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Acoustic Radiation From a Pulsating Spherical
Cap Set on a Spherical Baffle Near
a Hard/Soft Flat Surface

Seyyed M. Hasheminejad and Mahdi Azarpeyvand

Abstract—Radiation of sound from a spherical piston, set in
the side of a rigid sphere, undergoing harmonic radial surface vi-
brations in an acoustic halfspace is analyzed in an exact fashion
using the classical method of separation of variables. The method
of images in combination with the translational addition theorems
for spherical wave functions is employed to take the presence of
the flat boundary into account. The analytical results are illus-
trated with numerical examples in which the piston is pulsating
near the rigid/compliant boundary of a water-filled halfspace. Sub-
sequently, the basic acoustic field quantities such as the acoustic ra-
diation impedance load and the radiation intensity distribution are
evaluated for representative values of the parameters character-
izing the system. Numerical results reveal the important effects of
excitation frequency, source position, and cap angle on the acoustic
radiation impedance load and the radiation intensity distribution.
The presented work can lead to a better understanding of dynamic
response of near-surface underwater transducers.

Index Terms—Addition theorems, radiation

impedance, spherical piston.

cap angle,

1. INTRODUCTION

ADIATION and scattering problems which involve

waves of one characteristic shape that are incident upon
a boundary of some other shape are important problems with
various practical applications in underwater acoustics, oceanic
engineering and acoustics of surfaces and discontinuities.
References [1] and [2] have each employed distinct analytical
methods to examine acoustic scattering of plane compressional
waves by two identical rigid and elastic spheres, respectively.
The method of images in combination with the translational ad-
dition theorems for the spherical wave functions are extensively
employed to study acoustic scattering by a hard spherical body
near a hard flat boundary [3], by a thin spherical shell near a
free (pressure release) surface [4], and by an ideal air-bubble
near the sea surface [5]. Axisymmetric acoustic radiation from
a spherical source vibrating with an arbitrary, time-harmonic
velocity distribution while positioned wholly outside a fluid
sphere is examined in [6]. Likewise, acoustic coupling between
two finite-sized spherical sources in a boundless fluid medium
is considered in [7] and [8]. In two more recent papers [9],
[10], the latter analysis is generalized for a number of nonax-
isymmetric spherical sources within a fluid sphere. Reference
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[11] determines the modal impedances for axisymmetric oscil-
lations of two neighboring spheres in a thermoviscous acoustic
medium. The method of images is also employed in [12] to
determine the modal impedances of a spherical source located
close to a locally reacting (finite impedance) planar interface.
Just recently, the energy distribution and modal impedances for
general (nonaxisymmetric) radiation from a pair of arbitrarily
positioned oscillating rigid spheres in an infinite fluid medium
are examined [13].

The acoustic radiation impedance of pistons placed on baf-
fles has extensively been considered in the literature for var-
ious piston and baffle geometries (i.e., planes, spheres, cylin-
ders, and spheroids [14]-[20]). The self-radiation impedance for
the classic problem of a radially (axially) vibrating piston set in
arigid sphere is presented in [14] and [15]. The mutual acoustic
impedance of pistons on a sphere and a cylinder are analyzed
in [16] and [17], respectively. Likewise, the acoustic radiation
impedance of curved vibrating caps and rings located on hard
baffles of prolate and oblate spheroidal obstacles are formulated
in [18] and [19], respectively. Just lately, the self and mutual ra-
diation impedances for rectangular piston sources vibrating on a
rigid prolate spheroidal baffle have been investigated [20]. The
present work studies acoustic radiation from a harmonically pul-
sating piston set in the side of a rigid spherical baffle that is lo-
cated near a hard/soft planar interface. This configuration is a
practical idealization for a baffled spherical transducer placed
near a rigid/free surface.

