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Abstract
The densities of critical points of phase (extrema and saddles), which play
an important role in the theory of phase singularities (wave dislocations)
in two dimensions, are calculated in isotropic plane wave superpositions.
Critical points and dislocations are put on an equal footing as zeros of the
two-dimensional current (Poynting vector), and the results, depending only
on the second and fourth moments of the wave spectrum (distribution of
wavenumbers), are related to the corresponding dislocation density. Explicit
results for several spectra are derived, discussed and related to previous results.

PACS numbers: 4225, 0250, 0365V

Critical points of phase in two-dimensional wavefields are places (generically points) where
the gradient of phase vanishes, and can either be phase extrema (maxima or minima) or
saddle points. They are topologically related to the points, called phase singularities, wave
dislocations or optical vortices (Nye and Berry 1974, Berry 1998a, Nye 1999), where the
phase is singular (phase gradient undefined), and saddles play an important role in the two-
dimensional theory of dislocations (e.g. Freund 1995, Berry 1998b, Nye 1998). It is recent
work in the statistical properties of dislocations in Gaussian random waves (Berry and Dennis
2000, hereafter referred to as BD, Saichev et al 2000, Halperin 1981), that has motivated this
study of statistical densities of phase critical points, realized (along with dislocations) as zeros
of the current (Poynting vector). I shall present calculations of the densities of both saddles
(equation (26)) and extrema (equation (27)) in superpositions of plane waves, isotropically
distributed in direction and with random phases, a model often used in statistical optics (being
a good model for laser speckle patterns (Ochoa and Goodman 1983, Goodman 1985)), and for
which the dislocation density has been calculated (BD, Halperin 1981, Berry 1978).

The calculations here are complementary to those of Weinrib and Halperin (1982), who
find the densities of critical points of intensity (where dislocations appear as zeros/minima)
in the same statistical model. Although not phase critical points, dislocations, being intensity
minima, are intensity critical points, and although phase and intensity critical points occur
in general in different places, their configurations are related (Shvartsman and Freund 1995).
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Also, although important for two-dimensional waves, phase and intensity critical points in
plane sections of three-dimensional waves play no special role in space, and I shall discuss
this further at the end. The notation and approach follow closely that of BD, to which the
reader is referred for further details and references. The two-dimensional complex wavefield,
dependent on R ≡ (x, y), is denoted by ψ = ψ(R) = √

I exp(iχ) = ξ + iη, where I is the
(real, positive) wave intensity, χ is the (real) phase and ξ, η are the real and imaginary parts
of the field.

Critical points of phase occur when the gradient ∇χ vanishes, and may be phase maxima,
minima or saddles. The phase can also be singular (∇χ undefined), at points of vanishing
amplitude, ψ = I = 0; these are the dislocations, around which the phase increases by an
integer multiple of 2π , the sign of the dislocation depending on the direction of increase.
Dislocations and critical points may be put on an equal footing by considering the planar
current (Poynting vector) J , (where subscripts after scalars denote partial derivatives)

J ≡ Im ψ∗∇ψ = (ξηx − ηξx, ξηy − ηξy) (1)

which is zero at dislocations (where ξ = η = 0) and at critical points, where the fraction

ξ

η
= ξx

ηx
= ξy

ηy
(2)

is finite and nonzero.
Sufficiently close to dislocations, the current circulates in perfect circles (BD, Dennis

2001); the phase maxima are sinks, minima are sources and phase saddles are saddle points.
The sources, sinks and circulations have Poincaré index +1, and the saddles have index −1
(Berry 1998a). All singularities considered have unit Poincaré index or dislocation strength,
since only these are structurally stable and found generically.

