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ABSTRACT

A tunable vibration absorber (TVA) with a smart variable stiffness element is capable of retuning
itself in response to a time-varying excitation frequency, enabling effective vibration control over a
range of frequencies. This report presents research into novel methods of achieving variable
stiffness in an adaptive tuned vibration absorber (ATVA) by changing shape. It is shown that
considerable variation in the tuned frequency can be achieved by actuating a shape change,
provided that this is within the limits of the actuator. A feasibie design for such an ATVA is one in
which the device offers low resistance to the required shape change actuation while not being
restricted to low values of the effective stiffness of the vibration absorber. Three such original
designs are identified: (i) A pinned-pinned arch beam with fixed profile of slight curvature and
variable preload through an adjustable natural curvature; (ii) A vibration absorber with a variable
geometry linkage as stiffness element; (iii) A vibration absorber with a stiffness element formed
from parallel curved beams of adjustable curvature vibrating longitudinally. The effectiveness of
the latter two designs is limited to frequencies for which inertia effects of the components forming
the stiffness element are not significant. The performances of a demonstrator and a prototype
ATVA based on designs (ii) and (iii) respectively are analysed and good correlation is achieved
between theoretical and experimental results, The tests on the prototype ATV A with piezo-actuated
parallel curved beams demonstrate the efficacy of this design in vibration control, particularly with

respect to its agility in tracking rapidly varying forcing frequencies.
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1 INTRODUCTION

A tuned or tunable vibration absorber (TVA) is an auxiliary system that is tuned to suppress the
vibration at its point of attachment to a host structure. The tuned frequency f, of the TVA is its

undamped natural frequency with its base (point of attachment) blocked. The TVA can be used in
two distinct ways [1]:
(1) It can be tuned to suppress (“dampen”) the modal contribution to the vibration of a

troublesome natural frequency f, of the host structure over a wide band of excitation frequencies.
In this case the TVA is referred to as a “tuned mass damper”. f, is optimally tuned to a value
slightly lower than f, and an optimal level of damping is implemented in the stiffness element of

the absorber [1].
(ii) Alternatively, the TVA can be tuned to suppress (“neutralise”) the vibration at a

troublesome forcing frequency f. In this case the TVA is sometimes referred to as a tuned
vibration neutraliser [2], although the generic term “tuned vibration absorber” is often used to refer

specifically to this variant of the TVA [1, 2]. The optimal tuning condition is f, = /' and the TVA

acts like a notch filter, suppressing the vibration over a very narrow bandwidth centred at the tuned
frequency. Total suppression of the vibration at this frequency is achieved when there is no
damping in the stiffness element.

Deviation from the tuned condition (mistuning) degrades the performance of either variant
of the TVA [1] and it was shown in [3] that a mistuned vibration neutraliser could actually increase
the vibration of its host structure. To avoid mistuning, smart or adaptive tunable vibration
absorbers (ATVAs) have been developed. Such devices are capable of retuning themselves in real
time and an overview of some of these is given in references [1, 4]. Adaptive technology is
especially important in the case of the vibration neutraliser since the low damping requirement in
the spring element can raise the host structure vibration to dangerous levels in the mistuned
condition. In this case, mistuning can occur either due to a drift in the forcing frequency or due to a
drift in tuned frequency caused by environmental factors (e.g. temperature change). Hence, a
vibration neutraliser needs to be adaptive to have any practical use. This report will focus
exclusively on TV As used as vibration neutralisers.

At the heart of a smart TVA is a stiffness element whose stiffness can be adjusted in real
time. To maximise vibration attenuation, the stiffness element should have low structural damping
and any mechanism used for stiffness adjustment should add as little as possible to the redundant
mass of the device [2, 3]. Of course, the stiffness ¢lement should also be tunable over an adequate

range of frequencies, and the adjustment should be rapid and with minimum power requirement,



and the device must be cheap and easy to manufacture. The technical challenge is to design a
stiffness element with such attributes.

Various designs for variable stiffness elements have been proposed e.g. references [5-8].
Work at the Institute of Sound and Vibration Research (ISVR) has focused on two strategies for
achieving variable stiffness. One strategy involves using a shape memory alloy, as in the device
developed by Rustighi et al. [9]. The Young’s Modulus (and hence stiffness) of a stiffness element
made of such an alloy changes with temperature and can therefore be controlled by adjusting the
electrical current through it. Such a device is easy to manufacture, requiring no actuating
mechanism for stiffness adjustment. The maximum variability of the tuned frequency of such a
device is typically found to be around 17.5 % and, for the device in reference [9], it took 2 minutes
with a 9A currént to achieve this change. Hence, such a device is only suitable for applications
where any potential detuning is gradual. The other strategy for stiffness adjustment involves
controlling the shape of the stiffness element. One such device is described in reference [4] and is
illustrated in Figure 1.1. The mechanism at the centre adjusts the gap between the beams, thereby
varying the flexural stiffness. Such a device was built and tested in reference [10] where the
mechanism used was a stepper motor driving a screw thread and a maximum adjustment of 35% in
tuned frequency was achieved. The response was much more rapid than that obtained in reference
[9] although there is room for improvement. Moreover, the mechanism in Figure 1.1 does not form
part of the effective mass of the absorber (i.e. it is a redundant mass) thereby degrading the
vibration attenuation.

This report presents research into novel methods of achieving variable stiffness by changing
shape. Following this introduction, the basic theory concerning the ATVA is presented, together
with a study on the feasibility of the shape change concept in such a device. Various novel designs
are considered. The performances of a demonstrator and a prototype ATVA based on two of these

designs are analysed theoretically and experimentally.
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Figure 1.1: Stiffness control of a cantilever ATVA by varying second moment of area [4, 10]



2 FEASIBILITY OF SHAPE CHANGE FOR VARIABLE STIFFNESS

This chapter starts with a summary of elementary theory of the adaptive tuned vibration absorber
(ATVA) and goes on to investigate the feasibility of the shape change concept for a variable
stiffness ATVA. As mentioned in the Introduction, this report focuses exclusively on ATV As used

as vibration neutralisers.

2.1 Elementary Theory

For excitation frequencies below its first natural frequency as a free body, any auxiliary system used
as a tuned vibration absorber (TVA) can always be reduced to an equivalent two degree of freedom
system as shown in Figure 2.1(a). When the device is attached to its host structure, only the upper
mass is effective (Figure 2.1(b)), the lower mass adds on to that of the host structure. The tuned

frequency f, of the TVA is its undamped natural frequency with its point of attachment to the
structure blocked i.e.

f=m 5 @.1)

T 2z\m,
Optimal tuning is achieved when f, = f where f is the excitation frequency. In this

condition, the TVA exerts a high impedance at its point of attachment, suppressing the vibration

there. The vibration attenuation 4 is defined as the ratio:

/ai] 2.2)

4= ’gl,free

are the harmonic vibration amplitudes at the point of attachment respectively

where |gl l H gl,ﬁ‘ee
with and without the TVA attached. In the tuned condition, 4 — =, i.e. |g1| — 0, as the damping
loss factor in the stiffness element 77 — 0. The tuned condition is conveniently located by noting

that cosg ~ 0 when f = f, where ¢ is the phase shift between the harmonic vibrations a, (), a, (¢)

at the point of attachment and absorber mass respectively. It can be shown [11] that cos¢ is
exactly zero when f = f,m and the reduction in attenuation incurred when using the
condition cos¢ = 0 for tuning (instead of the condition f = f,) is negligible for 7 <0.5.

Since the excitation is harmonic, a, (t)= Re{c_z,,ej""}, r=12, and cos¢ is given by the
expression [11]: |

/) [ a6y ) e

i9!||‘—’2|

(2.3)

Cos =



where T, = k2x/w (k any positive integer). Since the amplitudes

la,|= (\/E/Tc)f‘ a*(0)dr, r=1,2 (2.4)

cos¢ can be expressed in terms of g,, a, as

ITC a (T)GZ (T) dr

cosg = — (2.5)
J‘(}‘af(f)drj?a;(r)dr

If it is assumed that the host structure is mass-like (e.g. a rigid machine on soft isolators),
then the variation of attenuation with frequency is typically as shown in Figure 2.2 and the

attenuation at the tuned condition is [3]
A=ufn (2.6)
where g =m,/M is the ratio of effective absorber mass to host structure mass. Figure 2.2 shows

how a mistuned TVA can increase the vibration of its host structure as a result of the additional

natural frequency it introduces into the system.

A smart or adaptive tuned vibration absorber (ATVA) having adjustable stiffness is capable

of tracking changes in for f, and adjusting its stiffness in real time so as to maintain the tuned
condition (see Figure 2.3). The error signal ¢ whose magnitude is to be minimised is cos¢g. In

order to take into account the variation of cos¢ with time, equation (2.5) is modified thus:
Jj—?‘ a (f)az (7) dr
t ! ?
J':-rc al(7)dr -‘:—2 aX{r)dr

where T, is a fixed interval covering several periods of the lowest excitation frequency.

t>T Q.7

<

e(t)= cos ¢(t) =

2.2 Shape Change for Variable Stiffness
The aim of this section is to consider some designs for ATV As using the shape control concept and

to discuss how this could be realised.

2.2.1 Shallow pinned arch in lateral vibration
Consider the shallow arch of homogeneous material with boundary conditions as shown in Figure
2.4(a) where K is the stiffness of the longitudinal end restraints. The system is shown unstressed
in Figure 2.4(a) and the beam profile is given by

w, = Hsin(mx/L) (2.8)



In Figure 2.4(b) the beam is preloaded with an axial load P, (£, >0 for compression). Since the
beam is pivoted at its ends, it is reasonably assumed that the entire deformation is due to bending
i.e. there is negligible strain along the beam neutral surface. The deformed profile is then given by
[12]:

w, =H, sin(m/L) (2.9)
where
H, =H/(1-P,/Py) (2.10)
and
P, =a’EI/I? (2.11)

is the Euler critical load. Eqgs. (2.9), (2.10) and the subsequent analysis assumes the arch is shallow
ie.

(w1, ), F <<1 2.12)

where ( )’ =d( )/dx. For small vibrations v about the preloaded configuration w = Wp (x) (Figure

2.4(c)), the neutral surface of the beam is strained by an amount depending on the stiffness K; of
the longitudinal end restraints. In Appendix 1 it is shown that, for vibrations symmeirical about the
mid-section, the equation of motion is given by:

_[0 " wp v dx
{l/(zKB )+ ]‘/KS

where E, I, A, y are the Young modulus, second moment of area of cross-section about neutral

ER" +V'Py ~w) > }+yi5 =0 (2.13)

axis, cross-sectional area, and mass per unit length respectively of the curved beam and X, = E4/L
is the axial stiffness of the straightened beam. Eq. (2.13) neglects inertia effects in the longitudinal
direction. This equation is a generalisation of the case considered in [13] of a pinned-pinned
shallow arch with full end longitudinal restraint and no preload. In that work it was shown that the
longitudinal inertia was negligible by an order of magnitude consideration. Eq. (2.13) also applies
for vibration that is not symmetric about the mid-section, provided that K =oo. If vibration in the
first symmetric mode is considered, the mode shape is given approximately by

v = Csin{mx/1)sinw,t (2.14)
Substituting eqgs. (2.14) and (2.9) in eq. (2.13) yields the fundamental frequency of the first

symmetric mode of vibration:

2
H
mf:a)f{l—}fﬁ’_+%[ %J /{1+2KB/KS}:| (2.15)
EL F




where @, rad/s is the fundamental frequency of lateral vibrations of the straightened beam:
o, =(z/LY J(EIf¥) (2.16)
and r is the radius of gyration of cross-section about the neutral axis. All examples in this section

refer to a rectangular section of thickness 24 for which r = h/ V3.

