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Knotted and linked phase singularities
in monochromatic waves
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Exact solutions of the Helmholtz equation are constructed, possessing wavefront
dislocation lines (phase singularities) in the form of knots or links where the wave
function vanishes (‘knotted nothings’). The construction proceeds by making a non-
generic structure with a strength n dislocation loop threaded by a strength m dislo-
cation line, and then perturbing this. In the resulting unfolded (stable) structure, the
dislocation loop becomes an (m, n) torus knot if m and n are coprime, and N linked
rings or knots if m and n have a common factor N ; the loop or rings are threaded
by an m-stranded helix. In our explicit implementation, the wave is a superposition
of Bessel beams, accessible to experiment. Paraxially, the construction fails.
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1. Introduction

Wavefront dislocations, that is, phase singularities in complex scalar waves (Nye &
Berry 1974; Berry 1981; Nye 1999) (also known as optical vortices), are lines in three
dimensions on which the wave intensity vanishes and around which the phase changes
by 2π times an integer (the strength of the singularity). For any wave in space, the
set of its dislocation lines is a skeleton, supporting the phase structure of the whole
field.

It is already known that solutions of the wave equation (monochromatic or time
dependent) can be constructed to represent dislocation lines that are straight or
curved, or form closed loops. In view of the recent revival of interest in these singular
structures (Soskin 1997; Vasnetsov & Staliunas 1999), it is desirable to explore all
their possible geometries. Our purpose here is to address the natural question: can
wavefront dislocations be knotted or linked?

In reaction–diffusion equations describing chemical waves, wave functions with
knotted dislocations have been created as initial conditions, and their structure and
evolution have been studied in detail (Winfree 1987; Winfree & Strogatz 1984; Win-
free et al . 1985; T. Poston & A. T. Winfree 1992, unpublished work). We impose the
more demanding condition that the knots remain stationary. Specifically, we seek
knots and links in complex scalar wave solutions Ψ(r) of the Helmholtz equation

∇2Ψ(r) + Ψ(r) = 0. (1.1)

(We measure distances in units of wavelength/2π, or, equivalently, choose the wave
number k = 1.) For r, we will use cylindrical polar coordinates r = (R, φ, z) or
Cartesians r = (x, y, z).
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Figure 1. Unstable strength m axial dislocation Am threading
an unstable strength n dislocation loop Ln.

We answer our question in the affirmative, by constructing explicit exact solutions
of (1.1) containing dislocation knots and links (zeros of Ψ), using a combination of
topology and analysis. In the basic strategy (§ 2), we envisage the knot or link col-
lapsed into a structurally unstable high-order dislocation ring, threaded by an axial
high-order dislocation, and then argue that under perturbation the ring will unfold
into the desired knot or link. To implement this strategy requires explicit solutions
with definite properties, and we choose, from many possible types of solution, a
particularly convenient set (§ 3) consisting of superpositions of Bessel beams.

A surprising aspect of the analysis is that although it works for the Helmholtz
equation (1.1), it fails for the paraxial approximation to (1.1). This is a consequence
of the result (Appendix D), which is of independent interest, that paraxial wave
equations cannot possess solutions with dislocation loops whose strength exceeds
unity. Two other results arising from this work, which are also of independent interest,
are a clarification (Appendix A) of the local structure of higher-order dislocations,
and a topological theorem (Appendix B) showing that screw dislocation loops must
be threaded by other dislocations.

2. Unstable dislocation structures and their unfoldings

The starting point of our construction will be an unstable (non-generic) structure
consisting of a circular dislocation loop Ln of strength n > 0, lying in the plane z = 0
and with radius R∗, centrally threaded by a strength m dislocation line Am along
the z-axis (figure 1). Then we will perturb this to get the desired knot or link as the
stable unfolding of Ln. To create the unstable structure, we first note that near Am
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the local field must be
KRm exp(imφ), (2.1)

where K is a constant. In Appendix A we show that, near Ln, the local field must
be

(K+(R − R∗ + iz)n + K−(R − R∗ − iz)n) exp(imφ), (2.2)

where K± are constants with |K+| > |K−|.
Thus we write the unperturbed wave in the form

