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ABSTRACT

This paper is a review and extension of recent work by Berry and Dennis (Proc. Roy. Soc. Lond. A456, pp. 2059-2079,
2000; A457, pp.141-155, 2001), where the geometric structure of phase singularities (wave dislocations) in waves is studied,
particularly for singularities in isotropic random wavefields. The anisotropy ellipse of a generic dislocation is defined, and I
derive an angular momentum rule for its phase. Random wavefields are discussed, and statistical results for density,
anisotropy ellipse eccentricity, and planar correlation functions are stated. The properties of the correlation functions are
compared to analogous features from ionic structure theory, and are discussed in those terms. The results are given
explicitly for four particular spectra: monochromatic waves propagating in the plane, monochromatic waves propagating in
space, a speckle pattern in the transverse plane of a paraxial beam, and the Planck spectrum for blackbody radiation.

Keywords: phase, singularities, dislocations, gaussian, waves, randomness, correlations, screening.

1. INTRODUCTION

The use of gaussian random functions in problems of wave physics has a long and fruitful history (for example 1, 2

(reprinted in 3), 4 (reprinted in 5),6-8) partly due to the ubiquity of the gaussian distribution, by virtue of the central limit
theorem of mathematics9. Recent work10 (with the corrigenda 11), (also see 12) has applied this theory to the statistics of
phase singularities (wave dislocations, optical vortices) in random scalar waves which are isotropic (for propagation in both
two and three dimensions). In this article I shall review and extend this work with emphasis on waves in the plane. I
consider the local phase structure of a dislocation, and derive a rule for it analogous to angular momentum in mechanics
(section 2); the model of gaussian random waves is constructed (section 3), and applied to four particular spectra -
monochromatic waves propagating in two dimensions; the speckle pattern in the transverse plane of a paraxial beam; plane
sections of monochromatic waves propagating in three dimensions; and plane sections of blackbody radiation (where the
physically vector waves are caricatured by scalars, following 13-15). Statistical results for mean densities and eccentricities of
the anisotropy ellipse follow (section 4), and finally (section 5) the number and charge planar correlation functions are
stated, and used to explore certain features of the planar dislocation distribution: screening, topological charge fluctuations,
and nearest neighbour spacing probabilities.

The notation of 10 will be adopted throughout; in particular, ψ will represent a complex scalar wavefield in two or
three dimensions (all functional dependence will be omitted where obvious), and

ψ ρ χ ξ η= ( ) = +exp i i ,        (1)

where ρ≥0 is the amplitude, χ is the phase, and ξ,η are the real and imaginary parts of the wave. Time dependence will not
be considered explicitly; for monochromatic waves (including projections of them, such as the speckle and projected shell
spectra considered later), the dislocation lines do not move. A complex representation of the physically real wave is taken to
include information about both the amplitude and the phase of the wave; the complex analytic signal (positive frequency
part) of a real representation is used16. The phase χ  is undefined (singular) when the amplitude ρ=0, (such as at the origin of
the complex plane); this is equivalent to requiring that ξ=0,η =0. Each of these conditions defines a contour line in the plane
or surface in space, and the singularities, occurring at the contour crossings, are thus lines in space or points in the plane.
These nodal lines are called wave dislocations (by analogy with the structure of defects in crystals17, 18) or optical vortices,
in the case of a (scalar) light field (see for example 19, 20). Around a dislocation, the phase changes by an integer multiple of
2π, that is, for a closed loop C enclosing a dislocation (line or point),



dχ π=∫ 2 s
C

,        (2)

where the signed integer s is called the strength (topological charge) of the dislocation, and is positive when phase increases
in a positive sense with respect to C. In general, s=±1 for a dislocation line, and any (untypical) higher order dislocation
unfolds to |s| strength 1 dislocations upon perturbation, for example by a small amplitude plane wave. Dislocation strength
is conserved in reactions (unfolding, collision etc), and attention is restricted here to the s=1 case.