As external parameters are varied, (such as the z coordinate if the wave is a plane section
of a three-dimensional field), dislocations may be created or destroyed in pairs of opposite
sign, and by conservation of Poincaré index, such a process must also involve two saddles
(Nye et al 1988), or a maximum and a minimum, with saddle spectator (as in Freund and
Kessler 2001, figure 4). Thus for stationary random fields, the mean density of zeros of J ,
weighted by Poincaré index, is zero, implying that for dislocation density D, extrema density
E and saddle density S,

D + E − S = 0. (3)

This will be verified later for the Gaussian random waves considered here. With M = ∂αJβ
(α, β = x, y) the number of zero points of J in an area A, #A, is

#A =
∫

A
d2R δ2(J)| det M | (4)

=
∫

A
d2R δ2(J)| det Msym| +

∫
A

d2R δ2(J)| det Masym| (5)

where Msym,Masym are the symmetric and antisymmetric parts of M respectively, and the
separation in (5) requires justification. If modulus signs are removed from (4), the zeros are
weighted by their Poincaré index, and the integral counts the total index in A. Msym,Masym

are

det Msym = 1
2 (∇ · J)2 − (ξηxy − ηξxy)

2 − 1
2 (ξηxx − ηξxx)

2 − 1
2 (ξηyy − ηξyy)

2 (6)

det Masym = (ξxηy − ξyηx)
2 (7)

Masym contributes only to the dislocations, since Masym and circulations/dislocations exchange
sign under an exchange of x, y, and det Msym is zero at a dislocation, since ξ = η = 0 there.
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Msym contributes only to extrema and saddles, being invariant under exchange of x, y, and
det Masym = 0 there by (2). This justifies (5), since the zeros of J are separated into two
disjoint sets, the critical points and dislocations, at which det M reduces to its symmetric
and antisymmetric parts respectively. Thus the second term in (5) may be interpreted as the
number of dislocations in the area A, and is easily seen to be equal to the form used in earlier
calculations (cf BD equation (2.5), Halperin 1981 equation (6.19)). The first term provides
the number of critical points in A, and det Msym is positive for extrema, negative for saddles
(removing the modulus signs in (4), (5) gives the total Poincaré index in A, analogous to (3) on
average). The form for det Msym in (6) confirms that extrema are places of nonzero divergence
of phase; for solutions of the planar Helmholtz equation ψH, that is

∇2
⊥ψH + K2ψH = 0 (8)

(where ∇2
⊥ = ∂2

x + ∂2
y , and K is a unique wavenumber), the current is divergenceless since

∇ · JH = Im {∇ψ∗
H · ∇ψH + ψ∗

H∇2ψH} = Im {−K2|ψH|2} = 0 (9)

so the only critical points are (divergenceless) saddles, whose density must equal the dislocation
density by (3). In waves not satisfying (8), there may be extrema, and the saddles are not
necessarily divergenceless. This concludes the general remarks about critical points, and a
description of the statistical model of Gaussian random waves follows.

The wavefield ψ is taken to be a linear superposition of infinitely many sinusoidal plane
waves, with wavevectors K,

ψ =
∑
K

a(K) exp(i(K · R + φK)) (10)

where the phases φK are uniformly distributed and random, and the real amplitude weighting
a(K) depends only on the length K = |K| of the wavevector (ensuring that ψ is statistically
isotropic). The averaging shall be over different values of φK for all K, and this ensemble
is stationary and ergodic (so spatial averages, such as limA→∞ #A/A in (4), can be replaced
by ensemble averages). Ensemble averages are denoted by angle brackets 〈·〉. The required
critical point density C ≡ S + E, from (5), is

C = 〈δ2(J)| det Msym|〉. (11)

The spectral distribution of wavenumbers �(K) is defined by

1

2

∑
K

a(K) ≈ 1

2π

∫
d2K �(K)/K (12)

in the limit of infinitely many closely spaced K. The nth moment of K with respect to the
distribution�(K) is denotedKn, and normalized so thatK0 = 1. The critical point density will
only involveK2,K4. ψ may be a plane section of an isotropic three-dimensional superposition
(BD); in this case, the planar spectrum is a projection of a three-dimensional distribution with
moments kn, which are related to the projected moments Kn by Kn/kn = ( 1