ψ(r) = exp(imφ)F (R, z) (2.3)

and seek to create the desired structure by imposing conditions on F . For Am, we
require, from (2.1),

∂p
Rψ(0, z) = 0, 0 � p � m − 1,

∂m
R ψ(0, z) �= 0,

}
(2.4)

where, here and hereafter, we denote derivatives with respect to a variable ξ by the
symbol ∂ξ. For the loop Ln, we require, from (2.2), the 1

2n(n + 1) conditions

∂q
R∂p−q

z ψ(R∗, 0) = 0, 0 � q � p, 0 � p � n − 1,

∂q
R∂n−q

z ψ(R∗, 0) �= 0, 0 � q � n.

}
(2.5)

In effect, we are envisaging (imagining the unfolding in reverse) that n strength 1
dislocations coalesce into a single strength n dislocation. This requires 1

2n(n + 1)
conditions, rather than just n − 1; the greater number arises because a strength
n dislocation has Poincaré index +1 for any n, whose conservation (in addition to
dislocation strength) during the coalescence implies the simultaneous involvement of
n − 1 phase saddles (each with index −1) (Nye et al . 1988; Berry 1998).

Around any circuit threaded by Ln, the phase χ changes by 2πn. Alternatively
stated, for each value of χ (mod 2π), there are n wavefront surfaces emerging from Ln;
any transverse section of Ln cuts these surfaces in n lines, issuing from the intersec-
tion point, comprising what we call the phase star (parts (a)–(c) of figure 2). Around
any circuit threaded by Am, the phase changes by 2πm. By taking such a circuit to
be a loop just inside Lm, we can interpret this as a constraint on the phase star:
along Ln, the phase star must turn m/n times. This implies a helicoidal structure in
the wavefronts issuing from Ln, and illustrates a general theorem (Appendix B): the
phase change along a dislocation loop equals the total strength of the dislocations
threading it.

Now let this Am, Ln structure be perturbed by an additional weak wave ψp(r)
that does not itself possess any dislocation lines threading Ln (for example, ψp could
be a plane wave). Thus the total wave is

Ψ(r) = ψ(r) + εψp(r) = exp(imφ)F (R, z) + εψp(r). (2.6)

This splits Ln into n separate dislocation strands with strength 1 (zeros of Ψ), and
in each cross-section the phase star splits into n strength 1 stars (parts (d)–(f) of
figure 2) and n − 1 phase saddles (if the unfolding is incomplete, the saddles can be
degenerate, as in figure 2e).

If m and n are coprime, these strands cannot take the form of n separate dislocation
loops, because each of the n phase stars will be unable to match smoothly with its
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(a) (b) (c)

(d ) (e) ( f )

Figure 2. Phase stars. Thick lines: χ = 0 and π (mod 2π) (crests and troughs of Re ψ); dashed
lines: χ = 1

8π and 5
8π (mod 2π); thin lines: χ = 1

2π and 3
2π (mod 2π); light dotted lines: χ = 3

8π
and 7

8π (mod 2π); heavy dotted lines in (f): χ = 2.671π/8. (a) Strength 1 dislocation L1;
(b) unstable strength 2 dislocation L2; (c) unstable strength 3 dislocation L3; (d) stable unfolding
of (b); (e) partial unfolding of (c); (f) stable unfolding of (c).

(a) (b)

Figure 3. Stable unfoldings of figure 1. (a) The (m = 3, n = 2) (trefoil) knot threaded by a
triple-stranded helix. (b) The (m = 2, n = 2) link, threaded by a double-stranded helix.

beginning after turning m/n times in a circuit of the axial dislocation. Thus the
strands form a single loop that turns n times round the z-axis before closing. Now,
we show in Appendix C that the cluster of n unfolded phase stars must be convected
by the phase pattern that it carries. It follows that the n strands must also twist m
times round the original loop Ln before closing. Therefore, the unfolding of Ln is an
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(m, n) torus knot (Adams 1994). Similarly, Am must unfold into m separate strength
1 dislocation lines, and we will soon see that they form an m-stranded helix. The
fully unfolded structure, of an (m, n) torus knot threaded by an m-stranded helix,
is illustrated for the trefoil in figure 3a.

If m and n are not coprime, but share a common multiple, so that (m, n) =
N(m0, n0), with m0, n0 coprime, the ‘knot’ into which Ln unfolds consists of N
identical linked loops, each of which is an (m0, n0) knot, and the whole set of N
loops is threaded by an m-stranded helix. Figure 3b illustrates this for the simplest
link. It is possible for the individual linked dislocations to be knotted; the simplest
situation where this occurs is m = 6, n = 4, corresponding to two linked trefoil
knots.

These topological arguments can be confirmed and extended by explicit calcula-
tions of the zeros of (2.6) for small ε. It will suffice to consider perturbations ψp with
circular symmetry, that is, ψp depends only on R and z. Consider first the neigh-
bourhood of Ln. Using the local form (2.2) for the unperturbed wave, and defining
the constant

BL ≡ ψp (r on Ln), (2.7)

we have, as the equation for the unfolding of Ln,

K+ρn exp(inγ) + K−ρn exp(−inγ) = −εBL exp(−inφ), (2.8)

where ρ, γ are polar coordinates in azimuthal sections of Ln defined by

R − R∗ + iz = ρ exp(iγ). (2.9)

According to (2.8), and remembering that |K+| > |K−|, nγ increases by 2π as mφ
decreases by 2π. It follows that along each strand (φ changing by 2π), γ changes by
2πm/n, so along the whole knot (φ changing by 2πn), γ changes by 2πm. Thus the
knot is indeed an (m, n) torus knot if m and n are coprime, and a link otherwise.
On each azimuthal section specified by φ, the n solutions γ (of (2.8)), corresponding
to the different strands, lie on a circle with radius ρ = O(ε1/n); the union of all
these circles is the torus, with coordinates γ and φ, on which the dislocation knot is
wound.

Consider now the neighbourhood of Am, and define the function

BA(z) = ψp (r on Am). (2.10)

Then an analogous argument based on (2.1) shows that the m strength 1 dislocations
into which Am unfolds must lie on the surface

R(z) = ε1/m|BA(z)/K|1/m. (2.11)

This is a tube whose cross-section, with radius of order ε1/m, varies with z. For the
m strands, we obtain

φj(z) =
arg(−BA(z)/K)

m
+

2πj

m
, 1 � j � m. (2.12)

Since BA(z), in fact, must vary with z (if ψp satisfies the wave equation and has
circular symmetry), the strands rotate and are therefore braided into an m-stranded
helix, as claimed. (The sense in which the helix twists with z is unrelated to the
sense in which the strands of the knot twist with φ.)
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3. Bessel knots

At first thought, it would seem simplest—both for theoretical calculation and for
experimental realization—to implement the above procedure with the Laguerre–
Gauss beams of paraxial optics (Allen et al . 1992). However, this attempt fails,
because conditions (2.5) for the circular dislocation Ln are impossible to satisfy with
any paraxial waves. This follows from the general result, proved in Appendix D,
that there can be no higher-order dislocation loops in solutions of the paraxial wave
equation.

From the many classes of exact solutions of (1.1) in the form (2.3), we choose the
m-Bessel beams (Durnin 1987; Durnin et al . 1987)

Fmb(R, z) = Jm(bR) exp(iz
√

1 − b2). (3.1)

Here, b is a constant and 0 � b � 1 for the non-evanescent waves we are interested in.
Such beams automatically satisfy (2.4) and so possess the desired axial dislocation
Am. To satisfy (2.5), we choose real constants b1, . . . , bn(n+1)/2 and construct the
superposition

F (R, z) =
n(n+1)/2∑

l=1

alFmbl
(R, z), (3.2)

with real constants al. For simplicity, we can choose b1 = 1 and, without loss of
generality, we can take a1 = 1. Then, for a fixed choice of the remaining bl, we can
adjust the remaining al and R∗ to ensure that (2.5) is satisfied, thereby making n
zeros of the Bessel superposition coalesce, creating the desired loop Ln.