The current j is defined in the usual way,

  j ≡ ∇ = ∇Imψ ψ ρ χ* 2 ,        (3)
with vorticity

  
ωω ≡ ∇ × = ∇ ×∇ = ∇ × ∇1

2

1

2
j Im ψ ψ ξ η* ,        (4)

which points along the direction of the dislocation (in three dimensions) in the direction of increasing phase. Clearly, then,
for a single-strength dislocation crossing the x,y plane,

  
s z x y y x= ⋅ = −signωω e sign( )ξ η ξ η .        (5)

2. LOCAL PHASE STRUCTURE

Around a strength 1 dislocation, the phase changes by 2π, and, in general, this change is not uniform. In the neighbourhood
of a dislocation passing through the origin tangent to the z-direction, the current and amplitude locally (small R=(x,y) ) have
the forms

  j R≈ ×ωω( )0 ,        (6)

  ρ ψ ξ η2 2 2 20 0 0≈ ⋅ ∇ = ⋅ ∇( ) + ⋅ ∇( )R R R( ) ( ) ( ) .        (7)

(6) implies that the flow lines of j are locally circular in the plane transverse to the dislocation, while the quadratic form for
ρ2  in (7) implies that the local contours of amplitude (and intensity) are elliptical, defining the core anisotropy ellipse10.
Taking the dislocation intersecting the origin in the z-direction as above, and using cylindrical polars (R, φ, z), ∇χ  must be
in the eφ direction, so

∇ = ∂
∂

χ χ
φ

1

R
.        (8)

Since the dislocation is in the z-direction at the origin, ωωωω(0)=ω(0)ez and, locally, j(R)= ω (0)R in the z=0 plane. Thus

R R
R

2 2
21
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∂
∂

=
∇

=φ
χ χ

ρ
ω( )

,        (9)

which is constant on the ρ2 contour, giving an analogue conservation of angular momentum (defined as R2∂φ/∂χ, the
interpretation being that equal area sectors of the phase ellipse are swept out in equal intervals of χ (see fig 3)). This version
of Kepler’s law is identical to the conservation of angular momentum for a linear central force21 (such as for a conical
pendulum). Of course, only for monochromatic waves is this quantity actually conserved with time, where the phase lines
rotate about the ellipse once per cycle. This angular momentum relation is satisfied by all s=1 dislocations (but not higher
order, whose local phase structure is more complicated), and not just for dislocations on the axes of beams, which may
possess other kinds of angular momentum22.

Along the dislocation line, the local phase spokes pattern and anisotropy ellipse may rotate, usually at different
rates. If the phase spokes rotate along the dislocation, the dislocation is referred to as a screw dislocation, again in analogy
with the corresponding structure in crystals17.

3. GAUSSIAN RANDOM WAVES

The material in this section closely follows that in 10, section 3. The random wavefields considered are superpositions of
very many plane waves, with propagation directions isotropically distributed (in two or three dimensions), and with each
plane wave component having a random phase. Averages are taken over the ensemble of all such superpositions (with



ergodicity ensuring that ensemble and spatial averages are equal). Neglecting time dependence, for waves propagating in
space,

  
ψ φ( ) exp(i[ ])r k r

k
k= ⋅ −∑ ak ,      (10)

where each plane wave is labelled by its wavevector k = (kx, ky, kz). For waves in the plane, r and k are replaced by R and
K=(kx,ky). The φk (0≤ φk <2π) are random phases, with each ensemble member characterised by its values of φk for each k.
The real amplitudes ak are fixed (giving them a gaussian distribution does not alter any of the statistics calculated here), and
are related to the spectrum of the waves. The isotropy of the waves is responsible for ak being dependent only on the
wavenumber k, and not on direction. If sufficiently many waves are present in the summation (10), then any linear
combination of the real and imaginary parts (1) of (10), or their spatial derivatives, is a stationary gaussian random
function1, 2, that is, they have a gaussian probability density function. Explicitly (where angle brackets denote ensemble
averaging),

ξ φ φ2

21
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= ⋅ − ′ ⋅ −
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     (11)

and assuming that the k are sufficiently dense, employing isotropy, the radial power spectrum Π is defined
1
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For plane sections of waves in three dimensions, Π3 and Π2 are related by projection in wavevector space:
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     (13)