II. MATHEMATICAL FORMULATION

The problem can be analyzed by means of the standard
methods of theoretical acoustics. The fluid is assumed to be in-
viscid and ideal compressible that cannot support shear stresses
making the state of stress in the fluid purely hydrostatic. In
view of the fact that the spherical cap is supposed to undergo
time-harmonic surface pulsations, with frequency w, the field
equations may conveniently be expressed in terms of a scalar
velocity potential as [21]:

u=-VP, p=—iwpd, VI+EP=0 (1)
where p is the ambient fluid density, « is the fluid particle ve-
locity vector, p is the acoustic pressure in the inviscid fluid, &k =
w/c is the acoustic wave number, c is the ideal speed of sound,
and we have assumed harmonic time variations throughout with
e~ dependence suppressed for simplicity.
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Fig. 1. The geometry of the spherical piston in the neighborhood of a flat
reflecting boundary and its image.

Undoubtedly, the sound field radiated by a source may often
be appreciably affected by a neighboring surface. In fact, the
presence of a reflecting surface near a source can affect not
only the directional properties of the source but also the total
radiated sound power by the source [22]. Consider a spherical
piston set on a rigid spherical baffle positioned at a finite dis-
tance from a flat wall (Fig. 1). It is clear that the proximity of
the wall makes the problem more difficult to solve. If the wall
is initially idealized as rigid, planar, and of infinite extent, a
very simple theoretical device known as the method of images
can smoothly take its presence into account [3]-[5], [21]. This
method substitutes the original boundary value problem by one
with two sources in an unbounded medium (i.e., the original
source and the mirror image source). The mirror symmetry of
the boundary value problem for two sources inherently leads to
elimination of the normal component of the fluid velocity on
the fictitious wall. Consequently, the solution to the problem
with source-image configuration naturally satisfies the fluid-dy-
namic equations and the pertinent boundary conditions of the
original problem.

The problem geometry is depicted in Fig. 1. The centers of
the two spheres are separated by a distance D and the cap angle
is 6. The origins O and O of the two spherical coordinate sys-
tems (r1, 01, 91) and (72, 02, 15) coincide with the centers of the
real and imaginary spheres, respectively. The direct distance be-
tween center of the source and the receiver (field point) is r1, the
direct distance between center of the image source and the re-
ceiver (field point) is 2. The dynamics of the present multi-scat-
tering problem may be expressed in terms of two scalar poten-
tials: one corresponding to the waves disseminating from the
real sphere and the other relating to the waves from the image
sphere. Each of these waves can be represented in form of an
infinite (generalized Fourier) series whose unknown modal co-
efficients are to be determined by imposing the proper boundary
conditions. Accordingly, for axisymmetric motion in bi-spher-
ical coordinates we set

é(l)(rlv 017 w) = Z an(w)hn(le)Pn(nl)
n=0

Q5(2)(r27 b, w) = Z by (W) (kr2) Py (n2) 2)
n=0

where h,,() = jn.() + ¢y, () is spherical Hankel function [24],
n is the circumferential wave number, P, (7;) is Legendre func-
tion (n; = cosb;, i = 1, 2), and ap(w), by(w) are unknown
modal coefficients.

The real sphere is supposed to be rigid except for a cap region
(0 < 601 < ) that is vibrating radially with a prescribed ve-
locity V(). Similarly, the piston set in the surface of the image
sphere is pulsating in the region 7 — 6y < #» < 7 with a pre-
scribed velocity V(). The velocity of each piston can be ex-
pressed as a linear combination of spherical modes in the form
of infinite series

- M 0<6, <0
— N vOp ) =1V <61 <fo
N _ 0 0<b,<m—6
v2(n2) = ;Vn P(n2) = {V(z) T <y <7
where V,El) and V752) are the modal coefficients of surface
velocity distributions. These coefficients can readily be
determined after multiplying both sides of (3) by P, (n),
(m = 0,1,2,...), integrating over dn, and subsequently
applying the orthogonality property of the Legendre functions:

1
1
v = (w4 3)v0 [ Pwar
o
1
[Po1(0) — Py (mo)] VV

—7o

Ve = <n + %) 142 / P,.(n)dn

-1

= Pi(m0) = Pasi(m)] V@)

where the integrations are performed by using the following
well-known relation [14]

(20 + 1) / Pu(n)dn = Pa_s(n0) = Puss(m)  (5)

