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Notation

This section is intended to give a short overview over the variables used in this report. A general
definition made is that small bold Latin and Greek letters stand for vectors whereas capital bold letters

stand for matrices.

Parameters and Variables

~ by oA

54

Siw), fo(u)
In

L

JIp

m

p(t), P(t)
Po
pi(t),pu(t)
Poa, P1a

la

d

a2

El

i)

cross sectional area
plate bending stiffness
modulus of elasticity
second moment of area

damping coefficient

nonlinear restoring forces

natural frequency

nonlinear oscillation frequency
excitation force frequency

system mass

general force (per unit)

positive overpressure magnitude

time history of pressure profile I/II
magnitudes of approximate profile
blast wave positive pressure rising time
blast wave total positive pressure time
time of maximum negative overpressure

N:m
N.m=2

N-s-m™1




Special Symbols and Transformations

fe total forcing time of approximate profile 3
Iy time points at which ug, occurs s
u(t) displacement function m
a(t), v(t) = dlésr) velocity m-s~!
2 .

i(t), at) = dT’;z('—) acceleration m-s~2
o, tly differential equation initial conditions m,m-s~1
UEx extreme (minimum/maximum) solutions of u(f) m
a blast wave decaying parameter -

_ ¢ . . .
£ = = viscous damping ratio
O W = 2Wf, circular natural frequencies rad-s~1
wr = 2nf, excitation frequency rad-s—t
p = W, normalised circular natural frequency rad
n = fuly normalised natural frequency -

Special Symbols and Transformations

i = -1 Imaginary unit
@ exponential function
(Jx = %(;l differentiation with respect to x
() = %) differentiation with respect to ¢
— & 2* :
A = ( 3z T 35) Laplacian operator
a = b a is defined by b
Y Lo, values for a are restricted so that the condition
B relating them to b is fulfilled
R{ } real part
3{} imaginary part
0, r<u, . e
8t—1n) = Dirac-delta distribution
co, =g
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H{r— 1) = { O (-m<o0, Heaviside function
1, (1-t)=0.
t
(&) xg(f) = [flnglt—T)dt Convolution of two functions
0
F{f(): 0} = [ flye Fourier transform
F ey} = % [ flwe*do Inverse Fourier transform
L£{f();s} = [flt)e*dt Laplace transform
0
— YHiea
st} = 5 [ fls)evds Inverse Laplace transform
iee

Special Functions

£

elliptic integral of second kind
elliptic integral of first kind

Gauss’ hypergeometric function
generalised hypergeometric function
Gamma function

elliptic integral of third kind

signum function

Number Sets

N

yd
R
C

set of natural numbers
set of integer numbers
set of real numbers

set of complex numbers
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Introduction

The dynamic loading of structures from detonating explosions is the result of an instantaneous pressure
increase in the surrounding medium, typically either air or water, associated with an impinging shock
front acting as primary load. Immediately following are transient blast winds exciting the structure as
secondary loading after the shock front has passed.

There is significant complexity in the excitation force, which varies considerably with every deto-
nation depending on innumerable uncertainties of the explosive charge itself, the surrounding medium,
the structure and many other not less important factors, predicting the dynamic response of structures
to this type of forcing function is therefore a rather complex area of research within the field of struc-
tural dynamies. The structural response itself involves numerous aspects of nonlinear system behaviour
including large deformation, multi-modal response and in most cases a significant amount of material
nonlinearities. The latter one is generally regarded as the most difficult in terms of modelling. This
might be a decisive reason why past research in the field is mainly concerned with overall damage
assessment of the structure subjected to diverse types of blast wave excitation rather than exploring the
theoretical aspects of the structural deformation process.

In the case of experimental investigations a reasonable amount of work has been done by expos-
ing numerous real-sized and model-scaled structures to explosive charges of different type, e.g. high
explosives (TNT, Octol, etc.), liquid and gaseous fuels. A comprehensive but by no means complete
list is given in [1]. Unfortunately, the majority of these experiments have been carried out by placing
explosive charges directly upon or very close to the structure. This makes it very complicated if not
impossible to establish any relationship between the spatial shock wave profile originating from the
explosion and its deformable effects on the structure. However, considering a standardised, empirical
blast wave profile as given in KINNEY et al [2] analytical solutions of the time-displacement history
for the linear, undamped single-degree-of-freedom (SDOF) system can be obtained. The work pre-
sented here introduces a second shock wave profile based on the one in [2], which takes the very small
but finite positive overpressure rising time into account. For both empirical blast wave models analyt-
ical solutions for the special case of Jinear conservative mass-spring systems can be found. Using the
Laplace integral transform the ordinary second order differential equation of motion of the linear os-
cillator is reformulated in the complex domain. Multiplication with the transformed blast wave profile
function gives the SDOF system response in the frequency domain. A subsequent inverse transform of
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Scope of the Report

the entire product yields the solution of the problem in the original time domain.

This inverse Fourier transformation of the lincar SDOF equation of motion leads to complex ana-
lytical though explicit expressions for displacement and velocity. Despite the fact that for linear sys-
tems with any combination of the four classification terms conservative or non-conservative and au-
tonomous or non-autonomous analytical solutions exist for free and forced vibration of the system,
ranging from pure harmonic to standardised transient input loads, such as the Dirac delta, Heaviside
and various pulse functions [3], no explicit closed-form solution for values of extreme response! can
be found in the case of type-I or type-II blast excitation. This can be circumvented using efficient and
easy-to-use purely numerical routines like the NEWMARK method [4], which are readily available for
such complicated time-varying excitations. A second, and for the physical insight into the problem
more useful approach, would be the derivation of an appropriate analytical approximation method.
Such a method for linear systems, based on the principle of superposition, is presented herein.

For structural systems with geometrical and/or material nonlinearities it is almost impossible to
obtain closed-form, hence analytical expressions describing the time or frequency domain response
behaviour of the structure due to transient load input such as shock waves. As a result, this makes it
entirely impossible to derive closed-form solutions for extreme response values. Two basic methods,
which are heavily employed for linear systems, namely the principle of superposition and the Laplace
transformation, are both not feasible anymore?. Furthermore, numerical solution procedures, mainly
based on optimised Runge-Kutta algorithms [5], are less simple and require far more computational
resources than their complements in the linear world. However, early studies suggested the possibility
of describing the nonlinear system’s response due to certain types of transient excitation in terms
of extreme values of an equivalent conservative nonlinear SDOF oscillator subjected to an applied
impulse or step function. First analytical results for rather simple nonlinear configurations are limited
to very few special cases {6-—8], but reveal the potential and ease-of-use of the proposed method.

Scope of the Report

The main focus of this report is aimed at exploring and evaluating two different methods for pre-
dicting the extreme response of conservative SDOF systems to the standardised blast wave profile
in [2} Both approaches are analytical approximations and rely on the principle of energy conserva-
tion. Additionally, the first method, suitable for /inear systems only, uses the superposition theorem to
produce expressions for extreme displacement and velocity due to blast excitation without the need for
calculating the entire time history. The second method, covering both, linear and nonlinear SDOF sys-
tems, is split into two parts. Part one consists of finding robust and reliable analytical expressions for
extreme response values due to standard excitations (Dirac impulse and Heaviside step functions) as
mentioned above. Secondly, special criteria must be developed taking the applied load (blast wave) and
the oscillatory system (geometrical nonlinear SDOF) into account in order to establish an equivalent
approximate system having the scaled standard excitation functions as applied external load.

Chapter 1 presents merely an introduction into the blast excitation of simple structures and analy-
ses the general characteristics of two empirical model types of shock wave profiles. Numerous parame-

'Minimum and maximum values together are called extreme values. Primary response parameters of a structural dynamic
system are usually displacement, velocity and acceleration.
2The Laplace transformation is a /inear integral operation,
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ters of the mathematical blast profile equations are compared and their effects on time and frequency
domain content of the shock wave are examined.

Although chapter 2 investigates the response of /inear SDOF systems to both blast profiles, type-I
and type-II as derived in chapter 1, the first two sections 2.1 and 2.2 deal with general aspects of shock
excitation problems and define clear reasons for the problem approach as presented in this report.
Section 2.3 then derives results for the damped/undamped /inear SDOF oscillation in the frequency
domain using Laplace transformations. Two different solutions, a time-explicit and time-normalised
formulation, are presented. Using these results, equivalent expressions for the time domain are ob-
tained in section 2.4 by inverse Laplace transformation. Using well-established numerical solution
procedures such as the Newmark-3-method for comparison reveals significant computational perfor-
mance improvements of these uniquely derived expressions. Section 2.5 describes the derivation of the
so called shock spectra - a plot of the normalised® displacement versus structural system natural fre-
quency - for both blast type excitations with different profile parameters. Along with the conventional
method for searching for the minimum and maximum values in the displacement u(t) and velocity v(z)
time history (direct method), the first of two above mentioned new approaches is established. Using
the superposition principle simple expressions for extreme values of #(¢) and v(¢) are found. As will be
seen, by reducing the computational expenses to a fraction to those required for Newmark and similar
algorithms, the new method is applicable to a wide range of force and system parameters.

The first section of chapter 3 states the fundamental nonlinear SDOF system equation of mo-
tion. Limitations are introduced in order to establish solutions for autonomous conservative systems.
Section 3.3 derives the second key-finding of this work: the extension of a energy-based approach for
autonomous conservative SDOF systems previously presented in [7,8]. This significant addition makes
the method generally applicable to step and impulse excited systems as well as free vibration without
the limitation to zero initial conditions. Explicit, and where not possible to simplify, implicit analyt-
ical expressions for extreme values of response can be obtained. A second equally important benefit
of generalising {7, 8] lies in the derivation of integral expressions for the SDOF system’s nonlincar
oscillation periods.

Using two common nonlinear polynomial restoring force types expressing elastic stiffening spring
behaviour, complex expressions introduced by the analytical method are simplified and the approach’s
overall effectiveness and accuracy are examined in section 3.4. Together with a well-established nu-
merical method (Runge-Kutta algorithm) analytically obtained results for both the time and frequency
domain are verified. It will be shown that multiple oscillation frequencies found in the discrete Fourier
transformation of the numerically obtained time-domain data as a typical characteristic of nonlinear
SDOF systems* can be predicted by the newly established analytical solutions. In section 3.5 of chap-
ter 3 the effect of adding a viscous damping term into the system’s nonlinear equation of motion is
discussed. It is well known that most nonlinear systems change their oscillation period with changing

31f not stated otherwise, in shock spectra for linear systems the dynamic displacement is always normalised to the static
displacement.

4Multiple frequencies of oscillation also occur for linear and nonlinear multiple-degree-of-freedom (MDOF) systems.
The significance lies in the phenomena that nonlinear systems exhibit many more oscillation frequencies (in terms of sine
and cosine participation) than the system has degrees-of-freedom (DOF). Contrary, this is noz the case for linear systems,
where the number of DOFs is equal to the number of natural frequencies (eigenfrequencies). However, as will be seen in
a second memorandur, multiple frequencies appear only if the system’s response is expressed in terms of sine and cosine.
Using higher-order transcendental functions with multiple periodicity such as Jacobian elliptic functions, nonlinear systems
appear to retain only one frequency of oscillation.
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amplitude, which depends upon the systems entire energy content. Due to the nonconservative nature
of damping energy is ’leaking’ and both, amplitude and vibration frequency change in a nonlinear
fashion during the time history until the SDOF comes fully to rest.

Blast wave loading as treated in this work is a highly time varying type of excitation. Therefore,
in order to be able to adequately reduce such non-autonomous systems to time-invariant equivalent
systems, it is essential to know the behaviour of the far more complex original oscillator before any
approximation methods can be established. Section 4.1 in chapter 4 recalls the equation of motion of
the structural system under consideration. Section 4.2 disregards damping and examines the response
of conservative SDOF systems due to blast excitation load functions having selected ranges of charac-
teristic parameters. Two examples are chosen with the same polynomial-type, geometrically nonlinear
restoring forces as introduced in chapter 3. Using purely numerical analysis tools, results for both time
and frequency domain are presented.

With chapter 5 as the last chapter in this technical memorandum, a short summary and brief dis-
cussion of new and important results found in this work are given.
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CHAPTER 1

Blast Waves

1.1 Characteristic Blast Wave Profiles

The physics of an explosion process itself are highly complex involving non-equilibrium thermody-
namics and fluid mechanics and despite the efforts in experimental investigation and numerical simula-
tion some details still remaining obscure. The brief description of a typical blast wave model presented
in this chapter does not consider any of these nontrivial aspects of the actual detonation process. It is
merely a short introduction into the concept of describing nonlinear structural response well away from
the centre of explosion using a travelling shock wave. The development of such an air blast wave out
of an initial pressure pulse formed at the detonation centre is described in detail by KINNEY et al [2].
Extensive experimental work in the recent years as referred to in [1] and [9] support the statement
in [2]

... the fully developed explosive blast-wave system is always formed with about the same
general configuration no matter what is assumed for the initial positive pulse [the pressure
profile at the centre of the explosion]. That is, any initial configuration is lost and all blast
waves at reasonable distances from the center of an explosion show similar wave forms.
Thus as long as the energy release in an explosion is sufficiently rapid, its precise timing
is relatively unimportant as far as the type of blast wave it produces is concerned. Rather,
the important item is the amount of energy released.

The main objective of this chapter is therefore to briefly analyse the most commonly used blast wave
profile and to describe the effects its parameters have on the time distribution of the energy it imposes
on the impinging structure.

1.1.1 Time Domain

The empirical, quasi-exponential form of the time varying dynamic pressure well away from the centre
of combustion of a free field detonation originating from high explosives can be expressed by [2]

pi(t) = po (1 —é) e % (L.L1)
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where py(t) is the instantaneous overpressure at time ¢, po the maximum or peak overpressure ob-
served when ¢ is equal to zero! and ¢, expresses the time duration of positive overpressure as shown
in Fig. 1.1.1(a). Since there exists virtual no limit for the maximum pressure? pg, the positive pressure
phase is in general far more intense than the negative which is limited in magnritude to the atmospheric

pressure.
A more appropriate, thus more realistic version of Eq.(1.1.1), taking the finite rise time of the

dynamic overpressure into account, is shown in Fig. 1.1.1(b} and can be given by

?t, 0<r <, 1.1.2
H=<¢ =© ~ak o
pult) po(l—é)e %, t,<t< (1.1.2)

or, in a more compact form
t {—1, —gltia
P =po [ Ba—) £ +H (1) (1- ) (113
a

where #, is the positive overpressure rising time and H(z) denotes the Heaviside function. Both equa-
tions (1.1.1) and (1.1.3) can be rewritten in terms of a normalised time T = é giving

p(®)=po(1-1)e™™ (1.14)
and
Pt = po []H (’—“ — ) 4vH ( - ’—“) (1 4 —1) e‘“(“%)] (1.1.52)
la la ld la
noting that for all z; > 0
H(t(...))=H(...). (1.1.5b)

Using the substitution T, = % Eq.(1.1.5a) can be simplified even further

(%) = po {]H (t5 1) le +H(T—15) (15— 1+ 1) e-afw)] : (1.1.6)

A closer examination of both equations for the type-II shock wave profile, (1.1.3) and (1.1.6), respec-
tively, indicates that for the limiting case ¢, — 0 = 15 — 0 the py-profile changes into the type-1 wave
profile. Since the dimensionless time is defined as T > 0 the direction of approach for the limiting
function lim is from the right to left, e.g. from eo — +0,

lim [H(rb—r)%] —0

Ty~>-+0

f—1 —pitie f —al
lim |H(-2)[1-—2 O | = 1—— %
Jim [0 (1- 22 ) % = (1= L) o705

[]H (=) (T —T+1) e‘“(T‘T”)] = pp{l—1) e *".

. ¢
r,,l—lpn-le-o []H (ta B t) ‘l:j

and

lim
Tp—+0

1 The time-varying pressure p;{z) reaches its maximum value pg only if = 0 in Eq.{1.1.1). This may not necessarily be
true for measuring p;(¢) during experiments. In general, pp should merely be regarded as absolute positive magnitude of the

entire force-time-history.
2Tt does depend upon in which medium the explosion takes place (air, water, etc.). Due to its compressibility an absolute

limit might be given by the physical properties of air. However, generally speaking the maximum overpressure py is directly
proportional to the energy released by the explosion.
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1.1.2 Frequency Domain

Without loss of generality it is possible to chose an initial time point # so that all signals are equal to
zero if t < #; or T < T;, where T; = #;/t4, no matter if either written in their explicit form as function of
4, p(t) = pr{t) = pu(?), Eq.(1.1.1) and (1.1.2), or time-normalised by 14, p(T) = p;(t) = puf7), equa-
tions (1.1.4) and (1.1.6), respectively. Hence, the following relation between the Fourier and Laplace
transform can be established

S{P(t),m}; >0=/P(t)e‘i°”df = S{P(f),S*ﬂw}zfp(t)@"“dt- (1.1.7)
>
t=0 =0
Applying Eq.(1.1.7) to both (1.1.1) and (1.1.3) gives
pr(o) _ _mi - ! _ (1.1.8a)
Po i Y (1‘10)+ %) ty
and
Pu(®) _ ta + ta n
Po eith (g+imty) ei% (o+imty)
_ octa—f—td+i0)tatd ("1‘!‘ %&‘%ﬂ') ]H(ta) (1 1 Sb)
@i0% (o + 1 my)° 0, o

respectively, with H(z,) = 1 in Eq.(1.1.8b) since ¢, is always greater zero and 5(®) as the Fourier
transform of p(f). Rearranging and substitution of the circular frequency ® by (2rf) leads to the final
equations for non-normalised type-I and type-II blast profiles in the frequency domain

Bilf) _ td(l—Zﬁfﬂfd*;a) (1.1.9)
Po (2fmt; — 100
and
pulf) _ o2/, (4 PPty [l — 2 Aty — o] + ...
Po AP, (2 M — o) ‘

—[1— /™ 1 2i fuy,] (2f1ttd—ﬁoc)2) . (1.110)

Both equations (1.1.9) and (1.1.10), expressing the frequency content of their appropriate time histo-
ries, Eq.(1.1.1) and (1.1.2), respectively, are shown in Fig. 1.2.1 and 1.2.3 on page 7 and 9 for different
values of the parameters @, 7, and #;.

The Laplace (or one-sided Fourier) transformation of the time-normalised versions of p; and py,
Eq.(1.1.4) and (1.1.6), respectively, is obtained using Eq.(1.1.7) where the dimensionless time T be-
comes a dimensionless frequency 1 due to the transformation

F{p(v),2m}| . (1.1.11)

It is easy to see that the real frequency f and 1 are related by n = f 4. Therefore, both equations
(1.1.4) and (1.1.6) rewritten in the frequency domain yield

Po {0+ 2imn)
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and
pu(m) _ — @A [rb (2r)? (1 — o — 2imen) + (o + 2imn) (@270 — 2imTym — 1)]
Po 1, (210)? (o + 2im)?
Both equations are shown in Fig. 1.2.2 and 1.2.4 on pages & and 10, respectively.

(1.1.13)

It should be noted here that all frequency-domain related diagrams shown in this chapter have
either the explicit notional frequency of the excitation function f = 52 = f, = 3> or the /z-normalised
excitation frequency 1 = f - 14 as abscissa. However, since this work deals solely with transient external
force functions the reader should be clear about the fact that transient signals contain a broad range of
frequency components® and, as far as this work is concerned, their description in the frequency domain
is only of use in connection with linear structural single or multiple degrees of freedom systems having
clearly defined properties which are, unlike nonlinear oscillators, frequency, oscillation amplitude,
external force, etc., independent .

1.2 Blast Wave Parameter Comparison

In this section time history and frequency content graphs are shown resulting from the two different
types of blast wave profiles given in explicit and time normalised form in section 1.1, Eq.(1.1.1), (1.1.3)
and Eq.(1.1.4), (1.1.6), respectively. A range of values for the parameters o, 7, and #; has been selected
and numerical Fourier transforms of the excitation functions were produced, which, when compared
to analytical obtained results from the above section are in perfect agreement. As will be shown in
chapter 2, these transformation functions can be used to calculate the structural response of a linear
mass-spring-damper SDOF system in the frequency domain. Inverse Fourier transform or the method
of convolution will then give the time-domain solution.

The influence of the parameters ¢; and o upon the type-I blast wave profile is shown in Fig. 1.2.1(a)
on page 7. Whereas ¢, defines the time interval of positive overpressure, o determines the absolute
magnitude of negative pressure* and the interval until the pressure returns to the ambient level. Setting
the first derivative of Eq.(1.1.1) with respect to time equal to zero

dp_(;)zoz_poe‘ i [1+a(1—f)} (1.2.1a)

dt tq 4

and solving for ¢ =1, , i.c. the point in time where the maximum negative overpressure (or minimum

total pressure) occurs,

1
t, . =f{1+—= 1.2.1b
Pmin d( + a) ( )
makes it possible to determine the magnitude of p, as
Prin=—5l e717¢ (1.2.1¢)

and clearly is only dependent upon c. The same result is obtained by differentiating Eq.(1.1.9) with
respect to T. A comparison between graph (b) and (¢) in Fig. 1.2.1 indicates, as expected, the very good

3Depending upon the type of transient signal this range can extend up to infinity, .g. unit impulse function.
4As mentioned earlier, the maximum absolute negative pressure magnitude is limited to the negative ambient pressure
level, i.e. the total absolute pressure cannot be smaller than zero.

4 Biast induced Shock Waves in Structures | —  1SVR Technical Memorandum Nr. 836



1.2. Blast Wave Parameter Comparison.

agreement between analytical and numerical solution of the Fourier transform of Eq.(1.1.1). Figure
1.2.2(a) on page 8 shows the #;-normalised version of equation (1.1.1), i.e. Eq.(1.1.4). Replacing ¢ by
1 results in a scaling of the abscissa by different factors of #;. Therefore, all profiles with the same
values for o are now represented by a single line regardless values of #7 and as can easily be seen
from Eq.(1.1.4) the type-I shock profile is reduced to an expression with two independent parameters,
namely pg and ¢. However, in the same way the frequencies of both the analytical and numerical
Fourier transformations are now multiple of #4, given in graph (b) and (¢) of Fig. 1.2.2, the magnitudes
had to be normalised by the same parameter #; to be consistent with ;(f) from Eq.(1.1.9) as presented
in Fig. 1.2.1.

As the total energy input into the structural system due to the impinging shock wave is defined
by the absolute magnitude po and the shape of the blast profile, it appears logical that an increase in
positive overpreSSUIe duration #; as well as a decrease of o give higher overall spectral energy levels. In
fact, both methods increase only the signal’s power for the (very) low and mid-frequency levels up to
10Hz as pictured in Fig. 1.2.1(b) and (c). For a normalised frequency 1 = f - s equal to 1 the spectral
energy content is the same for all blast profiles regardless the values of the parameters #; and @, see
Fig. 1.2.2. Especially for values of f < 1.0 a doubling of #; introduces far less power than dividing o
by 2.

Explicit and normalised versions of the type-II blast profile, Eq.(1.1.3) and (1.1.6), are shown in
Fig. 1.2.3 and 1.2.4, Differences between analytical and numerical results are virtually non-existent.
In order to allow for comparisons between type-I and type-1I results, parameters ¢ and #y were in both
cases allocated with the same values. In terms of magnitude and energy distribution with frequency
there is only little or no difference for frequencies f < 200Hz if o stays constant, see Fig. 1.2.3(b)
and (c). Beyond this critical value ripples occur spaced at distances which are equal to the inverse of
the rise time, i.e. é Again, decreasing values of ot means an increase in the energy level at (very) low
frequencies up to 10Hz. The maximum negative overpressure for the type-1I profile occurs at time

1
pmin = lat1d (l‘f‘a) . (12.2)

and the magnitude of pm;, is the same as for the type-I profile given in Eq.(1.2.1c).
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Figure 1.1.1: Blast wave time history profiles: (a) Standard blast wave configuration p;(r) according to KIN-
NEY et al [2]. (b) Modified configuration py;{¢) with finite rising time.
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Figure 1.2.1: Blast wave profile type-I: Explicit Form. (a) Time history. (b) Analytical Fourier transform. {c)
Numerical Fourier transform (feng = 2's). Sampling frequency f; = 1.0kHz.
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Figure 1.2.4: Blast wave profile type-11: Normalised Form. (a) Time history. (b) Analytical Fourier transform.
(c) Numerical Fourier transform (Teng = fend = 5.0 - 10%). Sampling frequency f; = 500 Hz.
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CHAPTER 2

Response of Linear SDOF Systems to Blast Wave Excitation

2.1 Introduction

A comprehensive review of different theoretical analysis methods for predicting the response of var-
ious structures to highly transient excitations such as shock waves is given in [1]. The need to solve
special types of similar problems in the past gave rise to innovative techniques referred to as the classi-
cal methods. In general, the classical methods, such as the exact solution of the governing differential
equation, produce results to the problem in closed form which limits their availability to elementary
problems. Contrary, numerical methods, which evolved with the development of computational ca-
pability, are capable of solving problems involving structures with complex geometries, stiffness and
damping properties as well as loading patterns. According to [10] numerical methods can be grouped
into three main categories:

(1) Time domain discretisation and numerical solution of the governing equation.
(2) Energy methods for continuous systems.
(3) Spatial discretisation using matrix algebra.

The first group produces an approximate solution of the governing differential equation by means of
finite difference or numerical integration technique. The latter, a specially tuned Runge-Kutta algo-
rithm [5] is used in chapter 3 to verify newly established analytical results and in chapter 4 for solving
the SDOF system’s equation of motion where no analytical solution can be found. The limiting factor
of method 1 above is given by the fact that for the majority of problems in engineering application
the governing differential equation cannot be established. However, it is the preferred method for the
solution of simplified problems where the geometrical complex original structure can be reduced to a
low order MDOF system or, in special cases, even to a SDOF system.

Group two focuses on simple, spatially continuous systems such as beams and plates. Using the
sum of kinetic and strain energy which must be for conservative systems at all time equal to the energy
done by external forces, leads to closed-form approximation formulations such as Rayleigh-Ritz or
Galerkhin method. As will be seen in the next chapter, energy methods, due to their universal physical

"
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appeal, are the basis for finding the exact solution for highly nonlinear, autonomous SDOF systems.
The disadvantage can be seen in their limitation to conservative systems, thus making the response
prediction of damped structures impossible. However, as long as positive damping is present in the
problem, the true response magnitude for displacement, velocity and acceleration will always be well
below the theoretically predicted result. Caution has to be taken when analysing damped strongly
nonlinear systems since the oscillation frequency is dependent on the vibration amplitude.

Method three from above is based on the assumption that the entire structural system can be dis-
cretised into small elements which are only a small fraction of the size of the original structure. These
elements are only connected through points called nodes. In a structural analysis the displacement field
is defined separately for each element using, in general, polynomial type functions with unknown co-
efficients. Using energy methods similar to point 2 above the values of these coefficients and hence the
displacement fields for each single element are established leading immediately to the displacement of
the entire structure. Advanced computer programs have been developed for this numerical approach,
referred to as finite element method (FEM).

However, despite their undeniable advantages in solving complex problems compared to classical
analytical exact or approximation methods, numerical procedures do not allow for any significant
insight into the physical phenomena of structural blast wave response. Of course, parameter studies
can also be carried out using numerical procedures - and most of the time they are the only way due to
the complexity of the problem - but this leads to heavy use of computational resources because of the
sheer number of independent parameters involved in the problem. Secondly, results obtained usually
cover only a small range of possible values for each parameter and hence cannot easily be generalised.

Due to the large amount of uncertainties involved in predicting the blast response of geometrically
complicated structures, mainly caused by an uncomplete and inaccurate description of the impinging
shock wave, this makes the use of sophisticated and complicated FE models questionable, which often
require a lot of user experience, especially if used in connection with such highly transient and nonlin-
ear problems. Furthermore, they are less suitable for quick, routine calculations during various design
stages where the outline of the structure is subject to constant changes.

The question to ask must therefore be: Is it possible to establish a simple, analytical approximation
method, which predicts the blast response of common basic structures within acceptable limits and
provides physical insight, hence making it easy to qualitatively and quantitatively forecast changes in
the system’s reactions to reasonable changes in either the system or blast load parameters.

2.2 Solution Methods

This question has been addressed already in the past as given in [1], as well as in earlier publica-
tions [10]. Hand calculation methods for predicting the net load on a structure at large distances for
similar blast profiles as the one in [2] are provided by GLASSTONE et al [11]. Based on these findings
BAKER et al [12] developed a method which delivers closed-form solution of the deformed end state
of shock loaded structures, either discrete or continuous, using the energy method as described above.
A second simplification approach introduced by BiGGs [13], which transforms MDOF and continu-
ous systems into SDOF systems, can be combined with Baker’s method for geometrically complex
continuous systems where a closed-form equation of the system’s strain energy is often nonexistent.
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As with every simplified approach, there are limits on its validity and shortfalls. The main defi-
ciency of Baker’s method, which is, without question, at the same time its most strongest asset in
terms of simplicity, the transformation of the highly time-dependent process of shock response into an
equivalent static loading act. The dynamic effect is then considered by a dynamic amplification factor
which is defined as the ratio of dynamic to static response amplitude of the structural system. As will
be seen in this and the following chapters, four different key factors can be identified having significant
influence on the dynamic response of the structure:!

(i) Linear or nonlinear elastic or plastic deformation.
(ii) Natural frequency (or frequencies) of the system.
(iii) Duration 7y and magnitude pg of the pressure pulse.

(iv) Shape of the pressure pulse, i.c. rise time (time to reach the pressure maximum pp) vs. €xpo-

nential decaying time.

BAKER et al [12] proposes in his method approximate solutions by applying energy methods for
special loading conditions, namely for

(a) short-duration, and
(b) long-duration

loading processes, relatively to the natural period of the structure. In case (a) above, the structure has
only little time to undergo any significant deformation and hence to develop significant restoring force
while the load is applied. Therefore, the loading is received similar to a Dirac-8 impulse giving an
initial velocity. At points of maximum deflection this initial kinetic energy is entirely stored as strain
energy which allows one to solve the governing equation for the maximum or minimum displacement.
According to [10] this approach is generally valid for load duration to natural period ratios of less than
0.4. Given a positive pressure period #; of 20ms from chapter 1 would mean Baker’s method for short-
loading conditions is only valid for structures with less than 20 Hz natural frequency. Taking only the
positive pressure into account might lead to significant errors since a major part of the total blast wave
energy is stored in the profiles negative section. Therefore, assuming the entire time history in which
pi(t) (or py(t)) have significant values to be at least 0.5s would make the method only applicable to
systems with less than 0.8 Hz. This renders Baker’s method for short-duration processes as completely
unsuitable for the combination of systems and load cases considered in this work.

In case (b) above, a long-duration loading relative to the structure’s natural oscillation period is
referred to as quasi-static. The load applied to the structure changes so slowly that the variation up
to the time of maximum response is negligible. At the point of maximum deflection the strain energy
stored in the system is equal to the work done by all external forces. According to [9] the range for
applicable load duration to natural period ratios is greater than 4. Assuming a total time of significant
pressure values for either p; or py of 0.1s, cf. chapter 1, the structure’s natural frequency must be
greater than 40Hz which leaves the method unfeasible for a wide range of structures in the quasi-
static loading case as well.

!This listing is more complete than the one given in [10].
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Chapter 2. Response of Linear SDOF Systems to Blast Wave Excitation.

