Upper limits on gravitational wave bursts in LIGO's second science run
Upper limits on gravitational wave bursts in LIGO's second science run
We perform a search for gravitational wave bursts using data from the second science run of the LIGO detectors, using a method based on a wavelet time-frequency decomposition. This search is sensitive to bursts of duration much less than a second and with frequency content in the 100-1100 Hz range. It features significant improvements in the instrument sensitivity and in the analysis pipeline with respect to the burst search previously reported by LIGO. Improvements in the search method allow exploring weaker signals, relative to the detector noise floor, while maintaining a low false alarm rate, O(0.1)µHz. The sensitivity in terms of the root-sum-square (rss) strain amplitude lies in the range of h(rss)~10^(-20)-10^(-19) Hz^(-1/2). No gravitational wave signals were detected in 9.98 days of analyzed data. We interpret the search result in terms of a frequentist upper limit on the rate of detectable gravitational wave bursts at the level of 0.26 events per day at 90% confidence level. We combine this limit with measurements of the detection efficiency for selected waveform morphologies in order to yield rate versus strength exclusion curves as well as to establish order-of-magnitude distance sensitivity to certain modeled astrophysical sources. Both the rate upper limit and its applicability to signal strengths improve our previously reported limits and reflect the most sensitive broad-band search for untriggered and unmodeled gravitational wave bursts to date.
1-25
Abbott, B.
9d06072e-d002-47e9-a49b-d209a2c79e00
Abbott, R.
ceb7bd1e-f214-46dd-9972-a194692a86aa
Adhikari, R.
09554275-026e-4fa9-a28c-9165f58be847
Jones, D.I.
b8f3e32c-d537-445a-a1e4-7436f472e160
LIGO Scientific Collaboration
8 September 2005
Abbott, B.
9d06072e-d002-47e9-a49b-d209a2c79e00
Abbott, R.
ceb7bd1e-f214-46dd-9972-a194692a86aa
Adhikari, R.
09554275-026e-4fa9-a28c-9165f58be847
Jones, D.I.
b8f3e32c-d537-445a-a1e4-7436f472e160
Abbott, B., Abbott, R. and Adhikari, R.
,
LIGO Scientific Collaboration
(2005)
Upper limits on gravitational wave bursts in LIGO's second science run.
Physical Review D, 72 (6), , [062001].
(doi:10.1103/PhysRevD.72.062001).
Abstract
We perform a search for gravitational wave bursts using data from the second science run of the LIGO detectors, using a method based on a wavelet time-frequency decomposition. This search is sensitive to bursts of duration much less than a second and with frequency content in the 100-1100 Hz range. It features significant improvements in the instrument sensitivity and in the analysis pipeline with respect to the burst search previously reported by LIGO. Improvements in the search method allow exploring weaker signals, relative to the detector noise floor, while maintaining a low false alarm rate, O(0.1)µHz. The sensitivity in terms of the root-sum-square (rss) strain amplitude lies in the range of h(rss)~10^(-20)-10^(-19) Hz^(-1/2). No gravitational wave signals were detected in 9.98 days of analyzed data. We interpret the search result in terms of a frequentist upper limit on the rate of detectable gravitational wave bursts at the level of 0.26 events per day at 90% confidence level. We combine this limit with measurements of the detection efficiency for selected waveform morphologies in order to yield rate versus strength exclusion curves as well as to establish order-of-magnitude distance sensitivity to certain modeled astrophysical sources. Both the rate upper limit and its applicability to signal strengths improve our previously reported limits and reflect the most sensitive broad-band search for untriggered and unmodeled gravitational wave bursts to date.
This record has no associated files available for download.
More information
Published date: 8 September 2005
Identifiers
Local EPrints ID: 29277
URI: http://eprints.soton.ac.uk/id/eprint/29277
ISSN: 1550-7998
PURE UUID: f7010ab3-095a-4577-87b8-8996effa92c2
Catalogue record
Date deposited: 11 May 2006
Last modified: 16 Mar 2024 03:06
Export record
Altmetrics
Contributors
Author:
B. Abbott
Author:
R. Abbott
Author:
R. Adhikari
Corporate Author: LIGO Scientific Collaboration
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics