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In this paper, we take a design-led perspective on the use of computational tools in the
aerospace sector. We briefly review the current state-of-the-art in design search and
optimization (DSO) as applied to problems from aerospace engineering, focusing on
those problems that make heavy use of computational fluid dynamics (CFD). This
ranges over issues of representation, optimization problem formulation and compu-
tational modelling. We then follow this with a multi-objective, multi-disciplinary
example of DSO applied to civil aircraft wing design, an area where this kind of approach
is becoming essential for companies to maintain their competitive edge.

Our example considers the structure and weight of a transonic civil transport wing, its
aerodynamic performance at cruise speed and its manufacturing costs. The goals are low
drag and cost while holding weight and structural performance at acceptable levels. The
constraints and performance metrics are modelled by a linked series of analysis codes, the
most expensive of which is a CFD analysis of the aerodynamics using an Euler code with
coupled boundary layer model. Structural strength and weight are assessed using semi-
empirical schemes based on typical airframe company practice. Costing is carried out
using a newly developed generative approach based on a hierarchical decomposition of
the key structural elements of a typical machined and bolted wing-box assembly.

To carry out the DSO process in the face of multiple competing goals, a recently
developed multi-objective probability of improvement formulation is invoked along with
stochastic process response surface models (Krigs). This approach both mitigates the
significant run times involved in CFD computation and also provides an elegant way of
balancing competing goals while still allowing the deployment of the whole range of
single objective optimizers commonly available to design teams.
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1. Introduction: the design process, design search and optimization

Design search and optimization (DSO) is the term used to describe the
application of formal optimization software to the problem of engineering design.
The inclusion of the word ‘search’ in this term indicates that alongside the desire
for optimal designs is the recognition that the design activity is often an
exploratory process where there are no fixed endpoints and no obviously optimal
solutions to the complex problems being dealt with. Rather, an aerospace design
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team is typically faced with multiple and competing goals, thousands of
constraints and imperfect design tools that are almost never neatly integrated -
with each other. Moreover, the goals and constraints being dealt with will often
not be defined with crisp precision, but instead need interpreting with a great
deal of hard won experience. Any of the well-known texts on aircraft synthesis
will make such difficulties abundantly clear; see, for example, those by Stinton
(1983) or Torenbeek (1984).

Much progress has, of course, been made in the field of aerospace design since
the first flight by the Wright brothers a little over a century ago. A great deal of
this progress has been achieved by the use of computational tools, primarily in
the prediction of the performance of new configurations before they have been
built. The two fields of computational structural mechanics (CSM) and
computational fluid dynamics (CFD) have been at the forefront of this progress
(and this theme issue is dedicated to the latter area). In fact, so important has
the use of computational modelling become in engineering design and analysis
that a new field, which has been labelled ‘computational engineering’, has begun
to emerge (Keane & Nair 2005). This field spans more than just the modelling of
structures or fluid flows: it also tackles the way that high-quality analysis tools
can be integrated into the design process, allowing for geometry manipulation
and meshing, the application of optimization tools, the interpretation of results
coming from varying domains and at differing levels of fidelity and the best use of
the (often distributed) computing resources available to the design team. The use
of knowledge stores and knowledge application tools is also beginning to impact
on this world, so that the large quantities of corporate information accumulated
by the world’s aerospace companies can be effectively captured and reused
during design.

The current state-of-the-art in aerospace computational design typically
makes use of'

— a geometry manipulation engine that may be process specific or make use of
one of the sophisticated parametric CAD engines now available (e.g. CATIA,
UniGrApHICS, PROENGINEER);

—a meshing process that accepts data from the geometry system (using
standards such as STEP or IGES, or by direct file transfer) and which
produces discretized analysis domains suitable for use by CSM or CFD codes
(e.g. GRIDGEN, GAMBIT);

—a collection of analysis codes that work at varying levels of fidelity and deal
with various models of the physics encountered (in CFD, these range from
simple two-dimensional panel codes, through Euler and RANS solvers up to
direct Navier—Stokes codes applied in three dimensions; e.g. VGK, VSAERO,
FLUENT);

— post-processing tools that allow useful engineering metrics to be extracted
from the results of analysis, perhaps combining results coming from multiple
disciplines as in aero-elasticity (often highly customized and calibrated by the
design team, rarely publicly available);

IN.B., here we mention a number of commercial codes by name, all of which are subject to

copyright, etc., and all of which may readily be located from a web search—we make no

recommendation as to the capabilities of any of them and of course there are many others besides
those noted—they do, however, typify current practice in this area.
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— exploration and optimization tools that can be used to modify designs formally
in the search for improvement against numerically specified targets, either
commercially available such as 1S1GHT or DESIGNEXPLORER or in-house such as
OrprtioNs (Keane 2004);

~— process integration tools that allow the preceding components to be linked
together and run on heterogeneous and distributed computing platforms,
taking into account the very large variations in run times that will be
encountered and the team-like nature of those working on the design (e.g.
F1PER, MODELCENTER, MATLAB or PYTHON); and

— database tools that allow the collected results of design studies to be stored
and efficiently browsed at will (such as ORACLE).

Each of these tool types will require significant expertise to use to the standards
now expected in aerospace companies. They will thus all need augmenting by large
amounts of knowledge—currently, this mostly resides in the heads of the design
team, although progress is being made in knowledge-based technologies across all
these topics, whether it be in the construction of suitable meshes for accurate CFD
solves or the correct choice of optimization strategy to allow for reasonable
outcomes in affordable computing time. The linking together of these components
into an automated design system to tackle a specific design challenge, preferably
spanning multiple domains, is still very difficult. Although much progress has been
made, almost all of the steps noted will require manual intervention, often for
substantial periods. For example, the production of a high-quality mesh with good
boundary layer modelling over a complete aircraft configuration remains a daunting
task if accurate drag results are to be recovered—most aerospace companies still
insist on full wind tunnel validation of any critical computations.