Tt should be noted that all cases defined in [10], for which Baker’s method is recommended, based
on the assumption of zero reversed blast pressure, i.e. zero negative pressure, see Fig. 1.1.1 on page 6,
which makes using the method even more questionable. Additionally, as will be seen in chapter 3, for
nonlinear systems the natural oscillation frequency depends on the extreme amplitude of vibration and
none of the ranges of feasibility as given above can be determined before applying the method and
hence Baker’s method fails completely for strongly nonlinear systems.

This makes it necessary to consider a second, more appropriate approximation method where the
structural model, including the loading, is represented by a SDOF system. Based on tables introduced
by BIGGS et al [13] the parameters and constants of this equivalent SDOF system are evaluated with re-
spect to the characteristic shape of the actual structure at the stage of deformation, which is most likely
to occur given the time-varying, spatially equally distributed pressure profile introduced in chapter 1
ensuring equality of work done between both systems. Once the MDOF structure has been transformed
into a SDOF system using factors given in [13], the individual deformation stages can have different
characteristic internal stiffness and damping mechanism ranging from purely linear elastic to geomet-
rical nonlinear including possible plasticity. The analytical, combined analytical-numerical or purely
numerical solution of the governing equation of motion for the SDOF system furnishes the method.

It is justifiable to argue that the assumed shape of deformation for the MDOF system might not
represent the true failure mode of the structure and hence the subsequent transformation produces
an ill-conditioned SDOF systems. This can be simply overcome by analysing one SDOF system for
every anticipated mode of deformation. Moreover, as will be seen in a subsequent technical memo, it
is possible to combine two modes of failure into a two-degree-of-freedom system, which can, under
certain circumstance, also be solved analytically.

The flexibility of the second approach after [13] and completeness of the phenomena it accounts
for makes it the method of choice for the work presented in this report.

2.3 Frequency Domain

The linear ordinary second order differential equation of motion for a SDOF system [14]
F(u) = (1) + 280,a(t) + lu(t) — E—?%)— =0 (23.1)
can be rewritten as algebraic equation using Laplace transform [15]
L{F ()5} =F(s) = sPu(s) —su(t =0) —a{t = 0) + ...

= 232
+ 28wy, [sz?(s) —u(t = 0)} + wluls) — Pls) =0, 232)

where u(¢) is the displacement in the time domain, #{s) the correspondent deformation in the complex
Laplace domain, k£ and m are the system’s stiffness and mass, respectively, { is the viscous damping
ratio given by '
¢
= 233

= (2.3.3)
with ¢ as the viscous damping coefficient, @, = »‘/g is the system’s natural frequency and p(¢) is the
external applied force as a function of time.? Introducing the initial conditions for a system initially at

2In this work p(?} is assumed to be of transient nature.
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rest
u(t=0)=up
a(t=0) =1y =0 (2.3.4)
simplifies Eq.(2.3.2) to
F(s) = s*uls) + 2{w,su(s) + oku(s) — *E—SJ =0. (2.3.5)

Rearranging of (2.3.5) gives the transfer function of the linear SDOF system with respect to the initial

conditions in (2.3.4) _
u(s) _ 1

M) =20 TPt Ros o) | (23.6)
For the more general case uy # 0, 7o 7 0 Eq.(2.3.2) is rewritten as
s2 als) + 280, (sa{s) — uo) + w0l u(s) — sup — tig — E’%-)- =0 (2.3.7)
which leads to ]
is) = — et e [(s) + 1 {at (5 + 2E0n) + uo}] . (2.3.8)
Using Eq.(2.3.6) this can be simplified to
i(s) = h(s) [(s) +70(s)| (2.39)
with
Gols) =m{ o (s+2L0,) + iro} (2.3.9b)

being a notional load to the system imposed by the initial conditions.

Substituting for p(s) the Laplace transform of the blast wave profiles, Eq.(1.1.9) and (1.1.10) re-
spectively, and letting (s — 1), where w == 2nf is the circular frequency in —’as—d , 1.e. the number of
oscillations in an time interval of 27w seconds, the response of the linear system due to the frequency

components of the shock excitation is obtained. For the type-I and -1I profiles this leads to
fir(@) = h{w) [poﬁf(m) + éo(w)] (2.3.10a)
and

() = H(@) [po 5 (@) + Go(®)] (2.3.10b)

where the Laplace transform of the unit impulse response function for the inhomogeneous system in
Eq.(2.3.10) is given by

M) = ! __ op+2iCme-o (2.3.100)

m [(im)z + 2w, 0l + m;’-,] m [((02 — a)?,)2 + (2{w,w) 2]

and the homogeneous part with 1y #£ 0, 7y 7 0 equates to

Go(®) = m{ 28w, up +do +i0u } . (2.3.10d)
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Chapter 2. Response of Linear SDOF Systems to Blast Wave Excitation.

In the special case of zero initial conditions, i.e. go{w) =0, and together with Eq.(1.1.8a) and
(1.1.8b), the frequency response can be expressed by the simplified equations

. t1 (—1+iwiy)
fp{mw) = 2.3.11a
ot (@) m(—io+ o) (0 — 2150, — 0.2) ( )
and
~106 @24 10 (=1 +a+iw)] — (—1+e%% —igt,) (et ios 2
(o) = L (ete CLration] -1 E e —ton) GHion) g3
malt, (a+ o) (—o? + 21w, + 0,2)
respectively.

In order to obtain the SDOF response in the frequency domain due to the blast excitation in
t4-normalised form, Eq.(1.1.4) and (1.1.6), the equation of motion (2.3.1) of the structural system
has to be rewritten as

@ + ZCCO,,EI(—Q + 02u(t) — P _ 0 (2.3.12a)
which can be simplified to
(1) + 20p,u(t) + plu(t) — 13 ‘% =0 (2.3.12b)

with p, = @, -#; as the dimensionless circular natural frequency. The transfer function is similar to
equation (2.3.10¢)

2
h(p) = t‘f (2.3.13)
m {(fm)2 +2ipnpl+ 03]
and for zero initial conditions the frequency domain response is given by
. Za—1+1
odir(p) = ~ 4 5 — ) - (2.3.14a)
m(0+ip)” (p? ~2iCpp, — p7)
and _ .
@0 2 [(a — 1+1p) Pt + (0 +ip)? (1 — % + ﬁp’tb)]

gﬁj[(p) = y (2314b)

mp?1y (p +ic))’ (p? —20Lpps — pF)
respectively. Both dimensionless frequencies are related by p = 2mn.

2.4 Time Domain

2.4.1 Analytical Solution

The response of the system in the time domain is obtained as an analytical expression by equating the
inverse Laplace transform of Eq.(2.3.9) as defined in [15] and can be written in symbolic form as

urp(t) = &7 {ugpu(s); £} (24.1)
which equates to
u(t) = po £ { Dryi(s)h(s); :} + 27! {50(3) h(s); z} (2.4.2)

because of the linear nature of both the transformation and Eq.(2.3.10). Explicit expressions for equa-
tion (2.4.2) are given in appendix A.l.
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Returning back to Eq.(2.3.1), the system’s response in the time domain can alternatively be calcu-
lated by direct integration using the convolution integral [16]

!

u(t) = / PlE— DR & + s (0) (2.4.32)
0

with 7 as integration variable. The applied pressure load is represented by p(¢) whereas () repre-
sents the impulse response function due to a unit impulse excitation in the time domain given for an
undercritically damped SDOF with initial conditions uy = 0 and g = % as

h(t) = & {h(s)sr} = mime-imnf sin(@g), ¢>0 (2.4.3b)

where @y = /1 — {2, is the damped natural frequency of the system. The term u,(f) in (2.4.3a)
expresses the solution obtained by solving the homogeneous version of Eq.(2.3.1) and equates to

up(t) = @ ~5ont [uo (cos (@g1) + G)id sin (@ 1)) + %3- sin (codt)] . (2.4.3c)

Substitution of Eq.(2.4.3b) and (2.4.3c) into Eq.(2.4.3a) gives the shock wave response of the SDOF
oscillator in the time domain with two equations depending upon the blast wave type, Eq.(1.1.9) and
(1.1.10) respectively,

!

1

w(t)=—— [ pi(t=9) & 5% sin (g ) dF + un(2), (2.4.4a)
/ ]
1 H
up(t) = vy f prr(t—1) & 5% sin (00, 7) dF + un (7). (2.4.4b)
0

Analytical evaluation of (2.4.4) leads to the same results as given in (A.1.2) and (A.1.3) since the
convolution of two inverse Laplace transforms is equal to the inverse transform of their product in the
Laplace domain [17]. The same method can be employed in finding the time domain response of the
SDOF normalised by £;. Again, results obtained are the same as those shown in appendix A.1.

Graphical representations of results for both equations (2.4.4), Eq.(A.1.2) and (A.1.3), respectively,
are given in graphs (a) and (b) of Fig. 2.4.1 and 2.4.2 on page 27 and 28. The blast wave profile
parameters are £, = 1.0ms, #; = 20ms and o = 0.9. The system’s natural frequency f, was set to 3 Hz
in graph (a) and 30Hz in graph (b). Furthermore, a viscous damping coefficient { equal to 0.01 has
been assumed. A closer examination of the transient response behaviour in both figures 2.4.1 and
2.4.2 reveals only little difference in the maximum displacement amplitude of the SDOF oscillator if
subjected to type-I or type-II blast profiles for the given excitation force and system parameters. In
general terms, due to the larger amount of energy introduced into the structure by type-II profiles, the
amplitudes of the first few half-cycles (transient response state) are slightly higher compared to the
type-I excitation. However, after a few oscillation cycles (steady-state response) both displacement
response plots are identical.
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Chapter 2. Response of Linear SDOF Systems to Blast Wave Excitation.

2.4.2 Numerical Solution

Equation (2.4.3a) can also be solved approximately by numerical integration. A fast and efficient
algorithm for this linear problem providing an unconditionally stable solution is the Newmark (-
method [4]. For two different natural frequencies of the linear system Fig. 2.4.1 shows a direct compar-
ison between analytically obtained results using Eq.(A.1.2) and numerically computed data utilising
the Newmark algorithm. Fig. 2.4.2 features exactly the same comparison for the response of the SDOF
due to type-II blast wave excitation as given in Eq.(1.1.3) and in its explicit form in (A.1.3). By choos-
ing the appropriate time step size in the non-adaptive integration algorithm, both figures casily verify
the good agreement between analytical and numerical solution methods for the transient-type shock
excitation of a linear single-degree-of-freedom system.

2.5 Shock Spectra for Blast Wave Excitation

The plot of the peak response of an undamped SDOF (mass-spring) system to a given shock load
as a function of the natural frequency of the system is known as the shock spectrum [16]. Although
a few examples of spectra for exponential pulses of infinite duration are given in [3], no analytical
explicit relationship between the blast wave profiles (1.1.1) and (1.1.3), respectively, and the maximum
deformation of the linear system zmax as a function of the natural frequency f; has been found in
literature.

As shown in appendix A.2 the maximum values of displacement (# = 0), velocity (z = 1) or ac-
celeration (n = 2) can be obtained by setting the appropriate (n -+ 1) derivative with respect to ¢ equal
to zero, solving for #g, at which uE,, g, Or fig, Occur, re-inserting fg, into the equations for u(#), #(¢)
or #(t) and solving for the extreme values. There are two major limitations connected to this proce-
dure. (i) first, the SDOF must be conservative, which can easily be achieved by setting { equal to zero,
and (ii) second, this procedure is only applicable for special cases of (relatively simple) applied load
functions.

2.5.1 Direct Solution Methods

A compilation of shock spectra for various types of time-varying excitation forces P(t) as given in [3]
suggest that it might be impossible to find the response spectra for a linear SDOF system if P(z)
exhibits alternating positive and negative values and the appropriate regions can not be modelled by
sequences of impulse, step or linear ramping functions. A comparison of Fig. 2.4.1 with Fig. 2.4.2
underlines the problem of finding analytical expressions for minimum/maximum values of the state
vector in the case of such erbitrary excitation fumctions as type-1 and type-II blast waves, Eq.(1.1.1)
and (1.1.3) respectively. Although damping is present and (i) is violated the problem still exists even
in the case of { = 0. It is not clear without ambiguity at which time 7, the extreme displacement will
occur. This does depend upon both sets of parameters, the one for the excitation function and the one
for the SDOF.,
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Taking the version of Eq.(A.1.2) from page 157 for the undamped SDOF system, i.e. { =0,

u(t) = f" — e‘“%[atdmn(a—Z)—azmnt+t§m§(td—t)+...
m, (of +15m2)

+e“é({a3—oc2+t§(o2 (o+1)}sin(@a2)+ ... (2.5.1a)

_tdco,,{az _2a+t§w,2,}cos (co,,t))]) ,

the first derivative #;{f) = d“éti with respect to time ¢

() = S 5 e % [az (ta+ ot —outy) — 1302 (ta— ot +ttg) + ...
m (02 + 12 02)
T+ e%id :d(tdm,,{az — 204+ @i} sin(w@at) + ... (2.5.1b}

+ {OB__a2+t§(0%(0c+1)}005(0),,:‘))]) =0

has to be equal to zero. One way of finding a solution is rewriting Eq.(2.5.1b) as a coupled set of two
linear algebraic equations

(1) OF (tg+ ot — outg) — 13 ) (ty — ot + 0uty) =0
(i) by sin (®,1) + b, cos (®,7) =0 (2.5.1c)
where
by =ty {0 —20+15605} and b= [ -~ +i@k(a+1)}. (2.5.1d)
It is easy to see that (i) gives
pey (14122 (2.5.1¢)
— o o2 +r50l o

which can be reinserted into (i) and eliminates ¢ completely. Hence, Eq.(2.5.1c) has apparently no
solution for the time #ax at Which #max from (2.5.1a) occurs.

A second attempt to solve Eq.(2.5.1b) in an analytical manner, now by means of approximation,
starts with reformulating equation (2.5.1b) as

u(t) = é (e'“ﬁAp(t) + ty b sin (@yt ) + 11 b cOS (m,,t)) (2.5.2a)

where
2 2\? 2 2
C=m (0( + (ta00,) ) and Ap(t) = o (tg+ ot — outy) — (140,) (ts—ot+o2g) . (2.5.2b)

The expressions [e —%5 Ap(t)] and [td b sin (wyt) 4125, cos (mnt)] in Eq.(2.5.2a) are the first deriv-
atives with respect to time of the particular integral and the complementary function, respectively.

31t should be noted that this method of setting each of the two addends of Eq.(2.5.1b) scparately equal to zero cenfines
the possible solution space for fmax. The ill-conditioned remaining equation resulting from insertion of (/) into Eq. (i) shows
that there exists no ¢ € R which fulfills the artificiafly introduced requirement of having both addends in Eq.(2.5.1b) equal
zero at the same time 1. However, by plotting #7(2) against ¢ it becomes clear that time points fmax; exist at which u7() = 0.
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Chapter 2. Response of Linear SDOF Systems to Blast Wave Excitation.

No closed form solution exists for the zeros of the function in equation (2.5.2a). For SDOF linear
natural frequencies of 1 < f, < 100Hz the point of time #n,, can usually be found within the lim-
its 0 < #max < Is. Therefore, a Taylor series expansion around the point ¢ = 0 would transform the
exponential-transcendental Eq.(2.5.2a) into a polynomial of maximum order »n < 4 to be solvable ana-
lytically.* The Euler or exponential function can be expressed as [15]

% a : M (2.5.2¢)

whereas sine and cosine functions are approximately rewritten as

(wnt)’
3!
Unfortunately, plotting the original function, Eq.(2.5.2a), against its Taylor approximations in (2.5.2¢)
and (2.5.2d) shows that the series expansion terminates far too carly to model the original equation at
the point #rax and more terms would be required in the expansion in (2.5.2c) and (2.5.2d). This in turn

makes (2.5.2a) again analytically unsolvable.

2 4
(@) | (@) (2.5.2d)

and cos(@,t)=1— 2 A

sin (@) = @, —

A third way to find the extreme values of Eq.(2.5.1a) is based on the fact that for linear systems
the oscillation frequency is a fundamental property of the system itself and stays constant as long as
the oscillator remains unaltered. However, this is only fully true for the steady-state solution of the
dynamic system, not for the preceding transient oscillation phase where the system moves with a com-
bined frequency consisting of two components, the natural frequency f, and the forcing frequency f),.
In case of harmonic or periodic applied force functions this combined frequency can be obtained in a
rather straightforward way. In the case of transient system input such as the blast profiles introduced,
this is hardly possible. Therefore, the real oscillation frequency of the non-steady-state remains un-
known. However, for a wide range of blast profile parameters o, £, and #; as introduced in chapter 1
the actual oscillation frequency in the transient response state varies approximately up to 15% from the
systems natural frequency f, if £, < 10Hz. For larger £, the error increases significantly. Moreover,
there is no clear pattern in which direction, positive or negative, the real frequency differs from f;,.
Therefore, a proposed method of inserting multiples of % J» into equation (2.5.1a) in order to obtain a
global maximum displacement #ay is unsuitable.

Finally, the last resort of solving Eq.(2.5.1b) in order to obtain maxima solutions for (2.5.1a) has to
be purely numerical. Thus, employing Newton’s method [15], with the appropriate calculation starting
point fy o sufficiently close to an existing root of (2.5.1b), its value can easily be determined.

2.5.2 Linear Approximation

Instead of attempting to solve equation (2.5.1b) directly the blast wave profile {1.1.1) is approximated
in a piecewise linear manner as shown in Fig. 2.5.1 on page 29. The linear approximation profile is
obtained with respect to energy conservation rather than a least square curve fitting. Furthermore, in
order to obey a causal response in the substituted system the two critical time points #; and #a5 have

“Equation (2.5.2a) or (2.5.1b), respectively, could be approximated by a Taylor series of any desired order n. However,
as shown in appendix B on page 185, closed form solutions for polynomials of order > 4 can only be obtained in special
circurnstances dependent on the nature of the equation to be solved.
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been retained. The first, ¢;, marks the time span of positive overpressure whereas the latter, #a2, gives
the time point of maximum negative pressure of the original profile (1.1.1) and is obtained by simply
setting its first derivative with respect to time equal zero

dp(t) P _—af !
and solving for ¢
tan =13 (}. + é) . (2.5.3b)

The new positive and negative magnitudes, poa and pa, are calculated from the constraint that the
area under the straight lines is equal to the area under the original profile curve for each time segment
1 to 3 (equal energy input). Therefore, f¢ is adjusted accordingly. Integration of Eq.(1.1.1) for the
intervals (0;£;), (4;¢a2) and {fa2;2e) gives

p0A=2%(e_“+a— 1) (2.5.42)
pm:—z%(e‘“—ze““‘l) (2.5.4b)
1 2
= 1+—4—F¥ 254
fe fd( +(I.+0Lpo(e—2)) (2.5.4¢c)
which are required for the three piecewise linear forces
t
() = poa (1 - t_) ) 0<t<i (2.5.52)
d
1ty
p2(t) = p1a ( ) : a<t<ia (2.5.5b)
tar— g .
t—1t
p3t) = p1a (1 - A2 ) , I <t<1 (2.5.5¢)
E—1Ia2

as shown in Fig. 2.5.1. The SDOF response for each time segment » with » =1,2,3,4 is obtained by
using Eq.(2.4.3a) from page 17 with zero damping ({ = 0)

f

wlt) = [ pre=1h(® &+, (1), L 256)
i
leading for the unit impulse response A(¢) to
h(t) = — sin (@,?) (2.5.7)
and the initial conditions u;, to
tn (t) = 1, cos (©1) + %)q’-i sin (@, 1) , r=1,2,3,4 2.5.8)
n
with 1y = #g,1 = 0. Setting the first derivative of each solution equal zero
i) .— o (2.5.9)

allows closed-form solutions to be found for time points fmax Where #, max occurs. Each section 1 to 4
in Fig. 2.5.1 has to be treated independently since the shock excitation force is represented by a discon-
tinuous non-smooth function. The connective link between each segment is given by the appropriate
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initial conditions at the start of each time segment, ug,+1 = #, (%) and Vo1 = U (2}, respectively,
with £, =1y, ta> and g as r =1,2,3. A detailed description of the solution procedure is given in ap-
pendix A.1.2 on page 176.

The motivation for the method lies in its superior efficiency compared to the much less advanced
procedure of calculating the entire time history for a given natural frequency f;, and subsequently find-
ing the appropriate extreme displacements (minima/maxima) in order to obtain the shock spectra of
the linear undamped SDOF system, Roughly, with about 25% of the calculation steps used by the exact
method to calculate the time history at one specific natural frequency, the approximate procedure is
capable of obtaining the entire response spectra. But, as with most simplification, the gain in calcula-
tion speed has to be paid by less accurate results. However, the next section compares both methods
and shows that spectra obtained by the approximation method tend to overestimate the actual system
deformation g, and proves therefore the method to be a fast and reliable alternative to the time and
resource consuming exact solution method, especially for early design stage application.

2.5.3 Results
Exact Solution

Using the simplified, undamped version of Eq.(A.1.2) and (A.1.3), different shock spectra graphs for
type-I and type-II blast excitation were produced. As explained above, no explicit analytical formula
expressing the maximum displacement at a single frequency in terms of the blast wave and system
parameters could be found. Therefore, complete time series at single frequencies had to be calculated
and the maximum values were obtained. Because of the very good agreement between analytical and
numerical solution, see Fig. 2.4.1 and 2.4.2, this can be done using either of them. However, the authors
suggest employing the analytical formulas for the computation of time histories prior to shock spectra
if computer resources are limited and studies conducted involve a broad range of system and blast wave
parameters. Although implementation of the analytical solutions especially Eq.(A.1.3) can be difficult
and erroneous, it is about 3 times faster and requires 80% less memory than the Newmark algorithm.

In all of the following shock spectra plots Fig. 2.5.2 to 2.5.8 the natural frequency f;, of the linear
SDOF was chosen as independent parameter. It should be noted here that all spectra can also be given
in terms of a normalised natural frequency, preferably 1, = f, x t; = %, see Eq.(2.3.12b) on page 16.
The angular natural frequency is given by ®, = 2%/, and the system’s stiffness equates to k = ma?
with the mass m set equal to unity. The influence of the two blast wave types I and II on the SDOF
response behaviour has been examined by allocating the parameters «, ¢, and #; with different values
obtained from [18].

Figure 2.5.2 on page 30 shows the normalised maximum dynamic displacement of the SDOF sys-
tem over its natural frequency f, due to a type-I blast wave with o = 0.9 and different values for #;.
Each curve in Fig, 2.5.2 exhibits the same jump phenomena at a certain frequency f7 and can therefore
be divided into two regions, one with negative maximum displacement and one with positive dis-
placement only.® Both Fig. 2.5.2 and 2.5.3 clearly show the independence of the maximum negative
displacement amplitude from the SDOF’s natural frequency f,,. All negative maxima occur at different

5In case it would be possible to find a closed-form solution for Eq.(2.5.1b), i.€. fmax, the filnction for #may, Eq.(2.5.1a),
would exhibit a discontinuity at fJ, i.c. the first derivative with respect to the natural frequency d%?’i(fﬁ would not exist as

Jn— Ji.
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Jn but their absolute magnitudes stay constant regardless of the value of f,. This can be explained
by returning to Fig. 1.2.1(a) on page 7. Changing the positive overpressure time #; within a range of
0.01s <{; <0.04s has no influence on the negative pressure amplitude and only a little influence on
the total energy provided by the negative part of the blast wave. Therefore, as shown in Fig. 1.2.1,
increasing o decreases the total amount of energy input into the SDOF significantly. Hence, increasing
o reduces the negative deformation amplitude of the system as seen in Fig. 2.5.3.

Comparing Fig. 1.2.1(a) and 1.2.3(a) on page 7 against Fig. 2.4.1 and 2.4.2 by plotting the time
history of the blast wave profile as applied load versus the displacement response u(f) of the SDOF
shows that for all frequencies below f; the system is just too slow to react with its positive maximum
displacement to the positive force p(7) provided during ¢ < ¢ < ;. Instead, on returning from a point of
positive displacement back to the equilibrium position, the SDOF absorbs all energy provided by the
negative overpressure, which immediately leads to the overall but negative maximum displacement.
In the second half of the full cycle, by passing again through the static equilibrium position into the
positive half-plane, the system is still subjected to negative pressure. This leads now to a reduction of
the positive amplitude and after several oscillation periods the SDOF motion becomes steady-state.

After passing the discontinuity in the shock spectra, i.e. the point where the system has either a
maximum negative or positive displacement, it is clear in Fig. 2.5.3 (type-I, o. = 2.7) that for SDOF
systems with natural frequencies £, = 1/t4, the positive maximum dynamic displacement gy, is about
equal to the static displacement, i.e. gyn /tstat lin = 1. This is not true for type-I & = 0.9 blast profiles
in Fig. 2.5.2 where the positive maximum ugyn is about 1.3 X ug,¢. However, for low to moderate
natural frequencies, about up to 600 Hz, u4,,, varies significantly with respect to #;. At f, = 200Hz, for
example, a doubling of the positive overpressure time from £; = 0.005s to 0.01s leads to a 40% higher
dynamical response of the SDOF in Fig. 2.5.3, whereas for type-I and oo = 0.9, Fig. 2.5.2, the increase
is only about 20%. In contrast, at high and very high natural frequencies, f, > 750Hz, doubling of #;
becomes less critical for the system’s response and insignificant for increasing absolute values beyond
0.04s, i.e. at f, = 800Hz the change in the ratio zgyn/#star by doubling #; from 0.005s to 0.01s is
much larger than the change by doubling #; from 0.02s to 0.04s. Although the graph for o =2.7 in
Fig. 2.5.3 shows a slightly different response behaviour of the SDOF, both figures can be summarised
by the following statements:

(a) for undamped SDOF natural frequencies below a certain frequency f7 determined by the blast
wave profile parameters ;7 and o, the linear oscillator responds with a maximum negative dis-
placement, which can, subject to the value of parameter o, exceed the static displacement sig-
nificantly, see Fig. 2.5.2,

(b) for frequencies f, > f the oscillator exhibits only maximum positive displacement,

{c) for high to very high natural frequencies f, > 600Hz and values for

ty>002s and 3.0>a>1.0

61t should be noted here that Fig, 2.4.1 and 2.4.2 show the response of the damped single-degrec-of-freedom oscillator.
However, omitting the fact that for £ # 0 the amplitudes of the steady-state solution become smaller during each cycle, the
fact that the maximum negative or positive displacement occurs during the transient response state holds also true for the
undamped oscillator, which is not pictured here.
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Chapter 2. Response of Linear SDOF Systems to Blast Wave Excitation.

the system’s maximum dynamic displacement can be approximated by the SDOF response to
a scaled unit step function p(f) = py x H(t), with py as the maximum overpressure, which is
equal to twice the static displacement, see appendix A.2.2,

(d) for large values of #7 3> 0.02s and small values of a < 1.0 the SDOF maximum dynamic re-
sponse is equal to twice the static displacement as in (c) but for the entire range of natural
frequencies f7 < f < oo, i.e. the system’s response to the applied load (blast wave profile) can
be modelled using py x H{¢) instead.

Referring to Fig. 1.2.1(b), taking into account that the SDOF frequency behaviour can be calculated
using multiplication of Laplace transforms of the time domain formulations of the applied force and
the structural system, and, knowing that the undamped SDOF has a single resonance point at is natural
frequency, the conclusions drawn in (c) and (d) are supported. Larger values of #; and smaller values
of o shift the energy content of the type-I and II blast wave profile into regions of lower frequency.
However, a closer examination of Fig. 2.5.4 and 2.5.5 makes it necessary to add a fifth statement only
valid for the SDOF shock spectra due to a type-II blast wave profile.

(e) depending upon the finite rising time #, the response of the SDOF oscillator can significantly
vary between tstar < #dyn < 2 X Ustat fOr all natural frequencies f, > f;. Therefore, the approxi-
mation for the maximum dynamic displacement being twice the static as proposed in (¢) and (d)
above is only valid, if the positive overpressure rising time ¢, is sufficiently small.

In case of the spectra shown in Fig. 2.5.4 and 2.5.5 on page 31 with £, <0.1ms one is able to ap-
proximate the maximum dynamic displacement ugyn by 2 X usear Over the whole frequency range
f1 < £, < 1.0kHz. If, say, only the range 0.2 < f, < 0.6kHz is of immediate interest the statements
made in (c) and (d) would still apply. Clearly, the dips noticed in the SDOF’s response pictured in both
Figures 2.5.4 and 2.5.5 originate from the roll-off of energy as shown in the power spectrum for blast
wave type-II in Fig. 1.2.3 on page 9.

By comparing Fig. 2.5.2 with 2.5.4 and Fig. 2.5.3 with 2.5.5 two more similarities between type-I
and type-II response can be identified. First, the absolute maximum oscillation amplitudes in both
the negative and positive region (before the roll-off) are equal. Secondly, the jump phenomena in the
shock spectra occurs at exactly the same frequency, which proves it is independent of £,. To summarise,
the type-II blast wave profile parameter z, only accounts for significantly reduced maximum dynamic
displacement of the SDOF at certain natural 'resonance’ frequencies f, g, = i X é wherei=1,2,... as
given in Fig. 1.2.3(b). As one would expect, in the case 7, — 0 the SDOF shock spectra response is
exactly the same form as due to an excitation by a type-I blast.

As mentioned before, not only the vertical ordinate axis can be plotted in a normalised manner,
€.8. Hdyn / Ustat fin, the same is possible for the abscissa. Using #y as normalisation factor gives the
response solution to the equation of motion for a normalised SDOF system as derived in Eq.(2.3.12a)
on page 16. For the graphs in both figures 2.5.2 and 2.5.3 on page 30 in particular, this would result in
an overlay of all four lines similar to Fig. 2.5.4 and 2.5.5.

In order to verify both analytical and numerical methods as before, Fig. 2.5.6 has been included,
which shows the time domain numerical response of the linear system with natural frequencies of
520Hz and 1.0kHz respectively. Direct comparison between Fig. 2.5.2, 2.5.4 and Fig. 2.5.6 shows, for
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2.5. Shock Spectra for Blast Wave Excitation,

Table 2.5.1: Approximation profile time parameter; Negative maximum overpressure time #4; and total forcing
time g in seconds as a function of the positive overpressure time t;. Graphical explanation is pro-
vide in Fig. 2.5.1 on page 29. Approximate positive and negative pressure amplitude stay constant
with changing #4, see Eq.(2.5.4), at poa = 0.75696 x pp and p1a = —0.23874 x pg, respectively,
fora=0.9.

ty [S] Y [S] e [S]
5.0E-3 1.OS56E-2 2.6025E-2
1.0E-2 2.1111E-2 5.2049E-2
2.0E-2 42222E-2 1.0409E-1
4.0E-2 8.4444E-2 2.0819E-1

example, the noﬁnalised maximum displacement for f, = 520Hz and f, = 1.0kHz does not exceed
the magnitude of 1.0 for a positive pressure build-up time of 2ms.

Using the fast analytical solution procedure as explained above, Eq.(A.1.2) and (A.1.3), respec-
tively, with { = 0, three dimensional plots showing the influence of z; and f, upon the maximum
displacement for the type-I shock wave and ¢, in case of type-II shock were obtained, see Figures 2.5.7
and 2.5.8.