2 )!(
n
2 )!/(

n+1
2 )!,

derived from equation (3.10) of BD.
Explicit results will be given for the following spectra:

(i) Monochromatic waves in the plane (ring spectrum). These satisfy the Helmholtz
equation (8), and all waves in the superposition (10) have the same wavenumber Km,
wavelength �0 = 2π/Km. The spectrum �(K) is δ(K − Km), implying that

Kn ring = Kn
m. (13)
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(ii) Disc spectrum. �(K)/K is constant for K � Kd = 2π/�d , and zero otherwise; this is
the spectrum for uniform diffuse monochromatic light illuminating a plane in the far field,
having passed through a circular aperture, with moments

K2 disc = 1
2K

2
d K4 disc = 1

3K
4
d . (14)

(iii) Gaussian spectrum (taken as a model of a transverse section of a laser speckle pattern,
especially from a Gaussian scatterer), with standard deviationKσ = 2π/�σ . The relevant
moments are

K2 Gauss = 2K2
σ K4 Gauss = 8K4

σ . (15)

(iv) Plane sections of monochromatic waves in space (shell spectrum). The three-dimensional
analogue of the ring spectrum, where all isotropically distributed waves have the same
wavenumber km:

K2 shell = 2
3k

2
m K4 shell = 8

15k
4
m. (16)

(v) Plane sections of waves with the Planck spectrum (scalar caricature of blackbody
radiation). Spatial moments are given in BD equation (6.1) in terms of thermal
wavenumber kT = 2π/λT = kBT/h̄c, at temperature T , projecting to

K2 Planck = 80
63k

2
T K4 Planck = 64

15π
4k4

T . (17)

ψ , defined by (10), satisfies circular Gaussian statistics, so, by normalization, the real and
imaginary parts ξ, η are independent univariant Gaussian random functions, with probability
density function

P(ξ, η) = 1

2π
exp(−(ξ 2 + η2)/2). (18)

Required nonvanishing averages of ξ (identically η) and derivatives (which are also Gaussian
random functions), are, where α �= β denote x, y,

〈ξ 2
α 〉 = −〈ξξαα〉 = K2/2 〈ξ 2

αα〉 = 3K4/8
〈ξ 2

αβ〉 = 〈ξααξββ〉 = K4/8
(19)

implying that the joint probability density function for X ≡ (ξ, ξx, ξy, ξxx, ξyy, ξxy) is

P(X) = 4
√

2

(2π)3K2
√
K4

√
det Σ

X exp
( − (∇ξ)2/K2 − 4ξ 2

xy/K4 − vT Σ−1v/2
)

(20)

where v = (ξ, ξxx, ξyy), and the components of the correlation matrix Σ are'ij = 〈vivj 〉. The
probability density function for Y ≡ (η, ηx, ηy, ηxx, ηyy, ηxy) is identical to and independent
of (20).

In order to evaluate the average (11) using the probability density functions (20) for ξ, η,
use must be made of the following Fourier identities (where here and hereafter integrals with
ranges not stated are from −∞ to ∞):

δ(µ) = 1

2π

∫
dt exp(itµ) |µ| = − 1

π

∫
−ds

s
∂s exp(isµ) (21)

where
∫− denotes a Cauchy principal value integral with pole at 0. Thus the entire integrand in

the average (11) is in the exponent, and the integral can be written

C = − 1

4π3

∫
−ds

s
∂s

∫
d2t

∫
d6X

∫
d6Y exp

(
it · J + is det Msym

)
P(X)P (Y ). (22)

The first few integrals are straightforward Gaussians, and in turn are taken with respect
to ξx , ξy , ηx , ηy , t, ξxy , ηxy , (ξxx, ξyy, ηxx, ηyy), where the bracketed terms are integrated as
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a vector. Once these have been integrated, and having replaced ξ + iη with
√
I exp(iχ) and

rescaled s to u = Is, (22) becomes

C = − 1

π3K2

∫ 2π

0
dχ

∫ ∞

0
dI exp(−I/2)