If the design process envisaged is to allow for a wide-ranging exploration over
many possible configurations, the integration of all the relevant modules becomes
even more difficult. It is therefore common practice to build the tool chain up for
each major configuration as and when it is needed, reusing previous components
where possible and customizing where necessary. This ‘workflow’ construction
process can be dealt with in many ways, but typically feels a lot like computer
programming whatever system is used: sequences of processes must be assembled,
looped over and tested as the design progresses. Moreover, the workflow itself will
be adapted as work proceeds and design options become more clearly understood.
For example, the baseline geometric model being worked on will be modified in
different ways at different points in the design. This may even involve the
transition through completely different ways of holding the geometric data from
bespoke concept exploration tools that feel much like spreadsheets to full product
life-cycle modelling (PLM) systems in which even parametric CAD is just a sub-
activity. It is also not uncommon to hold several versions of the same geometry,
each specifically tailored to the process in hand: the level of detail needed in a
manufacturing drawing is clearly unnecessary for CFD; the mesh used for CSM
will differ from that used in CFD; even within CFD, differing resolutions will
typically be used for drag recovery work when compared with aero-elastic studies.

A number of further factors combine to make work in this field particularly
demanding. First and foremost, the run times needed for the most accurate
studies in the most complex regimes can be fearsome. The study of a bird strike
on a running aero-engine using large deflection finite element-based CSM codes
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can take many days on a major parallel computer. A direct Navier-Stokes solve
at even modest Reynolds numbers is similarly difficult. Second, design teams will
wish to study multiple options, either to trade various desirable and competing
goals against each other, or just to allow for a simple design optimization study.
Lastly, no engineering product operates in its nominal geometry, under nominal
conditions, unchanged throughout its life. Allowance must be made for
uncertainty in shape and boundary conditions when carrying out analysis and
the consequent stochastic analysis is always more time consuming than a simple
deterministic calculation. All these issues point in essentially one direction—
attempts must be made to mitigate analysis run time. Sometimes, this is possible
through improved solution schemes, sometimes via the use of more powerful
processors and sometimes through the deployment of large-scale computing
clusters, although such parallel computation brings its own difficulties. Aerospace
companies seek to exploit all these avenues.

In this paper, we will concentrate on software methods that enable multiple
goals to be studied in an efficient way. We will combine classical drag reduction
calculations with modern cost evaluation methods and show how these competing
issues can be reconciled via computational models. Before treating specific
examples, however, we briefly review a number of the approaches commonly
adopted when applying optimization tools to CFD calculations. We then go on to
use the Southampton multi-level wing design environment (Keane & Petruzzelli
2000) to study the merits of multi-objective, multi-disciplinary design when
applied to three-dimensional CFD solvers over a transonic wing system combined
with a cost modelling tool. Here, the aim is to build a multi-objective response
surface model (RSM) using CFD data to model variations in drag at fixed lift and a
new generative code to describe manufacturing costs as gross changes are made to
the overall wing parameters. Currently, such changes are usually assessed using
empirical concept design tools that make no attempt to solve the flow conditions
over the wings being studied and that use past data to estimate probable costs.
Although these concept tools can be extremely accurately calibrated to deal with
familiar geometries and processes, they experience difficulties whenever extreme or
even moderately novel configurations are considered. They are, however, very easy
to use and capable of giving rapid estimates of probable drag levels (Cousin &
Metcalfe 1990) and probable costs.

The work reported here attempts to overcome some of these limitations by
fusing together data coming from CFD-based drag routines and the costing code
using design of experiment (DoE) techniques (Mackay et al. 1979; Mead 1988) and
multi-objective Kriging ( Jones et al. 1998) to build RSMs (Myers & Montgomery
1995). Variants on these methods have been used in aerospace design for some
time. However, so far, they have mostly been used to accelerate single domain,
single goal optimization approaches using expensive codes (Keane 2003). It is only
relatively recently it has been proposed that they might be helpful in multi-
objective analysis (Hutchinson et al. 1994; Liu et al. 1999; Malone et al. 1999;
Vitali et al. 1999; Zang & Green 1999). The main aim here is to use the DoE and
Krigs to produce a combined RSM that combines multiple goals in a new way.

The techniques described here have recently been incorporated within the
OpTIONS design exploration system (OpTIONs 2006) and the results presented have
been produced using that system to drive the Southampton wing design
environment (Keane & Petruzzelli 2000).
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2. CFD-based optimization

For as long as people have been able to predict the behaviour of aerospace
systems via modelling or computation, there have been attempts to use
formal schemes to improve their performance. In the world of aerospace CFD,
this has often focused on drag reduction or the improvement of lift/drag
ratios in some way. In all cases, this has involved trying to specify the
geometry in some codified or formalized way that will allow variations in
shape to be systematically generated in preparation for performance
assessment. To begin with, attempts were made to explore the behaviour of
two-dimensional airfoil sections systematically using wind tunnels—Ileading,
for example, to such things as the famous NACA four digit airfoil series
(Ladson & Brooks 1975). The first computer-based applications of
optimization in design appear to be for structural applications; see, for
example, the early work of Schmidt (1960) on structural synthesis. One of the
earliest studies to make use of computational approaches to airfoil design was
that by Liebeck & Ormsbeef (1970) some 10 years later, using second-order
airfoil theory and the calculus of variations. This early work has been
followed by a veritable avalanche of publications that have attempted to use
ever higher-quality CFD solvers over ever wider ranges of geometry operated
over broader ranges of operating conditions.

(a) Parameterization

In each case, a mapping is required between the (preferably few) variables
controlled by the designer and the (commonly many tens of thousands of)
surface coordinates needed to define the boundaries in the flow. Building such a
mapping or parameterization of the geometry can be critical in achieving an
efficient design search—if there are too many variables or these interact too
strongly, the search landscape can become intractably complex to explore.
Conversely, if too few variables or too restricted a mapping is used, it may be
impossible to make worthwhile improvements in a design.

For purely local searches, there are some strategies that can overcome this
dilemma by allowing an efficient search using all the coordinates of the surface
directly. These make use of adjoint schemes (Jameson 1988) that allow one to
trade the number of variables being changed against the number of outputs
being studied. In a conventional search, one varies a few parameters and then
analysis gives flow details at possibly millions of locations in the flow field. In
adjoint approaches, all the grid points may be variables but one accepts only
overall outputs such as the gradient of drag with respect to these variables. For
a local search, this is very attractive since typical downhill methods work very
well in such circumstances (Kim et al. 2000). Impressive results have been
reported using adjoint schemes to carry out geometry improvements using local
and thus limited range searches. The approach is not very useful for large-scale
geometric changes and is difficult to use with CAD-based geometries since it
requires invasive changes to all the codes being used (or at least the way they
are used). This has prevented routine adoption of such approaches by most
aerospace companies.
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(b) Meshing

Given a parameterization scheme capable of generating the geometries
required, the next hurdle faced in building an automated analysis scheme (and
such automation is virtually a prerequisite for optimization) is in generating a
suitable analysis mesh. Almost all the CFD codes in use today require the fluid
domain to be sub-divided (discretized) into meshes consisting of simple shapes
such as triangles, tetrahedra, quadrilaterals or bricks. Although various mesh-
free schemes have been proposed, these currently remain experimental codes
and at the time of writing almost all practical design work is carried out with
meshes of some form or another. The meshes may be structured or
unstructured, body-fitted or Cartesian and all combinations of these have
their pros and cons. The work described later uses non-body fitted structured
meshes which are easy to set up over wide ranges of body shapes but which
result in rather less efficient solver run times than more complex, but more
difficult to create, body-fitted methods.

(¢) Solving

Even when a suitable geometry and mesh have been created, the analyst’s
difficulties are not completely over. Even the most well established of
commercial CFD codes have a variety of controls that must be set governing
things such as domain division over CPUs, order of solution, number of
iterations, turbulence models, etc. It is quite common to find that a certain
amount of experimentation is needed to establish the most efficient combination
of controls, allocation of processors, usage of memory and settings for
convergence parameters. For example, if parallel execution is desired over a
given number of processors, the user may need to choose between studying
several geometries at one time, each with a few CPUs or instead dedicating all
the available processors to each calculation, one at a time. In the work reported
here, each solve is handled by its own dedicated CPU, but an optimization
scheme allowing 10 simultaneous calculations is adopted to make best use of the
10 available licences for the commercial code used. If commercial codes are being
used, total licence numbers can often influence such decisions as much as total
available computing power.

(d) Post-processing

Having run a suitable CFD (or any other) solver to acceptable convergence, the
designer will wish to decide on how to assess the resulting data. When dealing with
the results of CFD, this will commonly involve dealing with integrated quantities
such as lift or drag as well as with specific flow features such as the locations of any
shocks or separations. Extracting such information automatically and routinely
from the flow solution is also non-trivial, particularly if a quantity such as drag is
to be calculated with precision and sub-divided into the components of interest to
the engineer such as wave drag and induced drag. Some of the most commercially
sensitive aspects of aerodynamic analysis can occur in this phase as various
calibration coefficients are brought to bear which may encapsulate the results of
many experiments and trials carried out over extended periods.
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(e) Optimization schemes

Once an automated design analysis capability has been assembled, it is then
possible to consider the use of optimization tools. Such methods adjust design
variables, seeking to improve goal functions while meeting any specified
constraints. They can be as simple as the steepest descent schemes that date
back to Cauchy and Newton or complex hybrids making use of surrogate models,
evolutionary searches and a whole range of heuristics. All aim to move quickly to
improved goals, although some specifically sacrifice global coverage in the aim to
quickly converge to a local optimum while others specialize in wide-ranging
exploration. There are some fundamental limitations that must be recalled
whenever working in this area, however. In particular, the so-called ‘no free lunch’
theorems show that when averaged over all possible problems, all search methods
are equally good (Wolpert & Macready 1997). Thus, if one seeks to make a search
faster, it will inevitably become more specialized and thus prone to misbehave on
problems for which it has not been carefully set up. Most design teams like to have
a range of search tools to hand which they can bring to bear depending on the
number of variables, goals and constraints being dealt with, the speed of the
analysis process and the nature of the variations in the functions being studied.
This topic is considered in more detail in subsequent sections of this paper.

(f) Databases

Since so much analysis is computationally expensive and online storage
increasingly cheap, it is now sensible to store as many design calculation results
as possible online, so that they can be browsed and reused. Such reuse is not
simply a case of caching results to avoid duplication, rather it is often possible to
interpolate and regress among existing data to guide future search processes
better. This can not only speed up the design process but can also improve its
quality. To do this often requires that additional descriptive ‘meta-data’ be
stored with each computational result, so that its provenance can be readily
searched by the tools available to the designer. The automated integration of
such data stores is currently a very active topic of research.

3. A brief history of optimization methods

The development of nonlinear numerical optimization methods is a very large
field, but may be grouped into three main themes: the classical gradient-based
methods and hill climbers of the 1960s; the evolutionary approaches that began
to appear in the late 1970s; and the adaptation of DoE and response surface
methods to computer simulations in the 1980s and 1990s. Classical hill climbers
all seek to move uphill (or downhill) from some given starting point in the
direction of improved designs. Sometimes, they use simple heuristics to do this
(as in the Hooke & Jeeves (1960) search) and sometimes they use the local
gradient to establish the best direction to move in (as in quadratic programming
Boggs & Tolle 1995). Where needed, such gradients are commonly obtained by
finite differencing but can sometimes be obtained directly (e.g. by using an
adjoint code). Few new heuristic approaches seem to have found favour in the
literature since the early work of the 1960s. Instead, most effort since that time
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has been focused on improving the speed of convergence of quadratic methods
and getting them to deal efficiently with constraints. Perhaps, the best known of
these is the FSQP method developed by Panier & Tits (1993).

The so-called evolutionary methods are linked by the common thread of a
stochastic approach to optimization. That is, the sequence of designs tested while
carrying out the search has some random element—the main benefit is that such
methods can avoid becoming stuck in local basins of attraction and can thus
explore more globally. The downside is that they are often slower to converge to
any optima they do identify. The most well-known methods in this class are the
genetic algorithms (GAs), which seek to mimic the processes of natural selection
that have proved so successful in adapting living organisms to their
environments (Goldberg 1989). A variety of alternative stochastic global search
methods have also been developed over the same period and these methods are
now much interwoven in their development. For example, a series of
developments made in Germany at around the same time led to the so-called
evolutionary algorithms (Schwefel 1995) or the work on simulated annealing
(Kirkpatrick et al. 1983). Some of these techniques work with populations of
designs and are thus efficiently handled by clusters of computers: they are thus
increasingly popular owing to developments in modern computing grid
architectures where hundreds of processors may be used simultaneously.

