The University of Southampton
University of Southampton Institutional Repository

A shape memory alloy adaptive tuned vibration absorber: design and implementation

A shape memory alloy adaptive tuned vibration absorber: design and implementation
A shape memory alloy adaptive tuned vibration absorber: design and implementation
In this paper a tuned vibration absorber (TVA) is realized using shape memory alloy (SMA) elements. The elastic modulus of SMA changes with temperature and this effect is exploited to develop a continuously tunable device.
A TVA with beam elements is described, a simple two-degree-of-freedom model developed and the TVA characterized experimentally. The behaviour during continuous heating and cooling is examined and the TVA is seen to be continuously tunable. A change in the tuned frequency of 21.4% is observed between the cold, martensite, and hot, austenite, states. This corresponds to a change in the elastic modulus of about 47.5%, somewhat less than expected.
The response time of the SMA TVA is long because of its thermal inertia. However, it is mechanically simple and has a reasonably good performance, despite the tuning parameters depending on the current in a strongly nonlinear way.
19-28
Rustighi, E.
9544ced4-5057-4491-a45c-643873dfed96
Brennan, M.J.
87c7bca3-a9e5-46aa-9153-34c712355a13
Mace, B.R.
cfb883c3-2211-4f3a-b7f3-d5beb9baaefe
Rustighi, E.
9544ced4-5057-4491-a45c-643873dfed96
Brennan, M.J.
87c7bca3-a9e5-46aa-9153-34c712355a13
Mace, B.R.
cfb883c3-2211-4f3a-b7f3-d5beb9baaefe

Rustighi, E., Brennan, M.J. and Mace, B.R. (2005) A shape memory alloy adaptive tuned vibration absorber: design and implementation. Smart Materials and Structures, 14 (1), 19-28. (doi:10.1088/0964-1726/14/1/002).

Record type: Article

Abstract

In this paper a tuned vibration absorber (TVA) is realized using shape memory alloy (SMA) elements. The elastic modulus of SMA changes with temperature and this effect is exploited to develop a continuously tunable device.
A TVA with beam elements is described, a simple two-degree-of-freedom model developed and the TVA characterized experimentally. The behaviour during continuous heating and cooling is examined and the TVA is seen to be continuously tunable. A change in the tuned frequency of 21.4% is observed between the cold, martensite, and hot, austenite, states. This corresponds to a change in the elastic modulus of about 47.5%, somewhat less than expected.
The response time of the SMA TVA is long because of its thermal inertia. However, it is mechanically simple and has a reasonably good performance, despite the tuning parameters depending on the current in a strongly nonlinear way.

Text
Tech_Memo_920.pdf - Other
Download (1MB)

More information

Published date: 2005

Identifiers

Local EPrints ID: 28018
URI: http://eprints.soton.ac.uk/id/eprint/28018
PURE UUID: 982ead46-e974-49a8-9fc1-924468005587
ORCID for E. Rustighi: ORCID iD orcid.org/0000-0001-9871-7795
ORCID for B.R. Mace: ORCID iD orcid.org/0000-0003-3312-4918

Catalogue record

Date deposited: 28 Apr 2006
Last modified: 15 Mar 2024 07:22

Export record

Altmetrics

Contributors

Author: E. Rustighi ORCID iD
Author: M.J. Brennan
Author: B.R. Mace ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×