For H, =0, eq.(2.15) reduces to

ofl, = @ll-F/Pu] 2.17)

which is the expression for the fundamental frequency of a straight beam under a compressive load

P, , given in reference [14], for which @, decreases with compression (0 < £, < P,; ) and increases
with tension ( £y <0).

For F, =0, H, = H and eq. (2.15) reduces to:

=cof[l+l[£) /{1+2KB/KS}] (2.18)
Fo=0 2\ r

It is noted from eq. (2.18) that, if K =0 (no end longitudinal restraint):

2
o

2

W, ~ @’ (2.19)

By=0, Kg=0 s

i.e. the dependency of @’ on curvature disappears. If K; =o (full end longitudinal restraint), eq.

(2.18) reduces to

2

2
) = a)f{l+}~(—li] } (2.20)
By=0,Kg—eo 21y

1

which agrees with the expression derived in [13] for the first symmetrical mode of a pinned-pinned
shallow arch with full end restraint and no preload. Figure 2.5 shows the percentage increase in
with curvature under such conditions for a rectangular section beam of thickness 24. In Figure 2.5,
the theoretical result given by eq. (2.20) is compared with the result obtained by Finite Element
(FE) analysis of the arch using shell elements (ANSYS® with SHELL 93 elements [15]). For the
FE analysis, the Young modulus and density of the material are 70GPa and 2700kg/m? respectively,
2h=0.75x10"m, thé width (normal to plane of paper) is 15mm, and L =0.15m. It is seen that

excellent agreement exists up to at least H/kh=3.5. Since w, =w, = Hsinmx/L, the integral term

in eq. (2.13) vanishes for the first anti-symmetric mode, as noted in [13]. Hence, this mode’s

natural frequency is unaffected by curvature, remaining equal to 4w, rad/s. From eq. (2.20), the



first symmetric mode is then seen to overtake the first anti-symmetric mode when # / r=+30 ie.

H/h = /10 ~3.16 for a rectangular section [13].
While the variation of frequency with curvature in eq. (2.20) has been shown to be
considerable, it has little practical use for an adaptive tuned vibration absorber since it applies only

for P, =0 and it would be impossible to adjust the curvature H of the pinned-pinned beam in real

time without loading it axially. The effect of the preload will henceforth be considered.
Substituting for 1- £,/P;, from eq. (2.10) into eq. (2.15) gives the equation governing the

tuned frequency of a potential TVA consisting of a preloaded pinned shallow arch:

2 _ 2 i l HPo 2
o, _QS[HPO +2[ - J/{1+2KB/KS}} (2.21)

where H, , H are the crown heights with and without preloads respectively. Eq. (2.21) gives two

methods for varying @, in the ATVA: (a) for fixed H, vary H, ; (b) for fixed H,, vary H. In
either of these cases it is preferable to have full longitudinal end restraint in vibration (K =) so

that the relevant equation to consider is:

2
H
0? = o’ [éf- + %{TPJ } (2.22)

It is assumed that the vibration of the TVA is symmetrical about the mid-section of the arch.
However, in practice, due to inherent slight asymmetry in conditions, an anti-symmetric mode of
vibration will also be excited, becoming significant when the frequency given by eq. (2.22) catches
up with the frequency @, rad/s of the first anti-symmetric mode of the pinned-pinned beam. In this
case the TVA will not reduce to the simple model of Figure 2.1 and will cease to function
effectively. By substituting v=C sin(27zx/ L)sin @,t in eq. (2.13) with K =<, along with the
expression for the deformed profile about which vibration occurs (eq. (2.9)), it is seen that:
0} =0*(16-4P, /P, )= 02(12+4H/H, ) (2.23)

(by substituting for P,/P,, from eq. (2.10)). The condition @} < @, limits the variation of H and
H, inthe ATVA since, from egs. (2.22) and (2.23):

(&, /r} -24(H, jr)-6(H[r)<0 for o <a? (2.24)
The methods (a) and (b) for varying w, are now considered in turn.
(a) Changing deformed shape — For a given natural (undeformed) curvature (fixed H) vary H, by

moving end supports inwards or outwards (Figure 2.6(a)). In this case, a finite stiffness K in eq.



(2.21) would reduce the variability in @,. Hence, full longitudinal restraint in vibration is required.
An example of an actuator that fulfils this requirement is a motor driven screw. Figure 2.7(a) shows
the variation obtained in @, with variation in H, /A for three different values of the undeformed
condition H/h. Figure 2.7(b) shows the corresponding force requirement of the actuator. The
upper limit on H, /h for arange of H/h (see eq. (2.24)) is given by the solid line in Figure 2.7(c).
The dashed line in Figure 2.7(c) defines the undeformed condition and intersects with the solid line
at H, / h=H/h= V1o , which was the limiting condition for the no-preload case considered
earlier. Figures 2.7 show that while considerable variability in @, is possible, considerable amount

of force is required of the actuator due to the high longitudinal (span-wise) stiffness of the curved
beam. Moreover, the actuator will be a redundant mass that degrades the vibration attenuation. It is
also evident from Figure 2.7(c) that there are problems of anti-symmetric mode interference.

(b) Changing natural curvature — For a given curvature about which vibration occurs (fixed H, ),

vary the undeformed curvature (vary ). This can be achieved in practice by bonding a layer of
piezo-ceramic (Figure 2.6(b)) and applying different levels of voltage to the piezo. If there is full

longitudinal end restraint (K =cc), H, will remain approximately the same but the preload P,

will be altered, thereby adjusting the tuned frequency. It is understood that a piezo-actuated beam is
composite, however it is reasonably assumed that the above equations, developed for a
homogeneous section, give a fair description of the behaviour of the practical application. Figure

2.8(a) shows the variation obtained in @, with variation in H/h for three different values of the
deformed condition H, / h, and Figure 2.8(b) shows the corresponding variation in preload. The
lower limit on H/h over a range of H 2, /h (see eq. (2.24)) is given by the solid line in Figure
2.8(c), where the dashed line represents the undeformed condition and intersects with the solid one
at H, / h=H/h= V10 as before. It is seen from Figure 2.8(a) that this technique works very well
for slight curvatures Hp / h. Moreover, for such slight curvatures, there are no limits on the
variation of H/%, as far as anti-symmetric mode interference is concerned, since the lower limit on
H/h is negative in Figure 2.8(c). Unlike the technique in the previous method (a), the preload P,

is provided by the support reaction i.e. the actuation has been uncoupled from the high longitudinal
(span-wise) stiffness of the beam. Moreover, the actuation would be incorporated into the beam

making the design simple, cheap and efficient.

2.2.2 Anticlastic curvature control



Another design considered was a cantilever beam vibration neutraliser whose tuned frequency was
to be controlled by varying the curvature of its cross-section, thereby varying its flexural rigidity
(see Figure 2.9). With reference to Figure 2.9(b), which shows the cross-section of a composite
cantilever beam, assumii]g that the cross-section geometry does not vary significantly due to the
vibration, the fractional increase in tuned frequency from the flat cross-section condition (subtended
angle @ =0) is estimated as

1 —fr|a=o _ I -1 (2.25)
.fr|a=0 I|a=0

where [ is the equivalent second moment of area of the composite section about the neutral axis

G*G* [12):

I=(Tugn), + U ), (2.26)

(oo ), = (5% /8YUF, + UF, + U™ F, + U (1- D) F, | (2.27a)

(Igwgr), = 55° /811/35; +VF, +V'F, +V(1+ DY F4] (2.27b)

C=E,/E, D=(1-C)/(1+C) (2.28a,b)

F, = (/2X#/S o + sina - (8/a)sin® (/2)] (2.292)

Fy = (/2)n/S)o +sine — (16/3X1/@)sin? (/2)]  F, = -(4/9Xn/S /e )sin*(2/2) (2.29b,c)

F, :(128/9)(h/s)(1/a)[-3;(-‘2j —%(%J +1]E(%]-—D]_ sin?(a/2) (2.29d)
U=0Q2/alS/h)-1, V=(2/a)S/h)+1 (2.29.f)
1, = Sla;’lha k@ +C)+6(1- DY +6C(1+ DY (2.30)

(Tso )y» (Igege), are second moments of area of the individual layer cross-sections about the

neutral axis G*G* and the derivation of their expressions in egs. (2.27a,b) is given in Appendix 2.

Eq. (2.30), can be derived using elementary theory e.g. [12].
Three methods of changing the cross-section curvature that were considered are:

(a)  Temperature change — as in a bimetallic strip. While considerable changes of curvature can
be achieved in this way, the response time would be too long for many applications.

(b) Using the stretch-bend effect of cross-ply laminates [16] - with reference to Figure 2.10, if
the cross-section is a cross-ply laminate consisting of two orthotropic layers of the same

composite material that are oriented such that their fibres are at 90° to each other, then a



tensile force N, per unit length along an edge will produce curvature X, in a plane normal

to the edge according to the equations:

il Sl oTE) By sl 2l
Ny Alz Azz soy 0 Bzz Ky My 0 Bzz gﬂy D12 Dzz Ky
(2.31a,b)

where the axes x and y are aligned with the axes of symmetry of material properties, &, ,

&,, arc the longitudinal strains in the mid-surface and X,, K, the curvatures and the
matrix terms are defined in reference [16]. It is shown in [16] that the coupling coefficients
between stretching and bending are maximum for given material properties when the two
layers are of equal thickness 4.

(c) Using piezoactuation.

Consider, as an example, approach (b) applied to a composite section cantilever (Figure 2.9)

with section 2 mm x 50 mm, length 2L = 0.24 m, density p = 1600 kg/m’ and orthotropic material
properties E,, E, =130,10 GPa (Young Moduli), v, =0.3 (Poisson ratio [16]). Figure 2.11
shows the percentage increase in tuned frequency from the flat section condition, computed using
eq. (2.25). The solid line assumes S to be invariant, while the dashed line takes into account the
deformation of S. The main assumption with eq. (2.25) is that the cross-section geometry is taken
to be invariant during vibration. This assumption was tested using FE analysis with shell elements
(ANSYS® with SHELL 99 layered composite shell elements [15]), in which the beam mid-section
was constrained only at its point of attachment A to the structure (see Figure 2.9(a)) (zero
displacements and rotations at A). The analytical estimates of 99.4, 193.3 Hz compare favourably
with the FE estimates 99.5, 183.5 Hz. Figure 2.11 shows that significant changes in tuned
frequency are possible, provided that the actuator can provide the necessary changes to the
subtended angle ¢ . Figure 2.12 shows the tension force requirement, computed by eq. (2.31) and
verified at two points by FE. The slope of the graph in Figure 2.12 is seen to be enbrmous,
indicating that this is not a practical way of varying the cross-section. It is also seen in the
following section that piezoactuation cannot yield the curvature changes required for this
application.

The main drawback with the design in Figure 2.9 is that the curvature changes required are
very high since significant variations in the subtended angle o are required over a short length S
(the curvature K =¢/S), making the actuator force or moment requirement beyond practical
limits. Indeed, the only way of achieving such curvatures would be by using temperature effects

((a) above).