Design of experiment and response surface methods are not really optimizers
per se: rather, they are techniques that allow complex and computationally
expensive optimization problems to be transformed into simpler tasks that can be
tackled by the methods outlined in the previous two paragraphs. Essentially, these
are curve fitting techniques that allow the designer to replace calls to an expensive
analysis code by calls to a curve fit that aims to mimic the real code. Such methods
all work in two phases: first, data are gathered on the nature of the function being
represented by making a judiciously selected series of calls to the full code, usually
in parallel—the placing of these calls in the design space is often best achieved
using formal DoE methods, which aim to cover the search space in some
statistically acceptable fashion (Montgomery 1997). Then, when the resulting
data are available, the second phase consists of constructing a curve fit through or
near the data—such curve fits are often termed ‘response surfaces’ (Myers &
Montgomery 1995). The choice of RSMs that may be used is quite wide and will
depend on the nature of the problem being tackled and the quantities of data
available. Usually, the initial RSM will not be sufficiently accurate in all the areas
of interest and so an iterative updating scheme may then be used where fresh calls
to the full analysis code are used to provide additional information—various
updating schemes have been proposed (Jones et al. 1998), see figure 1. The use of
DoE and RSM methods in optimization is relatively recent but, even so, has
yielded some impressive results (Sacks et al. 1989; Buck & Wynn 1993).

As probably goes without saying, very many hybrid approaches that try and
combine methods from these classes have been experimented with. So much so that
current practice is often to use a collection of methods in some complicated
workflow to try and achieve results tailored to the problem in hand. Most
commercial DSO toolkits support such an approach, often providing powerful
graphical workflow editors to set up and control such hybrid searches. At the time
of writing, optimization methods from each of these three classes are now
sufficiently mature that they are available in commercial optimization packages
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Figure 1. RSM-based optimization strategy.

and are in routine use by designers—academic research is currently more focused
on how to deploy optimizers most effectively, given the desire to minimize the use of
time-consuming and complex analysis codes, or to search very large design spaces,
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also to exploit emerging features of analysis methods such as the sensitivities
coming from CFD adjoint codes. For example, the published academic research on
CFD optimization can be categorized as

— work that aims to make modest but detailed changes to refine an existing design
via some kind of gradient descent approach on a single, deterministic goal function
such as drag—this can involve impressively large CFD jobs using adjoint codes;

— inverse schemes that seek to modify a geometry so as to achieve a pre-specified
flow behaviour, typically defined as a pressure distribution over the surface of a
wing or airfoil—again commonly over very large meshes;

— wide-ranging searches over gross dimensions such as span and sweep so as to
identify promising wing planforms, etc.—most commonly on modest cost panel
or Euler codes;

— optimization using multiple operating point schemes or multiple objectives to
allow for the fact that more complex design goals are the norm in real design
work—Tless common and rarely carried out with full fidelity calculations; and

—models where uncertainty is specifically allowed for, such as where geometry
may be uncertain or operating conditions unknown—relatively little work
published to date but beginning to emerge.

Here, by way of example, we study planform design using the RSM
approach—this technique is currently very popular when carrying out CFD-
based optimization, particularly if wide-ranging searches are required.

4. Kriging and probability of improvement

It is no surprise that there are a number of variations and refinements that may
be applied to the basic RSM approach—the literature offers many possible
alternatives. In this paper, an LPt DoE sequence (Statnikov & Matusov 1995) is
used to generate the initial set of points and a Kriging model applied to build the
RSM. The Kriging approach allows the user to control the amount of regression
as well as providing a theoretically sound basis for judging the degree of
curvature needed to model the user’s data adequately. Additionally, Kriging
provides measures of probable errors in the model being built that can be used
when assessing where to place any further design points. It also allows for the
relative importance of variables to be judged.

In Kriging, the inputs z are assumed to be related to the output (response) y by an
expensive function f,(z). The response of the code is then evaluated for combinations
of inputs generated by the DoE and used to construct an approximation

| i = feo(). (4.1)
The response at any x is then approximated by
y=pu+e(z), (4.2)

where p is the mean of the responses and () is a Gaussian random function with zero
mean and variance ¢°. In Kriging, ¢ is taken to depend on the distance between
corresponding points. The distance measure used here is

29 Z 9 ( <"—-m§j))”",‘ (4.3)
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where ), and pj, are hyper-parameters tuned to the data in hand. The correlation
between points #*) and '’ is given by

R(z", 2Y) = exp[—d(2”, )] + 467, (4.4)

where / is aregularization constant that governs the degree of regression in the model
(when set to zero the Krig strictly interpolates the data supplied) and 6;;is the Dirac
delta function. When the response at a new point zis required, a vector of correlations
between the point and those used in the DoE is formed, r(z)=R(x, ). The
prediction is then given by

y(@) =p+r R (y—1p), (4.5)
where the mean u is found from
,LTEy
1TR™1
The hyper-parameters 65, p, and regularization constant A are all obtained by
maximizing the likelihood, defined as

(4.6)

1 —(y—1w) R (y—1p)

(27T)N/2(0'2)N/2|Rl1/2 exp[ 202 ’ (47)

where the variance ¢” is given by

—1u) "R (y—1
0_2 — (y ,LL) (y :u') . (48)
N
N isthe number of points used in the DoE. The mean squared error of the prediction s
_ 1-1TR'r)?

$(z) = o* [1 +7r'R'r + L—i—T—I—{—‘Tl—Q_] ; (4.9)

which gives a measure of the accuracy of the Krig at x. Another of the attractions of
Kriging is that the 8 hyper-parameters produced may be used to screen the variables
in the data for relative importance if the input variables are normalized to a unit range
before the Krig is tuned. Once tuned, the hyper-parameters simply rank the
significance of the variables they represent.

Having built an initial RSM, some thought must be given to how well it
models the data used and if this modelling is fit for purpose. Commonly, it is not
and some kind of improvement strategy is employed to help refine the process.
Suppose that an initial set of training data is made available by running the high-
fidelity model at the points generated by a space-filling DoE technique, i.e.
D’={z Dy N}, i=1, 2, ..., N,. This dataset is then used to construct a Krig
model to approximate the input—output relationship where the mean squared
error of the prediction gives an estimate of the uncertainty involved in making
predictions using a finite set of input—output data. From the viewpoint of DoE,
to improve the accuracy of the baseline surrogate, it is sensible to augment the
dataset D° with additional points where this error is high. However, from the
perspective of finding iterates that lead to reductions in the objective function,
the aim is to minimize §(x). Statistical improvement criteria attempt to balance
these aims in a rational way. Here, we detail the so-called ‘probability of
improvement’ although there are several alternatives (Keane & Nair 2005).
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Since a Krig model is a Gaussian process, the probability of any newly calculated
design point y(z (N"“)) representing an 1mprovement over the current best design,

fin () = mm(f(l)(m(l)) f(Q)(a:@)) )( (M))), is readily calculated from

e

PlI] = Ply(a™ )< Jz“ﬂ%w)]

f::min(m)