7o

Many radiation and scattering problems involve waves of one
characteristic shape (coordinate system) that are incident upon a
boundary of some other shape (coordinate system). So it is diffi-
cult to satisfy the boundary conditions on that surface. There ex-
ists, however, a class of mathematical relationships called wave
transformations that circumvent this difficulty in many cases
by allowing one to express the incident wave in terms of wave
functions for some other coordinate system which is more ap-
propriate to the boundary, i.e., they simply permit the study
of the fields scattered by the various bodies, all referred to a
common origin [9]. This transformation (shift of origin) of the
wave functions greatly simplifies the task of satisfying the spec-
ified boundary conditions on the various surfaces. In particular,
to fulfil orthogonality in the current problem (Fig. 1), we need
to express the spherical wave functions of the (ry, 61) coordi-
nate system in terms of spherical wave functions of the (73, 62)
coordinate system, and vice versa, through application of the
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Fig. 2. Normalized resistance component of a spherical piston, pulsating at
the excitation frequency of ka. = 0.1 near a rigid/compliant interface, versus
kd for various cap angles.

classical form of translational addition theorem for bi-spherical
coordinates [23]:

hy(krs) P (cosy)

E an(krsh Hsl)jm(krl)Pm(cosel)7 T < Tsl

el (6)
Z Rmn(krslvgsl)hm(le)Pm(cosel)7 T > Tsl
m=0

where s,l = 1,2(s # 1), j,() is spherical Bessel function of

order n [24], 6 is the angle between the z, axis and the O;0;

line (i.e., such that 15 = 0 or 851 = 7), 112 = 791 = D is the

center to center distance (Fig. 1), and

Qmn(krsi,0s) =" " (2m + 1) 7%1 17H0™
X h(,(krsl)Pa(Zo:;g:)n‘
Ry (krsr,05) =im 7" mz‘"" 17 (20 4+ 1)
X bZMi';IZILG;:l‘)PU (cosbq) @)
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Fig.3. Normalized reactance component of a spherical piston, pulsating at the
excitation frequency of ka. = 0.1 near a rigid/compliant interface, versus kd
for various cap angles.

where b7'™ = (nm00|0)?, in which Clebsch-Gordan Coeffi-
cients are defined, with ¢ = (1 +n 4+ m)/2 and 2q being even,
as [23]

_ (_1)u+qq!
(nmO0[0) = 7SS
((;54-:—11))!(2(] — 2n)!(2q — 2m)!(2q — 2p)! 8)

and when 2g¢ is odd, (rnm00|u0) = 0.

Incorporation of the above addition theorem in (2) allows us
to translate the wave components of the first coordinate system
in terms of spherical wave functions of the second coordinate
system, and vice versa, i.e.,

45(1)(7”279270.)) = Z Z an(kD70)a7n(w)

n=0m=0

X Jn(kra)Pn(n2)

@ (ry, 0y, w) = Z Z Qun(kD, )b (w)

n=0m=0

X jn(kr1) Pa(n1) )
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Fig. 4. Normalized resistance component of a spherical piston, pulsating at
the excitation frequency of ka. = 1 near a rigid/compliant interface, versus kd
for various cap angles.

The modal coefficients, a,,(w) and b,, (w) must be determined
by imposing the suitable boundary conditions. The continuity of
radial velocity components at the surface of each sphere implies
that

B ar; - Z Véi) Pu(mi)

n=0

D(r;,0; -
0 (n,&ww)} (10)
Whereé(mﬁi,w) = @)(1)(7‘1-./Hi,w)+d5(2)(7“i79i7w), (Z = 172).

Substitution of the velocity potential expansions (2) and (9) into
the above boundary conditions leads to

<n + %) [Pai1(10) = Pac1(n0)] VO

= khy, (ka)an(w) + i} (ka) > Qun(kD, 7)bym (w)

m=0

(1" (0 3) IPrsaom) = Pacs )] V2

= kjn(ka) > Qun(kD, 0)ap, (w)+kh], (ka)by,(w) (11)
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Fig.5. Normalized reactance component of a spherical piston, pulsating at the
excitation frequency of ka. = 1 near a rigid/compliant interface, versus kd for
various cap angles.

where the prime symbol indicates the derivative with respect to
the argument.