Note that Π  is the usual power spectrum of the wave, multiplied by an appropriate scaling constant times k2 or K
appropriately. It is convenient to normalise this distribution, ie

d        dk k K K
0

3
0

21 1
∞ ∞
∫ ∫= =Π Π( ) , ( ) ,      (14)

which can be done without loss of generality. The results of statistical calculations are expressed as moments or functions of
this distribution, with the notation

d        kf k k f k kn
n( ) ( ) ,Π ≡ ≡

∞
∫
0

,      (15)

and similarly in the plane (with suffixes 2,3 where appropriate). The normalisation ensures that

ξ η2 21 1= =,        ,      (16)

so that the probability density function of ξ, (and similarly for η) is

P( ) exp( / )ξ
π

ξ= −1

2
22 .      (17)

The dislocation correlation functions to be calculated involve the field autocorrelation function (coherence
function) C(R) of the wavefield. If values at point A in the plane are labelled with a suffix A, and values in the plane at point
B, separated by a distance R from A, labelled by a suffix B, employing isotropy and stationarity, C(R) is defined to be

C R J KR
kR

kRA B A B( ) ( )
sin( )≡ = = =ξ ξ η η 0 2

3
,      (18)



where the last term is only for waves propagating in space. It is the Fourier transform of the power spectrum1, 2, and the
dislocation correlation functions are given in terms of C and its derivatives. Note that the normalisation ensures that C(0)=1,
and C→0 as R→∞.

Although results will be given for arbitrary spectral distributions, explicit calculations will be made for four
different radial spectra, with different physical origins and qualitatively different properties. Firstly, I consider
monochromatic waves propagating in the plane, with wavenumber K0 (and corresponding wavelength Λ0), and radial power
spectrum

Π2 0( ) ( )K K K= −δ .      (19)

This will be referred to as the ring spectrum, because the spectrum is a circular ring in the kx, ky plane. Such waves are a
good model of random wavefunctions in quantum billiards23, 24. The autocorrelation function (18) for the ring spectrum is

C R J R( ) ( / )= 0 02π λ ,      (20)

which, as expected, is the Fourier transform of a circular ring.

The second spectrum is for waves in the transversal section of a paraxial beam (only the planar case will be
considered, because such waves are only isotropic in the x,y plane, with beam propagation in z). The planar power spectrum
for such a wavefield is gaussian, so the corresponding two dimensional radial spectral density is

Π2 2
2 22( ) exp( / )K

K
K= −

σ
σ ,      (21)

where σ is the standard deviation of the distribution, with Λσ = 2π/σ the corresponding wavelength. Since this is the
spectrum of a speckle pattern, it will be referred to as the speckle spectrum. Unsurprisingly, its autocorrelation function is

C R R( ) exp ( )= −( )2 22 2 2π σΛ .      (22)

The third spectrum is that of monochromatic waves propagating in space, with wavenumber k0, wavelength λ0,
whose three dimensional radial spectrum is a delta function, and whose two dimensional radial power spectrum is calculated
using (13):

Π Π Θ
3 0 2

0

0 0
2 2

( ) ( ), ( )
( )

k k k K
K k K

k k K
= − = −

−
δ        ,      (23)

where Θ denotes the unit step function. This spectrum will be referred to as the shell spectrum, since all the wavevectors lie
on a spherical shell. The autocorrelation function of the shell spectrum is given by

C R
R

R
( )

sin( / )

/
= 2

2
0

0

π λ
π λ

,      (24)

which is the Fourier transform of a spherical shell.

