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Introduction

It is important to understand the micromechanical behaviour of the organ of Corti
because it is the site of the cochlear amplifier that provides us with our exquisite
hearing sensitivity. A sketch of the major components of the organ of Corti is shown
on the left hand side of Figure 1. Previous micromechanical models (e.g. Neely and
Kim, 1986) have assumed that the basilar membrane (BM) and tectorial membrane
(TM) behave individually as single degree of freedom systems, with an associated
lumped mass and stiffness, connected together via a spring representing the stiffness
of the outer hair cell stereocillia. Such a lumped parameter model is shown on the

right hand side of Figure 1.

More recently Bell and Fletcher (2004) have suggested that the tectorial membrane
and reticular lamina may have a bending stiffness that acts together with the fluid
ingrtia in the subtectorial gap to generate wave motion in this small space, with a
phase velocity that is slow enough that resonances can occur along the 80um or so
Jength of the subtectorial gap. In this report we examine another possible distributed
model of the organ of Corti, in which the tectorial membrane is assumed to behave as

a locally-reacting elastic body.

There is some evidence for this model from the mechanical measurements made on
the tectorial membrane by Freeman et al. (2003) and the organ of Corti by Scherer
and Gummer (2004). Freeman et al. used both magnetically-actuated beads and a
force probe to measure the mechanical impedance of the surface of tectorial
membranes from mice, when laid out on a solid surface. They concluded that the
dynamic behaviour up to several kHz could be well represented as a lossy stiffness of
about 0.2 Nm™' in the transverse direction, when measured with a force probe of
diameter of about 50 um. The measured losses can be reasonably well represented by

assuming a complex stiffness of the form

K=K, (+ju) (1.1







where K, is the magnitude of the mechanical stiffness and x is a loss factor. This

model predicts that the mechanical impedance will have a phase shift of — tan ™! 71;

The transverse impedance measured by Freeman et al. (2003), has an almost
frequency independent phase shift of about —60° from 10Hz to 4kHz, so that is

predicted to be approximately constant, with a value of about 0.5.

Scherer and Gummer (2004) measured the mechanical impedance at various points
along the upper surface of the organ of Corti, labelled the reticular lamina in Figure 1,
using an atomic force cantilever, with a typical indentation depth of 1 um. They
measured impedances consistent with a lossy spring having a spring constant that fell
from about 0.5 Nm™' at the tunnel of Corti to about 0.05 Nm! at the outer tunnel,
with the stiffness at the positions of the three outer hair cells falling in between these
values. The damping they measured could also be modelled reasonably well with a
complex stiffness of the form of equation (1.1) with a loss factor, p, again having a

value of about 0.5.
An Elastic Model

The behaviour of various models of an elastic surface is discussed, for example, by
Johnson (1985). One widely-used model of an elastic surface is the Winkler bedding,
in which the elastic behaviour of a surface is modelled by an array of linear springs of
stiffness K4, separated by a distance 4, as shown for a rigidly-backed elastic layer in
Figure 2. Provided the load is applied over an area which is large compared with A,

then the exact spacing of the elemental springs does not affect the behaviour provided
K, /4% =x, (2.1)

which is the stiffiess per unit area, is a constant. If the load is applied over a disc of

radius a, the mechanical stiffness would thus be equal to

K=ma’x. (2.2)







The Winkler bedding model implicitly assumes that the deformation is local, so that
there is no deflection at points away from where the load is applied, and that the

deformation shape is also unaffected by the thickness of the elastic material.

As the thickness, 7, of an elastic layer on a rigid surface becomes significant
compared with the lengthscale of the load, a, then bulk effects in the material start to
become important and alternative models must be used. In the extreme case where
the thickness of the material is much larger than the lengthscale of the applied load,
T» a in Figure 2, then an elastic half-space model could be used. Johnson (1985}
dates this model back to the work of Lamb in 1905, and shows (equation 11.11 p.346)
that the dynamic stiffness experienced by a uniform circular load of radius a is equal

to

K= Ga[hl + i hz}, (2.3)
Cs

where G is the clastic shear modulus, equal to E/2(1-v) where £ is the Young's
modulus and vis Poisson's ratio, ; and A are constants at a given frequency that are
provided graphically by Johnson (1985), and ¢; is distortional wave velocity, which is

of the order of 30 ms* for soft material like rubber.