- | ommrme(-50-se ) g

_ o @) —p@ ™)) (4.10)
s(m(NO'i'l))

where [-] denotes the expectation operator and @( ) is the normalized Gaussian
distribution function. This quantity is just the area in the tail of the Gaussian
distribution below the current best function value f™"(x) and indicates the
probability that any new design will represent an improvement over those in the
existing training data, but does not indicate how much of an improvement will be
obtained. Therefore, to minimize the original objective function f,(x), the procedure
set out in figure 1 can be followed: first, a baseline Krig model is constructed using Ny
points generated by applymg a space—ﬁlling DoE technique. Subsequently, a new
iterate is generated by mamnnzmg the probability of nnprovement criteria, i.e.
2Nt = arg max, Ply(2™™V)) < £™2(z)]. The high-fidelity model is then evalu-
ated at (%™ and the resultmg exact function value, f,(z!*)), is added to the
baseline training dataset to give D'. The augmented dataset is used to update the
Krig and its hyper-parameters, which is then used to solve the previous equation
for the next iterate. This process is continued until specified convergence criteria
are met.

Kriging is not a panacea for all evils, however. It is commonly found that it is
difficult to set up such models for more than 20 or so variables and also that the
approach is numerically expensive if there are more than a few hundred data
points, since the set-up (hyper-parameter tuning) process requires the repetitive
LU decomposition of the correlation matrix R, which has the same dimensions as
the number of points used. Moreover, the number of such LU steps is strongly
dependent on the number of variables and the likelihood is commonly highly
multi-modal.

5. Multi-objective design: Pareto fronts

Most real design problems have more than one goal that the designer is trying to
improve. In aerospace design, it is common to be aiming for light weight, low-
cost, robust, high-performance systems. These aspirations are clearly in tension
with each other and so compromise solutions have to be sought. Such
compromises inevitably involve deciding on some form of weighting between
the desired goals. However, before this stage is reached, it is possible to study
design problems from the perspective of Pareto sets. A Pareto set of designs is one
whose members are all optimal in some sense, but where the relative weighting
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Figure 2. A typical Pareto front (all points added in the hatched area add to the front, those in the
hatched and shaded area augment only, while those in the rest of the hatched area dominate, and
thus replace, existing set members).

between the competing goals is yet to be finally fixed (Fonseca & Fleming 1995).
More formally, a Pareto set of designs contains systems that are sufficiently
optimized that, to improve the performance of any set member in any one goal
function, its performance in at least one of the other functions must be made
worse. Moreover, the designs in the set are said to be ‘non-dominated’ in that no
other set member exceeds a given design’s performance in all goals. It is
customary to illustrate a Pareto set by plotting the performance of its members
against each goal function (figure 2). The series of horizontal and vertical lines
joining the set members is referred to as the ‘Pareto front’—any design lying
above and to the right of this line is dominated by members of the set.

There are a number of technical difficulties associated with constructing
Pareto sets. First, the set members need to be optimal in some sense—since it is
desirable to have a good range of designs in the set, this means that an order of
magnitude more optimization effort is usually required to produce such a set than
to find a single design that is optimal against just one goal. Second, it is usually
necessary to provide a wide and even coverage in the set in terms of the goal
function space—since the mapping between design parameters and goal functions
is usually highly nonlinear, gaining such coverage is far from simple. Finally, and
in common with single objective design, many problems of practical interest
involve the use of expensive computer simulations to evaluate the performance of
each candidate, and this means that only a limited number of such simulations
can usually be afforded.

Currently, there appear to be two popular ways of constructing Pareto sets
(Keane & Nair 2005). First, and most simply, one chooses a (possibly nonlinear)
weighting function to combine all the goals in the problem of interest into a
single quantity and carries out a single objective optimization. The weighting
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function is then changed and the process repeated. By slowly working through a
range of weightings, it is possible to build up a Pareto set of designs.
Alternatively, one can try and use a population-based search to locate a whole
series of points on the front in one go. Perhaps, the most well known of these
schemes is the NSGA-ii method introduced by Deb et al. (2000). In that
approach, a GA is used to carry out the search, but the goal function used to
drive the genetic process is based on the relative ranking and spacing of the
designs in the set rather than their combined weighted performance. More
specifically, at each generation, all the designs are compared and the non-
dominated designs set to one side. These are assigned rank one. The remaining
designs are compared and those that now dominate are assigned rank two and so
on. Thus, the whole population is sorted into rank order based on dominance.
This sorting into rank-order dominance can be carried out irrespective of the
relative importance of the objectives being dealt with or the relative magnitudes
and scaling of these quantities.

Having sorted the population of designs into ranks, they are next rewarded or
penalized depending on how close they are to each other in goal space (and
sometimes also in design variable space). This provides pressure to cause the
search to fan out and explore the whole design space, but does require that the
competing objectives be suitably scaled—an important issue that arises in many
aspects of dealing with multi-objective approaches to design. When combined
with the traditional GA operators of selection, crossover and mutation, the
NSGA-ii scheme is remarkably successful in evolving high-quality Pareto sets.
As originally described, however, no means were provided for mitigating run-
time issues arising from using expensive computer simulations in assessing
competing designs.

To overcome the problem of long run times, a number of workers have
advocated the use of RSM approaches, including Kriging within Pareto front
frameworks (Wilson et al. 2001; Knowles & Hughes 2005). It is also possible to
combine tools such as NSGA-ii with Kriging (Voutchkov & Keane 2006). In
such schemes, an initial DoE is carried out and RSMs built as per the single
objective case, but now there is one RSM for each goal function. In the NSGA-ii
approach, the search is simply applied to the resulting RSMs and used to
produce a Pareto set of designs. These designs are then used to form an update
set, and after running full computations, the RSMs are refined and the
approach continued. Although sometimes quite successful, this approach suffers
from an inability to balance exploration and exploitation explicitly in the RSM
construction in just the same way as when using such models in single objective
search and greedily seeking for the best designs, although the crowding or
niching measures normally used help mitigate these problems to some extent.
The central thrust of the probabilistic improvement approach used here is to
explicitly tackle this problem.

