The University of Southampton
University of Southampton Institutional Repository

Understanding critical collapse of a scalar field

Understanding critical collapse of a scalar field
Understanding critical collapse of a scalar field
I construct a spherically symmetric solution for a massless real scalar field minimally coupled to general relativity which is discretely self-similar (DSS) and regular. This solution coincides with the intermediate attractor found by Choptuik in critical gravitational collapse. The echoing period is ?=3.4453±0.0005. The solution is continued to the future self-similarity horizon, which is also the future light cone of a naked singularity. The scalar field and metric are C1 but not C2 at this Cauchy horizon. The curvature is finite nevertheless, and the horizon carries regular null data. These are very nearly flat. The solution has exactly one growing perturbation mode, thus confirming the standard explanation for universality. The growth of this mode corresponds to a critical exponent of ?=0.374±0.001, in agreement with the best experimental value. I predict that in critical collapse dominated by a DSS critical solution, the scaling of the black hole mass shows a periodic wiggle, which like ? is universal. My results carry over to the free complex scalar field. Connections with previous investigations of self-similar scalar field solutions are discussed, as well as an interpretation of ? and ? as anomalous dimensions.
1550-7998
7353-7360
Gundlach, Carsten
586f1eb5-3185-4b2b-8656-c29c436040fc
Gundlach, Carsten
586f1eb5-3185-4b2b-8656-c29c436040fc

Gundlach, Carsten (1997) Understanding critical collapse of a scalar field. Physical Review D, 55 (2), 7353-7360. (doi:10.1103/PhysRevD.55.695).

Record type: Article

Abstract

I construct a spherically symmetric solution for a massless real scalar field minimally coupled to general relativity which is discretely self-similar (DSS) and regular. This solution coincides with the intermediate attractor found by Choptuik in critical gravitational collapse. The echoing period is ?=3.4453±0.0005. The solution is continued to the future self-similarity horizon, which is also the future light cone of a naked singularity. The scalar field and metric are C1 but not C2 at this Cauchy horizon. The curvature is finite nevertheless, and the horizon carries regular null data. These are very nearly flat. The solution has exactly one growing perturbation mode, thus confirming the standard explanation for universality. The growth of this mode corresponds to a critical exponent of ?=0.374±0.001, in agreement with the best experimental value. I predict that in critical collapse dominated by a DSS critical solution, the scaling of the black hole mass shows a periodic wiggle, which like ? is universal. My results carry over to the free complex scalar field. Connections with previous investigations of self-similar scalar field solutions are discussed, as well as an interpretation of ? and ? as anomalous dimensions.

This record has no associated files available for download.

More information

Published date: 1997

Identifiers

Local EPrints ID: 29173
URI: http://eprints.soton.ac.uk/id/eprint/29173
ISSN: 1550-7998
PURE UUID: 78e951c1-aa1d-45ba-a42d-c8553ec06b38
ORCID for Carsten Gundlach: ORCID iD orcid.org/0000-0001-9585-5375

Catalogue record

Date deposited: 07 Feb 2007
Last modified: 16 Mar 2024 03:15

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×