10



Hence, for the above reasons the concept of anticlastic curvature control for variable

stiffness in Figure 2.9 was not pursued any further.

2.2.3 Effective TVA designs

In previous sections it was shown that, while considerable variation in tuning frequency can be
achieved by actuating a shape change, this will be limited by the maximum force that can be
provided by the actuator. A feasibie design for a TVA is one in which the device offers low
resistance to the required shape change actuation. Of course, this should not restrict the device to
low values of TVA effective stiffness (i.e. the stiffness of the equivalent model in Figure 2.1).
Hence, the best designs are those in which the actuator force is uncoupled as much as possible from
the effective stiffness of the TVA. For example, the device in Figure 2.6(b) is effective since,
although the effective stiffness of the TVA can be considerably high, this stiffness is controlled by
merely altering the natural (undeformed) shape, which is equivalent to the piezo-actuator acting
against the relatively low flexural stiffness of a free-free beam. Two other designs that are similarly
effective are shown in Figureé 2.13(a,b). In Figure 2.13(a) the effective stiffness of the device is
controlled by adjusting the distance between the cantilevers and the (hinged) linkage stiffness
element offers no resistance to this adjustment. In Figure 2.13(b) the effective stiffness of the
device is controlled by changing the curvature of the beams. While the controlled stiffness can be
quite high, the curvature of each beam is relatively easy to adjust by flexure since it is pivoted at the
ends and one end is free to move. It should be noted that in eq. (2.19) it was shown that the natural
frequency of lateral vibrations of a curved beam would be insensitive to curvature if there are no
longitudinal end restraints. However, its static stiffness in the longitudinal (“span-wise™) direction
does alter with curvature, and the addition of significant longitudinal inertia (in the form of the
absorber mass in Figure 2.13(b)) would clearly make the modal parameters of the resulting system

sensitive to curvature.

2.2.4 Methods of changing curvature

This section discusses the use of composites and piezoactuators for curvature change.

2.2.4.1 Composites

One way of implementing the stretch-bend effect in composites is to use hydraulic pressure to
generate the required tension force along the edge. Figure 2.14 shows an initially straight clamped-
free beam in which the upper and lower surfaces are orthotropic laminae of the same composite
material and are oriented such that their fibres are at 90° to each other. The two laminae are
separated by a fluid filled cavity. Fibre reinforcements joining the upper and lower surfaces prevent

them from bulging. Figure 2.14 shows the FE model of the deformation resulting from the
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application of a 1 bar pressure. For the dimensions shown, and a Poisson ratio v;, = 0.3, the tip
deflections are 0.13mm, 0.145mm, 0.274mm respectively for major and minor Young Moduli
(E,,E,) of {130 GPa,10 GPa), (10 GPa,5GPa), {100 GPa,5 GPa).

The beam in Figure 2.14 is somewhat analogous to the stem of a plant [17]. As in the
present case, the turgor pressure was uniform throughout the stem but the bending of the stem was
due to the variation of cell wall thickness along the cross-section radius resulting in differential cell
wall expansion.
2.2.4.2 Piezo-actuation
A piezo-actuator bends a beam to which it is bonded by applying a moment. The piezo-patch(es)
can be placed on both parallel surfaces of the beam with opposing polarities or one surface only.
With one-sided piezo-actuation there is a tensile force on the beam mid-surface as well. Hence, it is
worthwhile investigating whether the use of a composite beam with a piezo-actuator on one surface
would have any advantage with respect to curvature generation.

If £, is the longitudinal expansion coefficient (“free strain”) of the actuator under a voltage

g, =dyV/t, (2.32)
where d;, is the piezo-electric constant [18]. With reference to Figure 2.15, following an analysis
broadly similar to that in [18], it can be shown that the piezo will cause the initially straight beam to

bend to a radius R (measured from the beam mid-surface), with the ratio » of non-dimenstonal
curvature to actuator free strain ratio being given by:
£p
_ —6B(1+6C+9C )y —6B(1+ CY1+3C)y T + 6B (1+ ClT +6B>(1+3CHT (2.33)
[(1+3C - BT[l+14C + C? )* + 4B( + C)*y + 6B(i + 3C) 'y + 4B(1+ 7C)y + B*T?]

where
B=E,JE,,C=E,JE ,T=t,[h,w=bh/(b,t,) (2.34a-d)
and b,, b, are the beam and actuator widths normal to plane of paper. The formula applies for a

composite beam with two layers of equal thickness 4. This was done to simplify the analysis.
Moreover, it was thought that the use of equal layer thickness might maximise the stretch-bend
effect induced by the piezo, as in a cross-ply laminate with two equal thickness layers under

tension, although it is understood that the present case is different due to the addition of the extra

layer due to the piezo. Figure 2.16 shows the variation of }r; with 7/2 for b, =b, and various C
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for PZT material with E, =59.5GPa and d,, =212x10"*V/m [19]. From Figure 2.16 it appears

that there is some advantage in using a composite beam with the piezo-actuator. The curves in

Figure 2.16 show that there is normally optimum value of 7, 7, , which minimises the electric field

opt 3
requirement for a given curvature in a beam of given geometry. Hence, there is the possibility of
choosing the materials of a composite beam to reduce this value of 7, . Substituting r = r(T ot ),
i, = Tapfh and 1/R =a/S inegs. (2.32) and (2.33) and eliminating & , gives the minimum voltage
required to generate a subtended angle of « by piezo actuation in a beam of given thickness 24
and length S:
- _ Ty Ka
mAlT ) d,,S

opt

(2.35)

Figure 2.17 show V,, vs a characteristics for S=0.05m and 24 =0.5x10"m and various

material properties. It is again evident that high voltages are necessary to actuate significant
changes to the subtended angle a over a short length S (very high curvature requirement), making
piezo-actuation not feasible for anticlastic curvature control (section 2.2.2, Figure 2.9). However,
piezo-actuation is extremely useful for those designs of ATVA where the curvature variation
requirement is low to moderately high, as in the proposed designs of Figure 2.6(b) and Figure
2.13(b).

2.3 Conclusions

The basic theory of the adaptive tuned vibration absorber (ATVA) has been presented, together
with a study of the feasibility of the shape change concept for use in a variable stiffness ATVA.
The latter study consisted of an analysis of the dynamics of the lateral vibrations of a preloaded
pinned shallow arch beam, the dynamics of a cantilever beam with anticlastic curvature control for
variable stiffness, and a discussion on the use of composites and piezo-actuators to achieve shape
change. It is concluded that considerable variation in the tuned frequency can be achieved by
actuating a shape change, provided that this is within the limits of the actuator. A feasible design
for such an ATVA is one in which the device offers low resistance to the required shape change
actuation while not being restricted to low values of the effective stiffness of the vibration absorber.
Hence, the best designs are those in which the actuator force is uncoupled as much as possible from
the effective stiffness of the absorber. Three such designs have been identified: (i) A pinned-pinned
arch beam with fixed profile of slight curvature and variable preload through an adjustable natural
curvature; (11) A vibration absorber with a variable geometry linkage as stiffness element; (iii) A

vibration absorber with a stiffness element formed from curved beams of adjustable curvature in

13



parallel vibrating longitudinally, The latter two designs are considered in greater detail in the

subsequent chapters.
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Figure 2.10: Two-layer cross-ply laminate
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3 ATVA WITH LINKAGE STIFFNESS ELEMENT

This chapter discusses the use of a variable geometry linkage spring as the variable stiffness
element in an adaptive tuned vibration absorber (ATVA). The theory is first presented and is

subsequently validated by experiments.

3.1 Theory
Consider the hinged arch in Figure 3.1(a) where the rigid links AB, BC are pivoted at A, B and C
and the cantilevers are of flexural stiffness £. The non-linear expression relating the applied static

force F to y (Figure 3.1(b)) was derived in reference [20]:

1
2072
)k 1_[2_] 4
2kL L L

From this expression, the non-dimensional linear stiffness for small deflections Ay = y— y, about

(3.1)

=

the stable equilibrium position in Figure 3.1(a) can be derived:
FlkL) 1
&/l (/L)

Hence, variable stiffness can be achieved by varying the distance 25 between the cantilevers.

K=~ (3.2)

Figure 3.2(a) shows a schematic diagram of a self-tuning vibration absorber that uses this concept,
its tuned frequency f, being proportional to the square root of the stiffness given by equation (3.2).
The actuating mechanism in Figure 3.2(a) is a redundant mass that degrades the vibration
attenuation (eq.(2.6)). A better configuration that uses an identical spring element is shown in
Figure 3.2(b) where the actuator is now part of the effective mass of the device. The tuning
characteristic of either configuration in Figure 3.2 is shown in Figure 3.3, giving the percentage

increase in f, from a nominal configuration b /L=0.8 (i.e. 6,,,, =37° in Figure 3.2). The

change in f, per unit actuator movement is much less than that of the device in Figure 1.1 [4, 10].
However, whereas in that design the actuator acts against the flexural stiffness of each beam, the
designs in Figure 3.2 require practically no actuator force to achieve shape change. Hence, a
greater overall variation in f, is possible.

The effectiveness of both devices in Figures 3.2 is limited to frequencies for which inertia
effects of the components forming the linkage are negligible. For low values of 8, either device is
prone to “snap through™ to its lower stable equilibrium position at high amplitudes of vibration [20].
Moreover, for low values of @,, non-linearity is expected to be more pronounced, as shown in
Figure 3.4, which compares the non-linear expression in eq. (3.1) with the linear (tangential)
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relationship of eq. (3.2) for three different values of 8,. It is also seen from Figure 3.4 that, for

deflections from the stable equilibrium position of Figure 3.1(a), the spring hardens in tension

( F > 0) and softens in compression ( F < 0).

3.2 Experimental Testing

Figure 3.5 shows a demonstrator that was built in order to verify the tuning characteristic of Figure
3.3. The demonstrator is of the configuration shown in Figure 3.2() and 5, /L = 0.8. The hinges
were formed using miniature ball bearings (SKF 618/4). The distance between the cantilevers was
manually adjusted by turning a screw. For each setting, the tuned frequency f, and the damping
loss factor 77 were measured by applying random excitation at the base of the device and measuring
the transmissibility frequency response relating the acceleration at the base, g, (t), to that of the
absorber mass a,(t). Assuming a linear relationship between these two signals and a single degree

of freedom (SDOF) model for the effective part of the demonstrator:

=ﬂ_ 1+jn (3.3)

4 1-(F/f) +in

where 7 is the damping loss factor of the stiffness element, fis the frequency and 4, and 4, are

the complex amplitudes of a,(f) and a,(f) for harmonic vibration i.e. when a,(f)=Re{4, e },
r=1,2. |T} is maximum at f = f, and f, and 7 were accurately located by considering that at
this point, Re{7'}=1 and Im{T}=-1/7.

Figures 3.6(a, b) show the magnitude and phase of the transmissibility at low amplitude for
the two extreme settings Ab/L =0.1 and Ab/L =-0.075 for which the tuned frequencies are 70 Hz
and 150 Hz respectively. It is seen that linear SDOF theory holds and that cos¢~0 at /= f,, in

accordance with eq. (3.3). Figures 3.7(a,b) show that, at 10 times the amplitude, the linear theory
still holds in the region of the tuned frequency and this frequency changes only slightly. In the case
of the Ab/L = 0.1, harmonics appear, however these will have no effect on the operation of the an
ATVA that uses such a spring. The damping estimate fluctuated considerably from one setting to
the other (Figure 3.8). This is attributed to various factors relating to the construction and requires

further investigation.