6. Multi-objective probability of improvement
Assuming that we have an expensive multi-objective search problem that is
being tackled using a combined DoE and Kriging approach, it is possible to
revisit the ideas of improvement and devise appropriate metrics. To begin with,
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consider a problem with two expensive goal functions fi.(z) and fo(x) with
outputs (responses) y; and 3, that must both be minimized. Moreover, for
simplicity, assume that x consists of just one design variable z. By constructing a
DoE as before, it will be possible to construct a set of training data. This will
allow us to identify the initial Pareto set of M, designs that dominate all the
others in the training set

fia = (A A @), (2 @) A2 @), o (AP @00, 20 (0))) ).

In this set, the superscript * indicates that the designs are non-dominated.
We may plot these results on the Pareto front axes as per figure 2 discussed in
§5. In figure 2, the solid line is the Pareto front and the hatched area represents
locations where new designs would need to lie if they are to become members of
the Pareto set.

Given the training set, it is also possible to build a pair of Krig meta-models.
Here, it is assumed that these models are independent though it is also possible to
build correlated models by adopting the formalism known as co-Kriging (Cressie
1993). The pair of meta-models §;(z) and §,(z) will be Gaussian processes as
before and each term in the two models will be identified by suffixes 1 and 2,
respectively. Given a proposed new design point z, this pair of models will
provide a prediction of the two goal function values and also their standard
errors, here taken to be uncorrelated. These values may then be used to construct
a two-dimensional Gaussian probability - density function for the predicted
responses that accords with the predicted mean and errors coming from the two
Krig models at z.

When seeking to add a new point to the training data, we wish to know the
likelihood that any newly calculated point will be good enough to become a
member of the current Pareto set and, when comparing competing potential
designs, which will improve the Pareto set most. There are a number of metrics
that can be considered in these circumstances (see Keane (2006) for a full
discussion) here we outline just the simplest; the probability that a new design
will be good enough to at least augment the existing Pareto set. This is given
by integrating the joint probability density function over the hatched area
in figure 2,

Y
P11 ) < Fi(@) U a6 *) < fio(3)] =J j¢(@2,@1>d@2d@1

aug
—00 —0
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a4

3 || elomindi i
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le

(6.1)
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or

P, = o[ B @ =i @D)
aug ~ Sl(x(Noﬂ))

My—1 *(1+1) a: No+1) *(l) T 2(Mo+1)
+ ; {45( (1()1-(1\7{;"'”5)) )> “45( ( z( (7\/04(—1)) ))}
(f2e (2)~ (x%“)))
(x(No'i‘l))

*(Mo) (Ny+1) *(Mo (No+1)
() =y (&™) (z) = po(z ™)
+{1_¢< s (x(N0+1)) >}¢< 32($ N0+1)) )

(6.2)

This metric is, of course, non-dimensional and is the multi-objective
equivalent of equation (4.10). Moreover, it works irrespective of the relative
scaling of the objectives being dealt with.?

7. A typical aircraft concept design problem: cost versus performance

Having set out the basic tools needed for our multi-level approach, we next
illustrate their use in wing design using an Euler-based CFD solver and a
generative cost model. Here, the responses being studied are the drag and cost of
a transonic civil transport wing. A simple test problem has been constructed with
the aim of optimizing the wing for operation at Mach 0.785 and a Reynolds
number of 7.3 million. The objective is minimization of wing drag area, also
known as drag per unit dynamic pressure, D/q (drag coefficient X wetted area)
as calculated by the CFD solver and manufacturing cost in £m with target lift,
wing weight, volume, pitchup margin and root triangle layout chosen to be
representative of a 220-seat wide-body airliner. Limits are placed on the design
variables that are typical of work in this area (although they still admit designs
that would be considered radical in practice—it is not common to use sweep
angles as high as 45° in a civil aircraft, for example). To make this study sensibly
realistic, and also to provide data for the costing process, a relatively detailed
structural and weight estimation process is incorporated into the calculation.

(a) Weight estimation

The most common way to calculate the weight of the load-carrying part of the
wing is to split the structure into the parts that resist bending and those that
resist shear. For the aircraft category under consideration (subsonic transport
and executive aircraft), the wing is generally built up from the subparts depicted
in figure 3. Here, the wing weight is estimated using an analytical-empirical

2N.B., the subscript aug is used to indicate that this is the probability of augmenting (as opposed
to dominating) members in the existing front.
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wing structure

primary secondary
structure structure
optimum non-optimum
weight weight
bending shear
-upper torsion f ribs | nop-taper flaps
lower orces skin, ailerons,
cut-outs, SpOil ers,
I I I Joints, slats,
fairings, etc.
skin webs longerons  —{ | etc.
stiffeners webs

Figure 3. Subdivision of wing and weight distributions.

approach that is a development of Torenbeek’s (1992) method developed by
Cousin & Metcalfe (1990). In such methods, the wing weight is computed as the
sum of several functional components, each of which is estimated via a rational
and/or statistical approach. The methods are especially suitable for the
preliminary design stage, when sensitivity studies are required on the effects of
geometric and other variations on the design characteristics.

Once the wing weight has been evaluated, this has to be included in the
aircraft weight build-up. The design aircraft weight can be broken into crew
weight, payload weight, fuel weight and operational empty weight (structure,
engines, landing gear, fixed equipment, avionics and anything else not considered
part of crew, payload or fuel). The crew and payload weights are both known
since they are given in the design requirement. The only unknowns are the fuel
weight and the operational empty weight, both of which are dependent on the
total aircraft weight. Thus, an iterative process must also be used for aircraft
sizing. For the purposes of this study, it has been assumed that part of the
operational empty weight (i.e. excluding the weight of the wing structure) is
fixed (in the range of our search) and that the maximum fuel weight is dependent
on the size of the wing box (which houses the fuel tanks). Table 1 gives typical
structural design parameters and table 2 the resulting weight estimates. ‘
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Table 1. Wing structure parameters.