This dynamic stiffness is equivalent to that of a linear spring in parallel with a viscous
damper, for which the time constant is approximately equal to 0.7 a/c, for the values
of k) and h quoted by Johnson (1985). Assuming c; is about 30 ms™', this time
constant is of the order of 200 ns for indentations with diameters of the order of
10 pm, so that this damping term can be ignored compared with that discussed in
Section 1. Assuming that %, is about 5, from Figure 11.2 in Johnson, then the

predicted mechanical stiffness in equation (2.3) is approximately

_ 5FEa
TS (2.4)







Note that the stiffness is proportional to the indentation radius, a, rather than the
indentation radius squared in the Winkler bedding model, equation (2.2). This
difference can be rationalised by considering the stiffness of an equivalent cylinder of

length T, which would be

7 Ea*

T

K (2.5)

If Tis small compared with a, then X is proportional to a’ and the Winkler bedding
model is appropriate. Comparing equation (2.5) with equation (2.2) also suggests that
the stiffness per unit area, x;, for such an elastic layer is approximately equal to E/T .
As the thickness of the material gets larger compared with a, and the sfrain
distribution inside the material becomes concentrated around the indentation, then the
effective value of T becomes proportional to a, and so K becomes proportional to a,

as in the elastic half-space model.

Thus whether the elastic material is of thickness 7" and backed by a rigid surface, or
forms an elastic half space, the displacement per unit force when a circular load of
radius a is applied can be represented by the mechanical stiffness X, such that the

ratio of the displacement, w, to the applied force, f, s

-1
= (2.6)

~ =z

where K =xra? for the rigidly backed layer, with x being the stiffness per unit area
and K =5Ea/1(1-v) for an clastic half space. The quantity used, in Section 3, to
derive the wave equation, however, is the displacement, w, per unit pressure, p, where
the pressure is equal to f / ma® for a circular load of radius . This quantity can be

written as

(2.7)

o=
La |







where S is K / za® and may be termed the wall stiffness. It is equal to x for the

rigidly-backed layer, and for the elastic half space is equal to
§=—3F 2.8)

2r(l-v)a
A very similar result is obtained if instead of a circular force distribution, an infinite

strip of width 2a is assumed (Johnson, p.348).

The other property noted by Johnson (p.50) is that, away from the concentrated load,
the deflection pattern on the surface of an elastic half space falls off to zero as i/r,

where 7 is the distance from the edge of the applied load. A more exact analysis is
possible to take this local behaviour into account by decomposing the force and
dis_placement fields into their wavenumber components. This local deflection
behaviour is in contrast to the sharply delineated deflection pattern seen in Figure 2
for the Winkler bedding. In both cases, however, the surfaces may, to a reasonable

approximation, be taken to be locally reacting.

This theory allows us to compute the effective Young's modulus of the tectorial
membrane (TM) from the measurements of Freeman et al. (2003). The indentation of
their force probe had a radius of about 25um, which we could assume is small
compared with the TM thickness in order to use the clastic half-space model. We can
then predict the Young's modulus, from equation (2.4), to be

g 2KUY) (2.9)

S5a

where K is the measured stiffness, which is about 0.2 Nm! and the Poisson's radio, v,
for the gel-like TM may be taken as 0.5. The predicted value of the Young's modulus
of the TM is thus about 1.6kPa. This is significantly smaller than the widely-used
value of 30kPa quoted by Steele ct al. (1995), although Bell (2005) reviews a number
of studies which estimate the TM elasticity and reports a wide range of values that

bracket the 1.6kPa value derived here.