Piecewise Linear Approximation

Figure 2.5.9 on page 35 shows results obtained using the approximation method in comparison to
the exact solution. Table 2.5.1 gives the values for the individual segment time parameters a2 and /g,
respectively. Despite the fact that the approximation method predicts negative extreme displacement,
see graph (a), at natural frequencies f, when ug. is actual positive (exact solution), it will always
overestimate the absolute value |ug,|. In the case of Fig. 2.5.9 the approximate extreme displacement
18 up to 25% higher than the one calculated using Eq.(2.5.1a), i.e. the real blast profile. Furthermore, the
shift of the frequency point f; where ugx changes sign from negative to positive values is proportional
to ¢z for all graphs. Multiplication of all 8 lines in Fig. 2.5.9(a) would give one single frequency f;
for all four values of 77 at around 0.645 for the exact solution and 0.841 for the approximate profile
solution.”

Figure 2.5.9(b) shows time points g« in seconds at which ug,. from graph (a) occurs. It is important
to note that at fj, i.e. the SDOF system’s natural frequency where ug, changes sign from negative
values #min to positive values #pmax, a drop of #g, takes place. For the exact profile this is a rather abrupt
one where as for the approximate solution there is first an increase before f, reaches f; and than a
significant decline to the same level as produced by the exact blast profile. However, for both methods
the value of #nax lies well below #;. As an important consequence, for applied force/SDOF system
configurations as given in Fig. 2.5.9 the maximum deformation #y.x above the jump frequency f;

"The values are obtained by multiplying the frequency point f7 times 77 Examining Fig. 2.5.9(a) at a higher graphical
resolution this gives for the type-1 profile
[29.0x 5.0E-3 =6.45E-1~64.5x l.0E-2=6.45E-1 = 32.25x 2.0E-2=...

and for the approximate excitation force

168.2x5.0E-3=841E-1=842x 1.0E-2=842E-1~42.1 x2.0E-2=__..
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Chapter 2. Response of Linear SDOF Systems to Blast Wave Excitation.

occurs always within the time interval 0 < ¢ < ¢4, i.e. during the positive overpressure phase. Whereas
if the system’s natural frequency stays below f; the maximum negative displacement #my;, can occur
up to 0.5 seconds after the excitation has initially been applied.
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2.5. Shock Spectra for Blast Wave Excitation.

P(t)
A

Po 1T

Poa

Y

Figure 2.5.1: Piecewise linear approximation of type-I blast wave profile.
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Shock Spectrum — linear SDOF ~ type-t Blast Wave {oe = 0.8) — Analytical Solution.
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Figure 2.5.2: Shock spectra of SDOF-oscillator with natural frequency 0 < £, < 1.0kHz due to type-I blast
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Figure 2.5.3: Shock spectra of SDOF-oscillator with natural frequency 0 < f, < 1.0kHz due to type-I blast

wave profile for different values of #,. (& = 2.7, { = 0.0).
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2.5. Shock Spectra for Blast Wave Excitation.

Shock Spectrum — linear SDOF - type=(] Blast Wave (t 4 = 0.02 s, o = 0.9) — Analytical Solution.
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Figure 2.5.4; Shock spectra of SDOF-oscillator with natural frequency 0 < f, < 1.0kHz due to type-II blast
wave profile for different values of £,. (ty = 0.02s5, 00 = 0.9, £ = 0.0).

Shock Spectrum - linear SDOF — type—Il Blast Wave(t 4= 0.02 5, 0 = 2.7) - Analytical Solution.
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Figure 2.5.5: Shock specira of SDOF-oscillator with natural frequency 0 < f, < 1.0kHz due to type-II blast
wave profile for different values of 7,. (1; = 0.02s, . = 2.7, { = 0.0).
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Figure 2.5.6: Time-displacement history of the linear SDOF oscillator at two different natural frequencies of

(&) fo=520.0Hz and (b) £, = 1.0kHz due to a type-II blast wave profile for different values of
the finite rise times #,. (¢ =0.9,2; = 0.025, { = 0.0).
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2.5. Shock Spectra for Blast Wave Excitation.

@
Shock Spectrum — Linear SDOF — type—I Blast Wave (o= 0.9) (analyt. sol.).
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(b)
Shock Spectrum ~ Linear SDOF — type—I Blast Wave (0: = 2.7) (analyt. sol.).
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Figure 2.5.7: Shock spectra of linear SDOF-oscillator with natural frequency f;; due to type-I blast wave profile
for two different values of oz (a) o0 = 0.9, (b x =2.7.
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@)
Shock Spectrum — Linear SDOF — type—II Blast Wave(t, = 0.02 s, .= 0.9) (analyt. sol.).
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Figure 2.5.8: Shock spectra of linear SDOF-oscillator with natural frequency f, due to type-H blast wave
profile for two different values of oz (a) ot = 0.9, (b) x =2.7; 1 = 0.02s.
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(@)

Shock Spectrum - Linear SDOF: Comparison Approximate/Exact Method.

15F o F e 'L

stat

0.5

Normalised Displacement u_, Ju
dyn

&

tn

-1

(o)

10" —

107 &}

Time Points iEx [8]

Q 50

T

13

;@g ;gssa@i« %ﬁ'ﬁéﬁ:&.&’&i—?ﬁ L

¥ T T

type-l blast profr!e. a 0.9

Exact Solutran
—_ty= =50e-3 s

- - _td=1.0e-2 $
..........td=2.0e—2 s
‘td=4.0e—2 s

Approx. Soiution:
—x—1 4= 5.0e-3 s

SDOF natural Frequency fn

Shock Spectrum - Linear SDOF: Comparison Approximate/Exact Method.

.................................. M*_td=1.0e_2s -
%, : '_x_'td=2'09'2 s
.. - .................................... W td - 4.08'2 S -
i i i i 1 1 f
0 50 100 150 200 250 300 350 400 450 500

Exact Solidion:
JES—— | L= 5.0e-3 s

R _td=1.0e-2 s
._,..,...td=2.0e-25

,_x_.td=2.09‘2 )
e td=4.0e-2 s

.- Approx. Solution: |.
i ——1t,=50e3 s

e e =t 71082 8

1
100

i
150

SDOF natural Frequency f [Hz]

200

1
250

1
300

i
450

| 1
350 400

500

Figure 2.5.9: Shock specira of SDOF-oscillator with natural frequency 0 < £, < 500Hz due to type-I blast
wave profile for different values of #;. Comparison between exact solution and piecewise linear

approximation. {&t = 0.9, L = 0.0).
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CHAPTER 3

Autonomous Nonlinear SDOF Systems

3.1 Introduction

In the last thirty years of research into the subject of structural nonlinear response of autonomous and
non-autonomous systems to transient excitation, numerous solution procedures for obtaining extreme
values of response have been developed. The majority of these algorithms base on numerical approx-
imation as described in section 2.1 of the previous chapter. Some incorporate a mixed numerical-
analytical approach, e.g. [6], and very few only solve the problem entirely analytically [7,8]. However,
regarding the latter, no unified approach exists and results presented by various authors are limited to
special cases of nonlinear oscillators such as special loading parameters or zero initial conditions.

The appealing clarity and elegance of analytical solutions to physical problems is always defeated
by its limited ability of solving nontrivial tasks. In terms of structural dynamics this manifests itself
in the attempt to describe geometrically complex vibrating structures, even in two-dimensional space
such as nonuniform lattice or frames or plates with various cut-outs. No closed-form description of
such problems exists, neither for static nor dynamic excitation, let alone an analytical solution can
be obtained. Things worsen in three-dimensional space with structures assembled from a mixture of
numerous basic elements such as beams, plates and shells.

So far, only geometry was concerned. Nonlinear restoring forces® or highly time-varying excitation
loads can leave even the geometrical most simple structure, the SDOF system, without a closed-form
solution despite the fact that an analytical description of the problem in terms of first or higher order
differential equations can be established. This makes it necessary to simplify the problem and hence
the governing equation if results are sought as analytical expressions.

The work presented in this chapter assumes the method of BIGGS [13] can be used to reduce the
MDOF system under consideration into an equivalent SDOF system. As within the preceding chapter,
the focus lies on solution methods for the newly obtained SDOF rather than on the procedures of how
the transformation is achieved.

The term ’restoring force” as used in this work incorporates the sum of all forces exhibit by the structural system due to
damping and stiffness.
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Chapter 3. Autonomous Nonlinear SDOF Systems.

3.2 The Equation of Motion

The nonlinear equation of motion of an non-autonomous, dissipative SDOF system can be written as
mii(t) + f(t,8(2),u(t)) = P(t) (3.2.1)

where m is the oscillating mass, #(¢), #(t), #(¢) denote displacement, velocity and acceleration, respec-
tively, and f(¢,%,u) represents the nonlinear restoring force due to any kind of damping and elastic
or nonelastic/plastic stiffhess mechanism occurring in the system. The expression on the right hand
side can in its most simplest form be written as P(¢) = po X p,(t) where po is the constant force ampli-
tude and p,(¢) is a pure time-varying function. If time ¢ is eliminated as explicit independent variable
Eg.(3.2.1) reduces to the equation of motion for an autonomous system

mii(t) + f{a(t),u(t)) = po. (3.2.2)

Furthermore, letting f be independent of #(¢), i.e. f= f{u) is a function of the displacement only,
gives the equation of motion for an autonomous energy conserving system as

mii(t) + f(u) = po, (3.23)
subjected to arbitrary initial conditions

u(t=0)=uy and a(t=0)=1uy. (3.2.4)

3.3 Response of Conservative Systems

The most important information regarding the system response from an engineer’s viewpoint, is the
maximum value of displacement as well as the oscillation frequency. In the case of Eq.(3.2.3) determi-
nation of the extreme values of displacement is straightforward for the majority of restoring force - dis-
placement relationships. A first integration of (3.2.3) with respect to z{f) expresses the energy balance
of the conservative system, which stays constant as # — 0. Assuming that the velocity #(¢) is equal to
zero when the oscillator reaches its minimum or maximum displacement position ugx = (um,-n; umax) .
this leads to an algebraic equation, which in certain cases can be transformed into an explicit analytical
expression for ugy.

In contrast to linear SDOF systems, which respond to any type of excitation with not more than two
different frequencies at the same time?, nonlinear systems have, generally speaking, a finite significant
number of distinctive frequencies in their dynamic response behaviour, independent of the type of
vibration, i.c. free oscillation, harmonically or transiently forced. However, separation of variables
after a first integration of Eq.(3.2.3) and a subsequent, second integration with respect to time and
displacement leads to explicit expressions of the fundamental oscillation period of the periodically
vibrating nonlinear SDOF., For most general cases with arbitrary initial conditions this gives rather
complex integral equations. Nevertheless, a vast number of these expressions can be solved by means
of special tabulated functions which reduce, for special cases of nonlinear restoring forces f(u) or
simplified initial conditions, to basic algebraic functions.

2 An undamped linear system excited by harmonic loading will oscillate with a superposition of its own natural frequency
J» and the frequency imposed by the applied load f. In the presence of damping the homogeneous part of the solution
decays away with increasing time ¢ and the SDOF vibration is purely dominated by f, i.e. the oscillation becomes harmonic
again.
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3.3. Response of Conservative Systems.

3.3.1 Step Excitation

If the external load P(¢) is modelled as an ideal step excitation

0 r<9
P(t) = ’ 3.3.1
® {pm e KRR
and integration with respect to (¢) is performed, Eq.(3.2.3) can be rewritten as
f (m ad;z}:(t) +f(u)) du= fpo du (3.3.1b)
u H
which gives together with the substitution in [3]
d a |1 /du\?

and-the law of conservation of the system’s total energy the following condition for potential and
kinetic energy of the oscillator as

720+ f (@) du+Cy = pou(t). (3.3.20)

Herein C) is the integration coefficient determined from the initial conditions, m the system’s mass, po
is the force amplitude, and f(u) expresses the nonlinear stiffness solely depending upon the displace-
ment u(2). Together with Eq.(3.2.4) C is evaluated as

(3.3.2b)

G=mm—§%“/ﬂ@®

u=up

At the point of maximum displacement the velocity #(z) in (3.3.2a) is set to zero and the resulting
algebraic equation® (3.3.3a) is solved for the minimum/maximum values of the displacement

m
~ PoUgy = ff(u)du‘ —pguo—l—Eu%. (3.3.3a)
H=1Ex u=1y

/f(u)du _

u

where ug, stands for the set of extreme solutions and
Umins UYmax € UEx S0 that Hrin << Umax - (3.3.3b)

The principle of energy conservation can also be used to obtain an expression for the maximum oscil-
lation velocity as done by TIMOSHENKO et al in [19] for a freely vibrating SDOF system. However,
the expressions given in here are more general® and the new equilibrium position #gy q of the oscil-
lator does not have to coincide with the position of equilibrium before vibration starts. Combining
Eq.(3.3.2a) and (3.3.2b) gives

= pou(t), (3.3.4a)

H=t

%ﬁ(z)-}-/f(u)du—i—pouo—%il%—/f(u)d“

3 As will be seen in later sections of this chapter, expression given in Eq.(3.3.3a) can result in more than one non-
differential equation depending upon the nonlinear restoring force f{(#) under consideration.
4The formulas derived in [19] do not permit initial conditions other than uy = 5y = 0.
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which expresses the potential and kinetic energy, hence the total energy, stored in the system at any
point Z, e in time. It is straightforward to rearrange (3.3.4a) to yield an explicit expression for the
velocity

+3 72\, (3.3.4b)

==y

— potio + ff(u) du

a(r):\/g o)~ [ )

which can be used to calculate 7(¢) at any feasible point of the path of displacement #appir Of the
SDOF oscillator, i.e. #3mbit, needs to be within the interval tmin < Harbitr < #max. In order to obtain the
extreme values of the velocity, #amire 15 replaced by the term ugy oq, Which denotes the equilibrium
position the system oscillates around after excitation by the step function. In contrast to Eq.(3.3.3a),
where the velocity was assumed to be zero at points of minimum/maximum displacement, u#gx cq i$ 7ot

necessarily equal to zero at points of extreme velocity

Harbitr

ﬂmin,ﬂmax = ﬁEX With Z'{mm << z:lmax. (3.3.40)

Hence, if Eq.(3.3.4b) gives extreme solutions at the point ugy ¢q the first derivative with respect to u at

this point

~l—

g%gl w0 = [PO\’/‘QE(_”) /f u)du . -Pouo—f-ff(u)du u=un+§z’% (3.3.4d)

must be zero, which is only the case if
flu)=po, (3.3.4¢)

i.e. at the point of nonlinear static deflection after excitation due to the step function. Furthermore, if
Eq.(3.3.4d) yields global minima or maxima, the second derivative of (3.3.4b) must not be equal zero

2 . — flu 2 _
ddz;gt) _ [Po n{( )] pou(t) —ff(u) du ] —pouo+ff(u) du -~ +%1~12% +
\/1— dj;(u) poul(t)— f Su)du u — potiy + f S(w)du - +§a§ #0. (3.3.4f)

For the special value of u(t) = upy oq the first part of the above equation (3.3.4f) yields together with
(3.3.4¢} zero. Furthermore, assuming for a moment p >0, # > 0 and #y > 0 the terms in brackets in
the second part of (3.3.4f) will be greater zero. In fact, by comparing (3.3.3a) with the expressions
under the square root in (3.3.4f) it becomes evident both equations consists of almost the same terms.
Only the nonlinear stiffness function f(x) and the step magnitude p, are evaluated at different points
of displacement. In Eq.(3.3.3a) at g« and in (3.3.4f) at ug, ¢q, respectively. Moreover, since (3.3.3a}
yields zero only at ugy, but ug, # ey cq, Eq.(3.3.4f) will always be non-zero and hence (3.3.4d) gives
global minima or maxima.