The fluctuating fluid pressure on the surface of a vibrating
source constitutes its radiation loading. The normalized average
acoustic radiation impedance load per unit area on the vibrating
piston may be computed by making use of Foldy’s definition
based on the radiated power [15], [25]

Zp(w)=Rp(w) —iXp(w)
/p(m:a, 1, w)oy (m1)dni (12)

7o

1
a 4dmpc (V(l)ae) 2

where a, = asin(fy/2) is the effective piston radius (i.e., the
radius of the sphere that has the same area as the piston), pc is
characteristic impedance, the asterisk indicates complex conju-
gate, and R, (w) and X, (w) are the average acoustic resistance
and reactance, respectively. Moreover p(a, 61, w) is the acoustic
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Fig. 6. Normalized resistance component of a spherical piston, pulsating at
the excitation frequency of ka. = 4 near a rigid/compliant interface, versus kd
for various cap angles.

pressure on the surface of the real sphere which can be readily
obtained, by incorporating (2) and (9) in second of (1), as

p("'l, Hlvw)]n:a =

=a

—iwp®P(r1,b1,w)],,

= —iprFn(a7w)Pn(771) (13)
n=0

where

I (a,w) = hyp(ka)a,(w) + jn(ka) Z Qun (D, )by (w)

m=0
(14)
Incorporating (13) in (12), after performing the integration, we
obtain

Z,(w) k i P,,_1(cosby)— P, 1+1(cosby)

P& ~ drazv® 2n+1 Fufa,w)

n=0

(15)
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Fig. 7. Normalized reactance component of a spherical piston, pulsating at the
excitation frequency of ka. = 4 near a rigid/compliant interface, versus kd for
various cap angles.

In addition, the radial component of the acoustic power flux
vector (acoustic intensity) radiated per unit solid angle from the
real sphere is found from [21]

N 1 —8@(7‘1,91,0)) *
Lraa = §Re {p(ﬁﬁl,w) X [a—rl (16)

III. NUMERICAL RESULTS AND DISCUSSION

In order to illustrate the nature and general behavior of the
solution, we consider a numerical example in this section. Re-
alizing the crowd of parameters and the intense computations
involved here, no attempt is made to exhaustively evaluate the
effect of varying each of them. Accordingly, we confine our at-
tention to a particular model. The surrounding ambient fluid is
assumed to be water at atmospheric pressure and 300 kelvin
(p = 0.997 g/cn13, ¢ = 149700 cin/s). The piston, which is set
on a rigid spherical baffle of radius a = 1 cm, is assumed to be
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Fig. 8. Radiation intensity distribution in the vicinity of the spherical piston (/o = 20°) touching the halfspace boundary.

pulsating at the nondimensional frequencies of ka, = wa,./c =
0.1, 1, 4 with selected cap angles of 6§y = 20°,40°, 60°, 90° and
180°. A MATLAB code was constructed for treating boundary
conditions, to determine the unknown modal coefficients, and
to compute the average acoustic radiation impedance, and the
acoustic radiation intensity as functions of the distance param-
eter kd and the cap angle 6, at selected nondimensional fre-
quencies. Accurate computations for derivatives of spherical
Bessel functions were accomplished by utilizing (10.1.19) and
(10.1.22) in [24]. The computations were performed on a Pen-
tium IV personal computer with a truncation constant of N =
35 to assure convergence in the high frequency range, and also in
case of close proximity of the source to the halfspace boundary.

Fig. 2 through 7 display the effects of distance parameter kd
and the cap angle 6y on the inertial and the resistive compo-
nents of the average acoustic radiation impedance at selected
nondimensional frequencies (ka. = 0.1, 1, 4). In these fig-
ures, all of the resistance and reactance components are nor-
malized with respect to the corresponding value of a single ra-
diator in a boundless medium (i.e. to the value when the source
is infinitely far removed from the halfspace boundary). Fur-
thermore, in order to take the presence of the rigid (compliant)
boundary into account by using the method of images, we have
assumed in-phase (anti-phase) pulsations for both radiators, i.e.,
v = V(z)(V(l) = —V(Q)) [12], [13]. Comparison of the
figures leads to following important observations. At the lowest