The final spectrum considered is the Planck spectrum for blackbody radiation at temperature T, where thermal
wavenumber and wavelength are defined,

k
k T

c

hc

k TT T≡ ≡B

B
       

h
, λ ,      (25)

(kB is Boltzmann’s constant,) and the three dimensional radial spectral density is

Π3

3

4 4
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1
( )

[exp( / ) ]
k

k

k k kT T

=
−π

,      (26)

and Π2 is easy to evaluate numerically. Note that the peak of this distribution, located at k/kT=2.821, implies that the
geometric features for this spectrum will be small on the scale of thermal wavelength, since most wavelengths present in the
sum (10) will be less than λT. The autocorrelation function can be calculated analytically to be
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.      (27)

This function is similar to the calculations of longitudinal and lateral autocorrelation functions for blackbody radiation for
vector waves made by Bourret4, the waves are only treated as scalars here. Note that the function quoted in 10, eq (6.8), is
incorrect, and is corrected to (27) in a corrigendum11.



Figure 1: Simulated random superpositions of 200 waves, for each spectrum: (a) ring; (b) speckle; (c) shell; (d) Planck.
Each plot is in units of the appropriate wavelength, and in each case, the left hand picture is of intensity ρ2 (with greater
intensity being lighter), and the right hand plot is the contours ξ=0 (thick lines) and η=0 (thin lines). Note the dislocations,
being the crossings of the contour pictures, correspond to dark regions in the intensity plots.

Examples of the intensity patterns and real and imaginary contours of these different spectra are given in fig 1, and
the field autocorrelation functions are given in fig 2.

Figure 2: The field autocorrelation functions (coherence functions) C(R) for the four spectra: (a) ring, given in (20); (b)
speckle (22); shell (24); Planck (27). Each of the functions is given in the appropriate wavelength units.



4. STATISTICAL DISLOCATION DENSITY AND ELLIPSE ECCENTRICITY

The details of calculations in this and subsequent sections can be found in 10. The eccentricity ε of the anisotropy ellipse
described in section 2 may be calculated, and is independent of the spectrum. The ellipse in the has a higher eccentricity
than the ellipse transverse to a dislocation line in space (as expected when obliquely slicing an elliptic cylinder):

ε π ε3 2
3

8 2
0 8330

3

2
0 8697, ,. , .d d= = = =       arcsinh1-1 .      (28)

These ellipses, along with their phase spokes pattern, are given in fig 3.

Figure 3: Ellipses with the mean eccentricities given in (28): (a) transverse to a dislocation line in space; (b) in the plane.
Equiphase lines are plotted at intervals of π/6, demonstrating the angular momentum phase relation described in section 2.

The dislocation line density d3, the average length of dislocation line per unit volume, is given by

d
k

k3
2

23
0 1061= = ∇ × ∇ = =δ ξ δ η δ ξ δ η ξ η

π
( ) ( ) ( ) ( ) .ωω ,      (29)

and the corresponding planar dislocation point density d2 (average number of dislocation points in the plane) is

d
K k

z x y y x2
2 2

4 6
= = − = =δ ξ δ η ω δ ξ δ η ξ η ξ η

π π
( ) ( ) ( ) ( ) ,      (30)

where the last equality only applies for plane sections of waves in space. A measure of the mean spacing of dislocation
points in the plane is given by 1/√d2. It is, in fact, easy to show that d2/d3=1/2 is general, since d2 involves the flux of |ωωωω|
through the x,y plane, that is, its z component; the average length of the z component of a random unit vector can easily be
shown to be 1/2, whereas the length of a unit vector is always 1.

The value calculated for d3 may also be compared to the corresponding density of singularities for isotropic
complex gaussian random vector waves in three dimensions (that is, lines where the polarisation ellipse is circular (C lines)
and linear (L lines))25, 26:

d k k d k3 2 2 3 2
3

10

1

5 3
0 2110 0 2136,C ,L       = +





= =
π

. , . .      (31)

These values are very close numerically, but are not equal. Also, they are both very close to 2d3 (29), that is, twice the
corresponding dislocation density. It is not immediately obvious why these relations should exist (although it is likely that
the C line result is related to the fact that C lines can be taken as dislocations in the scalar field received by taking the inner
product of the complex vector field with itself 26). The two dimensional results for the four particular spectra are presented
in table 1.