Because f(#) is a general term for the restoring force of the nonlinear system, no explicit expression
from (3.3.4e) for the displacement, which then could be inserted into Eq.(3.3.4b), can be given at this
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point and (3.3.4b) is rewritten in its final time-invariant form

1
z

UEx,eq o
. 2 ‘
=2 | potesca— [ SWdu—pon+ [ )auct Tk (34g)
0 0

where the new point of equilibrium #gx eq is obtained from (3.3.4e} and
i‘min/max = FUex. (33411)

Tn order to derive an expression for the oscillation frequency of the SDOF the nonlinear differential
equation describing the motion of the system needs to be integrated twice. Returning back to (3.3.2a),
separation of variables and integration of both sides, one with respect to u(t) and the other with respect
to ¢, yields for the period T} of the half-cycle

fmax Umax

uly = / dr = du (3.3.5)

vt \/% (pgu(t)— J f(u)du—Cl)

where #;, and fmax mark the time points of SUCCESSive #min and Umax, respectively. Since for the
conservative system the maximum values of displacement ugx stay constant as ¢ — oo the two time
instances can be evaluated at arbitrary points in the time-domain. Assuming symmetry of the time-
displacement curve of the oscillator, i.e. the integral of the interval (#min , #max) is equal to the integral
over (#max , Umin)» the total oscillation period is given byl =2 X% ]HT% and Eq.(3.3.5) can be rewritten

as

ul =v2m du . (3.3.6)

\/Eou(r)—{f(u) du—C

Upin

The index H is introduced here to refer to the Heaviside step-excitation function as external applied
load as defined in Eq.(3.3.1a).

3.3.2 Impulse Excitation

The Dirac delta function 8(f — #) is defined as® [16]

o iIf =¥
81 —1ty) = 33.7
1 =1) {Oif t£1 (3.3.72)
with the important property of a distribution [21]
/ﬁ(twto)dt= 1. (3.3.7b)

5The §-furnction is not a function by classical means, it is 2 so-called generalised function. The definition of generalised
functions or distributions extends the narrow-spaced classical definition of the term function, see [15], [20].
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If the shifting property of Eq.(3.3.7a) is disregarded, i.e. the applied force acts at # = 0 upon the
system, the otherwise infinite impulise can be approximated by a rectangular finite one of duration Az
with the amplitude

lim 4 , t=A
8(t) ={ A0 (3.3.8)
0 , 1#NM.
1t should be noted here that property (3.3.7b) of the 8-distribution is preserved
oo AI
fa(:)dz—nm/idtulim [L}N—l (3.3.9)
Tamof At A—olatlo T -
—oo 0

giving for the classical mathematical function in Eq.(3.3.8) the total impulse input during the finite
time Ar into the system as equal to 1. Using the definitions given in (3.3.8) and (3.3.9) and substituting
an arbitrary scaled unit impulse, e.g. pg x 8(¢), into the equation of motion of the SDOF system,
Eq.(3.2.3) takes the form

Ar At
Jim / (m-c‘li—ta(m f(u)) &t = Jim f o) dt (3.3.10a)
0 0
which gives
Ar
Al;iino m [2(At) —1(0)] and Al:iino f flu)de (3.3.10b)
0

for both terms on the left-hand-side of Eq.(3.3.10a), and

At
lim po / 8(r)dt = py (3.3.10c)
0

for the applied force term on the right. Since there can be no actual displacement change in an interval
of infinite length At - 0, the second term in (3.3.10b) equates to zero. Combining then Eq.(3.3.10¢)
and the remainder of (3.3.10b) leads to

e PO .
Jim (a(An)] —dto = = (3.3.10d)

The transient excitation problem has now transformed into a free vibration one with revised initial
conditions for the velocity of the system, namely a contribution of the acting transient impulse load
added to the existing initial velocity #g at the time of application of the impulse

#(0+) = dig,. = % + o (3.3.11a)

at the time point
0+ 1] H

i.e. after the impulse interval Az. With respect to Eq.(3.3.10b) the displacement initial conditions can
be rewritten as the existing displacement at the time of application of the impulse

u(04) = up =up. (3.3.11b)
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A simpler application of the above shown method with g = #1g = 0 is shown in [16] for a linear system.
The system’s new equation of motion is now rewritten as

m%z‘:(t)+f(u) =0 (3.3.12)

subjected to the new injtial conditions given in Eq.(3.3.11a) and (3.3.11b). Following the same proce-
dure as in the preceding section integration with respect to 2{¢) leads to

giﬂ(z)+/f(u)du+cz =0 (3.3.13a)

with the integration constant C, determined by the magnitude of the applied force pg, and g, ug
unequal zero

G = —% (%‘) +a0)2—ff(u) du (3.3.13b)

u=uy

Again, at minimum/maximum displacement the velocity ##(tg,) in Eq.(3.3.13a) is set to zero and UEX

Jraa]_ =2(2 ) [ ra

In order to derive an expression for the extreme values of velocity defined as timin, #max € g Where
fmin < Umax , €quation (3.3.13a) is rewritten

is obtained from
(3.3.19)

W=up

1
3
i(r) = 1/ = (ff () du +§(p°+uo ffu)du) (3.3.15a)
u=up
and its first derivative set to zero
-4
difz) L 2 mepo N2
o .—0_—2\/;f(u) (/f(u)du —I—E(’—n——i—uo) —ff(u)du (3.3.15b)
) U=Hy u
which holds only true if
flu) =0, (3.3.15¢)

1.e. the equilibrium position of the system remains unchanged due to a Dirac impulse excitation. Hence,
Eq.(3.3.15a) can be stated in its final form as

iy, = \/g (ff(u) du+ % (% +ao)2) (3.3.15d)
[¢]

with the minimum/maximum values as given by Eq.(3.3.4h). The second derivative of the velocity #gy,
Eq.(3.3.15a),

3
2

G () [z @eny])] -
0

\/—duf(u) (ff(u)a'wr ( +u0)2) #0 (3.3.15¢)
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must again be non-zero if (3.3.15b) represents global extrema. The solution of Eq.(3.3.4f) shows that
the first part of the second derivative of the oscillator’s velocity u(z) is equal to zero at u(f) = ugxeq it
case of impulse excitation because of (3.3.15¢). However, the first derivative of the nonlinear restoring
force® f(u) will always be non-zero. Therefore, Eq.(3.3.15¢) holds true and (3.3.15d) gives global
minimum/maximum values for the system’s oscillation velocity.

The oscillation period of the impulse response is derived in the same way as Eq.(3.3.5). Separation
of variables and integration with respect to £ and u(z) gives together with Eq.(3.3.13a)

5Ty = (3.3.16)

\/—f\/ ffu)du Cs

the period of oscillation for a half-cycle. Assuming symmetry as in section 3.3.1 this can be written as
2x 5T 1

sT =2v2m / du (3.3.17)

\/ff(u Ydu—Cy

Hmnin

The index § refers to the nature of the system excitation being a Dirac impulse.

In most cases it is impossible to find a closed form solution for T due to the nature of the integrand
on the right hand site of (3.3.6) and (3.3.17). However, there are some special forms of nonlinear
spring characteristics, which permit the evaluation of frequency, in terms of tabulated special func-
tions. The authors BAPAT and SRINIVASAN [7] investigated the transient response of an undamped
nonlinear spring mass system subjected to a forcing function with constant amplitude, which reflects
the structural response of an autonomous, conservative system excited by a step function of amplitude
Ppo. Analytical expressions are given for the maximum displacement and the oscillation frequency of
the system considering two different types of nonlinear restoring forces, namely a single term poly-
nomial force f(u) = ku?(¢) and cubic force of the type f(u) = bu(f) +c(t), b > 0, where u(t) is
the deflection of the system and b, ¢ and & being arbitrary constants whereas  is an odd integer. In a
subsequent paper [8] the authors broaden the range of analytical solutions for nonlinear restoring force
characteristics to the additional types:

() flu) = au+ bsign[u] |u|?,
(i) f(u) = bsign[u] [ul* + i,

(iil) f{u) = au-+ bsign[u|.

Only the maximum displacement #max and the period of vibration of the half-cycle of the system
response are established as complex integral expressions, both depending solely upon the force am-
plitude py and the coefficients a, b, c. Expressions for umi, arc absent. To summarise, many of the
results given in the literature lack a certain level of explicitness and no comparisons of the outcomes
obtained with findings from other methods, e.g. numerical simulations or experimental investigations,
are drawn. Moreover, a major disadvantage of [7,8] is the assumption of zero initial conditions, i.e.

6 This holds also true if #(u) is linear given by ku(#). In this case %4 —
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up = up = 0, which significantly narrows the range of real structural problems to which the solutions
can be applied.

Using the same energy-based approach as described above, TIMOSHENKO et al [19] derive ana-
lytical expressions for the displacement, velocity and natural oscillation frequency of the SDOF for
two different nonlinear restoring forces of polynomial-type. Limitations of the work are given by the
following three restrictions: (i) results are only valid for specific types of exponents (odd integer) of
the internal nonlinear force, (ii) all initial conditions are set to zero, and (iii) free vibration is assumed.

The far more general method derived in section 3.3.1 and 3.3.2 above will be used in the next sec-
tion to obtain analytical expressions for scalar quantities such as maximum displacement and velocity
describing the response of SDOF oscillators with various nonlinear restoring forces.

3.4 Autonomous Conservative Systems - Examples

Selecting two nonlinear restoring forces f; () and f>(w) similar to the ones used in [7] demonstrates
the ability of the above derived method to obtain values of extreme displacement g, velocity g, and
nonlinear oscillation frequency fni. for the most general cases of free vibration and impulse or step
excitation. A number of high-order embedded Runge-Kutta adaptive integrations are used to verify the
analytical results numerically.

3.4.1 The Nonlinear Restoring Force f; () = k sign (u) |u|®

The normalised characteristics of the nonlinear restoring force
filw)=ksign(u) |[ul®, PER,5>0 (3.4.1)

where k is a force-deformation relating constant obtained from, e.g. static deformation test, and sign (.)
is the signum function (cf. table of notation) are plotted in Figure 3.4.1 for different integer values of
b. Integration of Eq.(3.4.1) leads to two solutions depending upon the sign of z(r)

—%, u(t) <0
ffl ()du = kfsign(u) |ee|® du = . 3.4.2)

/ (+1)
W, un)>0

3.4.1.1 Free Vibration

For reasons of consistency as well as verification of experimental data in part II of this technical
memorandum, free vibration of a nonlinear single-degree-of-freedom system is briefly outlined here,
although this was not explicitly analysed in section 3.3. In order to determine the extreme values of
displacement ougx due to given initial conditions, Eq.(3.3.3a) is used with all terms involving py set
to zero. Introducing fi () for f(u) and evaluation of the integral with respect to Eq.(3.4.2) leads to
four equations for gue, two for the minimum and two for the maximum value of #(¢), respectively,
depending upon the sign of ). However, a closer examination of Eq.(3.4.2a) and the fact that uy is a
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Characteristics of f, (u} = k"sign(u)"l:.!lb

(U)K

Normalized Force

nnnu
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N
o !
o
oocoo

-8 . . . :
-1.5 -1 -0.5 0 0.5
Displacement u

iy
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Figure 3.4.1: Normalised nonlinear restoring force characteristics f () = k sign () |ui® for different values of
the exponent b. For understanding results presented in subsequent sections of this chapter it is
important to note that for any values of 5 within the range 1 < b < oo the linear exponent b = 1
gives the most resistant force for non-normalised displacement () within the range —1 <u < 1.

simple constant allows rewriting (3.4.2) as

. k|u0|(b b
b
—_— 4.3
k/ sign (u) fu| du " ( 1) 7 Hy € R (3 )

i

which reduces the number of equations for gzex 5 10 two, namely

k b k m .
_b+ 1 (_Ouminfl) 0Uming = _b+1 |u0|(b+1) + 5‘”% ) 0Uminy, <0 (3.4.4a)
k k m .
b+1 Ou'(g;(i’? = b+1 |u0!(b+l) + '2"7"{2) ) 0Umaxp >0. (3.4.4b)

The extreme values of displacement gug, f with gz4min 4,1 Ofmaxy, € OUEx, arenot independent variables
any more and therefore be treated like constants. With the substitution

&
O¥ming = =0Uming »  OMming S0 (3.4.5)

equation (3.4.4a) becomes identical to (3.4.4b) and a single expression for the extreme displacement

can be given
1
_ b1y, (BF1) 5] TD
(}M'ExfI = {|MO|( ) -+ ""5"0")2'”—1{% (3.4.6&)
with the minimum and maximum values
0¥min/max, = T 0MExy (3.4.6b)
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where the left-hand-side index 0’ refers to the free vibration and @ is defined as a reference system

natural frequency
o == 347

in the same way as for linear systems. The velocity of vibration for the SDOF is derived using
Eq.(3.3.15d) together with (3.4.3) and po =0

1

]
) /2 k m 2 2 (b+1) ,\?
_ (b+1) . — (6+1) 2
UEx = o ((b—f— ) tp| + £} uo) Wy —_b+1 (|Ho| + 2(02,, 0) (3.4.82)

where

z“min/max = Fupx (3.4.8b)

are the minimum and maximum values of #(¢), respectively.
The oscillation period for the free vibrating system is obtained in the same manner as Eq.(3.3.17)

leading to

oTf = \/'_0 u E[ \/ ffu)du = (3.4.92)

with the new integration constant Cp, which equates together with Eq.(3.4.3) to

@=—§%~fﬂmw

Because of the nature of solutions for the expression [ J f) a’u] depending upon the sign of u(z),

m . k
—E—u%— BT |ug| @Y (3.4.9b)

u=ug

I
Eq.(3.4.92) has to be a sum for the two ranges of integration

Uumaxfl
T b—f— 1 f n / du
olfy = 3
Dtimin; \/ (—u) + 00, 2 A/~ 4+ g0

0¥miny, <0, 0¥ maxy, >0 (3490)

with a constant comprising of all the initial conditions

b1
— IuOI(b+1 (2_6:2 )

c_aq

00t (3.4.10)

< u(t) <0 and can be rewritten

The first integral in (3.4.9¢) is valid only in the range of — ‘gum;n "
using the substitution

e du d((u))
u(ty = —u{t), =" =L u(ty <0 (3.4.11a)
du
as
|m‘rmmf1
)
u +0(1f1

Oummf
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= 0lmaxy, from Eq.(3.4.6b) to a final form for the integral equation

This leads together with [ouimin
of the oscillation period

0 urnax

OTfl_zx/ (b+1) f

du . Otmax, >0 (3.4.11c)
A/ _u(b-l-l) +0af1

with the solution obtained using handbook [17] or MATHEMATICA® {20]

) Oumaxj-l

1 /1 —E— 1 (5+1)
o7y =2 V20T 0% srl(l - X ) . (3411

1+5°2° 7 146" ooy

2 5_31'{—'—_5_—
Wy ,Oaf] _u(b+l) o

Evaluated at the limits { 0, p#max 5 ) this gives an algebraic expression for the oscillation period of the
freely vibrating nonlinear SDOF system having f; () as restoring force

(6+1)
Oumaer 2(b+ 1) 1 1 1 Oumaxf
Tn=2 ] 5 ; L, 0 (3411
oA oM 00 27 1+5b 1+5" ooy 0¥maxy, > ( e}

with the term F (...) being the so called hypergeometric function, see appendix B.1. Comparison of
Eq.(3.4.6) with (3.4.10) gives for the ratio

(B+1)
0Umax 3

o0y

=1

which simplifies Eq.(3.4.11¢) to

r(1+ )

U 1

0Ty =22 o /2”(i+ ) " (3.4.12)
" 0%A r(z + m)

where I'(...) is the EULER Gamma function defined in appendix B.1 and 0%max,, and ol are given

by Eq.(3.4.6) and (3.4.10), respectively. This leaves the oscillation period solely as a function of the

SDOF’s properties, namely stiffness coefficient &, order of stiffness element nonlinearity & and mass

m, where k and m can be expressed in terms of ®,, see Eq.(3.4.7), and the initial conditions #y and #,
given by o0y, in Eq.(3.4.10)

oTf =0Ty (k,m’ baﬂafl) =Ty, ((Dn,b,uo,ﬂo) .