A similar calculation could be performed using the measurements on the organ of
Corti taken by Sherer and Gummer (2004), for which K= 0.05 Nm™ to 0.5 Nm™
and the indenter had a radius, @, of only about Y2 um. Assuming v is again about 0.5,
the effective values of the Young's modulus calculated using equation (2.9) is now
about 20 to 200 kPa. Although it can be argued that the organ of Corti does not
behave like an elastic half-space, this calculation does suggest that the effective
stiffness of the organ of Corti to a pressure loading, equation (2.7), is significantly
greater than that of the tectorial membrane, and thus to a first approximation could be

considered as being rigid.

It is perhaps misleading that the mechanical impedances measured for the tectorial
membranc by Freeman et al. (2004) and organ of Corti by Sherer and Gummer
(2003), respectively, have such similar values, since the size of the indenters used to
take these two measurements was very different. It is clear from the discussion above
that the measured stiffiness of an clastic body is significantly affected by the size of

the indenter used to take such measurements.

Fluid-Elastic Waves

We now consider the equation governing waves between an clastic layer, whose
dynamics are modelled as a local stiffness, and a fluid-filled layer of thickness d
above a rigid surface, as shown in Figure 3. All the variables are considered constant
in the y direction so that only waves which propagate along the x direction are

considered, although the fluid can flow in both the x and z direction.

Starting off in the time domain, we define the wall displacement at the surface of the
clastic layer as being w and the fluid displacements in the x and z directions as being u
and v. The fluid pressure is assumed to be p, which together with w are functions

only of x, whereas # and v will depend on both x and z.

The fluid in the gap is assumed to be incompressible so that the conservation of its

mass leads to the relationship between # and v;







ou v

0. 3.1
ox Oz G-

The conservation of the fluid momentum, ignoring the effects of fluid viscosity for

the time being, leads to the equation

2
a_p____pﬂ (3.2)

o a2
where pis the density of the fluid.
The fluid displacement in the z direction is now assumed to vary linearly across the

thin fluid layer, so that it is zero at the rigid surface at z=0 and equal to the

displacement of the elastic wall, w, at z =4, so that
v=Zw, (3.3)

where w is only a function of x. The momentum of the fluid in the z direction can be
ignored provided d is much smaller than the wavelength, which is equivalent to the

"léng-wave" approximation in cochlear macromechanical modelling (de Boer 1991).

Differentiating equation (3.3) with respect to z and using equation (3.1) we obtain

ou__w
o= (3.4)

Differentiating equation (3.4) twice with respect to ¢ then gives

’u 19w (3.5)
oxor:  d et

which may be compared with the result obtained by differentiating equation (3.2) with

respect of x;







to give

(3.6)

(3.7)

We now use the properties of the elastic surface, which is assumed to react locally so

that

where S is the wall stiffness, to give the final, second order, wave equation as

This can also be written as

where the phase velocity is

2 2
dp_pOp_,

ox?  dS a?
’p_ 13 _,
axl ¢ o ’
ds
c= |—
fo,

(3.8)

(3.9)

(3.10)

(3.11)







Calculation of the Phase Velocity

If the elastic surface acts like a rigidly-backed elastic layer, it is shown above that the
wall stiffness, S, is equal to the constant stiffness per unit area x, and so the phase

velocity equals

c= |95 (4.1)

This is frequency-independent and so the waves generated between a fluid gap and a
rigidly-backed elastic layer are nondispersive, provided the wavelength is large

compared with the thickness of the elastic layer.

Despite the apparent simplicity of equation (3.11), it is made more complicated for

the elastic half-space model by the fact that the stiffness, S, given, from Section 2, as

s=—2E 4.2)
2r(l1-v)a

is a function of the assumed radius of the load acting on the elastic surface, a, which

must be related to the wavelength of the sinusoidal pressure distribution set up by the

wave, 4.