quantity value
wing LE as a fraction of local chord 0.153
wing TE as a fraction of local chord 0.284
wing LE as a fraction of centerline chord 0.153
wing TE as a fraction of centerline chord 0.350
no. of wing-mounted engines 2
position of the engine as a fraction of semi-span 0.598
mass of one wing-mounted engine (kg) 9000
inner tank boundary limit as a fraction of semi-span 0.0
inner/outer tank boundary position as a fraction of semi-span 0.58
outer tank boundary limit as a fraction of semi-span 0.82
chordwise fraction of TE that the flap occupies 0.7555
chordwise fraction of TE that the slat occupies 0.9364
spanwise extent of outboard flap as a fraction of semi-span 0.7714
rib pitch (m) 0.75
Table 2. Aircraft weight build-up.
item weight (kg)

lower panel

upper panel

spars

light rib

U/C pickup structure
trailing edge

leading edge
miscellaneous

total wing structure

wingless weight
maximum fuel mass 33507.5
maximum take-off weight 125 073.1

cruise fuel mass (fuel fraction=0.37)

cruise weight 103 963.4

78 515.3

Here, drag is computed using the commercial CFD code MGAERO, which is a
viscous coupled multigrid Cartesian Euler solver (Epstein et al. 1989). A series of
drag recovery routines are incorporated with this code to assess the various drag
components in a fashion compatible with typical concept design tools (Squire &
Young 1937; Lock 1986; van Dam & Nikfetrat 1992). The input geometries to the
CFD solver are created using a set of orthogonal functions derived from NACA
transonic foils (Harris 1990; Robinson & Keane 2001). When using MGAERO, the
inviscid analysis is coupled with a boundary layer model via surface transpiration.
The viscous drag is then calculated using Cooke’s (1973) implementation of the
Squire & Young (1937) method. The wave drag is computed via Lock’s (1986)

(b) Drag prediction
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Inputs:

wing semi span 19.513m

leading edge sweep angle 62.9°

trailing edge sweep angle 71.1° wing-box

\ Output:
spar to spar wing chord at root 4.297m I cost component costs
wing-box tip chord 1.211m model £318043

top cover weight 2621.2kg

bottom cover weight 3325.7kg
root thickness to chord ratio 0.150
tip thickness to chord ratio 0.122
non-dimensional kink position 0.313

Figure 4. Top-level view of cost model.

second-order method. The induced drag is obtained from the integration of
vorticity immediately downstream of the trailing edge as dissipation due to the
presence of numerical viscosity precludes integration in the Treffitz plane. Of
course, such drag values are subject to the usual inaccuracies associated with drag
recovery from Euler codes (van Dam & Nikfetrat 1992), and by the standards of
the other papers presented in this theme issue, this calculation is somewhat
pedestrian; it nevertheless represents typical commercial design office practice.
The CFD analysis requires around 30 min on a 3 GHz processor.

(¢) Cost modelling

The cost model uses a generic hierarchical modelling tool called DecisioNPro
developed by the Vanguard Software Corp., Cary NC, USA. The significance of
this approach is that it allows libraries of reusable cost objects to be created. This
leads to a very efficient and extensible model that is relatively easy to navigate
and deploy through a standard web browser. Further details on this methodology
applied to gas turbine design can be found in Scanlan et al. (2006).

For the purposes of optimization, the cost model can be viewed as a ‘black-
box’ as illustrated in figure 4. The internal structure of the cost model comprises
cost-object libraries of

— part types (stringers, spars, ribs and skins);
— processes; and
— materials.

The model includes an aggregation tree to sum the component hierarchy that is
produced by a wing-structure model (figure 5). The wing-structure model
generates the component hierarchy by instantiating the part-type cost-objects
and populating their geometrical properties. Each part-type cost-object calls a set
of process functions to determine manufacturing costs for a set of process steps.
A particularly useful feature within the DEcisIoNPRO software is the ability to
define variables in terms of their relevant physical units. The tool is able to
undertake dimensional analysis (using SI units) to ensure consistency in any
calculations. This eliminates many errors that could be difficult to identify
otherwise. A sample search created an initial set of results of varying cost. Figure 6
gives an example of the response of the cost model to two different inputs.
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Table 3. Design parameters, constraint values and objective function values—direct CFD search.

lower limit initial value direct CFD upper limit quantity (units)

100 168 177.5 250 wing area (m?)

6 9.07 9.30 12 aspect ratio

0.2 0.313 0.406 0.45 kink position

25 27.1 25.2 45 sweep angle (degrees)

0.4 0.598 0.683 0.7 inboard taper ratio

0.2 0.506 0.259 0.6 outboard taper ratio

0.1 0.150 0.143 0.18 root t/c

0.06 0.122 0.096 0.14 kink t/c

0.06 0.122 0.069 0.14 tip t/c

4.0 4.5 4.5 5.0 tip washout (degrees)

0.65 0.75 0.67 0.84 kink washout fraction
127 984 130 166 135 000 wing weight (N)

40.0 41.73 41.6 wing volume (m®)
4.179 3.67 54 pitch-up margin

2.5 2.693 2.56 undercarriage bay length (m)
2.922 2.524 D/q (m?)
0.502 0.453 cost (£ m)

(d) Sample calculation

A typical result from this combined weight, CFD and costing analysis is
detailed in the initial value column of table 3 while figure 7 illustrates the
equivalent geometry and overall mesh. Note that in this case, the wing is defined
by 11 parameters and also that constraints are placed on the wing volume,
undercarriage bay length, pitch-up margin and weight. At all times, the angle of
attack is set to generate the required lift and the wing weight changes in a
realistic fashion, allowing for necessary structural modifications as its dimensions
alter. Given this analysis capability, it is possible to carry out a direct search:
column 3 of table 3 gives the results of such a study, using a direct GA
optimization of 20 generations and a population size of 100 aimed solely at
reducing drag and allowing the cost to float. This search represents some 75 days
of computing effort; here, carried out on a cluster of PCs running in parallel over
a week. The extreme cost of such searches makes them infeasible for everyday
use—but they do provide benchmarks against which to compare other results.
Here, the design variables are limited by the bounds also shown in the table. Note
that the drag is reduced by some 14%, the cost by 11% and that the optimized
wing has a significantly larger area. This demonstrates that the initial design can
be improved on in both aerodynamic and cost terms, but does not indicate how
any further trades might be made between these two aspects.