Although solution Eq.(3.4.12) is valid for any arbitrary b it suggest that the nonlinear SDOF system
oscillates with one single frequency 1/47 only. As will be seen in section 3.4.3, a Fourier analysis
of numerically computed time-domain data reveals multiple oscillation frequencies for the case » # 1.
This phenomena, typical for nonlinear systems becomes more apparent, if one uses for the solution
of Eq.(3.4.11¢) elliptic functions rather than hypergeometric ones. Returning to the integral equation
(3.4.11c) and setting b = 2 gives an elliptic integral of the form

0¥ max i

o _2‘/_ / (3.4.13)

Vi —u3 + o0y
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where the equation under the square root is the same as Eq.(3.4.6), hence has three solutions, one real,
namely 0Mmaxy, and two conjugate complex

xX1= V3 ol = 0maxy, {(3.4.14a) -
1 1 .+/3
X2=— ("'1); OUmax;, = (“5 —Il%) 0Umaxy, (3.4.14b)
2 1 .3
x3 = (_1)3 Oumaerl = (_5 + n""j") Oumaxf] . (34140)

The solution for Eq.(3.4.13) is given by case {243.00} in [22]
V6
OTfl = 20)—11E EF(WaK) (3.4.152)

where /—u* + o0t from (3.4.13) is rewritten as

\/ (01— ) [ (= 0+ (3.4.150)
with
—%3)? 3 +
Ao = _M:§XI, Xb:xz_z""x"i:_%a A= (Xb—XI)2+Xa=\/§XI
(3.4.15c)
and . 4
Me= —mm——, ®=3(24V3), cosy=(0)=2-V3, (3.4.15d)
V3 4 A+a
0¥maxy,

It is easy to see that for
Yigey=U-DrFYo,  F=135,.. (34.163)

Eq.(3.4.15d) has multiple solutions with W = arccos (2 — v/3) as fundamental one. Using the iden-

tity [22]
F(nn+0,x) =20 K(K)+ F(6,5) (3.4.16b)

equation (3.4.15a) can be written as
6
oT5 =2-‘m£n5 (2(1'— ) KEx)F ff(wo,m)) (3.4.17)
{63

Setting & = 2, o264 ,, = o0ty and rearranging Eq.(3.4.12) gives

4
ol = 2/6 v r(g) ~ Lao21s— Y8 (3.4.18)
mﬂ\f Oumax)ri r(g) Wy, /Oumaxj'l
which is identical to Eq.(3.4.15a)
olp=Jj 2/6 ?(:PG’K) ~ 1.40218 j —2\/—6— (3.4.19)
®y Oumaxfl \/§ Wy 4 ,t'oumaxfl
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Similar results are obtained if b = 3. However, for values of b greater than 3 employing elliptic func-
tions becomes difficult. The resulting integral equation (3.4.11c¢) can only be solved for polynomials
with order higher than 4 in a limited number of special cases. For example, if b = 2n+ 1 where n = 2,3

the substitution R
y= |2 (3.4.20a)
0¥ max A

is introduced leading to

2
ol
dy=—dv  and  u= otmax, VY, (3.4.20b)

and the integral (3.4.11¢) is rewritten as

\/ 2n+2f
Wy Oumaxf \/ 1 _ H+1}

(3.4.20¢)

which can be solved using {259.50} and {259.61} in [22] for n = 2 and n = 3, respectively. Examples
of substitutions other than Eq.(3.4.20a) can be found in [22-24].

For the special case of » = 1 Eq.(3.4.6b) and (3.4.12) expressing the free vibration of a linear
system, cf. appendix A.2.1

{ | |2 L'tg 2
0UEx, lin = § |Ho| + —} (3.4.21a)
which in turn leads to the equality

V00 = 0Mmaxy, lin - (3.4.21b)

The maximum oscillation velocity #imax from Eq.(3.4.8b) becomes in the linear case

lExtin = A/ (Onu0)’ + 23, (3.4.21c)

which corresponds to the result given in appendix A.2.1 on page 180. Making use of Eq.(B.1.8) and
(3.4.21b) the special function in (3.4.11e) simplifies to

2
,F (%, _21-; g, Oumax_ﬂ ,“n) - 4/ 00 arcsin (oumaxfl,nn)

oy 0%maxy, ,lin 00
T
== 3.4.21d

and the linear oscillation period 77, jin becomes, as one would expect, the inverse of the natural fre-

quency
1

7 (3.4.21¢)

oTf, lin =

Results - Free Vibration

For the special case #p = 0 the minimum/maximum displacement of the frecly vibrating nonlinear
SDOF with f; (1) = ksign () |4|®, Eq.(3.4.6), simplifies to the trivial, linear expression

0MExy, = F |uo] - (3.4.22)

50 Blast induced Shock Waves in Structures { —  1SVR Technical Memorandum Nr. 936
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Considering now uy to be constant in (3.4.6) one can plot the maximum absolute displacement gzmax "
depending on the SDOF equivalent natural frequency £, and the initial velocity #p for different values
of the nonlinear restoring force exponent & as shown in Fig. 3.4.2 on page 94.7

For the linear SDOF (b= 1) in (a) the influence of initial velocity vy = 7ty within the range of
0.5 < vy < 6.0 becomes insignificant for natural frequencies higher than 20Hz. This reverses with in-
creasing values for b, as pictured in graphs (c) to {(d). At 100Hz the maximum displacement difference
between vy = 2.5 and vy = 6.0 is still about 20% whereas at one tenth of this frequency, i.e. 10Hz,
this difference has already reduced to 25%. However, in general it can be concluded that for low initial
velocity and high natural frequencies £, >> 100Hz the minimum/maximum response is purely defined
by the initial displacement ug. Furthermore, at large values of b the maximum dynamic overall dis-
placement ugy, = OUmax,, at low frequencies up to 10Hz is much more influenced by higher values
of vo. As an example, for b =4, f, = 5Hz and vy = 0.5, the solid line in Fig. 3.4.2(d), the maximum
displacement uqyr is equal to 0.25. In contrast for & =2 in part (b} of Fig. 3.4.2, ugyn at f, = SHz and
vp = 0.5 it is equal to %y = 0.1. This effect is reinforced due to the circumstance that g is smaller than
1, see Eq.(3.4.6). For 1y > 1 and the same or slightly higher values for vy this implication is much less,
which is clearly emphasised in Fig. 3.4.3 on page 95. For large values of up the maximum displace-
ment is nearly constant with frequency f;,. For up = 0.05 and increasing 5 the maximum displacement
decreases with f;, to the minimum value of 0.05 despite the given initial velocity vo = 2.5.

The normalised nonlinear oscillation frequency fi./f, where fu_ is the inverse of the analyt-
ically obtained oscillation period ¢77,, Eq.(3.4.12), depending upon the SDOF’s stiffness coefficient
k, mass m and on the initial conditions, is shown in Fig. 3.4.4 for a constant value of #p =0.1 and in
Fig. 3.4.5 for vy = 2.5 = const.. Both figures have (a) as the linear case where the oscillation period is
exact the reciprocal of the systems’s natural frequency f, as defined in Eq.(3.4.7) and independent of
any initial condition g or vg.

As the order of nonlinearity b increases, the four lines in Fig. 3.4.4 plotted for four different initial
velocities from 0.5 to 6.0 begin to separate, first at low natural frequencies f, < 10Hz, see Fig. (b)
and later at moderate and high f,, i.e. over the entire given frequency range. At low initial velocity
(solid and dashed lines) the real oscillation frequency decreases significantly with increasing order of
nonlinearity b. In figure (d) for f,, > 20Hz the nonlinear frequency fy for vp =0.5 and 1.5 is only a
fraction of the value of the linear system’s natural frequency f;.

Closer examination of Fig. 3.4.5 reveals the graphs first split up at the upper end of the spectrum
as b increases, see (b) to (d). In general, at larger initial displacement zy > 1.00, increasing values for
b and constant initial velocity vp = 2.5 the change in the actual oscillation frequency fni is negligible
compared to small uy. For ug equal to 0.05 and 0.5, fy gets smaller with increasing values for f, and
b, whereas for 1y = 1.25 it stays constant. This is due to the fact that #p < 1, which can additionally be
verified by looking back to Fig. 3.4.4 where the drop in frequency for all graphs is much bigger than
for the lines in Fig. 3.4.5 as the nonlinearity exponent b increases.

1t should be noted here that all results in this subsection, Fig. 3.4.2 to 3.4.5, have been verified using
a numerical time domain integration method. This applies as well for subsection 3.4.1.2 and 3.4.1.3.

TThe plot for gmin " would look like a mirror image of Fig. 3.4.2 with the mirror axis being the abscissa, i.e. with
negative values on the ordinate, sce Eq.(3.4.6b).
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However, a detailed verification for the results of section 3.4.1 and 3.4.2 including remarks on the
numerical algorithm will be given in 3.4.3,

3.4.1.2 Step Response

Substituting the nonlinear restoring force fj () from equation (3.4.1) into Eq.(3.3.3a)

—polp + % z% (3.4.23)

k f sign () [ul® du

u

— P03y YExy, =k/5ign(u) lul® du
H

=3 =N
U JHHE"f] u=ily

and evaluating the integrals on both sides obeying Eq.(3.4.2) gives the following four nonlinear alge-
braic polynomial equation for the extreme values of displacement ,ugx, depending upon the sign of

m ¥ming 5 n Hmaxy and up

(@) | puex, <0, up <0

po(b+1) po(b+1) (b+1)
~ (= nttexg )’ witten, — " e, = —(~u0) up— =t + 702 i3
(3.4.242)
(®): | nttex; S0, up>0
b+1 b+1 b+1) .
_(_]HuExfl)b ey, — E.Q,(.k_) e, = u{()bﬂ) _ po - ) o+ ( e ) 2 (3.4.24b)

(€): | uttex;, >0, 2o <0

b4l b+1 h4-1)
Mu{ei;l)_p_‘——(j(k )mu&ﬁ=‘(‘”°)b”°‘p0(k )”°+(2m2)”% (34.24c)

(d): ulEx; > 0, u >0

s+1)  po(b+1) _ e+ pob+1) (b+1)
HuEXfl _“'“k_HNExfl*—uo - k up + 20)}21 u% (3.4.24d)

It is easy to see that the terms on the right-hand side in Eq.(3.4.24) incorporating the initial conditions
can be rewritten as a single expression

. b+1 b+1) .
o = |uo) &Y — sign (o) (—+T)@ |o| + (—2m2—)u5 (3.4.25)

Furthermore, a simple substitution similar to Eq.(3.4.5)
)

J{—luEXfl = _HHEXfl ] ]HuExf[ _é 0 (3.4.26)

reduces the number of possible cases from four to two
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O]
) | g, <O — yilee, 20

A6+ b+1) ¢
H%}Exfl +po(k+ )thgExﬂ_mﬁzo (3.4.27a)

@ [atee, >0

(b+1) _ po(b+1}

il T s, — 0 = 0. (3.4.27b)

Since it is unknown what sign , #min 70 mlmaxy, € n¥Exy will possess, both equations need to be eval-
uated in order to retrieve a unique solution. Although mathematically feasible, complex solutions are
in general without any physical meaning. However, as will be seen in the next section 3.4 they are
required for solving the oscillation period integral expressions.

It shouid be noted that both equations in (3.4.27) above can be written in one single expression

{B+1) Po (b + 1)

-
However, solutions for (3.4.28) can be only obtained numerically and multiple negative and posi-
tive roots, given b is large enough, do not clearly indicate the sought solution, Splitting (3.4.28) into
(3.4.27) leads to two positive values if —eo < u{f) < co. After applying (3.4.26) the result from (a) is
the negative extreme value of the SDOF displacement.

wMEx, — HO. = 0. (3.4.28)

} u ¥Exy

The step response oscillation period 7}, is obtained using (3.3.6), which now has to be grouped
into three different cases (I), (IT) and (III) as follows.

@ m Hmaxy, < muminfl <0

The maxima displacement obtained from Eq.(3.4.27) has only negative values. Together with
Eq.(3.4.2) this gives

”rnln

) 2 b+1) d
uly = ( ha f - ) u(t) <0
Mumaxfl \/_ ((—u)b(—u)) —I— mu_’_]ﬂafi

(3.4.292)

which can be rewritten using the substitution from Eq.(3.4.11a) as

I bt uminfi o

V28D %

Wy (5+1)
-} (b+l)pg -
|Hu““"f1| \/_u “t 0y

and after interchanging the integration limits leading to the final result

@) >0 (3.4.29b)

IHumaxfl o
) 2(b+1 .
uly = ——% dit . #H>0  (3.429%)
i Huminf1 ¢_u ( + )pa + aﬁ
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(II) Huminf‘ <0, Humaxfl >O or Humaxfl <O, I[{uminfl >0

The oscillation period is now a sum of the two integration intervals ranging from the domain
of negative displacement #(¢) < 0 to the positive. The formulas to follow assume ; #min;, <0,
wimaxy, > 0 but are easily modified for the case wMming > 0, slmax, < 0 by changing the
limits on the appropriate integration expressions. Again, using (3.3.6) together with (3.4.2) leads

to
E;;} 2(b+1 / du
=
b1
aming, \/ (—u) ( u))-l—f_‘f'ﬂu_,_ﬂocf
]Humax_f
+ du . (3.430a)
2 \/—u(""“”-}"géi'kl]ﬂu-l-ﬁaﬁ
and hence
!Huminfl O
=] V2(b+1) / du
nly=—"——
oW J \/_(i}(b+l) (b+1)po .
H“maxf]
d .
+ f - . 9, u(t) > 0. (3.4.30b)

Y ST T w—

am o< m Hming, < 1 WUmaxy,

The displacement of the system is purely positive. The integral equation for the oscillation
period is therefore

umax

uly = b+1 / du L u) > 0. (3431
\/ w(6+1) 4 (+1po (b+1)Po U+ HOL;

umlhf

All terms in curly brackets in Eq.(3.4.29) to (3.4.31) are known as elliptic integrals [22], see appendix
B.2 for details.

An expression for the extreme values of velocity can be found using Eq.(3.3.4g) on page 41 together
with (3.4.3) on page 46

E

IEx = \/E _k (6+1) B+1) M
UEx = - (PouEx,eq_ B+1) |uEx,eq| —poto+ 5 (b—i—l) | ()I -|- u2 (3.4.32a)

where the new equilibrium position is given by (3.3.4¢)

HEx eq = sign (Po) ('p"') (3.4.32b)
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and therefore corresponds to the nonlinear static displacement caused by the step load with magnitude
po. Equation (3.4.32) can be rearranged and leads together with (3.4.25) to a more compact form

1
. 2 b+1 B 2
e = Ony | 55 (p°( - ) eeq — [te & +;Haf1) (3.4.32¢)

where minimum and maximum values of are given by (3.3.4h).

For any arbitrary value of the exponent b, i.e. b € R, equations (3.4.29) to (3.4.31) can only
be solved numerically in their current complex form. However, examining three simplified cases
(D) up = iy = 0, (ii) b = 2, and (iii) b = 3, analytical solutions become available. In addition, for b == 1
Eq.(3.4.27) to (3.4.31) reduce to the well known solutions for a linear step-excited SDOF system, see
appendix A.2.2, with

. 2
ey fin = — fkﬁ + \/ (%) + O in (3.4.33a)
and
2
ey in = 20 \/ (p—;) + HOU, fin (3.4.33b)

for the minimum/maximum linear displacement due to P(¢) = polH(¢). The constant pLs in is easily
derived from Eq.(3.4.25) by setting b = 1. Because of the condition

!

>0 (3.4.34)

-
B UExy lin s mUExy lin =

Eq.(3.4.33a) is only valid if

Po

2
T < “/(p_;) =+ 7104, Jin

P2y () erenm

Furthermore, for any type of initial conditions the expression underneath the square root in (3.4.33)
will always be greater zero which can be proved as follows. The inequality

and (3.4.33b) only if

2 . 2 72!
(B2) "+ ol — sign (o) “£2 o] + =5 = 0 (3.435)

reaches a its global minima if up > 0, hence sign (up) = +, #p = 0 and py > 0 leading to

(5) -2 20

which holds true for
ug, k, Po € R
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and is already implied in the small proof of Eq.(3.4.35),
up, k,po = 0.
For zero initial conditions Eq.(3.4.33) gives the same result as (A.2.12)
a¥ming in =0
and
s¥maxy; Jin = 2 X Ustar fin == 2 % .