excitation frequency (ka. = 0.1), when the radiator is pulsating
very close to the rigid (compliant) boundary, the normalized re-
sistance magnitude approaches the value of two (zero) as the
cap angle is increased to 6y = 180 (i.e., for a wholly pulsating
sphere [7]). Furthermore, increasing the cap angle in the rigid
(compliant) boundary case leads to a drastic increase (decrease)
in the resistance magnitudes. This interesting result indicates
that a small piston pulsating at low frequencies (ka, < 1)
near a compliant (rigid) surface can be a far more (less) effi-
cient radiator than a wholly pulsating sphere. Also, increasing
the cap angle at this frequency causes a noticeable increase (de-
crease) in the reactance or added mass values when the source
is positioned very close to the rigid (compliant) boundary (i.e.,
for kd — 0). As the separation parameter kd is increased,
all the curves oscillate about and approach the free field value
of unity. Moreover, as the nondimensional frequency is raised
(i.e., ka. = 1, 4), we observe relatively low (high) amplitude
impedance curve oscillations for small (large) cap angles at all
separation parameters. Thus, one can conclude that at relatively
high frequencies, the presence of the rigid/compliant interface
has a critical effect on the impedance components only for very
large cap angles (i.e., 8g > 90°).

To further assess the effect of halfspace boundary on the
acoustic field, the radiation intensity distribution at selected
nondimensional frequencies of ka. 0.1, 1, 10 in the
neighborhood of a spherical piston that is almost touching
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Fig. 9. Radiation intensity distribution in the vicinity of the spherical piston (8o = 60°) touching the halfspace boundary.

the rigid/compliant boundary for cap angles of §y = 20° and
60° are presented in Figs. 8 and 9, respectively. It is very
interesting to study the change in strength and directionality of
the radiated energy as the excitation frequency, cap angle, and
the halfspace boundary-type are changed. First, in all cases we
notice a strong sound energy concentration in the gap area near
the surface of piston, especially in the fy = 60° case. As the
excitation frequency is increased, sound energy concentration
areas begin to expand and shift more uniformly around the
spherical radiator. Next, increasing the cap angle leads to a
general increase in the sound intensity amplitude. Furthermore,
the intensity contours corresponding to the rigid wall case
normally display higher levels, especially at the low and
intermediate frequencies (i.e., ka, = 0.1, 1). In addition, at the
highest nondimensional frequency (ka. = 10), we note a quite
strong backward radiation (i.e., away from the flat interface) in
the §p = 20° case, while a fairly strong forward (side-ward)
radiation pattern is observed in the f#y = 60° situation.

Finally, to check overall validity of the work, we primarily
note that the impedance component curves corresponding to the
wholly pulsating sphere (fp = 180°) in Figs. 2 through 7 accu-
rately duplicate the numerical results presented in [7]. Further
numerical verifications are made by executing our general code
for the case of a spherical cap positioned very far (d = 100a)
from the planar interface. Fig. 10 shows that the corresponding

radiation impedance components precisely reduce to the curves
appearing in Fig. 20.4, page 308 in [14].

IV. CONCLUSION

Acoustic radiation impedance curves have been generated
for a baffled pulsating spherical piston immersed near the
rigid/compliant boundary of an acoustic halfspace. These
curves are product of an exact multi-scattering treatment that
involves utilization of the translational addition theorem for
spherical wave functions in combination with the classical
method of images. Numerical results reveal the important ef-
fects of excitation frequency, source position, and cap angle on
the average acoustic radiation impedance load and the radiation
intensity distribution. They demonstrate that a small piston
pulsating at low nondimensional frequencies (ka. < 1) near a
compliant (rigid) surface is a far more (less) efficient radiator
than a wholly pulsating sphere. Furthermore, at relatively high
nondimensional frequencies, the presence of the flat interface
has a critical effect on the impedance values only for very
large cap angles (g > 90°). The presented work, which is an
idealized model for acoustic radiation from a near-interface
baffled spherical transducer, can be of interest in underwater
acoustics and ocean engineering.
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