As examples, we now create a (3, 2) trefoil knot and a (2, 2) link. In both cases,
construction of the loop L2 involves three Bessel functions (of order 3 for the knot,
2 for the link), for which we choose the scaling factors

b1 = 1, b2 = 1
3 , b3 = 2

3 . (3.3)

The coefficients a2, a3 (with a1=1), and the radius R∗, are determined by the equa-
tions (2.5), which for the knot become, incorporating (3.1),

F (R∗, 0) = J3(R∗) + a2J3(1
3R∗) + a3J3(2

3R∗) = 0,

∂RF (R∗, 0) = J ′
3(R

∗) + 1
3a2J

′
3(

1
3R∗) + 2

3a3J
′
3(

2
3R∗) = 0,

∂zF (R∗, 0) = 1
3

√
8a2J3(1

3R∗) + 1
3

√
5a3J3(2

3R∗) = 0


 (3.4)

(for the link, the equations are the same, but with the Bessel indices 3 replaced by 2).
These equations are easy to solve numerically. Indeed, there are many solutions, and
we choose those corresponding to coalescence of the two smallest zeros of the Bessel
superpositions. The results are

a2 = 10.0302, a3 = −3.18960, R∗ = 5.44992 ((3, 2) trefoil knot),
a2 = 4.73341, a3 = −2.70176, R∗ = 4.32636 ((2, 2) link)

}
(3.5)

and constitute the data needed to construct the loops L2.
As the perturbation that converts the unstable L2 into the stable knot or link, we

take the zero-Bessel beam

ψp(r) = J0(1
4R) exp(1

4 i
√

15z). (3.6)
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Figure 4. Density plots of wave intensity for the superposition (2.6), (3.2) and (3.5), with ψp given
by (3.6) and ε = 0.02, in the planes (a) (c) z = 0 and (b), (d) x = 0, for the (a), (b) (m = 3, n = 2)
trefoil knot and the (c), (d) (m = 2, n = 2) link. Black dots indicate the points where dislocation
lines intersect these planes. The dislocation knot is threaded by a triple-stranded dislocation
helix, and the dislocation link by a double-stranded dislocation helix.

Figure 4 shows sections of the total (that is, perturbed) waves for the two cases, one
with its dislocation knotted, the other linked.

4. Concluding remarks

By constructing an unstable dislocation structure with high symmetry and then
perturbing it, we are able to create waves with a dislocation in the form of any knot
or link that can be wound round a torus. For the explicit construction, we chose the
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superposition (3.2) of Bessel beams (3.1). However, there are many alternative sets of
exact solutions of (1.1), of the form (2.3) with definite angular momentum, that have
sufficient flexibility to satisfy conditions (2.5). For example, we can take ‘polynomial
waves’ (Nye 1998; Berry 1998), where F (R, z) = exp(iz) × (polynomial in R, z), and
the calculations are almost identical to those in § 3.

Optical fields satisfy the Helmholtz equation in the scalar approximation, raising
the possibility that the spatially fixed and geometrically stable dislocation knots
and links that we have created theoretically could be manufactured experimentally.
Bessel beams are good candidates for such realization, since they can be manipulated
experimentally (Durnin et al . 1987). But the essentially non-paraxial nature of the
construction (see below and Appendix D) presents a challenge to experimentalists,
especially since the scalar approximation is problematic for non-paraxial light (of
course, this particular difficulty would not arise for longitudinal fields such as sound
in a fluid).

It was surprising to discover (Appendix D) that paraxial approximations to the
wave equation are inadequate to implement our strategy for creating knots. We
cannot exclude the possibility that paraxial fields can support knots generated by
other means, but there would be a prohibition against collapsing the n strands of
such a paraxial knot into a single strength n dislocation loop. The prohibition could
originate, for example, in an extraneous dislocation passing between the strands; we
see no way to construct such an exotic object.

The non-existence of paraxial loops with strength greater than unity is interesting
in its own right, and for at least two reasons. First, it is unusual for a wave equation
to restrict the possible morphologies of phase singularities.

Second, non-paraxial beams possess axial dislocation rings of strength unity and all
of the same sign (Berry 1994), which can be mimicked paraxially (Karman et al . 1997,
1998) by diffraction of a Gaussian beam by an aperture. In both paraxial and non-
paraxial cases, these rings can be manipulated by varying a parameter, to undergo a
series of singular events (for example, a +1 dislocation loop colliding with a loop of
saddles and exploding into a strength −1 loop flanked by two +1 loops). However, one
‘supersingular’ event that can occur non-paraxially (Nye 1998; Berry 1998), but that
is paraxially impossible, is the (two-parameter) steering of loops of strength unity
to coincide pairwise into loops of strength 2. Detailed examination of the algebra
describing the supersingular event shows that in the equivalent paraxial situation
there is always an additional extraneous loop, of opposite strength to the two that
are being steered into coincidence, which arrives simultaneously and prevents the
formation of the strength 2 loop.

Phase singularities in three dimensions are vortex lines in the current j = Im ψ∗∇ψ,
so our constructions are vortex knots, as studied in hydrodynamics (Moffatt 1969;
Moffatt & Ricca 1992). These waves could describe stationary configurations of elec-
trons in free space (because in this situation the Schrödinger equation reduces to
the Helmholtz equation); similar solutions exist in the presence of the Coulomb field
from an atomic nucleus (Berry 2001), and these knotted vortices can describe states
of electrons in atoms, perhaps as envisaged by Kelvin (1867, 1869).

Although the (m, n) construction includes a wide variety of knots and links, there
are many knots that cannot be smoothly wound on a torus, and so the strategy
described here does not generate them. The obvious question arises whether every
topology of dislocation can be sculpted in a monochromatic wave. For example, is it
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possible to make the Borromean rings (Cromwell et al . 1998), where three loops are
entangled but no two are linked?

Dislocation knots can occur, but are they typical? For example, in the sound waves
in a room filled with conversation the air contains a forest of dislocation lines—
threads of silence—and it is reasonable to suppose that some of the dislocations are
knotted. But how many? A precise formulation is as follows. In a Gaussian random
wave field with prescribed power spectrum, what fraction of the points where dislo-
cations pierce any two-dimensional section corresponds to dislocation lines that are
part of a knot? This is a difficult problem in statistical geometry, but techniques exist
(Berry & Dennis 2000) that may be adaptable to deal with topological questions.

M.V.B.’s research is supported by The Royal Society; in addition, he is grateful for the hospitality
of the Technion, Haifa, where the first draft of this paper was written. M.R.D. is supported by a
University of Bristol postgraduate scholarship. We thank Professor Arthur Winfree for helpful
discussions, and for sending us his unpublished paper with Professor Timothy Poston.

Note added in proof

As a result of computations kindly communicated to us by Professor Miles Padgett
and Dr Johannes Courtial, we now appreciate that the paraxial prohibition against
higher-order dislocation loops does not prevent the formation of knots in paraxial
waves. In terms of our strategy, it suffices to apply a ‘perturbation’ to a wave with
n neighbouring parallel dislocation loops of strength 1, rather than a single loop of
strength n, provided the ‘perturbation’ is large enough. Such n-loop complexes can
be created easily by replacing the set of radial wavenumbers bl by very small, even
paraxial, values with the same ratios, but using the same parameters al that we have
specified (e.g. in (3.5)).

Appendix A. Local structure of higher-order Helmholtz dislocations

Let the strength n dislocation pass through the plane y = 0 in the positive y-
direction, and choose polar coordinates ρ, γ (cf. (2.9)) in the x, z-plane. Therefore,
the phase of ψ must increase by 2πn as γ increases by 2π. It follows that the Fourier
expansion of ψ begins with the terms exp(±inγ), and smoothness demands that ψ
vanishes as ρn on the dislocation. This, in turn, implies that ∂2

xψ and ∂2
zψ vanish

as ρn−2, and so dominate the term ψ in the Helmholtz equation (1.1); they also
dominate the term ∂2

yψ in (1.1), because the derivative along the dislocation vanishes
to higher order (i.e. n). Thus, close to the dislocation, the transverse dependence of
ψ must satisfy Laplace’s equation

∂2
xψ + ∂2

zψ = 0. (A 1)

The most general solution proportional to ρn is

ψ = K+(x + iz)n + K−(x − iz)n = ρn[K+ exp(inγ) + K− exp(−inγ)]. (A 2)

Around the dislocation, that is, as γ increases by 2π, the term with coefficient K+
winds n times positively in the complex plane of ψ, and the term with K− winds
negatively. For ψ to represent a strength +n dislocation, the term K+ must dominate,
that is, |K+| > |K−| (otherwise, ψ represents a strength −n dislocation). Translating
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to coordinates near the circular dislocation created in § 2, and incorporating the
required azimuthal dependence, we obtain (2.2).

The local behaviour (A 2) is a strong restriction on ψ, imposed by the Helmholtz
equation. It implies that, around a circle centred on the dislocation, the wave ψ
describes an ellipse in the complex ψ-plane, repeated n times, whose eccentricity
depends on K+/K−. Without the Helmholtz requirement, ψ would be a superposition
of monomials of the form xjzn−j , whose variation in its complex plane is more
complicated than an ellipse.

Appendix B. Screw dislocation loops must be threaded
(see also Winfree (1987) and Winfree et al . (1985))

Recall that the strength S of a dislocation is defined as the number of cycles of phase
χ in a circuit C around it,

2πS =
∮

C

dχ. (B 1)

This defines a direction along the singular line, namely that which is right handed
with respect to C when S > 0.

Imagine now an unknotted dislocation loop L of strength 1. Along L, the phase
star (figure 2a) usually rotates (that is, it has screw character (Nye & Berry 1974)),
and by continuity, the number of rotations must be a signed integer; this is the
screw number m. For convenience, we define m > 0 (< 0) if the screw is left (right)
handed with respect to the dislocation direction. If the wavefront surface χ = const.
(mod 2π) near L is regarded as a ribbon, then the integer m is the linking number
of its edges.

On a closed curve C just inside L (so that there are no dislocations between C
and L), the phase cycles m times as the star rotates, that is,

2πm =
∮

C

dχ, (B 2)

showing that the screw number m must be equal to the dislocation strength threading
C and also L.

If the dislocation strength of L is n > 1, so that its phase star is multiple (parts (b)
and (c) of figure 2), then the screw number (still defined as the number of rotations)
is quantized in units of 1/n, and the dislocation strength threading the loop is equal
to the number of such 1/n rotations of the multiple phase star about L. If the screw
number is m/n, then m is the linking number of the wavefront ribbon of the torus
knot produced by the perturbation described in § 2.

If the threading dislocation A is itself a loop (that is, if A and L are linked), then
it has a screw number equal to the strength n of L: each loop’s strength equals the
other’s screw number. In our construction, the Bessel superpositions (3.2) possess
an infinite number of dislocation rings in addition to the degenerate structure that
unfolds to our knot, so the straight threading dislocation, regarded as a loop closing
at infinity, must have an infinite screw number.

Each wavefront χ = const. (mod 2π) is a (possibly infinite) Seifert surface (Adams
1994), smoothly connected at the knotted and helical dislocations with its counter-
part χ + π.
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Appendix C. Perturbed dislocation stars are convected

After perturbation, Ln splits into a dislocation consisting of n strands, each with
strength 1. If m and n are coprime, then the strands must form a single dislocation
loop, winding n times round the original z-axis. Here we show that each strand must
turn m times around the others before closing. Consider a section of the knot, labelled
by its azimuth φ. The section will contain n phase stars. Far from the strands, the
pattern of phase contours is unchanged by the perturbation, and so must turn m/n
times during a circuit of Am, that is, as φ increases by 2π. To show that the pattern
of stars must also rotate m/n times, we must look more closely.

