The University of Southampton
University of Southampton Institutional Repository

Ultrasound attenuation as a quantitative measure of fracture healing

Ultrasound attenuation as a quantitative measure of fracture healing
Ultrasound attenuation as a quantitative measure of fracture healing
The monitoring of fracture healing still relies upon the judgment of callus formation and on the manual assessment of the stiffness of the fracture. A diagnostic tool capable of quantitatively measuring healing progression of a fracture would allow the fine-tuning of the treatment regime. Ultrasound attenuation measurements were adopted as a possible method of assessing the healing process in human long bones. The method involves exciting ultrasonic waves at 200 kHz in the bone and measuring the reradiation along the bone and across the fracture zone. Seven cadaveric femora were tested in vitro in intact form and after creating a transverse fracture by sawing through the cortex. The effects of five different fracture types were investigated. A partial fracture, corresponding to a 50% cut through the cortex, a closed fracture, and fractures of widths varying between 1, 2, and 4 mm were investigated. The introduction of a fracture was found to produce a dramatic effect on the amplitude of the signal. Ultrasound attenuation was found to be sensitive to the presence of a fracture, even when the fracture was well reduced. It would therefore appear feasible to adopt attenuation across a fracture as a quantitative measurement of fracture healing.
0001-4966
2477
Gheduzzi, Sabina
b03b8ba7-7c1c-4c29-84d0-98fc73cfab67
Humphrey, Victor F.
23c9bd0c-7870-428f-b0dd-5ff158d22590
Dodd, Simon P.
fed98356-0b31-454c-9025-676073ef3963
Cunningham, James L.
8f28df94-78c9-439b-9253-a09ed24a7e01
Miles, Anthony W.
ce7c3385-3306-40b7-bf47-27dcef5e7d24
Gheduzzi, Sabina
b03b8ba7-7c1c-4c29-84d0-98fc73cfab67
Humphrey, Victor F.
23c9bd0c-7870-428f-b0dd-5ff158d22590
Dodd, Simon P.
fed98356-0b31-454c-9025-676073ef3963
Cunningham, James L.
8f28df94-78c9-439b-9253-a09ed24a7e01
Miles, Anthony W.
ce7c3385-3306-40b7-bf47-27dcef5e7d24

Gheduzzi, Sabina, Humphrey, Victor F., Dodd, Simon P., Cunningham, James L. and Miles, Anthony W. (2004) Ultrasound attenuation as a quantitative measure of fracture healing. Journal of the Acoustical Society of America, 116 (4), 2477.

Record type: Article

Abstract

The monitoring of fracture healing still relies upon the judgment of callus formation and on the manual assessment of the stiffness of the fracture. A diagnostic tool capable of quantitatively measuring healing progression of a fracture would allow the fine-tuning of the treatment regime. Ultrasound attenuation measurements were adopted as a possible method of assessing the healing process in human long bones. The method involves exciting ultrasonic waves at 200 kHz in the bone and measuring the reradiation along the bone and across the fracture zone. Seven cadaveric femora were tested in vitro in intact form and after creating a transverse fracture by sawing through the cortex. The effects of five different fracture types were investigated. A partial fracture, corresponding to a 50% cut through the cortex, a closed fracture, and fractures of widths varying between 1, 2, and 4 mm were investigated. The introduction of a fracture was found to produce a dramatic effect on the amplitude of the signal. Ultrasound attenuation was found to be sensitive to the presence of a fracture, even when the fracture was well reduced. It would therefore appear feasible to adopt attenuation across a fracture as a quantitative measurement of fracture healing.

This record has no associated files available for download.

More information

Published date: October 2004

Identifiers

Local EPrints ID: 28186
URI: http://eprints.soton.ac.uk/id/eprint/28186
ISSN: 0001-4966
PURE UUID: 548d52da-cf27-473f-bb73-f2adc47d44d3
ORCID for Victor F. Humphrey: ORCID iD orcid.org/0000-0002-3580-5373

Catalogue record

Date deposited: 28 Apr 2006
Last modified: 12 Dec 2021 03:24

Export record

Contributors

Author: Sabina Gheduzzi
Author: Simon P. Dodd
Author: James L. Cunningham
Author: Anthony W. Miles

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×