(e) Multi-objective design optimization

As will be obvious from the previous two calculations, optimizing a design for
minimum drag does not always increase cost, particularly if the starting point
for the search has not been specifically optimized for minimum cost or weight.
To examine what interactions there might be between these two aspects, we
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Figure 7. Initial wing geometry and overall CFD meshing (plan view shows upper surface
supersonic Mach contours).

therefore next use the probability of the improvement metric and update scheme
outlined earlier to produce a Pareto front of nine trade-offs possible between cost
and drag (figure 8). This front has been produced using an initial set of 250
analysis runs to build the first Krig database, followed by a further 250 runs in
batches of 10 found by searching equation (6.2) for good candidate solutions (the
fact that this function is highly multi-modal means that it is always relatively
easy to find such batches of good candidates). Of these 500 runs, some 45% fail to
yield results either because the CFD meshing scheme being used cannot build an
acceptable mesh or because the resulting CFD run does not converge correctly in
either the inviscid or viscous coupled solves. These failed points are not included
when constructing the Krig, but their presence is allowed for in the update
scheme using the concept of imputation (Forrester et al. 2005), which allows the
process to be warned that samples have already been taken in a given location.
This is necessary to prevent the update process continually revisiting areas of the
design space where solutions cannot be generated. Since these 500 runs can be
handled in parallel, exploiting the 10 available licences, this search process
requires around 5 days of computing effort. Note also that the design previously
found by simply optimizing for low drag is not located by the multi-objective
search, being slightly less than 1% lower in drag than the lowest drag design
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Figure 8. Pareto front of cost versus D/q showing the front after the initial DoE (dashed) and that
after 250 updates (solid, with dashed extension to the design found by pure CFD optimization), together
with the successful initial DoE points (open diamond) and the successful update points (times).

found on the front—it could thus be added to make a 10th point in the Pareto
set—this is indicated in the figure by the dashed line linking the points mark
with Z.

Also shown in figure 8 are the results from the initial 250 point DoE, all the
successful update points and the position of the front after the initial DoE. Note that
those design points that lie below and to the left of the front are not considered for
membership of the front because they violate one or more of the constraints—in this
case, either the wing weight or volume constraints are the active aspects in the
design. It is clear that the update scheme being used here not only rapidly identifies
good designs but also that these are nicely spread along the front, providing
designers with a wide range of options from which to choose. Interestingly, one
design (the 157th) from the initial DoE remains on the Pareto front even after the
update sequence, moreover this also is quite a well-balanced design—its presence
demonstrates the benefit of using a good quality space filling DoE at the outset.

Since the designs that make up the final front span a wide range of costs and
aerodynamic performance, it is interesting to examine three cases taken from the
front in more detail (table 4). Here, information is provided for the designs at
either end of the front found by the update search, to illustrate the range of
variation possible while still providing some degree of optimality, while the third
design represents a reasonable trade-off position of intermediate cost with fairly
low drag. Note that these three designs have notably different aspect ratios and
weights with the low drag design having longer more slender and more swept
back wings which are structurally less efficient and thus heavier and more costly,
while the low-cost design has strongly tapered thick and deep inboard sections
that lead to a very structurally efficient design of low weight and cost, but at the
expense of 27% more drag, though being 35% cheaper. The intermediate design
seems a much better compromise with drag only 6% higher than the low drag
design, while being nearly 27% cheaper.
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Table 4. Design parameters, constraint values and objective function values—multi-objective search.

lower DoE upper

limit  initial low drag  point 157  low cost limit quantity (units)

100 168 158.1 161.1 164.1 250 wing area (m?)

6 9.07 10.06 8.457 8.000 12 aspect ratio

0.2 0.313 0.3906 0.3465 0.300 0.45 kink position

25 27.1 29.62 25.53 25.82 45 sweep angle (degrees)
0.4 0.598 0.5385 0.5184 0.7000 0.7 inboard taper ratio
0.2 0.506 0.2678 0.2516 0.4044 0.6 outboard taper ratio
0.1 0.150 0.1735 0.1216 0.1800 0.18 root t/c

0.06 0.122 0.09758 0.1059 0.1400 0.14 kink ¢/c

0.06 0.122 0.1182 0.07031 0.0600 0.14 tip ¢/c

4.0 4.5 4.090 4.816 4.441 5.0 tip washout (degrees)

0.65 0.75 0.7344 0.7961 0.8500 0.85 kink washout fraction
127984 134744 114 922 112 146 135000 wing weight (N)

40.0  41.73 43.59 40.63 46.9656 wing volume (m®)
4.179 5.001 3.313 3.34306 5.4 pitch-up margin

2.5 2.693 2.729 3.216 2.64626 undercarriage bay length (m)
2922 2.545 2.691 3.234 D/q (m?)
0.502 0.338 0.248 0.218 cost. (£m)

All three new designs are significantly cheaper than the baseline geometry or
the purely CFD-optimized design (see figure 9 for a breakdown of these costs).
Two of the three also offer lower drag than the baseline, showing how far from
optimal this initial geometry was. The major cost increase in the low drag design
when compared with the other two wings is primarily due to the large increase in
skin costs due to the increase in skin thicknesses driven by the cover-weight
estimates. The other differences are more minor and are driven by differences in
geometry and number of features such as cut-outs, etc. Figure 10 shows the
planform shape and upper surface Mach contours for DoE point 157 and it is
clear that an enlarged inboard root section that is shock-free has been obtained
at the expense of a slight shock in the reduced chord tip areas.

While there is no suggestion that any of these designs should be used in
practice, it is hoped that this brief demonstration of what is possible using the
latest generation DSO tools will be of value to practising designers, indicating
that significant cost savings can often be made at the concept level in exchange
for relatively modest penalties in aerodynamic performance.

8. Conclusions

This paper briefly reviews the current state-of-the-art of design optimization as it
applies to aerospace engineering. It notes that if design improvements are to be made
in arealisticindustrial setting, a significant suit of capabilities must be assembled and
managed together and that such tasks span CAD, classical engineering and modern
computing grids. It then goes on to demonstrate what may be achieved in multi-
discipline, multi-objective design by using a three-dimensional Euler CFD code, a
modern generative costing approach and the sophisticated use of DoE and response
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Mach
1.24

1.02

Figure 10. Wing geometry for DoE point 157 (plan view shows upper surface supersonic Mach
contours to the same scale as in figure 7).

surface optimization techniques formulated using multi-objective expected improve-
ment schemes. This allows physics-based predictions to be brought to bear when
attempting to trade-off the conflicting desires for low-cost, high-performance designs.

It is fully anticipated that upcoming developments in RSM, systems integration
and parallel CFD methods, coupled with the reducing cost of computational facilities
will allow the routine deployment of such multi-objective approaches with tens of
goals and hundreds of variables by design staff within the next 10 years.

Development of the Southampton wing design environment used here was supported by the UK
Engineering and Physical Sciences Research Council under grant GR/L04733 and by BAE
SYSTEMS. Their support is gratefully acknowledged.
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