Figure 3.9 compares the predicted and measured tuning characteristics for the nominal

configuration b, _ /L =0.8, where the correlation between simulation and measurement is seen to

remain reasonably good at high amplitude. The maximum variation in f, is 70% for a total

actuator movement of 1.6cm. The adjustment can be performed automatically in either

22



configuration in Figure 3.2 using a servomotor driving as screw, as was performed in [10] for the

beam-like ATVA in Figure 1.1.

3.3 Conclusions

This chapter presented a novel design for an ATV A that uses a variable geometry linkage spring as

the stiffness element. The advantages of this design are:

- Minimal actuating force is required to achieve shape change (70% for 1.6cm actuator
movement);

- A wide tuning range is possible.

The disadvantages are:

- The design assumes no inertia effects in the spring. In reality these will limit the maximum
frequency to which it can be used;

- The spring is fairly complex in construction, particularly the hinges.

Figures
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4 ATVA WITH CURVED BEAMS AS STIFFNESS ELEMENT

In this chapter an ATVA with parallel identical beams of adjustable curvature vibrating
longitudinally is proposed (see Figure 4.1). The advantage of this design is that, while the effective
stiffness of the ATVA (in the direction of vibration) can be considerable, the curvature of each
beam is relatively easy to adjust by flexure since it is pivoted at the ends and one end is free to
move. One way of changing the curvature of the beams of such an ATVA is to bond a layer of
piezoelectric ceramic to each beam and adjusting the level of dc voltage applied to these actuators.
The proposed use of the beams in Figure 4.1 is totally different from that proposed in reference
[21], despite the similarly looking set-up. In that work, the beams were post-buckled struts used as
passive vibration isolators due to their very low stiffness in the direction of vibration and high load
carrying capacity.

This chapter starts with an elementary analysis of the design. This is followed by a more
detailed analysis, taking into account non-linearity and inertia effects in the stiffness element. A
prototype ATVA of this design is then presented and its performance is illustrated with both

simulated and experimental results.

4.1 Elementary Theory

Consider the beam in Figure 4.2(a), which is pivoted at its ends and has an initial curvature in the
form of a circular arc of length S subtending an angle o at the centre. The beam is subjected to the
compressive load P along its span and deforms as shown in Figure 4.2(b). The analysis in this
section assumes that the deformation is so small as to have negligible effect on the geometry of the
beam. Using Castigliano’s theorem [12], assuming the beam is slender and considering bending
deformation only, neglecting any deformation along the curved longitudinal axis of the beam (S

constant), the non-dimensional static stiffness in the span-wise direction is given by (Appendix 3):

~ 2a’

K= 4.1
7*{2a - 3sing + acosa} *1)
where K= M = —i—)- 4.2)
u/S @
and P, =n’EI/S? (4.3)

i.e. P, is the Euler buckling load of a straight beam of the same length S, Young’s Modulus £ and

second moment of area of cross-section / as the beam. From eq, (4.2):
K=(s/p, )X (4.4)
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where K = P/u is the stiffness. Since the crown height H is related to the curvature by the formula
H/S = {1-cos(e/2)}/ e (4.5)

it can be shown graphically that:
~ 2
Kno—-ror 4.6
7 (H/S) *9

The tuned frequency £, of the TVA in Figure 4.1 is proportional to the square root of K, and so it is
approximately inversely proportional to the crown height A of the beams (Figure 4.2).
Piezo-actuated beams used in the ATV A are composite beams. However, it is assumed that
both the above and subsequent analyses still apply for this case since the deformation is mostly in
bending and an equivalent cross-section of uniform material can always be found. This is not
necessary, however, since the flexural rigidity £7 does not feature in the non-dimensional analysis.
The above analysis neglects the non-linearity in the P-u relationship for finite deformations.
Hence, if the TVA is oriented vertically, the static load of the absorber mass will influence the
linear vibration characteristics about the static equilibrium position. Additionally, regardless of the
static load, large amplitude vibrations will be non-linear, to some extent. The analysis in this
section also neglects the effect of the inertia of the beam. The influence of each of these effects on

the TVA performance is quantified separately in turn in the following sections.

4.2 Non-linearity, Effect of Static Load

The non-linear relationship between # and P, # = ﬁ(ﬁ,a), for the curved beam is derived by two
methods. Both analyses assume that the beam is slender and that S is constant.

The first method is “exact” in that it makes no assumptions regarding the degree of
curvature. It is similar to the analysis in reference [22] for large deflections of an initially straight
strut, but allows for the initial curvature. With reference to Figure 4.2(b), for each value of load P,

the deflection # is computed numerically as follows.

i Find the end slope angle of the deformed beam, 8, , by solving the equation
~ do 1
Go,,P.a P2 =0 (4.7a)
( ’ ) "- \j{az/(47r2P)+sm2(90/2) 51n2(9/2)}
il. Compute # from:
2
7(P,a)=2 = sin(a/2)- 2 f cos*{6/2) do+1  (4.7b)
\f{az/ (472 P )+ sin?(8, /2) - sin*(6/2)}
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Equations (4.7) apply for P>0 (ie. compression). For P<0 (i.e. tension), egs. (4.7) are each

modified by replacing the PY? term by (— ﬁ)’ﬂ and inverting the sign of the bracketed term under

the radical. The derivation of these equations is given in the Appendix 4. For each given angle «

within a range, eq. (4.72) was solved numerically using Muller’s algorithm [23] over a range of
loads P, enabling the evaluation of the corresponding values of # (eq. (4.7)).
The second method for the derivation of the relation u =u (?,a) is an approximate

analytical method that assumes that the arch in Figure 4.2 is initially shallow and remains so afier
deformation. Moreover, the undeformed circular profile of the arch is approximated by a sinusoidal

function

w, = Hsin(zx/L) (4.8)
Then the deformed profile is given by [12]:
w=H|[P,, /(P — P)Jsin{mx/L) (4.9)
where
P, =n* EI/[? (4.10)

If f(x) is the displacement in the x direction of a point initially at x (Figure 4.2), then

(@) = (6w,) +{&) = (5w) +(& +8£) . Neglecting (d&/dx)’:

ﬁxl{[i“ij ._[.E‘EW,_)Z} @.11)
& 2|\ e

Substituting egs. (4.8) and (4.9) in eq. (4.11) and integrating from x =0 to x =L and noting that
u=£(0)-£(L):

20y 2 >
%:%(—L-) -p/p, ) -1 4.12)

The approximate value for # for given P and o can be obtained from eq. (4.12) using the

following transformations:

P/P, =P(L/SY, H/L=(H/SXS/L), @ =(u/LXL/S) (4.13a,b,c)
where H/S is given by eq. (4.5) and, for the circular arch (Figure 4.2(a)):
L/S = (2/a)sin(e/2) (4.14)

Figure 4.3 shows the P -% curves for three values of «. Reasonable agreement between

the two methods is evident, particularly for compression (P >0). Figure 4.3 shows that the curved

beam is neither a softening spring nor a hardening spring: in fact, it softens in compression and
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hardens in tension. It is also seen from Figure 4.3 that the Castigliano stiffness X, given by egs.

(4.1), (4.2), is the slope at the origin of the P-% curvelie.

(4.15)

4.2.1 Effect of static load

This section examines the linear performance of the TVA under a static load. The effect of a

compressive static load f’; is to reduce the tuned frequency by a factor:

(4.16)

where f,, is the tuned frequency under the static load P, and /., that at no static load. For a fixed
]Fso , the reduction factor in eq. (4.16) can be computed for a range of values of &, as shown in
Figure 4.4, by evaluating the slope of the P-% curve at the operating points (170,150) where

U, = ﬁ(f’; ,a). The tuning characteristic of the TV A under a fixed static load can then be obtained:

Af;,v - f;,v - j;,V,ref (417)

f; vref .f;,v,ref

where f,, .- is the tuned frequency under 7, at some reference value of @, a,,, with f,, - being

the corresponding frequency at no static load. Eq. (4.17) can be written as

Af;,v f;,v /fr,h

-1
-fr,v,ref (f;,v,rgf /f;,h,ref X-ft,k,ref /.frh)
where the ratios f,,/f,, and f,,.. /..., are evaluated from eq. (4.16) and

Frnrg | Fon = {Rlatry )/ Klax) (4.19)

The tuning characteristic of eq. (4.18) can be compared with that for no static load:

fop] Fonrs = K@) Klary ) -1 (420)

In this study, f’; is equal to the compressive static load of the absorber mass m, (TVA

(4.18)

oriented vertically):

P =W =m,g/P, (4.21)
Now

4z’ £, = K/m, (4.22)
Combining eqgs. (4.21), (4.22) , and (4.4):
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W =gk /lax>25) (4.23)
Since K =K (), eq. (4.23) states that W is fully determined by specifying § and the reference
values a,, and f,, . . For the prototype tested in this report, $=0.083m and «,, = 38(/180),
the angle value (in radians) at zero voltage applied to the piezo-actuated beams. f,, . was
determined by trial and error calculation, knowing the measured value of f,, .. (42 Hz). With
Finrr taken as 44.5 Hz, the reduction factor at & =a,,, was 0.94 (eq. (4.16)), giving a value
Fivrs =42 Hz, as measured. The predicted effect of the static load on the prototype was then

determined, and is shown in Figure 4.5. Figure 4.5(a) shows the predicted variation of the non-

linear static compression #, with @ . Figure 4.5(b) shows that the reduction factor f,,/f,, is not

only reasonably small, but it is practically constant. Hence, it has virtually no effect on the tuning
characteristic (Figure 4.5(c)). This means that the tuning characteristic of the ATVA can be

determined from egs. (4.1) with virtually no loss in accuracy, as far as static loading is concerned.

4.2.2 Non-linear vibration
The degree of non-linearity of the vibration is next investigated. For simplicity, the host structure is

assumed mass-like, as in Figure 4.6. The non-linear equations of motion can be written as:
m,%, = P,P(#)+Cit— P, P, (4.24a)
m %, =—P, P)+ F(t) (4.24b)
where u =#S =x,—x, and C the equivalent viscous damping coefficient of the TVA stiffness

element. The harmonic disturbance F(¢)= Re{ﬁej""} can be expressed as:

F(t)=m, Refa, ,..e" | (4.25)

where a, ;,, ()= Re{gl, ﬁeeej‘”’ } is the “free acceleration” of m, (i.e. without TVA attached).
Let 7 = o, ¢, where ,, =27f,,, and { )' =d( )/dz. Dividing eqs. (4.24a) and (4.24b)
respectively by m,w,S and mw,S and noting that P, / (mza)th )= P, /(KS)= 1/K (from eq.

/ (a)th )z\gl,free 178 / (gz ) (from eq. (4.23)), equations (4.24) can be

(4.4)) and |F|/(m@?2,S)=|a, ..

written as:
2 =P@)/K+2u'-B /K (4.26a)

%= — uP@Y K + 7/ R ), pue|cos @,z (4.26b)

where ¥, =x,/S,i=12, u=m,/m , &, =0/, ,
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/g 4.27)

|g-.1,free = |gl,ﬁ-ee

& is the equivalent viscous damping factor for TVA:
¢ =Cfem,a,,) (4.28)
and P, =W for TVA oriented vertically.
For given u, {, a and W itis possible to predict the non-linear vibration response over a

From eq. (4.23), W

range of frequency @, for various levels of excitation, quantified by !_&: | free| -
is determined by specifying S, a and @, ,, the latter quantity being determined from the measured
value of @,, =27f,,. Moreover, by multiplying ¥, (i=1,2), ¥/ and %" by S, Sw,, and Sw’,
respectively, the actual magnitudes of the displacements, velocities and accelerations could be
obtained. The parameters used in this analysis are S=0.083m, « =387/180, f,, =44.5 Hz,
f., =42 Hz.

Equations (4.26) were solved for the periodic response using the harmonic balance method

[24], where five harmonics of the excitation frequency were included. Figure 4.7(a) shows the

response at the host structure (m,) for three different levels of excitation. The vertical axis shows
the displacement amplitude, defined as one half the peak-to-peak value of X, over one cycle, and

the horizontal axis shows the non-dimensional excitation frequency normalised by the tuned

frequency of the vertically oriented TVA i.e. @, = @/w,,. Figure 4.7(b) shows the corresponding

variation of {(cos¢), defined using eq. (2.5) as

T ~nen
(cosd) = | 3% dr (4.29)
1 3 -

{ [ @Y dr }E{E E2% dr}z

where f:=2n'/5,,. Hence, (cos¢) is an estimate for the cosine of the phase between the

accelerations @, and a,, taking into account the corruption of the signals due to the harmonics
arising from the non-linearity. Figures 4.7(a,b) show that non-linearities do not significantly affect
the TVA performance for free acceleration amplitudes of m, up to 2g. In fact, an anti-resonance in

the displacement response at m, still occurs approximately at the (linear) tuned frequency w ~ @,,

and {(cos¢) is approximately zero in this condition. This will not be the case for higher free
acceleration amplitudes (Figures 4.8(a,b)) due to strong harmonics. Figure 4.8(c) shows the
corresponding variation of the maximum, mean and minimum values of the compression # of the

beams over one oscillation. It is clear that the beams experience tension (# <0) as well as
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compression, and the hardening effect due to the tension appears to predominate since the effective

(“non-linear™) tuned frequency in Figure 4.8(a) is greater than the linear value @,,. However, the

conditions in Figure 4.8 are extreme and the free acceleration amplitude at m, is unlikely to exceed

2g for the parameters used. An indication of the actual magnitudes of the displacements and
accelerations predicted for this level of excitation is given in Figure 4.9, which also compares the
non-linear predictions with the linearised ones. It is seen that, at the tuned condition, the non-
linearity affects the attenuation in acceleration more than the attenuation in displacement.

Based on the analysis in this section, it is concluded that non-linear effects do not

significantly alter the performance of the prototype TV A and so need not be considered any further.

4.3 Inertia Effect of Curved Beam

An analysis of the linear vibrations of a curved beam, taking into account of its distributed inertia
was performed by the dynamic stiffness method (DSM). The static load is ignored in the analysis.
Damping is also ignored. The initial part of the analysis applies, strictly speaking, to a
homogeneous beam. However, when it is specialised to the case of the TVA beams (Figure 4.1),
which deform almost entirely by bending, it is reasonable to assume that the non-dimensional
results are valid for composite beams, as explained in the penultimate paragraph of section 4.1.
Referring to Figure 4.10, the equations of the harmonic vibration of a beam that is curved in
the form of an arc of a circle are obtained by specialising Fliigge’s equations for a cylindrical shell

[25], and can be written as:

4 r~ 2~ 2 2 g~
d -?+2a2d 2&+ a4+a2[-S—J .y v_"ﬁ+a(—S-] a_y (4.30a)
dg dg r r) dg
d*v P di
- ;+7z452(§J Vta—==0 (4.30b)
¢ 9

where W = Re{we'® }, V= Re{fej“" }, w=w/S,V=v/S, ¢=s5/S,ris the radius of gyration:

r=\1/4 (4.31)
A being the cross-sectional area, and @ is the frequency ratio:

& =wlo, (4.32)
where @, rad/s is the fundamental frequency of lateral vibrations of a straight beam of the same
length, cross-section and material:

o, = (7/S) J(El]y) (433)

¥ being the mass per unit length. Assuming plane wave solutions:
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=de¥, ¥ =Be¥ (4.34a,b)

B3]

and substituting egs. (4.34) in eqs. (4.30) and equating the determinant of the coefficient matrix of

the resulting homogeneous equation to zero, the following polynomial equation is obtained:

2 2
k® —{20!2 +7r4(§) 52}?4 +{a‘1 +2a277:4(§-) @° -—71'467)2j|f?2

(4.35)
rY Sy
+ Jz"’(—} 52l:a4 + az(—J —72'452] =0
S r
This equation gives six solutions for the non-dimensional wave number % ,
k=k,..k, (4.36)
Hence,
6 ~ 6 —
F=> 4", F=DR 4" (4.37)
o=l p=l
where
jak
%% (4.38)

a z*(r/S) &* —I?;
Noting that the cross-section rotation  =0Ww/6¢, and applying the displacement boundary

conditions, the following equation is obtained:
=1{E,,}a (4.39)

E:H

where ﬁ:[@A Y, ¥, Wy ¥, gBJT, §=[A, .- 4,]" and the element E,, of the p™
row and ¢™ column of the matrix {E pq} is given by:

E,=l E, =R, E, =-jk, E,,=¢"E,,, (p=456 g=1..6) (4.40a-)
Exact expressions relating the shear force Q, tensile force N and bending moment M to the

deformation in a cylindrical shell are given by Fliigge [25] and are specialised for the present case

of a curved beam thus:

ﬂzzz Y ', %=%"3ﬁ azfgw_ (4.41a,b)
T ¢ T g ¢

ﬁzz[ﬁ] Y o |+of ariv e I (441¢)
b ¥ 8g ag

where the bending moment A and the general force F have been non-dimensionalised thus:

M =M/(P,S), F=F/P, (4.42a,b)
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where P, =z EI / S?. Applying the force/displacement boundary conditions using egs. (4.41) and
eqs. (4.37) yields:
f,={,.}a (4.43)

i

4 EwB £ EB]T and

G, /= =ik} -a’k,) (g=1...6) (4.442)

=2

Where iw = [E wA EvA

Gy, /x* =ik, R, —a)S/rf o’ +ak>  (g=1..6) (4.44b)
Gy, [rn* =k} ~a> {g=1...6) (4.44¢)

G,, =-e* Gips) s (p=4,56, g=1...6) (4.444)

Eliminating a from egs. (4.39) and (4.43) and transforming from the local frame of reference in

Figure 4.10(a) to the global frame of reference in Figure 4.10(b) yields the dynamic stiffness matrix

D where
f=Dx (4.45)
I=[Em EyA _AZA ExB EyB EB]T, X*li,q EA v, Xs ZB ZB]T where
X, =x,/S,...etc., and
b=T1i5, KE, J'T" (4.46)
where
[—sin@, cos#f, 0 0 0 0
cosf, sind, 0 0 0 0
0 0 1 0 0 0
T= . (4.47)
0 0 0 -sinf; cosd, 0
0 0 0 cost, sind, 0
0 0 0 0 0 1

With reference to Figure 4.11, for a TVA beam with absorber mass # (per beam) attached, there are

no moments at the ends and ¥, =¥, =0 and so the dynamic stiffness matrix of the TVA per beam,

—~

D, ,isa 2x2 matrix given by:

F ~ [%
A =Dm[~"} (4.48)
FyB yB
where
~ ~ 0 0
D,, =D, + 0 — et 4.49)
where
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7ii = (attached absorber mass per beam )/(mass of one beam) = m/(}5) (4.50)

and ﬁ,ed is the reduced dynamic stiffness matrix of the TVA beam, obtained from D (eq. (4.46)) as

follows:
i. Delete the third and sixth rows and columns from D™
ii. Invert the resulting 4 x4 matrix and delete the second and fourth rows and columns.

It is also noted that for the TVA beam in Figure 4.11, 8, =—6, =a/2 in eq. (4.46). The non-

dimensional receptance matrix of the TVA per beam is then given by

,,}=D7, 4.51)
The dimensional receptances of the TV A per beam are given by:
a,,=(P:/S),, (4.52)

and the receptances of the complete TVA are given by dividing egs. (4.51) or (4.52) by the number

of beams used. Note that the receptances & ,, are functions of @, «, S/r and mi

&, =a,,(®a,8/r mn) (4.53)

rq
The above theory was validated by comparing the results obtained for the input receptance
&,, with those obtained by the Finite Element (FE) Method using shell elements (ANSYS® with

SHELL 93 elements [15]). In Figure 4.12, the edges of the circular arch parallel to the z axis are
constrained to move in the xz plane. In these calculations the attached mass #i =0. The actual
dimensions shown in Figure 4.12 and the material properties (steel, E =200GPa) were only
required for the FE calculation (cf. eq. (4.53)). Figure 4.13 shows that there is very good agreement
between the two methods.

If the last term in each of the expressions of eqs. (4.41) is dropped, Donnell’s approximate
expressions are obtained and eqs. (4.44a-c) are modified thus:

- eq. (4.44a): second term within brackets omitted

- eq. (4.44Db): last two terms omitted

- eq. (4.44c): second term omitted

Donnell’s expressions are quoted by Blevins [26] and are claimed to apply when #/R>>1 (¢, R
being the shell thickness and radius of curvature respectively) or equivalently, S/r >>a. The error
introduced by Donnell’s approximation for given S/r and increasing « is illustrated in Figure
4.14. The error results in the omission of the rigid body (0 Hz) resonance in ¢&,, and its
replacement by a spurious low frequency resonance which increases in frequency, becoming more
prominent, as « is increased. Note the large error in Figure 4.14(b) despite the fact that @ (=7 )
is still much smaller than S/r (=1438).
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The input receptance &, is virtually insensitive to the value of S/r for no attached mass

(7 =0), as seen in Figure 4.15. The attachment of mass results in &, becoming sensitive to S/r

at the higher frequencies, as shown in Figure 4.16, but the first anti-resonance, which defines the

non-dimensional tuned frequency @, (= @, /@, ) of the TVA, remains virtually unaffected by S/r
ie.

@, = (. ) (4.54)

Of course, @, is equal to the non-dimensional natural frequency of the TVA with its base (i.e. point

of attachment to structure) blocked, as shown in Figure 4.17, which compares &,, with the input

receptance E (per beam) of the TVA with its base blocked:

Xp

p=t (4.55)

xB x,=0

(see Figure 4.11). ﬁ is the reciprocal of the element in the second row, second column of ﬁm

(eq. (4.49)). If the TVA beam inertia is excluded, it is not difficult to show that:

~ 1
i =—— 4.56
BinEx K _( w)z — ( )

where X is given by eq. (4.1). Figure 4.18 compares B with EBM‘ for the prototype parameters
a,, =387/180, m =15. Figure 4.19 shows the effect of beam inertia on the tuning characteristic
of the TVA. The tuned frequency of the fictitious massless beam TVA increases without bound as
the beams straighten. The tuned frequency of the actual TVA has an upper limit of @, . Also

included in Figure 4.19 is the tuning characteristic of the TVA without any absorber mass attached
(i.e. TVA relying on beam inertia only). It is seen that the tuned frequency is virtually constant at

o,. The dotted curve in Figure 4.19 is shown expanded in Figure 4.20 for a wider range of . Itis

seen that considerable curvature is necessary to achieve some variation in the tuned frequency of

the curved beam alone.