Spectrum Ring Shell Speckle Planck
d2 π/Λ0

2 2π/3λ0
2 2π/Λσ

2 80 π3/63λT
2

Mean spacing (1/√d2) 0.564 Λ0 0.691 λ0 0.399 Λσ 0.156 λT

1/√d2,C − 0.490 λ0 − 0.113 λT

1/√d2,L − 0.487 λ0 − 0.112 λT

Table 1:Giving values of planar density d2 and related mean spacing values for dislocations, C lines and L lines. Note that
only the shell and Planck spectra are appropriate for the vector calculations, where waves propagate in three dimensions.



5. DISLOCATION CORRELATIONS

The positions of dislocations in the plane are not independent, but are correlated, the precise nature of which depending on
the field autocorrelation C(R) defined in (18). The correlations calculated are of two types: the number correlation function
g(R), which averages local dislocation number densities separated by a distance R , and the charge correlation function
gQ(R), which averages local charge densities separated by R. Using the same suffixes A,B as in (18), g(R) is given by
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     (32)

where ′′ ≡ ′′ =C C d0 20 2( ) π , and
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where F,E,Π in (33) are the (incomplete) elliptic functions of the first, second and third kinds respectively (with the

conventions for elliptic functions being those used by Mathematica 27). Also,
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and finally,
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     (35)

gQ(R) is defined in the same way as g(R), but weighted by dislocation strength (5),
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Figure 4: The number correlation function g(R) (thick line) (with asymptotic value 1 (dashed line)), as given in (32), and
charge correlation function gQ(R) (thin line), as given in (36), for the four spectra: (a) ring; (b) speckle; (c) shell; (d) Planck;
in appropriate units of wavelength.

with the first term on the second line of (36) being a special case of a general expression obtained by Halperin28. g,gQ for the
four spectra can be seen in fig 4. It can be shown that

g gQ( ) ( )0 0= − ,      (37)

a property shared by the first and second derivatives as well, as is apparent from the fig 4. Note that, for a random
distribution of signed points in the plane (Poisson distribution), g=1 gQ=0 always, and there is no correlation between
points. These values are approached asymptotically for each of the spectra, as the degree of correlation reduces with
distance.

There is a good analogy between the two statistical theories of signed dislocations in the plane and ionic liquids29

(such as molten salts), for which many mathematical techniques have been developed. However, caution must be taken not
to take this analogy too far; the two theories are completely different physically, and some similarities may be coincidental.
For example, the ring and shell correlation functions (fig 4a,c) have oscillations, a feature common to ionic liquids (see eg 29

p34), but have different physical explanations: In the ionic case, the oscillations are due to packing restrictions due to the
finite size of the ions, but for dislocations, which can be arbitrarily close, they arise from the sharpness in the spectrum Π
(for the smooth speckle and Planck spectra, there are no oscillations). It is interesting that the tools developed for such ionic
theories are powerful enough to handle the completely different physics of dislocations in complex wavefields; use of these
theories has been made by Hannay30 in a different context again. A useful concept from the ionic theory is the notion of
partial correlation functions between the different species, defined as

g g g g g g gQ Q++ −− +−= ≡ + ≡ −,        ,      (38)

which are shown for the four spectra in fig 5. By (37) and the discussion following, g++(0)=0, a zero which is at least cubic,
so like charges are statistically repulsive; they cannot dynamically repel, at least for monochromatic waves, because the
dislocation patterns are stationary - rather it is unlikely to find two like charges close to each other, justifying the claim that
only strength ±1 dislocations are generic. There is no such restriction on unlike charges, and there are no such properties for
the Poisson distribution, whose points are completely independent, and in this case g++= g+-=1 always.