∫
−du

u
∂u

1

(4 + iK4u)

√
2 − i(K4 − K2

2 )u

. (23)

The χ and I integrals are trivial, giving 4π , and all that remains is the Cauchy principal value
integral in u. This may be evaluated as the average of two contour integrals, with the contour
displaced in the complex plane both above and below the origin, each of which can be safely
integrated by parts. The integrand now has a double pole at the origin, a simple pole in the upper
half-plane at u = 4i/K4, and a branch point in the lower half-plane at −2i/(K4 − K2

2 ); the
branch cut is taken along the imaginary axis to −i∞. The upper contour can be deformed about

the simple pole, giving −πK
3/2
4 /16

√
3K4 − 2K2

2 ; the lower, deformed around the branch cut,

can be integrated by elementary means, yielding −π
(
K

3/2
4 /

√
3K4 − 2K2

2 − K2
2

)
/16. The

result is

C = K
3/2
4

2πK2

√
3K4 − 2K2

2

− K2

4π
. (24)

BD, Halperin (1981) showed that the dislocation density D is K2/4π , implying that the
total density of zeros Z of J , that is, the sum of densities of dislocations D, extrema E and
saddles S is

Z = K
3/2
4

2πK2

√
3K4 − 2K2

2

(25)

and so, by (3),

S = Z

2
= K

3/2
4

4πK2

√
3K4 − 2K2

2

(26)

E = C − S = K
3/2
4

4πK2

√
3K4 − 2K2

2

− K2

4π
. (27)

These formulae are the main result of this paper. I make the following observations:

• If (11) is evaluated without modulus signs, the integral is more straightforward, with
contributions of (K4 − K2

2 )/2πK2, −K4/8πK2, −(3K4 − 2K2
2 )/16πK2 (twice) from

the summands in (6), cancelling the dislocation density D = K2/4π and therefore
verifying (3).

• If ψ has ring spectrum statistics (13), (satisfying (8)), then

Cring = K2
m/4π Ering = 0 (28)

confirming that all critical points are saddles in this case, with density equal to the
dislocation density.

• For the other spectra, the saddle density S (in appropriate wavelength units) and fraction
of dislocation density over positive index current zero density, f = D/(D + E), are:

Sdisc =
(

2

3

)3/2
π

�2
d

fdisc ≈ 0.919 (29)
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SGauss = 2
√

2π

�2
σ

fGauss ≈ 0.707 (30)

Sshell = 2
√

3π

5λ2
m

fshell ≈ 0.962 (31)

SPlanck = 1764
√

3π3

25
√

2929λ2
T

fPlanck ≈ 0.566. (32)

(Of course, fring = 1.) As would be expected, the fraction f decreases with the variance
of K2 (that is, K4 − K2

2 ), limiting to zero as the variance approaches ∞. Freund (1998)
measured densities of critical points in simulations of waves with the disc spectrum, and
found D/S = 0.935, E/S = 0.073 (Freund 1998, table 3), in good agreement with the
values calculated here of D/S ≈ 0.919, E/S ≈ 0.081.

• By (23), critical points are uniformly distributed in phase, and negative exponentially
distributed in intensity. This implies that phase critical points are most likely to be found
in the limit I → 0, that is, near the dislocations; this would certainly be expected near
dislocation creations and annihilations (by conservation of Poincaré index), and agrees
with observations (Shvartsman and Freund 1995, Freund 1995), as well as the behaviour
of intensity critical points (Weinrib and Halperin 1982), although, unlike intensity critical
points, the distribution in intensity is not dependent on the spectrum. The probable
proximity of saddles, extrema and dislocations implies that there is some type of Poincaré
index screening, analogous to dislocation screening (BD, Dennis 2001, Halperin 1981).