4.4 Tests on Prototype

This section describes a prototype ATVA based on the design concept of Figure 4.1 and a series of
simulated and experimental tests of its performance. Figure 4.21 shows a picture of the prototype
ATVA. Each curved beam is a piezoactuator (THUNDER® TH -7R) consisting of a piezoceramic
layer 0.25 mm thick sandwiched between a 0.15 mm thick aluminium layer and a 0.2 mm thick

steel plate. The beams are supported on miniature ball bearings (SKF 618/4) at their ends, allowing
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freedom of rotation. The absorber mass is guided in the direction of vibration by a linear bearing
running on the central column that is fixed to the base.

The piezoactuators can take between —300V to +600V dc [27], however the experiments
described in this report were restricted to a voltage range of 280V to +480V dc. Figure 4.22
shows the estimated variation of the subtended angle o with applied dc voltage. This graph was
derived from the experimental voltage-deflection characteristic provided by the manufacturer [27],
which was obtained at 1 Hz ac from 0 to 600V peak-peak voltage. Hence, the angle-voltage
characteristic of Figure 4.22 is restricted to the range —300V to +300V dc. The derivation of the
data in Figure 4.22 is described in Appendix 5.

The fundamental frequency of lateral vibrations of each curved beam due to its own inertia

alone, with boundary conditions as in Figure 4.21 and at zero applied voltage (subtended angle

« =387/180), is quoted in [27] as 100 Hz. According to Figure 4.19, this value can be taken for

the frequency @_, defined in eq. (4.33), and marking the upper limit of operation of the ATVA.

4.4.1 Tuning characteristic and vibration control test parameters

Figure 4.23 shows the experimental set-up for the determination of the variation of the tuned

frequency £, with dc voltage applied to the actuators. For each voltage setting, random excitation
was applied and the transmissibility 7, relating the acceleration of the absorber mass a,{t) to the
acceleration a,(¢) at the TVA base, was measured. Assuming a linear relationship between these

two signals:
4, 1+j7y
4 1-(f/£) +in

where 77 is the damping loss factor of the stiffness element, fis the frequency and 4, and 4, are

(4.57)

the complex amplitudes of a,{t) and a,(¢) for harmonic vibration i.e. when ar(t)=Re{Arejm },
r=12. |T| is maximum at f = f, and f, and  were accurately located by considering that at
this point, Re{T} =1 and Im{T}=—1/7. Atlow vibration amplitudes, the lowest measured value of
f, (at —280 V) was 36 Hz and the highest 56 Hz (at +480 V), with the value of f, at 0 V being 42

Hz. The corresponding frequencies at seven times the vibration amplitude were only slightly
changed (36, 55 and 41 Hz respectively). The transmissibility at this level of excitation remained
described by eq. (4.57), as shown in Figure 4.24, where the solid line shows the measured 7" and the

dashed line shows the function described by equation (4) using the measured values of f, and 7.

The measured values of 77 ranged from 0.15 at very low amplitudes to 0.06 at high amplitudes. As
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shown in Figure 4.24, the cosine of the phase ¢ between a, and a, is approximately zero at
f = f,. This agrees with eq. (4.57) and this condition is used as the tuning criterion by the adaptive

control system discussed in the following section.

Figure 4.25 shows the percentage variation in f, with applied voltage. The prediction that

neglects the beam inertia effect was obtained by using eq. (4.20), the X - o relation of eq. (4.1) and
the a-voltage graph of Figure 4.22, It had been established in section 4.2.1 that the static load due
to absorber mass need not be considered in deriving this tuning characteristic. Figure 4.25 also
shows the predicted tuning characteristic with the beam inertia effect included. This was obtained
by computing the first resonance of the receptance E (eq.(4.55)) over a range of a. It should be
noted that in this case, the extent of the influence of the static load on the tuned frequency was not
quantified. Nonetheless, both methods show reasonably good agreement with measurement and it
is seen that the maximum measured variation in f, is almost 50%.

As shown in Figure 4.26, a hysteresis effect was observed when decreasing the voltage from
+200V to -200V and back to +200V. This resulted in a reduced tuned frequency at zero voltage (38
Hz) on the return leg of the loop. The original value of the tuned frequency was only recoverable
by exposure to a +200V voltage. Further experiments showed that exposure to voltages exceeding
+450V had the effect of increasing the tuned frequency at zero voltage to as much as 45 Hz, which
was restored to 41 Hz after exposure to a negative voltage of around -200V. The increase
(decrease) in the tuned frequency at zero voltage, f,,, as a result of exposure to positive (negative)
voltage of high magnitude is referred to in this report as “residual stiffening” (“softening™). The
negative voltage part of the measured tuning characteristic in Figure 4.25 was obtained by
measuring the transmissibility for decreasing voltages from zero. The tuned frequency at zero
voltage was then reset and the positive voltage part of the graph obtained by measuring the

transmissibility for voltages increasing from zero.

Figure 4.27 shows a linear two degree-of-freedom model of the TV A-shaker combination.
In this figure, m, is the effective absorber mass, m, is the “host structure” mass, comprising the
effective armature mass and the redundant TVA mass and K s and 77¢, are the armature suspension
stiffness and damping loss factor respectively. The excitation force F (r) is the electro-magnetic
force on the armature. This was proportional to the current signal I, (¢) supplied to the shaker,
which was verified to be proportional to the voltage signal (“excitation signal™) ¥ (t) from the
signal generator. The accelerance function relating a,(t) to F(t) was therefore proportional to the

frequency response function (FRF) relating the acceleration a,(t) to ¥, {t) or I,,(¢t). Figure 4.28
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shows the latter FRF, 4,, , for zero voltage applied to the piezo-actuators. By measuring this FRF
in addition to 7 and using the method described in the Appendix 6, it was possible to estimate the
mass ratio g =m,/m, and the armature parameters @g, = m and 77g,. The TVA-shaker
combination parameters are given in Table 4.1, where the TVA parameters f,,, 7, are the TVA

tuned frequency and loss factor for zero voltage applied to the piezo-actuators and at the higher

level of excitation referred to in Figure 4.25.

H 0.32

Jo = :o/(zﬂ') 41 Hz

U 0.06

g, /27) = (JK g /mg, )/ (27) 26 Hz
s 0.1

Table 4.1: Parameters of 2-degree-of-freedom model of Figure

4.4.2 Vibration control tests - overview
Figure 4.29 shows the ATVA set up for vibration control tests. In these tests, the system was
subjected to a harmonic excitation of time-varying frequency f and the ability of the ATVA to

maintain the tuned condition £, = f in real time was assessed. The frequency variation was given

by:
fi t<t,
=17 +[(f —ﬁ)/(tf —t,.)Kt—-t,.) 1, <t<t, (4.58)
f 121,
The excitation signal ¥, () was:
V()= 4;sin6 (4.59)
where A is constant and
20 =22 (4.60)

and, by substituting for f from eq. (4.58) into eq. (4.60) and integrating:
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fit r<t

%:eo.s[(ff W, =t M-t ¥+t 4 <i<t, (4.61)
=03 =i+l ez

The inputs to the controller were the signals a,, a, from the accelerometers. The instantaneous
error signal e(t)= cos¢ was continuously evaluated from a,, a, by integrating their normalised
product over a sliding interval of fixed length T,, according to the following formula, which is

based on eq. (2.7):

( 1,0 )
LOP 0P (<1)
e(t) =Ccos¢ =4 .
Ilz(t)_flz(r—Tc) (f>T)
{I”(I)_"I!I(r_]l) 0-5{122(1)—122(I~—Tc)}0-5 ¢

where

1,0)= [a/()a,(r)dz, i,j=1,2 (4.63)

Since the difference f - f, is non-linearly related to e(), a non-linear control law is necessary.
The voltage V' applied to the piezoactuators was updated at the sample times ¢, (n=0,1,2.....)

according to the rule:

Vo v, ~|Ple, +¢i +el )+ Dé, <V,
Vin =1 V, -|Ple, +e2 +e2)+ De,]  Vow< ¥, -[Ple, +¢2 +3)+ D2, ]< 7,

v, -|Ple, +e2 +¢l )+ De, |2,

max

(4.64)
where V, =V{t ), e, = elt,), é, =¢lt,), P and D are constants, Viax » Vi ate the maximum and

minimum voltage limitsand ¢, =0, ¥, =0.

The following sections describe simulated and experimental vibration control tests. In either
case the sample time interval was constant at A=¢,_, —#, =10~ (1 kHz sampling frequency) and
the interval 7, =0.1. All tests were conducted at a fixed amplitude of excitation roughly equal to

half the peak-to-peak of the higher level of random excitation referred to in the measurements of

Figure 4,25,
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4.4.3 Simulated vibration control tests
The purpose of these simulations was to get a feel for suitable values of the control constants P and

D. The simulation made use of the linear two degree-of-freedom model for the TVA-shaker

combination (Figure 4.27), whose equations of motion are:

(l/ﬂ)jf1 + 24w, (%, - i, )+ o ¥ Xx, - %)+ (26 55, [ ), + (a);h /lu)xl = F(e)/m, (4.652)

2, 420,00 -1 )+ @}V )x, - x,)=0 (4.65b)
where the excitation is given by

F(t)/m, = Az sin@ (4.66)

A, is a constant and @ is given by eq. (4.61). In the above equations, the structural damping in
both TVA and shaker armature suspension was accounted for by using equivalent damping factors
¢y =1,/2 and £, =1y, /2. Strictly speaking, these apply only for harmonic vibrations at circular
frequencies @ = @,,, ® = @y, respectively, but, for simplicity, they are assumed to apply over the
entire frequency range considered. The square of the circular tuned frequency as a function of
actuator voltage, ®?(V'), was obtained from the experimentally determined characteristic of Figure
4.25. The control system was implemented in MATLAB® with SIMULINK® and is illustrated in
Figures 4.30(a,b), which respectively show the overall system and the controller. In order to
enhance the performance, the signals ¢ and é were smoothened by filtering out frequencies in
excess of 20 Hz (Figure 4.30(b)). This upper limit was deemed reasonabie since the imposed rate
of change of the excitation frequency did not exceed 10 Hz/s.

The excitation frequency was varied as shown in Figure 4.31(a). The amplitude A of the
excitation F (t)/ m, was chosen to give the same amplitude of &, (r) at 38 Hz with actuator applied
voltage ¥ =0 as that measured under similar conditions. Figure 4.31(b) shows the vibration a, if
no control is applied and with zero voltage applied to the piezoactuators. The vibration reaches a
minimum as the excitation frequency sweeps through the tuned frequency at 0 V ( f,,) and cos¢ is

very nearly zero at this instant (Figure 4.31(c)). Figure 4.31(d) shows the corresponding vibration
with the control applied. It is seen that the vibration minimum of Figure 4.31(b) is maintained
approximately at all times by maintaining cos¢ as close as possible to zero (Figure 4.31(c)).
Figure 4.31(¢) shows the voltage applied to the actuators being adjusted in real time. Figure 4.31(f)

shows that the vibration of the absorber mass, a,, which minimises the vibration of the host
structure, @, , by continuously absorbing it.

The tests in Figure 4.31 indicate that P =4x 107, D=2x10"" are suitable values for the

control constants. As shown in Figure 4.32, the omission of D resulted only in a slightly increased
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settling time for the controller to tune the ATVA from its initial tuned frequency f,, =41 Hz to the
initial value of the excitation frequency £, =38 Hz. This is attributed to the significant amount of

damping in the system. On the other hand, higher values of D resulted in oscillations about the
tuned condition. It should be noted, however, that since the control is non-linear, the effect of D in

this study is different from that in a linear P-D system. Figure 4.32 also shows that the value of D

had negligible effect on the amplitude of 4, .

4.4.4 Experimental vibration control tests
The control system for the experimental set up of Figure 4.29 was implemented in MATLAB® with
SIMULINK® using the Real Time Workshop® and Real Time Windows Target® toolboxes and is
illustrated in Figure 4.33. The same controller in Figure 4.30(b) was used.

In the preliminary tests, the excitation frequency was restricted to a narrower range than
used in the simulations, in order to avoid any potential residual softening or stiffening of the
piezoactuators due to exposuré to voltage of excessive magnitude (section 4.4.1). For the first test,

the frequency was varied as in Figure 4.34(a). The response at @, without any control and the
piezos at OV is shown in Figure 4.34(b). The minimum in g, coincides with cos¢g ~ 0 (dashed line
in Figure 4.34(c)) and occurs when the excitation frequency fis close to f,,. It is seen in Figure

4.34(a) that this frequency is close to the 41 Hz estimate determined from the transmissibility

measurements (Table 4.1). Figure 4.34(d) shows the controlled vibration @,, which is maintained
at the minimum of Figure 4.34(b) by keeping cos¢ as close as possible to zero at all times (Figure
4.34(c)). Figure 4.34(e) shows the voltage applied to the piezos being adjusted in real time to
maintain the tuned condition. All experimental control tests presented used empirically obtained
optimal values P =4x1072 and D =8x107. The optimal P value agrees with the simulation. The
D value is higher but of the same order of magnitude. Moreover, oscillation about the tuned
condition was observed for high values of D, as was depicted in the simulations of Figure 4.32(a).

Figure 4.35 shows that the ATVA performance remained satisfactory when the frequency
gradient was raised to 3.5 Hz/s.

The test results in Figure 4.36 refer to the forcing frequency variation that was used in the
simulations (see Figure 4.31(a)), covering almost the entire measured tuning range. Figure 4.36
shows that the performance is satisfactory and the measurements in Figure 4.36(a-¢) compare
favourably with the simulations in Figures 4.31(b-f). However, by comparing the positions of the
zero crossings of the dashed curves in Figure 4.36(b) and Figure 4.31(c) (or the positions of the

corresponding minima in @, ), it is seen that the tuned frequency at zero voltage f,, is higher in the
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measurement than in the simulation (which used the measured tuning characteristic of Figure 4.25,

for which f,, was 41 Hz). The reason for this is that exposure to a voltage in excess of +400V in a

previous test resulted in residual stiffening of the beams. This stiffening made it somewhat harder

for the ATVA to retune itself from £, to the initial value f; of the excitation frequency (38 Hz) as

can be seen by comparing the first 5 seconds of the solid curve in Figure 4.36(b) with the
corresponding measurement in Figure 4.34(c). This effect became more pronounced when the tests
were conducted after prolonged exposure of the piezos to highly positive voltage, as was the case
for the tests illustrated in Figure 4.37. With reference to the first 5 seconds of the solid curves in
Figures 4.37(c,e) it is evident that, due to the residual stiffening, a negative voltage of magnitude

higher than normal was necessary to tune the ATVA from f,, to f;. This voltage was in fact

below the allowable minimum (-280V) and so was clipped (Figure 4.37(¢)). However, exposure to
this highly negative voltage tended to neutralise the residual stiffening, as discussed in section 4.4.1,
so that finally, at ¢ = 3, the tuned condition was achieved at a negative voltage of lower magnitude.
Despite this phenomenon, the overall performance of the ATVA in Figure 4.37 was still
satisfactory, particularly with respect to its response to the very steep frequency gradient (7 Hz/s):

the controlled vibration ¢, during the 2 s transient interval was still well below that which would
have developed had no retuning been applied. Moreover, the residual stiffening phenomenon was

only a problem when the ATVA was required to tune suddenly from f,; to the forcing frequency of

38 Hz at the start of the control test. The ATV A had no problem tuning to this frequency when it
was applied through a gradient after exposure to a highly positive voltage (Figure 4.38). In Figure
4.38, the ATVA is slightly residually softened at the start of the control test but still manages to
retune itself from £, to f, = 52 Hz fairly rapidly, taking about s to suppress the high vibration

!

that would have developed without retuning (cf. Figures 4.38(b,d)).

4.4.5 Improvements to prototype

The vibration attenuation provided by the ATVA could be improved if the damping is reduced,
resulting in a smaller vibration minimum in Figure 4.31(b). The transmissibility measurements of
section 4.4.1 revealed that the loss factor varied from 0.15 at a very low level of excitation to 0.06
at seven times that level. The damping in the experimental vibration control tests was observed to
be considerably lower than the latter estimate, as can be seen by comparing the minima of Figures
4.31(b) and 4.36(a), explaining the differing values in optimal value for derivative control constant
D for simulation and measurement. The lower damping was due to fact that, although the peak-to-

peak level of excitation was chosen to be similar for both vibration contro} tests and transmissibility
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tests, the root mean square value of the former (sine) was much higher than the latter (random).
The dependency of the damping on the level of excitation indicated that it was mostly of a Coulomb
nature, originating from the linear bearing guiding the absorber mass (Figure 4.21). As far as
practical usage is concerned, the highest recorded damping value (0.15) could be ignored since
there is no point of using the ATVA to attenuate already miniscule levels of vibration. However,
there is scope for reducing the lower damping loss factor of 0.06. Attempts were made at replacing
the linear bearing by an alternative form of location with less damping. One such alternative was a
flat slotted spring in the form of a disc that had negligible stiffness in the direction of vibration and
high stiffness in the orthogonal direction, laterally locating the absorber mass (Figure 4.39).
However, since the spring had no rotational stiffness in the plane of the vibration, the ATVA ended
up with two interfering tuned frequencies that significantly degraded the performance.

One way of reducing the damping without altering the design in Figure 4.21 is to actively
remove it by counteracting it, using the piezos to exert force proportional either to %, —x, orto x,
(Figure 4.27). The voltage supplied to the piezos will then have two components: an ac component
at the vibration frequency (counteracting the damping) and a dc component that adjusts the tuned

frequency. A similar technique was employed in [2] with respect to a beam-like ATVA.

4.5 Conclusions
This chapter described the design, development and testing of a novel adaptive tuned vibration
absorber (ATVA) having a variable stiffness element formed from parallel beams of adjustable
curvature vibrating longitudinally. The design principle was first illustrated using elementary
analysis that neglected non-linearity and the effect of the inertia of the beams. A method was then
developed to quantify the effects of the static load and non-linear vibration in any given application
using non-dimensional parameters that are easily accessible to the designer. The dynamic stiffness
method was used to analyse the effect of the inertia of curved beams and it was shown that the
upper limit to the tuned frequency is the natural frequency of lateral vibrations of each of the
straightened beams. The application of these analytical methods to the prototype ATVA with
piezo-actuated beams predicted that the elementary analysis would be sufficient to determine the
tuning characteristic, and a linear model would be adequate to predict its performance in the control
of vibration. The vibration control tests used a non-linear P-D controller which tuned the ATVA
continuously (i.e. at the sample frequency).

The predictions were validated by the experimental results. These tests additionally
revealed residual stiffening or softening when the piezo-actuators were exposed to voltages of high

magnitude. This only affected the ATVA performance adversely when it was required to tune
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suddenly to a forcing frequency close to the limits of tuning imposed by the voltage restrictions.
The tests demonstrated the efficacy of the proposed ATVA design in vibration control, particularly
with respect to its agility in tracking rapidly varying forcing frequencies. The damping in the
device was mostly due to the linear bearing used for guidance of the absorber mass. For most
practical applications, this damping is deemed sufficiently small as not to adversely affect the
vibration attenuation. However, if improved attenuation is required, it is proposed to use the piezo-

actuators to actively remove the damping.

Figures

curved beam curved beam

attach to structure

Figure 4.1: Vibration absorber with stiffness element formed from parallel curved beams

(a) undeformed

(b) deformed

“Figure 4.2: Curved beam loaded along its span
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Figure 4.7. Non-linear vibration response for different levels of excitation of mass-like host
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Figure 4.8: Non-linear vibration response of mass-like host structure for @ ;.. =4: (a) amplitude
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Figure 4.38: Experimental results for variable frequency harmonic excitation ((a) frequency
variation; (b) vibration a, without control, piezos at 0 V; (c) cosine of ¢ (d) controlled vibration a,;

(e) variation of controlled voltage applied to piezos; for control results P =4 x107%, D=2x107)
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Figure 4.39: Modified prototype with linear bearing in Figure 4.21 repiaced by flat spring
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5 CONCLUSIONS AND FUTURE RESEARCH

This report presented research into novel methods of achieving variable stiffness in an adaptive
tuned vibration absorber (ATVA) by changing shape. Following a brief outline on the basic theory
of the ATVA, a study on the feasibility of the shape change concept was presented. This study
concluded that considerable variation in the tuned frequency can be achieved by actuating a shape
change, provided that this is within the limits of the actuator. A feasible design for such an ATVA
is one in which the device offers low resistance to the required shape change actuation while not
being restricted to low values of the effective stiffness of the vibration absorber. Hence, the best
designs are those in which the actuator force is uncoupled as much as possible from the effective
stiffness of the absorber. Three such original designs were identified: (i) A pinned-pinned arch
beam with fixed profile of slight curvature and variable preload through an adjustable natural
curvature; (i) A vibration absorber with a variable geometry linkage as stiffness element; (iif) A
vibration absorber with a stiffness element formed from curved beams of adjustable curvature in
parallel vibrating longitudinaliy. The latter two designs were considered in greater detail in the
subsequent two chapters, where the performances of a demonstrator and a prototype ATVA based
on designs (ii) and (iii) respectively are analysed. Good correlation was achieved between
theoretical and experimental results and reference is made to the specific conclusions of Chapters 3
and 4. The tests on the prototype ATVA with piezo-actuated parallel curved beams demonstrated
the efficacy of this design in vibration control, particularly with respect to its agility in tracking
rapidly varying forcing frequencies. The effectiveness of both designs tested was limited to
frequencies for which inertia effects of the components forming the stiffness element were not
significant.