There are several neutrality conditions for dislocations in the plane. Firstly, there is topological neutrality, the so-
called “sign rule”31, 32, which requires that adjacent dislocations on a ξ=0 or η=0 contour must be of opposite sign, and the
total strength of dislocations on a closed contour must be 0. Secondly, there is average (global) neutrality, which asserts that
there is no global preference for a dislocation to have a + or – strength (in fact, ψ∗ has the same dislocations as ψ with signs
reversed), a property shared by the Poisson points. The charge correlation function gQ gives a third neutrality condition, that



Figure 5: The partial correlation functions g++, (thick line), g+- (thin line) defined by (38), with their asymptotic value 1
(dashed line), for the four spectra: (a) ring; (b) speckle; (c) shell; (d) Planck; in appropriate units of wavelength.

of local neutrality, expressed by the screening relation

2 12
0

πd RRg RQd ( ) = −
∞

∫ ,      (39)

that is, the integral of the charge throughout the rest of the plane must compensate the strength of a dislocation centred to
the origin. (39) is known in ionic liquid theory as the first Stillinger-Lovett sum rule33, 34. The second Stillinger-Lovett sum
rule maintains that the second moment of R with respect to gQ is of the order of the screening length, that is, the effective
distance over which the charge is screened by (39). However, for the ring and shell spectra, the second moment of gQ

diverges, implying an effectively infinite length over which each charge is screened. This long-range correlation property
leads to other interesting features for wavefields with these spectra, which are currently being investigated. For the speckle
and Planck spectra, the screening lengths are comparable with to ranges of the functions as seen in figs 4,5,b,d. For the
Poisson distributions of signed points, of course, there is no screening.

The screening property can be understood more clearly when one considers the total charge Q(N) of dislocations in
a large area A=N/d2 (ie N>>1). Clearly, the average charge 〈Q(N)〉=0, but screening affects the mean square fluctuation
〈Q(N)2〉. If the charges merely have average (global) neutrality, there are no long-range correlations, and 〈Q(N)2〉~N. This is
the case for random Poisson dots, and also for dislocations when edge effects are not neglected35, which is done here by
Gauss-smoothing the (circular) area A. In this case, for any N, it can be shown that
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where the second equality is derived using (36),(39). The first equality shows that, without screening, the leading term for
large N  would be N/2, and the fluctuations would be those of the Poisson distribution, with merely average neutrality.
However, for dislocations there is screening, and
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∞

−∫ d ,      (41)

provided the integral converges, leaving fluctuations that are independent of N for large N  (ie N greater than the order of
screening length). However, for the sharp ring and shell sharp spectra, where correlations are effectively infinitely long, the
integral does not converge. It can be shown from (40) that for the ring spectrum, 〈Q(N)2〉~√N, and for shell, 〈Q(N)2〉~logN.



The other correlation functions, g, g++, g+- can be used for a crude Poisson approximation of the nearest neighbour
probability density functions P(R), P++(R), P+-(R), that is the probability that the nearest appropriately signed neighbour is at
distance R from a dislocation. The probability that the nearest neighbour is at a distance R from the dislocation is estimated
to be the probability of there being no dislocations in small annular rings R1,R2,…,RM-1, separated by small distances dRi,
and R=RM, the approximation being that the dislocations in each annulus are independent; a proper calculation would
involve all multipoint correlation functions between these dislocations. Under this approximation,

P R R d g R R R d g R R Ri i i
i

M
( ) ( ) ( )d d d= −( )

=

−
∏2 1 22 2

1

1
π π ,      (42)

and, in the limit M→∞, dR→0,
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




∫2 22 2

0

π π d ,      (43)

and P++,P+-,g++,g+- replace P,g where appropriate. The probability densities for the four spectra are shown in fig 6; note that
for Poisson points, all three distributions are identical Poisson probability distributions (in fact, this is where the name for
such a distribution comes from). For dislocations, it is evident that the nearest oppositely charged neighbour is statistically
closer than the nearest identically charged neighbour, as one expects from the statistical repulsion of like charges. The
measure of mean spacing, used for example in table 1, possibly overestimates this spacing, but is consistent for each
spectrum. Berggren and coworkers12 have refined the ring spectrum calculation of nearest neighbour spacings with the
Bernoulli approximation (which includes some degree of multipoint correlation), and have found good agreement between
the theory and numerical experiment.

Figure 6: The (approximate) nearest neighbour probability density functions P (dashed line), P++ (thick line), P+- (thin line)
derived in (43), for the four spectra: (a) ring; (b) speckle; (c) shell; (d) Planck. The vertical line gives the approximate mean
spacing from 1/√d2, as given in table 1.
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