Equation (3.4.32¢) Ieads for the linear case withb=1to

(]

o\ 2
N U
HEx,lin = Uy \/ugtat,,in +up—2 % up + (ao) (3.4.36)

as the systems velocity with wgat in given by Eq.(3.4.32b), see above. Equation (3.4.36) is the very
same expression as obtained in appendix A.2.2 on page 181 and demonstrates once more the ability of
the proposed method to cover linear and nonlinear SDOF systems in an equal manner.

The linear oscillation period in case (II} derived from Eq.(3.4.30) is

2 I H uminfl d(_) ]Hu""axf] d
u u
"I in = . 5 + = (3.4.37a)
"1 % \/—(ii -t ke, ) \/—”2"'%”“'130‘1’1

which equates to the algebraic expression

J2] .
2 Do % + lhumlnfl
uTp in = — { —arctan ( ) —+ arctan
' W, kO
i i \/—}Huminf] (2%+‘Mum]nf1 )_l_]Hafl
2o
Po s HumBXfl
+arctan ( ) + arctan (3.4.37b)
kV HO7 \/Z%Humaxf! - Hu%aXﬂ ‘+‘I[-Iaf;

and simplifies together with (3.4.33), the definition of the natural frequency of the linear system
W, = 2%f,, (3.4.37¢)
and the inverse trigonometrical limit
. T
xgrfmmctan (x)= 3

to
2 /m T
Ty i 2_{_ T
Bl = o 273
1

=_ 3.4.37d
7 ( )
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the well-known relationship of oscillation period and frequency of the linear system for the general
case up # 0, iy # 0. If pg = 0, Eq.(3.4.33) becomes

9]
BuEXfl Jin = H”Exfl,lin |H(}| ‘+' (3437@)

=;\

For the oscillation period the term is always, as one would expect, Tn’ regardless initial conditions
ug, 119 and step force amplitude po. The results obtained in (3.4.33) to (3.4.37) are an indicator of the
consistency of the method derived in this chapter. By changing only a single equation parameter, the
linear and nonlinear dynamic behaviour of the SDOF can be expressed.

Returning back to the special cases (i) to (iii) mentioned above, Eq.(3.4.27) reduces with

(i) ug =1y =0 to the two following nonlinear algebraic equations for the extreme values of dis-
placement , g, depending solely upon the systems nonlinear stiffness coefficient & and the
magnitude and direction of the applied load pg

. 45 b+1
H(L}Exfl (JH(u)EXfl + %’q) =0 (3.4.38a)
b+1
n¥Exs (HubEXfl - L’%) =0 (3.4.38b)
with the only feasible solutions
0 = [;%]ummf] if po >0,
) 1
—uH¥Exy, = u¥Exy, = 1 3 (3.4.3%a)
] 1 - |:(b+ k) LDOl] = [ljl(EI] Umaxy if po<0
for Eq.(3.4.38a) obeying condition (3.4.26} and
1
(b-l-l){po!]‘ o] :
R = f >0,
ver = [ T Himaxy, L Po (3.4.39b)
H7EXA
0 == [‘%]umin 7 if  pe<0

for Eq.(3.4.38b). The index [ug] used in the upper left comer of the symbols for minimum and
maximum displacement refers to the case of zero initial conditions. It should be noted here that
obtaining an explicit expression for []H]ugxf as done by BAPAT et al [7] discharges the solu-
tion for [;g Uming, and leads to a somewhat ambiguous derivation of the minimum displacement
[’ﬁ’l]um,nf , which is fundamental for obtaining the oscillation period since it presents the lower
limit of integration as will be seen below.

For ug = tip = 0 Eq.(3.4.32) and (3.4.32b) reduces together with the equality

po x sign(po) = |po|

to
1 {5+1})
_ lpol (ool w2 pol\ 7
fJ i () s ()
|Po| (3+3) Slgn(Po)
\/ T (3.4.40)
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as the extreme values of the system’s oscillation velocity for zero initial conditions.

With the constant go.; from Eq.(3.4.25) equal to zero and assuming® pg > 0 and case (III),
1e. 0 < [uifl]um-m g < Euﬂ‘:ljumaxfl , the oscillation period 7, derived in (3.4.31) can now be written

as

fup]
H ¥max

S
baly, = v2(6+1) / du . pe>0 (3.4.41a)
Wy \/__u(b+1) + &t

0

or, since the lower integration limit [I]?I] Urming, = 0, as”

(ug)
]H“maXf
wly, _ V2(6+1) du 34410
HIA =" o) (3.4.41b)
L S Y Ay T

which leads to
e

]Humaxfl
1— kut b
(o] =2 2(b+1) S CER TR 1 1-1 1.k
H A ©, v (b+li)p0_“b 25 2 +2b’ (b+1)po
0

[w0]
k E ¥maxy

(b+1)po

11, l.k({?{]umaxﬁ)b

% I e B
2 25 2 T2 T B+ e

_2206+0)
)y

Finally, together with Eq.(3.4.39) one has the oscillation period as
1
— b7} (L
o, Vpol &k (b—1)T (1)

where I'(...) denotes the Gamma function outlined in appendix B.1 and [21]. In case of p < 0
the period [1%1 Ty, is given by Eq.(3.4.29¢)

u
| H Hmax g,

1 206+ 1) diz

E”OJT —
® (B+1 .
" i |\/_gg(+>_(b+n(—po)g;
H I"I'Ilnfz k

Hln = (3.4.43a)
= ( to Eq.(3.4.41a)

which simplifies with (Hum;n .

fupl
| [Eiumax

ATE TS ! &
= M / du [ma] <0 (3443]3)

u
3 H “maxy
0y, (B+1)
- b+1)pg @
0 \/ —u + (B+1)pe k)p 0 3

®In the case of a nonlinear step-excited SDOF system which is at rest at the time the load is applied, i.e. zero initial
conditions, minimum and maximum displacement will always have the same sign, i.e. either positive or negative depending
solely on the direction of action of the force P(¢) == po H(¢).

91t should be noted here that the results for Eq.(3.4.41a) and (3.4.41b) are exactly the same. However, the second equation
was introduced because the integration algorithm of the algebraic manipulation software MATHEMATICA® [20] converged
more rapidly to a stable solution, Using Eq.(3.4.41a) for integration between the limits 0 < u{t) < ["u'fl] Umaxy; leads to an inde-
terminate expression since u(z) will appear in the denominator. Therefore, the simplification made above before integrating
has to be introduced prior to application of the integration limits if Eq.(3.4.41a) is used.
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(i)

and hence yields the same solution as (3.4.42).

It should be mentioned here that the expressions derived in (3.4.39) and (3.4.42) for the special
case of zero initial conditions are essentially the same as those obtained by BAPAT et al [7] using
an integration-by-substitution method. However, neither a clear interpretation of the minimum
displacement I’]f{'] Uminy, as the solution of Eq.(3.4.38) nor the possibility of a negative acting force
constant py < 0 were given. Both equations (3.4.39) and (3.4.42) hold also true for the linear

case b =1 giving for 1 YExy,

0>0:
mYmax;, = =42 LDOl . i
! k lif  pp<O

aMming = 0

and with
y VAT (55) R
un Y|~ T3
=1 [ (b=1)T (5 —3)
for the oscillation period
1
Ul in= 7

as shown in A.2.2.

b =2: Considering a restoring force proportional to the square of the displacement, Eq.(3.4.27)
simplifies to two third order polynomials
2)e? 3po 2o 2 2)6)
(1) }H}HEXA i J[H} YExy, _IEH}O% =0, [ ] UEx; = 0 (3.4.44a)
2 3po 2
(2) J[H] Eer] j: J[HIuExfl [Iafl =0, j[H}uEXfl >0 (3.4.44b)
with a constant consisting of all initial conditions
Aoy, = Juo | — sign (uo) % fuot+ ;ng (3.4.45)

and an index [2] referring to the special case of b = 2. It is easy to see that for p < 0 case (1) and
(2) can be interchanged since both of them posses the same condition ug, > 0. Equation (3.4.44)
can be solved using the algorithm given in [15], see appendlx B.3 for details. The solution indi-
cator D equates for case (1) as

Dy = (%")3 +(- maﬁ) (3.4.46a)
and for (2) in Eq.(3.4.44)
Dpy=— (%)3 +(- maﬁ) . (3.4.46b)

where the sign of D constitutes the nature of solutions, see Table B.3.1. Since this cannot be
determined without prior knowledge of the direction of action of the force pq, the force-stiffness
ratio and all initial conditions, it is necessary to distinguish between the two different cases
(a) D < 0and (b) D >0 for D) and Dyy). It should be noted here, that the following paragraph
is of more general nature. The term D will refer to Dyyy as well as D). Likewise, the term ]%Jugxf]

2]6) :
refers to ]{H]ugxfl and ][H]uEx 5, at the same time.
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{(a) D <0 : All solutions will be real and can be obtained using Eq.(B.3.3b)

Huey, =222 - cos[ (1—1)] (i=1,2,3) (3.4.472)

where the constant ¢, equates to

(ppzarccos[ H /i } (3.4.47b)

e

The solutions EH]'“EXf ;i obtained by Eq.(3.4.47a} are not sorted by any means, see appendix
B.3, but can always be rearranged in a way to fulfill the following two conditions

j[H]uEx_fl A+ ][{j'i]uExfl 2= *%usxfl 3 (3.4.47¢c)

and

J[H]”EXf,,I > ”uExf] (3.4.474)
(b) D > 0 : According to Table B.3.1 equation (3.4.44) has one real
e 1 =51+52 (3.4.483)

and two conjugate complex solutions

B, 0n =22 412243 (3.4.48)
where, cf. appendix B.3,
g
5y = H—zfl +vD (3.4.48¢)
and
sp=— (3.4.48d)
3 Hoy
ky/ 554 ++/D

It is important to note here, that all solutions obtained in both cases (a) and (b) have to fulfill
conditions (3.4.44), i.e. must be equal or greater zero. Negative real solutions are discarded.

The following derivation of the oscillation period %]T 7, 1s constrained to case (II) and (III)
above, i.e. £q.(3.4.30b) and (3.4.31). Additionally, pp > 0 will be assumed. All other possible
cases can be derived from these. Substituting » = 2 into Eq.(3.4.30b) gives a sum of third-order
elliptic integrals in their non-canonical form [24]

IE{:-’Ilumlnf %]umaxIl

[23';3 V6 an du

Hin= +
® 2
" 2 \/ o §£_“_|_52] oy 4 \/—u3+§§gu+][H]aﬁ

(3.4.49)
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A solution in terms of special tabulated functions is only possible if all zeros and poles of the
integral expressions are known. If multiplied by (—1) the expressions under the square roots in
cach of the denominators in Eq.(3.4.49) are identical to (3.4.44). Hence, solutions for all zeros
are available and (3.4.49) can be rewritten in Legendre canonical form [23] using

3 () -5 (1-5)
=& ~u)(u—E&) (u—&) (3.4.50a)
=i+ (& +E+E) i — (€18 + 8183+ Ea83) u+ 818283 (3.4.50D)

and
3
—u3+—‘z-qu+§0€ﬁ = (x1 —u) (u— 32} (u— X3) (3.4.50c)
=+ (00 +x2+%3) 0+ (—%1%2 — %13 —A2%3) ¥+ 1 X2X3
(3.4.50d)
where
E_pi = %}uEXfl A and xi= ][1?]_]:"'[Ex_,r1 Jo (I?J = 1’21 3) (34506)

are the solutions of the third-order polynomials, Eq.(3.4.44a) and (3.4.44b), respectively. Using
the inverse of substitution (3.4.26) on page 52 the oscillation period is then

2=
H¥ming

Iz(]-f; ___ﬁ du
e ] VEE-a) w5

%Eumaxjrl

+ du . (3.4.51)

Vg — ) (e —%2) (u—%3)

Selection of case (1I) on page 54 implies the solution of (3.4.44) for the following cases:

(A) n>0>y >y, Yy €R (3.4.52a)
(B) y1>0,2=y3; y €R; ¥,y €C (3.4.52b)

depending upon the sign of D in (3.4.46) and
yi=8& or  ¥i=Yi (i=1,2,3),

which need to be taken into account for the solution of the integral terms in (3.4.51). Since the
solution behaviour of both terms in (3.4.51) is essentially the same, only the first one will be
examined closer. Considering case (A), i.e. Eq.(3.4.50a) has three real solutions and the indicator
D in (3.4.463) is greater zero, the solution for the first part of Eq.(3.4.51) can be obtained using
case number {236.00} in [22]

=&

| Bt
i ¥min

du
V(& —u) (u—8&) (u—E3)

=N F (W), X)) (3.4.53a)
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with F(y,K) being the incomplete elliptic integral of the first kind, see appendix B.2, and the
constants for case (A)

2 S=8 (3.4.53b)

R oy “’(’”:a“’s*”( zléaz) T VE g

whereas for (B) solution case {243.00} [22] applies, leading to

[ g:]%[]umlnfl E_.l
du
=g, F (V@) Ka) (3.4.54a)
V& -0 -8 +8]
with 5
g, = &2 ;53 md  g—_82=%)" ;§3) : (3.4.54b)
and appropriate constants defined as [22]
1
Me®) = _A(;;’ A(s) (Ca— 5..1)2'*‘5%,
Ap) —51) Ay — E..a+§1
=arccos { ———— |, Ky o= A2 3.4.54c
vie) (A(B) +&) ) 24(5) ( )

Substituting §; with y; in (3.4.53) and (3.4.54) leads to the solution for the second integral term
in Eq.(3.4.51). Finally, the oscillation period (3.4.51) can be written as

(-/+}

NG
W= o {nez F(we, k) +Mey F (Wy k) } (3.4.55)

where the indexes & and  refer to the first and second integral in (3.4.51) and can be solved using
Eq.(3.4.53) and (3.4.54) as given above.

Assuming case (ITT) from page 54, the system of two equations in (3.4.44) has no feasible
solution when equating (1) and three real solutions, two positive and one negative, respectively,
when solving equation (2), namely

Xi>%>%x,  x3<0, xXi+Xe+x=
)
Hence, for determining the oscillation frequency EI} T4 due to purely positive displacement equa-
tion (3.4.31) is required. Using (3.4.50c) together with (3.4.50¢) this can be written in its canon-
ical form

\/_ JEIi]umaXfl
V6 du , (3.4.56a)
Or V(% —u) (=22) (4 —%3)

2]
!:HIHH-ﬁnfI

[2](1»)
nln=

with the infegration limits

]%]ummf =%z and ][é]i"f"max_fl =71-

62

Biast induced Shock Waves in Structures I —  ISVR Technical Memorandum Nr. 936



3.4. Autonomous Conservative Systems - Examples.

Referring to case {236.00} in [22], Eq.(3.4.56a) equates to

V6
205 Tﬁ e F(v,x) (3.4.56b)
with
2 . X1—X X1 —Xa2

=——, =arcsin | 4/ 52—}, K=, f5—=. 3.4.56¢
R e A ( X X —%3 (34.369
It is easy to see, W reduces to arcsin (£1) and hence, to odd integer multiples of 5. With the

identity [22]
F(nnt0,x)=2nK{(x)£ F(0,x) (3.4.564d)

Eq.(3.4.56b) can be simplified to

)
By —@2j-1) —‘CnE K (%) with j=1,2,3,... (3.4.568)

and XK () as the complete elliptic integral of the first kind, cf. appendix B.2.

(iii) b=3: Inthe case of a cubic power in the displacement in the restoring force of the autonomous
conservative system Eq.(3.4.27) can be rewri