi:10.1121/1.1863092).

Record type: Article

Abstract

In this paper we present a theoretical study on the active structural acoustic control of a new smart panel with sixteen triangularly shaped piezoelectric patch actuators, having their base edges evenly distributed along the perimeter of the panel, and velocity sensors positioned at the vertices opposite the base edges. The performance is assessed and contrasted with that of a conventional smart panel using a 4 x 4 array of square piezoelectric patch actuators evenly distributed over the surface of the panel with velocity sensors at their centers.
For both systems the control effectiveness and stability of MIMO decentralized or SISO direct velocity feedback control architectures have been analyzed. The two control systems are arranged to generate active damping which reduces the response and sound radiation of the panel in the lightly damped and well separated low-frequency resonances. In particular the new control system can be seen as a set of sixteen "active wedges" which absorb energy from the incident flexural waves to the borders of the panel so that the panel could be considered anechoic. This study shows that the new arrangement with triangularly shaped actuators can achieve better control than the corresponding system using square actuators.

This record has no associated files available for download.

More information

Published date: 2005

Identifiers

Local EPrints ID: 28004
URI: http://eprints.soton.ac.uk/id/eprint/28004
ISSN: 0001-4966
PURE UUID: e4f4e7dd-3829-4f6c-a9be-a3bc653aecba

Catalogue record

Date deposited: 28 Apr 2006
Last modified: 15 Mar 2024 07:22

Export record

Altmetrics

Contributors

Author: Paolo Gardonio

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×