In fact an exact analysis of the static displacement distribution in an elastic half-space
subject to a one dimensional sinusoidal pressure distribution has also been presented
by Johnson (1985, p.398), who shows that the displacement has the same corrugated
distribution as the pressure and that the pressure per unit displacement is then given

by

(4.3)







Setting equation (4.2) equal to cquation (4.3) allows an effective lengthscale to be

calculated as

2
a=5(l V)/l

. 4.4
271'2(1—1/) ¢

Assuming that vis equal to 0.5 the effective lengthscale, @, is thus about 0.384.
Substituting (4.3) into the square of the equation for the phase velocity, (3.11) gives

2 7Z'Ed

- (4.5)
(1-vi)dp

C

Since Ais ¢/ f or 2z ¢/w , we can thus derive an expression for the phase velocity as

1
[_fid_] w6
21—v¥)p

The waves generated between a fluid gap and an elastic half-space are thus dispersive,

with a speed which increases with frequency according to @ /4.

If, for example, we assume that E is 1.6 kPa, d is 3um, f=w/27 is 1 kHz, pis
1000 kgnf3 and v= 0.5, then the predicted phase velocity is about 270 mms ', and
the wavelength is about 270pm.

The Effect of Fluid Viscosity and Elastic Damping

For the small fluid gaps important in cochlear micromechanics the viscosity of the
fluid will play a significant role in the dynamic behaviour. The measurements of the
tectorial membrane dynamics by Freeman et al. (2003) also showed that the local

stiffness has a significant loss, with a loss facior of about 0.5. Both of these effects

~10-—






will cause a propagating wave to decay, but will also modify the phase velocity, and

so it is important to take them into account.

The fluid viscosity will give rise to an additional term in equation (3.2) due fo drag,
whose magnitude will depend on the relative values of the fluid gap thickness, &, and

the viscous boundary layer thickness given by

1
5 =[i]2, .1)
ol

where 7 is the coefficient of viscosity, which is approximately 7x10 " kg m™'s™" for
water at body temperature. The viscous boundary layer thickness is thus about 10pm
at a frequency of 1 kIiz and is somewhat larger than the fluid gap thickness, which is
of the order of 3um. The flow in the x direction will thus approximate the parabolic

profile of Poiseuille and the force required to overcome viscosity will be

approximately \4n/d 2)0u/dt (Lamb, 1925). The fluid force equation, (3.2), with
7

viscosity then becomes
2
o __ 0u_nou (5.2)
Bx ot d* o
Thus
2
Mz_iﬁ_p__‘lg__@, (5.3)
ot pax pdd o
and so

3 2 2
Ou :_iap_ém 8u_ (5.4)
otZox  paxt  pd? oxor

But from equation (3.4), we know that

11—






u__ W (5.5)
ox

so that

3 2 2
u _ 10 P, dn ow __10%w (5.6)

atox  poxt pdda  d o

Thus equation (3.7) is modified by the effect of viscosity to become

2 2
op _Mmdw_pow_g (5.7)

Assuming sinusoidal variations of the form p(x)e’ (@) and w(x)e’ (@) where
p(x) and w(x) are the complex pressures and wall displacements at the angular

frequency @, equation (5.7) becomes

, 2
—kzp(x)—i‘;?—”w(xnﬁfw(x) -0. (5.8)

We now use the lossy version of the wall stiffness defined in equation (2.7) to relate

the complex wall displacement to the complex pressure;

W(x) = ———— p(x) (5.9)
S+ ju)

so that the wave equation in the frequency domain becomes

. 2
S K p() = —22P )+ —2 L p(x)=0. (5.10)
d>S(1+ ju) d S+ ju)

The square of the wavenumber is thus given by

~12—






2 .
pio_ @p _ JAenm (5.11)
d S+ juy d>SU+ ju)

Making the further assumption that the stiffness is that of an clastic half space, given
by equation (4.3), with A equal to 27/Re(k), where Re(k) is the real part of &, then

_ ERe(k)

S . (5.12)
2(1-v?)
The wavenumbers are thus the solutions to the equation
2 1,2 : 2
X2 Re(k):zw p(-v") jBen(l-v7) (5.13)

dE(+ju)  d* EQ+ju)

If we set k=p~ja, where B corresponds to the propagating part of the

wavenumber and « to the attenuation constant, and we assume that the complex term

on the right hand side of equation (5.13) is R -+ jX, then this equation can be written as