As regards future research, three interesting projects would be: (a) To further enhance the
performance of design (iii) above by reducing the damping either by design or actively, using the
piezo-actuators; (b) To test a prototype for design (i); (c) to use techniques inspired by biomimetics
to achieve curvature/shape change in the ATVA, as in the fluid-filled beam example of Figure 2.14.
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APPENDIX 1: Derivation of eq. (2.13)

With reference to Figure 2.4:
(@) = (@5 +a) +(@w), (@, f =@ +lw,f  (AL1ab)
¢ and v =w—w, are the dynamic displacements in the x and w directions respectively of a point

from its position on the preloaded profile (Figure 2.4(c)). From egs. (Al), neglecting (& ’)2 , it can

be shown that the dynamic strain at the mid-surface is:

(65— 85, Yox = & +(/2){w ) - lwi, F (A1.2)
where ( ), =d( )/dx. Substituting v=w-w 5 ineq. (A1.2) and assuming v’ << wj, , the dynamic
strain is approximately given by:

(53—5.9,,0 )/5x =& +wp V' (A1.3)

The equations of motion of an element of the beam of mass per unit length ¥ can be written as
N'=y, #w=-M"+(wN) (Al.4a,b)
where M is the bending moment and N is the instantaneous axial load (tensile positive). By

substituting the expression for M [12}:

M=El(lw—w,) (AL5)
eq. (A1.4b) becomes

¥ = ~El(w-w,)" +(wN) (AL6)

By substituting w=v+w, and N = N, - £, and noting that, for static equilibrium:

0=—El{w, -w,} -w,P, (AL7)
eq. (A1.6) becomes:
W =—El" —v'P, +kwpo +v)' Nd} (AL8)

where N, is the dynamic tensile load. Since v’ <<wj, , eq. (Al.8) reduces to
ER" +v'P, =i, N, } +55=0 (AL9)
Neglecting the longitudinal inertia effect (i.e. £ << 1), the integration of eq. (Al.4a) yields a
uniform dynamic load (independent of position), N ,,:
N'=N,;=0 = N,=N, (A1.10)

Hence, from eq. (A1.3)
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Ny /(EA)=& +w, v’ (A1.11)
Integrating eq. (A1.11), noting that, for symmetry about the mid-section, 5(0,r)=—§(L,r) and
N, = K&(0,1), eq. (Al.11) yields:
L
I wp, v dx
Ny = >
202K, )+ YK}

(Al.12)

where K, = EA/L. Substituting for N, = N,, from eq. (A1.12) into eq. (A1.9) yields the required

equation of motion, eq. (2.13).

APPENDIX 2: Derivation of eqgs. (2.27)

i mid-sarface

length .S

Figure A2.1: Composite curved section

With reference to Figure A2.1, using the theory of composites [16], the position of the neutral
surface of the composite beam is given by:

ZZ5A +CZz5A
Z5A+CZ5A

where the suffixes 1 and 2 refer to the individual layers of cross-sectional areas A4, = 25/1 ,
1

(A2.1)

4, = 84 respectively and C = E, /E, . Now
2

z=rcosf, A =rdfor (A2.2a,b)

Hence:

Zé‘A [ [’ rdBdr = aR — hf2)h 25,4 [ [’ rd0dr = a(R+h/2h  (A23ab)
and
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3281 - {, [ r*cosoaras, R [ [0 rcosodras
Substituting eqs. (A2.3) and (A2.4) in eq. (A2.1) and integrating, yields:
2 = (4/3)1/@)|(3R? + #? - 3DRA)/(2R - Dh)[sin(z/2)
where D =(1-C)/(1+C). Now
(o), = Z (z-z25.) o4
where i =1,2. Hence,

(Zgnge )1 = f_k [Z ; r(rcos@—zg. ) drdd, (Zpuge )2 = ‘l:hh Ejz r(rcos@ -z, )2 drd@

(A2.4a,b)

(A2.5)

(A2.6)

(A2.7a,b)

Substituting for z;. from eq. (A2.5) into egs. (A2.7), integrating, and substituting R = S/ yields

the expressions in egs. (2.27).

APPENDIX 3: Derivation of eq. (4.1)

If U is the strain energy due to deformation, Castigliano’s theorem states that:

oU
U=—
oP

Now

=% A2 o
U= J. Rdf and M = —PR(cosﬁ—cos——-]
a2 2FEI 2

where R is the radius of curvature and M is the bending moment. Hence,

u=%an?£d9=PR3 “j.?

cos? @ — 2cosf cos - + cos? EJ de
oP TN 2 2

-aj2
Integrating, gives

_F_ Ef
u  R*{2a-3sina+acosa}

Substituting, R =S/a, P, = x* EI/S? in above equation and using eq. (4.2), gives the expression
E

for K ineq. (4.1).
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APPENDIX 4: Derivation of egs. (4.7a,b)

With reference to Figure 4.2, if M is the bending moment, R, is the initial radius of curvature and R
is the deformed radius of curvature, then from [12]:

M =EI(/R-1/R,) (A4.1)
Since I/R=dB/ds =6":

M =EI@ -1/R,) (A4.2)
Since beam is initially in the shape of a circular arc, R, is not a function of 5. Now M =-Pw and

w' = sin @, hence, by differentiating eq.(A4.2) with respect to s:

FI8"=-Psin@ (A4.3)
From eq. (A4.3) it can be deduced that [22]:
[EI/(4P))o') = —sin?(8/2)+C (Ad.4)

where (' is an integration constant. Noting that P = P/P. and P, =7’ EI/ S*, eq. (Ad.4) is

rewritten as:
ls?/4z2 B’} = -sin*(6/2)+C (A4.5)
At s=0, 6=, and M =0, hence, from eq. (A4.2):
0, =R =afS (A4.6)
Substituting in eq. (A4.5) at s =0 yields:
C = a*/(47*B)+sin*(g, /2) (A4.7)
Hence, substituting in eq. (A4.5):
Is2/(ax?PYo') = a?/(4x*P)+sin? (8, /2)-sin*(0/2) (A4.8)

Assuming P > 0, taking the square root of both sides of eq. (A4.8) and integrating, yields

de 27 (S22
= f Pds (A4.9)

-1 Je?[an?P)+sin’(6,/2)—sin’(g/2)] S
which yields eq. (4.7a) upon integration. If both sides of eq. (A4.9) are multiplied by 1+cos8
under the integral sign and the resulting equation integrated, then the following equation results:
fﬂ 2c0s?(8/2)
J{cxz/(4x2ﬁ)+ sin®(8, /2)- sin2(9/2)}
where / is defined in Figure 4.2(b). Now
u=u/S=L/S-1/8 (A4.11)

1 1
do = aP? + zP*(i/S) (A4.10)
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Noting that Z/S is given by eq. (4.14), one obtains from eqs. (A4.11) and (A4.10) the expression
for ¥ ineq. (4.7b).
For P <0, multiply both sides of eq. (A4.8) by -1 before taking the square root and proceed

as above.

APPENDIX 5: Estimation of angle-voltage characteristic of piezo-actuators

The THUNDER® TH -7R piezo-actuator has the geometry and end conditions shown in Figure
4.2(a). The data in Figure A5.1 refer to peak-to-peak displacement produced at the crown due to a

1 Hz unbiased ac voltage [27]. For these experiments, S = 73x107 m and, at zero applied voltage,

H=H,=53x10"m.
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Figure A5.1: Experimental voltage-displacement characteristic of Thunder TH -7R [27]

Assuming, the displacement was symmetrical about the zero voltage position, the extreme values of

H are H=H,tAH, where the values of AH are half the peak-to-peak displacements. The

negative sign applies for the positive voltage peak and the positive sign for the negative voltage
peak [27]. Since § is fixed, the value of o corresponding to each such value of H could be found
by solving the equation:

{l—cos(e/2)}/a - H/S =0 (AS.1)
(from eq. (4.5)). By expanding the cosine function in eq. (A5.1) in a power series, an initial
approximation to the root of eq. (A5.1) was given by the only real root of the cubic equation:

(1/384)” +(1/8) = H/S = 0 (A5.2)
The resulting variation of & with negative and positive voltage peaks at 1 Hz was taken to be the

same as the required variation of « with negative and positive dc voltage. In the prototype shown
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in Figure 4.21, the location of the end pivots of the piezo-actuators was such that the relevant value

of S was 83 mm rather than 73 mm. Hence, the o estimates obtained above were increased by a

factor of 83/73. The final angle-voltage characteristic is shown in Figure 4.22.

APPENDIX 6: Estimation of parameters of shaker armature suspension

The method used for the determination of the natural frequency and damping of the shaker
suspension assumes that the tuned frequency and damping loss factor of the TVA stiffness element,
@, and 77, respectively have been determined from the transmissibility measurement. With
reference to Figure 4.27, using elementary analysis, the two undamped natural frequencies of the

system (shown in Figure 4.26) are given by:

Jio2, + 1+ po? } - 402,02 (A6.1a,b)

N | —

@0} = {0k, + (4 ot}

From eqs. (A6.1):

of =02 +0lf (@2 -2 Yl4o?).  p=(02+ai-al)wi-1  (A62ab)

Hence, knowing ,, the parameters @, and u can be determined. For harmonic excitation

F(t)= Re(Eej“” ), a,(t)= Re((._zlej”” ), it can be shown that

U |U
N = {R - U—}w— (A6.3)
2 Sh

where:

R=Im{ £ }/Re{ £ } (A6.4)
a,m, am,

_ el —n*)-2p0n(e? - 0?)

2
(07 -0} +o'n?

U, + po'n (A6.5a)

2u0'n® + pot(0? - 0 1-n?)

2 2\ 4,2
(a), - ) + w1

U, = -0’ + pw} + o}, —{ } (A6.5b)
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The excitation force F (t) was proportional to the current supplied to the shaker, /g, (r) Hence, if
A, is the frequency response function relating g, () to 1,,(r) (Figure 4.26):

{47 )
B Re‘A'1 l

s

(A6.6)

Hence, the shaker suspension damping 7., can be determined as a function of frequency from eq.
(A6.3) using the measurement of R (eq. A6.6) and the known estimates of wg, and U,, U, (egs.

(A6.5)). Alternatively, the value of 7, that gives best fit over the frequency range can be found.
From eq. (A6.3):

2
- U +ay1g,
u,

R (A6.7)

Figure A6.1 compares the measured R (eq. A6.6) with that estimated from eq. (A6.7) using three

different constant values of 7, . It is seen that a value of 5, = 0.1 gives the best fit.
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10 ' ' '
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Figure A6.1: The ratio R

APPENDIX 7: List of instrumentation used in experiments.

The instrumentation details are given in Tables A7.1, A7.2.
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instrument make serial number
spectrum analyser Hewlett Packard 35650 2011A02485
shaker Derriton Vibrator® Type VP4 325
power amplifier AVL Instrumentation, Model 790A01 202
voltage amplifier for PI, E-507 HVPZT Amplifier N/A
piezo-actuators
accelerometer 1 Bruel & Kjaer, type 4383 1230366
charge amplifier 1 Bruel & Kjaer, type 2635 1690255
accelerometer 2 Bruel & Kjaer, type 4383 1230368
charge amplifier 2 Bruel & Kjaer, type 2635 1690271

Table A7.1: List of instrumentation for transmissibility tests (sections 3.2, 4.4.1)

instrument make serial number
data acquisition system National Instruments PCI-MIO-16E-4 N/A
multi-function YO and NI-DAQ board
with BNC-2110 connector block

shaker Derriton Vibrator® Type VP4 325

power amplifier AVL Instrumentation, Model 790A01 202

voltage amplifier for P1, E-507 HVPZT Amplifier N/A

piezo-actuators

accelerometer 1 Brue! & Kjaer, type 4383 1230366
charge amplifier 1 Bruel & Kjaer, type 2635 1690255
accelerometer 2 Bruel & Kjaer, type 4383 1230368
charge amplifier 2 Bruel & Kjaer, type 2635 1690271

Table A7.2: List of instrumentation for vibration control tests (section 4.4.2)
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