• In principle, the correlation functions of critical points/zeros of J could be calculated
(weighted or not by Poincaré index), generalizing the calculations here, along the lines
of the corresponding calculation for dislocations (BD, Halperin 1981). It is likely that
these functions would be very complicated even if analytic (at least as complicated as
the dislocation number correlation function, given explicitly in Dennis (2001)). If this
calculation (involving the properties of a 24 × 24 correlation matrix) could be done, it
would be possible to confirm whether there is a screening relation for Poincaré index, and
examine further the different long-range singularity correlation behaviours for different
spectra (BD, Dennis 2001).

• When two-dimensional fields are sections of waves in three dimensions, critical points
are dependent on the particular choice of plane section (that is, a saddle point in an xy

section need not have any special properties in an xz section) (Berry 1998a, Freund and
Kessler 2001). The phase can be stationary in three dimensions also, at places where all
three components of the three-dimensional current (defined by appropriate generalization
of (1)) vanish. These may be saddles, or possibly extrema in waves not satisfying the three-
dimensional Helmholtz equation (the full Laplacian in (8)). The topological interaction
of these three-dimensional critical points with dislocations is an interesting problem,
particularly as they now have different dimension to dislocations, which are lines in space,
and have different classification topology (see, e.g., Mermin 1979).

I am grateful to M V Berry, J H Hannay and J F Nye for useful discussions, and to I Freund
for useful correspondence. This work was supported by a University of Bristol postgraduate
scholarship.

References

Berry M V 1978 Disruption of wavefronts: statistics of dislocations in incoherent random waves J. Phys. A: Math.
Gen. 11 27–37



Letter to the Editor L303

——Berry M V 1998a Much ado about nothing: optical dislocation lines (phase singularities, zeros, vortices, . . . )
Proc. Int. Conf. on Singular Optics (SPIE vol 3487) ed M S Soskin (Bellingham, WA: SPIE) pp 1–5

——1998b Wave dislocation reactions in non-paraxial Gaussian beams J. Mod. Opt. 45 1845–58
Berry M V and Dennis M R 2000 Phase singularities in isotropic random waves Proc. R. Soc. A 456 2059–79 (BD in

the text) (erratum: 2000 Proc. R. Soc. A 456 3048)
Dennis M R 2001 Local properties and statistics of phase singularities in generic wavefields Proc. 2nd Int. Conf. on

Singular Optics (SPIE vol 4403) ed M S Soskin and M V Vasnetsov (Bellingham, WA: SPIE) pp 14–24
Freund I 1995 Saddles, singularities and extrema in random phase fields Phys. Rev. E 52 2348–60
——1998 ‘1001’ correlations in random wave fields Waves Random Media 8 119–58
Freund I and Kessler D A 2001 Critical point trajectory bundles in singular wave fields Opt. Commun. 187 71–90
Goodman J W 1985 Statistical Optics (New York: Wiley)
Halperin B I 1981 Statistical mechanics of topological defects Les Houches Session XXXV ed R Balian et al

(Amsterdam: North-Holland) pp 813–57
Mermin N D 1979 The topological theory of defects in ordered media Rev. Mod. Phys. 51 591–648
Nye J F 1998 Unfolding of higher-order wave dislocations J. Opt. Soc. Am. A 15 1132–8
——1999 Natural Focusing and Fine Structure of Light (Bristol: Institute of Physics)
Nye J F and Berry M V 1974 Dislocations in wave trains Proc. R. Soc. A 336 165–90
Nye J F, Hajnal J V and Hannay J H 1988 Phase saddles and dislocations in two-dimensional waves such as the tides

Proc. R. Soc. A 417 7–20
Ochoa E and Goodman J W 1983 Statistical properties of ray directions in a monochromatic speckle pattern J. Opt.

Soc. Am. 73 943–9
Saichev A I, Berggren K-F and Sadreev A F 2000 Distribution of nearest distances for the Berry function in two

dimensions Preprint nlin.CD/0012019
Shvartsman N and Freund I 1995 Speckle spots ride phase saddles sidesaddle Opt. Commun. 117 228–34
Weinrib A and Halperin B I 1982 Distribution of maxima, minima, and saddle points of the intensity of laser speckle

patterns Phys. Rev. B 26 1362–8


