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Abstract

Planar structures containing oriented and ordered metallic nanoparticles
with shapes lacking an inversion centre can act as a nonlinear medium for
generation of second harmonic optical radiation by a process whose
directional features resemble those of phase matched second harmonic

generation (SHG) in bulk media. The nonlinearity of the metallic patterns
stems from the asymmetric modulation of the local field inside nanoparticle
by electron oscillations and is deeply rooted in the nanostructured nature of

the system. The SHG efficiency is inversely proportional to the second

power of the nanoparticle size.
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Microstructured and nanostructured metallic surfaces offer
a range of unusual and useful optical properties that give
them a well-deserved place in meta-material research. For
instance, chiral structuring brings about strong polarization
effects in light transmitted, reflected and scattered from
a planar structure [1], while plasmon excitations provide
unexpectedly high levels of light transmission through
microperforated metallic screens [2] and are behind
the complex polarization properties and efficiency of
metallic gratings [3, 4]. Nanostructured planar structures
containing non-centrosymmetric metallic inclusion show
second order nonlinear properties and may be used
to generate second harmonic optical radiation [5-7].
The main advantage of these nonlinear media is their simplicity
and the fact that they can be fabricated using well-established
microfabrication/nanofabrication techniques developed for the
semiconductor industry. However, there has so far been
no discussion of the significance of the inclusion size or
the phase matching conditions specific to ordered arrays
of nanoparticles.  This paper will demonstrate that the
nonlinearity of metallic non-centrosymmetric structures is
deeply rooted in the nanostructured nature of the system. A
simple scaling formula is introduced which shows that the
second harmonic efficiency decreases as the second power of
the nanoparticle size.

The optical second harmonic generation (SHG) process—
the conversion of radiation at a fundamental pump frequency

into radiation at a harmonic with twice the frequency—is a
symmetry breaking effect. In the dipole approximation it can
only be seen in systems lacking an inversion centre. SHG was
first seen in bulk non-centrosymmetric crystal and powders,
and later in geometries of reflections from solid surfaces, where
symmetry is broken by the presence of the interface [8]. Here
we show that a regular planar structure containing metallic
nanoparticles lacking inversion symmetry provides a nonlinear
medium capable of converting the pump energy into the second
harmonic in a single-layer structure. The relative efficiency
of this process increases rapidly with decreasing nanoparticle
size, and the arrangement of nanoparticles in regular 2D arrays
provides coherent addition of second harmonic fields in a
manner analogous to the non-collinear phase matching process
in 3D bulk crystals.

Let us consider a planar structure containing metallic
nanoparticle inclusions lacking an inversion centre. The
electron’s classical Drude-type equation of motion can be
written as

f+Ti+wix = —LE
m

where L is the local field correction factor and E is the
electric field strength of the incident light wave at frequency
o (wavelength A = 2mc/w). It is assumed that the wave
is polarized along the x-axis (figure 1). In a nanoparticle
lacking an inversion centre a displacement x of the electron
gas affects the local field in asymmetric fashion, thus
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Figure 1. On the left is a plan view of a wedge shaped metallic
nanoparticle (i.e. one lacking an inversion centre). The diagram on
the right shows a fragment of regular planar structure capable of
generating second harmonic radiation that propagates in a direction
different from that of reflected, transmitted or diffracted pump
radiation. It contains an array of oriented non-centrosymmetric
metallic inclusions, for instance, fabricated by microlithography.

allowing a non-zero term, proportional to the displacement:
L = Lo+ (0L/dx)x + ---. The Drude equation of motion
can be readily solved by means of consecutive approximations
to give the following amplitudes for electron oscillations at
frequency w:

1 eLE
2
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and at frequency 2w:
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By making the reasonable assumption that in noble metals such
as silver and gold at optical wavelengths @ > I' and using the
free-electron approximation for optical electrons (wy = 0),
one arrives at the following estimate for the ratio between the
amplitudes of electron oscillations at frequencies @ and 2w in
the nanoparticle:
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To evaluate the SHG efficiency in a particle lacking an
inversion centre we approximate it by a wedge of thickness
h with an opening angle 2/, length d, and mid-diameter 2r,
as presented on figure 1. The light-induced displacement
of electrons x creates a negative surface charge with density
enx(l + ¥ (x — 2d)/2r) on one side of the particle,
and a positive surface density o, = —nex on the other.
The depolarization field could therefore be represented as
Egp = (04 — 0-)/2e0 = —B(x)enx/ey, where B(x) is
the depolarization factor in the x-direction. Neglecting the
dipole—dipole interaction between particles and the influence
of the substrate, the local field factor [9] may be written as
L = (1+ (e — DBx)"". Here ¢ is the complex bulk
dielectric permeability of the metal at frequency w. From
here we obtain the first term in the series describing the local
field factor dependence on the particle asymmetry 0L /dx =
WL(Z)(I — &)/4r, and arrive at the following estimate:
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Figure 2. Diffraction of a pump beam and generation of a coherent
second harmonic wave by a grating pattern of non-centrosymmetric
metallic nanoparticles.

In accordance with the Huygens principle, the oscillations
at 2w will give rise to a secondary scattered wave at this
frequency. If all of the metallic nanoparticles are oriented
in the same direction, the scattered waves may interfere
constructively if the nanoparticles are arranged in the form
of a regular grating with pitch p (see figure 1). If the incident
wave falls normal to the grating, it will be diffracted at an
angle ®, = sin”'(1/p) and the amplitudes of the secondary
waves emitted by the metallic inclusions will add coherently
to give a second harmonic wave at a substantially different
angle ®,, = sin~'(1/2p); see figure 2. The ratio between
the intensities of the diffracted waves at the two frequencies
will be |14|?. Arranging the nanoparticles in a grating helps to
separate the second harmonic signal generated at the substrate
interface from that generated by the nanoparticles. The
coherent harmonic generation is stable against small shape
imperfections of individual particles as long as the particles are
much smaller then the wavelength acting as ‘point sources’ of
the secondary waves. Additionally, the nanoparticles’ SHG
efficiency should be sensitive to the angle & between the
polarization direction of the incident light and the main axis
of the nanoparticles and should vary as approximately cos® .
This fact may also be used for characterization. This situation,
in which the second harmonic is generated in a direction
distinctively different from that of the pump, resembles the
non-collinear SHG process in bulk crystals. In both cases, the
photon momentum conservation law dictates the direction in
which harmonics are generated efficiently. The peculiarity of
the planar case is the involvement of the grating vector.

For the purposes of estimating the SHG efficiency in
the nanoparticle array we assume that the intensity of the
incident wave / = 1 GW cm™2 and that the nanoparticles
are made of gold, with 2r ~ 10 nm and 2y ~ 0.5 rad.
By changing the ratio r/d the shape-dependent depolarization
factor may be adjusted over a wide range of values. In

27



N I Zheludev and V T Emel’yanov

addition to that the factor is also significantly influenced by the
dipole—dipole interactions between the particles and between
a particle and the substrate. We will consider two extreme
cases corresponding to a nearly spherical nanoparticle with
B(0) ~ 0.25 and an elongated nanoparticle with (0) ~
0.021. For such particles resonance in the second harmonic
efficiency is achieved at wavelengths A = 0.517 and 1.00 ©m
respectively. Under the resonance, the intensity of the second
harmonic wave will be approximately 0.34% of that of the
diffracted fundamental wave for 8(0) ~ 0.021, dropping to
5x1078% for B(0) ~ 0.25. In the case of silver nanoparticles,
if B(0) ~ 0.0125 could be achieved, which corresponds to a
resonance at A = 1.24 um, the second harmonic efficiency
would rise to 6%.

One should note that the SHG process described here
is deeply rooted in the nanostructured nature of the system.
Indeed its efficiency is strongly dependent on the shape and
size of the particle: |u|> o< (¥/r)?. The arrays of metallic
nanoparticles lacking an inversion centre may be readily manu-
factured on semiconductor and dielectric substrates using stan-
dard lithographic techniques, or electron and ion beam milling.
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