Each pair of stars will be separated by one or more distinct phase contours, each
of which arrives from afar and hits one of the phase saddles between the stars, as
in parts (d)–(f) of figure 2. Consider the phase χ(φ) corresponding to one of these
saddles, as φ increases by 2π. If χ(φ) is single valued, that is, if this phase does not
change by a multiple of 2π, then the phase contours issuing from this saddle must
also turn m/n times, in synchrony with the phase contours far away. Therefore, the
stars separated by the phase contours issuing from the saddle must rotate too. An
appropriate image is of a ‘saddle paddle’, convecting the phase stars. The result of
this process is that the strands must twist, as claimed.

To show the single valuedness of χ(φ) during the circuit, consider the model
(cf. (2.2), (2.6), (2.8))

ψ(r) = exp(imφ)[K+(x + iy)n + K−(x − iy)n] + εψp(r), (C 1)

where x and y are local coordinates centred on the place where Ln pierces the φ
section. At the saddles, the current j = Im ψ∗∇ψ = 0 but ψ �= 0. To lowest order in
ε, there is a saddle at x = y = 0 (if n > 2, this is a degenerate saddle, as in figure 2e,
corresponding to a partial unfolding, but this does not affect the argument). The
phase of this saddle is

χ(φ) = arg(ψp(x = 0, y = 0, φ)), (C 2)

and this is single valued as φ changes by 2π, from our assumption that ψp possesses
no dislocations threading Ln.

The stipulation that ψp possesses no dislocations threading Ln, so that the phase
of ψp is single valued on Ln, is essential. Without it, we would, for example, be free
to choose ψp proportional to exp(imφ), and then, simply by reversing the tuning of
parameters al that created the strength n dislocation Ln, we could unfold it into n
separate unlinked loops, that is, the convection necessary for the formation of a knot
would not occur.

Appendix D. No higher-order paraxial dislocation loops

Let the paraxial direction be z. Any loop, of whatever shape, must have at least two
points where its direction is perpendicular to the z-axis. This is obvious geometrically,
and also follows from the fact that the tangent vector t to any closed loop varies
periodically round the loop, with mean zero, so that any component of t must pass
through zero at least twice. Therefore, the absence of paraxial loops with strength
|n| > 1 follows, if it can be shown that the paraxial wave equation

2i∂zψ + ∂2
xψ + ∂2

yψ = 0 (D 1)

prohibits a strength |n| > 1 dislocation perpendicular to the z-axis.
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To establish this prohibition, let the dislocation pass through the origin in the
y-direction. Then the y variation (along the dislocation) must be slower than the
x and z variations, so the term ∂2

yψ in (D 1) must be dominated by the other two.
Thus, in the x, z-plane, ψ must satisfy

2i∂zψ + ∂2
xψ = 0. (D 2)

It is immediately clear that there is no solution proportional to [
√

(x2 + z2)]n, but
it is instructive to examine in more detail the requirements for a dislocation of
strength n. Not only must all derivatives ∂j

x∂p−j
z ψ of order p < |n| vanish, but all

derivatives of ∂j
x∂n−j

z ψ of order n must not vanish (cf. (2.5)). However, repeated
differentiation of (D 2) shows that this is impossible: if the derivatives less than n
vanish, then at least one higher derivative with respect to x must vanish too, spoiling
the construction.

The prohibition operates in subtle ways. For example, in (3.1), the innocent
replacement of

√
(1−b2) by its paraxial equivalent 1 − 1

2b2 results in equations similar
to (3.4), which can be solved for the coefficients in the (now paraxial) superposition
with ψ = ∂Rψ = ∂zψ = 0 at R = R∗. However, this solution also has ∂2

Rψ = 0
at R = R∗, so what has been created is a degenerate singular ring with strength
unity, rather than the desired strength 2 dislocation ring; another singularity, whose
strength is opposite to each of the ones seeking to combine, has arrived, producing a
cancellation. Such unwanted guests are paraxially unavoidable. Reflecting this, the
numerical solution of (3.4) gets progressively more difficult as the transverse wave
numbers b in (3.1) get smaller, that is, as the limit of paraxiality is approached.
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