(B-ja) B=R+jX. (5.14)

Equating the real and imaginary parts of equation (5.14) leads to the simultaneous

equations
B*-a’B=R and 2ap’=-X. (5.15,16)
Thus, for equation 5.16,

— (5.17)

and substituting this into equation (5.15) leads to a quadratic equation in 3

~13—






pS_rpi- X o, (5.18)
4

which can be solved for £, and hence « found using equation (5.17). The two valid
solutions to these equations k = i(ﬁ— ja) correspond fo waves propagating and

decaying in the two directions.

Figure 4 shows the way that the phase speed, @/f, and attenuation coefficient, a,

vary as a function of frequency when we assume that £ =1.6kPa, d is 3um,
p= 1000kgm® and v=0.5. Four graphs are shown, for the lossless case, 7= 0, =0,
dotted; for loss only in the elastic half space, 7= 0, x= 0.5 dot-dashed; for loss only
in the fluid, 7=16.6 x 10_4PaS, =0 light solid; and for loss in both the elastic half
space and the fluid, 7= 6.6 x 10*PaS, 1= 0.5 thick solid.

It can be seen that the losses in the elastic half space introduce some attenuation and a
slight increase in the phase speed, whereas the fluid viscosity in this geometry leads to
significant attenuation and lowers the phase speed by about a factor of three. The
phase speed at 1kHz taking both effects into account 1s about 100mms ", so that the

wavelength is about 100um. The overall attenuation coefficient at 1kHz, however, is

about 100mm™, so that the wave decays by a factor of é over a length scale of about

10um. With this assumed geometry the fluid elastic wave is thus very heavily

damped.

Conclasions

A model of the micromechanical dynamics of the organ of Corti has been considered
in which the tectorial membrane is considered as an ¢lastic half space and the fluid in
the subtectorial space is incompressible. A simple model of an elastic half space is
used to deduce a value for the Young's modulus of the tectorial membrane from the

mechanical impedance measurements reported by Freeman et al. (2003), which at
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about 1.6kPa is somewhat lower than the value generally assumed in previous

models. The measured losses could be accounted for by assuming a simple form for

the complex stiffness.

The upper surface of the organ of Corti is assumed to be rigid to a first
approximation. A phenomenological model is then used to derive an equation

describing the fluid-elastic waves that are predicted to propagate in this simplified

mechanical system, which have a lossless phase velocity proportional to w®. The
waves are slowed as well as attenuated by the viscosity of the fluid, which appears to
be more important than the losses in the elastic half space for the geometry assumed

here.

For this geometry the wave is very heavily attenuated over its wavelength and no
resonant behaviour would be expected for the passive system. It is still possible,
however, that the active behaviour of the outer hair cells could overcome these losses
by amplifying the response at certain frequencies, as observed for the fluid-bending

stiffness waves of Bell and Fletcher (2004) by Elliott et al. (2005).
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Figure 1. Diagram of the organ of Corti, left, and its lumped parameter model, right.

Kimura's membrane Tectorial membrane
% Reticular lamina } Tectorial
=1 ;,» A

Basilar membrane

2a -

Srsisrs i et 7

Figure 2. Cross-section of Winkler bedding model of the elastic behaviour of an elastic
material on a rigid surface with an external pressure applied over a disc of radius a.
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Figure 3. Geometry of the fluid layer, in which the longitudinal and transverse fluid
displacements are # and v and the pressure is p, between a rigid surface and an
elastic layer in which the transverse displacement is w.
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Figure 4. The phase speed, ¢, (upper) and attenuation coefficient, o, (lower) calculated for a
fluid-elastic wave in the subtectorial space with no losses (7= 0, = 0), dotted,
with loss only in the elastic half space (7=0, g 0.5); dot-dashed losses in only
the fluid (7= 6.6x107, = 0); feint solid, and losses in both the elastic half space
and fluid (7= 6.6x107* Pas, 1= 0.5); thick solid.
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